Search Results

Search found 11358 results on 455 pages for 'utf 16'.

Page 120/455 | < Previous Page | 116 117 118 119 120 121 122 123 124 125 126 127  | Next Page >

  • Error "exit signal Bus error (7)" How to continue after making a backtrace?

    - by Mikel
    I have a Centos Server in 1and1 with Apache, Magento, MagentoBooster and Xcache installed. The server usually (1-8 times per day) prints this error "exit signal Bus error (7)" and sometimes this causes Apache not to respond. I have made a backtrace with GDB, but I don't know how to continue. gdb /usr/sbin/httpd core.XXXX --batch --quiet -ex "thread apply all bt full" backtrace.log The backtrace: [New Thread 15312] [Thread debugging using libthread_db enabled] Core was generated by `/usr/sbin/httpd'. Program terminated with signal 7, Bus error. #0 0x00002abcf6c7324e in memcpy () from /lib64/libc.so.6 Thread 1 (Thread 0x2abcf8c72300 (LWP 15312)): #0 0x00002abcf6c7324e in memcpy () from /lib64/libc.so.6 No symbol table info available. #1 0x00002abd02e6b9c7 in ?? () from /usr/lib64/php/modules//php_ioncube_loader_lin_5.2_x86_64.so No symbol table info available. #2 0x00002abd02ed4d47 in _zval_dup () from /usr/lib64/php/modules//php_ioncube_loader_lin_5.2_x86_64.so No symbol table info available. #3 0x00002abd02ecdffb in ?? () from /usr/lib64/php/modules//php_ioncube_loader_lin_5.2_x86_64.so No symbol table info available. #4 0x00002abd02c32636 in xc_compile_file (h=0x7fffc3e7e4f0, type=2) at /opt/xcache-1.3.2-rc1/xcache.c:1060 __orig_bailout = 0x7fffc3e88f10 __bailout = {{__jmpbuf = {46991244125792, 3379122525071325456, 46991369192208, 140736480142576, 140736480142656, 46991244125792, 3379207471940512272, 3379122524988693332}, __mask_was_saved = 0, __saved_mask = {__val = {46991369228841, 46991369206800, 46991369195208, 46991382361728, 46991369196536, 46991369206984, 46991369210744, 0, 46991240130544, 140733193388033, 0, 140736480142296, 46991240361284, 46991369207528, 46991369232128, 3}}}} sandbox = {alloc = 0, filename = 0x2abd078dd0e0 "/var/www/vhosts/DOMAIN/httpdocs/var/ait_rewrite/67b58abff9e6bd7b400bb2fc1903bf2f.php", orig_included_files = {nTableSize = 256, nTableMask = 255, nNumOfElements = 191, nNextFreeElement = 0, pInternalPointer = 0x2abcf4da53d0, pListHead = 0x2abcf4da53d0, pListTail = 0x2abd07dfeb28, arBuckets = 0x2abd0896d690, pDestructor = 0, persistent = 0 '\000', nApplyCount = 0 '\000', bApplyProtection = 1 '\001'}, tmp_included_files = 0x2abd0069e830, orig_zend_constants = 0x2abd0d630b60, tmp_zend_constants = {nTableSize = 2048, nTableMask = 2047, nNumOfElements = 1559, nNextFreeElement = 0, pInternalPointer = 0x2abd08283760, pListHead = 0x2abd08283760, pListTail = 0x2abd08320810, arBuckets = 0x2abd08302aa0, pDestructor = 0x2abd02c34850 <xc_free_zend_constant>, persistent = 1 '\001', nApplyCount = 0 '\000', bApplyProtection = 1 '\001'}, orig_function_table = 0x2abd0d61f340, orig_class_table = 0x2abd0d61f2b0, orig_auto_globals = 0x2abd0d618910, tmp_function_table = {nTableSize = 2048, nTableMask = 2047, nNumOfElements = 1555, nNextFreeElement = 0, pInternalPointer = 0x2abd08320ce0, pListHead = 0x2abd08320ce0, pListTail = 0x2abd0933fe60, arBuckets = 0x2abd079c8500, pDestructor = 0x2abd0033e1d0 <zend_function_dtor>, persistent = 1 '\001', nApplyCount = 0 '\000', bApplyProtection = 0 '\000'}, tmp_class_table = { nTableSize = 16, nTableMask = 15, nNumOfElements = 0, nNextFreeElement = 0, pInternalPointer = 0x0, pListHead = 0x0, pListTail = 0x0, arBuckets = 0x2abd079dbf60, pDestructor = 0x2abd0033dcf0 <destroy_zend_class>, persistent = 1 '\001', nApplyCount = 0 '\000', bApplyProtection = 0 '\000'}, tmp_auto_globals = {nTableSize = 16, nTableMask = 15, nNumOfElements = 9, nNextFreeElement = 0, pInternalPointer = 0x2abd0933ffc0, pListHead = 0x2abd0933ffc0, pListTail = 0x2abd093403e0, arBuckets = 0x2abd09340470, pDestructor = 0, persistent = 1 '\001', nApplyCount = 0 '\000', bApplyProtection = 0 '\000'}, tmp_internal_constant_tail = 0x2abd08320810, tmp_internal_function_tail = 0x2abd0933fe60, tmp_internal_class_tail = 0x0, orig_user_error_handler_error_reporting = 8191} op_array = <value optimized out> xce = {type = XC_TYPE_PHP, hvalue = 2460, next = 0x2abd0d939e60, cache = 0x2abd0d90b038, size = 10, refcount = 46991369191320, hits = 4, ctime = 46991362335072, atime = 8, dtime = 46991240673248, ttl = 46991369192096, name = {lval = 46991363920096, dval = 2.3216818564143281e-310, str = { val = 0x2abd078dd0e0 "/var/www/vhosts/DOMAIN/httpdocs/var/ait_rewrite/67b58abff9e6bd7b400bb2fc1903bf2f.php", len = 107}, ht = 0x2abd078dd0e0, obj = {handle = 126734560, handlers = 0x2abd0000006b}}, data = {php = 0x7fffc3e7e440, var = 0x7fffc3e7e440}, have_references = 0 '\000'} stored_xce = 0x0 php = {sourcesize = 8947, device = 64769, inode = 9907963, mtime = 1353055102, op_array = 0x2abd00344004, constinfo_cnt = 1, constinfos = 0x0, funcinfo_cnt = 132120232, funcinfos = 0x8, classinfo_cnt = 8, classinfos = 0x0, have_early_binding = 168 '\250', autoglobal_cnt = 10941, autoglobals = 0x8} cache = 0x2abd0d90b038 catched = <value optimized out> filename = <value optimized out> opened_path_buffer = "\000\000\000\000\000\000\000\000I\032\065\000\275*\000\000\300\347i\000\275*\000\000\001\000\000\000\000\000\000\000\377\377\377\377\000\000\000\000\000\000\000\000\003\000\000\000[\337\227\337,\002pr\n\000\000\000\000\000\000\000P\323\347\303\377\177\000\000\357\367\220\b\275*\000\000\243\002M\a\275*\000\000\005", '\000' <repeats 15 times>"\357, \367\220\b\275*\000\000\244\002M\a\275*\000\000Du0\000\275*\000\000\b\000\000\000\000\000\000\000\232b=\365\000\000\000\000\002\000\000\000\377\177\000\000\005\000\000\000\275*\000\000\220\322\347\303\377\177\000\000\000\020\000\000\000\000\000\000,\324\347\303\377\177\000\000`\321\347\303^", '\000' <repeats 27 times>, "\f\000\000 \001", '\000' <repeats 11 times>"\260, \322\347\303", '\000' <repeats 12 times>, "P\323\347\303\377\177\000\000x\225\332\364\004\000\000\000\001\000\000\000\031\000\000\000\300\331\336\a\275*\000\000\300\331\336\a\275*\000\000"... old_constinfo_cnt = 1559 old_funcinfo_cnt = 1555 old_classinfo_cnt = 0 #5 0x00002abd003290bf in compile_filename () from /etc/httpd/modules/libphp5.so No symbol table info available. #6 0x00002abd00398ded in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #7 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #8 0x00002abd0033b796 in zend_call_function () from /etc/httpd/modules/libphp5.so No symbol table info available. #9 0x00002abd0035b1e1 in zend_call_method () from /etc/httpd/modules/libphp5.so No symbol table info available. #10 0x00002abd00273bf4 in zif_spl_autoload_call () from /etc/httpd/modules/libphp5.so No symbol table info available. #11 0x00002abd0033b945 in zend_call_function () from /etc/httpd/modules/libphp5.so No symbol table info available. #12 0x00002abd0033c51e in zend_lookup_class_ex () from /etc/httpd/modules/libphp5.so No symbol table info available. #13 0x00002abd0033c728 in zend_fetch_class () from /etc/httpd/modules/libphp5.so No symbol table info available. #14 0x00002abd003a61ab in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #15 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #16 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #17 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #18 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #19 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #20 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #21 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #22 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #23 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #24 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #25 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #26 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #27 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #28 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #29 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #30 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #31 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #32 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #33 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #34 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #35 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #36 0x00002abd00366b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #37 0x00002abd0036628c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #38 0x00002abd00346943 in zend_execute_scripts () from /etc/httpd/modules/libphp5.so No symbol table info available. #39 0x00002abd00306898 in php_execute_script () from /etc/httpd/modules/libphp5.so No symbol table info available. #40 0x00002abd003cb09d in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #41 0x00002abcf4cfca0a in ap_run_handler () No symbol table info available. #42 0x00002abcf4cffe98 in ap_invoke_handler () No symbol table info available. #43 0x00002abcf4d0a74a in ap_internal_redirect () No symbol table info available. #44 0x00002abcfdb45bf0 in ap_make_dirstr_parent () from /etc/httpd/modules/mod_rewrite.so No symbol table info available. #45 0x00002abcf4cfca0a in ap_run_handler () No symbol table info available. #46 0x00002abcf4cffe98 in ap_invoke_handler () No symbol table info available. #47 0x00002abcf4d0a8f8 in ap_process_request () No symbol table info available. #48 0x00002abcf4d07b30 in ?? () No symbol table info available. #49 0x00002abcf4d03c92 in ap_run_process_connection () No symbol table info available. #50 0x00002abcf4d0e7a9 in ?? () No symbol table info available. #51 0x00002abcf4d0ea3a in ?? () No symbol table info available. #52 0x00002abcf4d0f29d in ap_mpm_run () No symbol table info available. #53 0x00002abcf4ce9e48 in main () No symbol table info available. Can anyone help me? ADITIONAL INFO php -v PHP 5.2.10 (cli) (built: Nov 13 2009 11:44:05) Copyright (c) 1997-2009 The PHP Group Zend Engine v2.2.0, Copyright (c) 1998-2009 Zend Technologies with XCache v1.3.2-rc1, Copyright (c) 2005-2011, by mOo with the ionCube PHP Loader v3.1.28, Copyright (c) 2002-2007, by ionCube Ltd. httpd -v Server version: Apache/2.2.3 Server built: May 4 2011 06:51:15 Apache modules: core prefork http_core mod_so mod_auth_basic mod_auth_digest mod_authn_file mod_authn_alias mod_authn_anon mod_authn_dbm mod_authn_default mod_authz_host mod_authz_user mod_authz_owner mod_authz_groupfile mod_authz_dbm mod_authz_default util_ldap mod_authnz_ldap mod_include mod_log_config mod_logio mod_env mod_ext_filter mod_mime_magic mod_expires mod_deflate mod_headers mod_usertrack mod_setenvif mod_mime mod_dav mod_status mod_autoindex mod_info mod_dav_fs mod_vhost_alias mod_negotiation mod_dir mod_actions mod_speling mod_userdir mod_alias mod_rewrite mod_proxy mod_proxy_balancer mod_proxy_ftp mod_proxy_http mod_proxy_connect mod_cache mod_suexec mod_disk_cache mod_file_cache mod_mem_cache mod_cgi mod_version mod_fcgid mod_perl mod_php5 mod_proxy_ajp mod_python mod_ssl Aditional modules: dbase ionCube Loader sysvsem sysvshm EDIT (November 18) I have disabled some suspicious modules and the error persist. The new backtrace: [New Thread 12403] [Thread debugging using libthread_db enabled] Core was generated by `/usr/sbin/httpd'. Program terminated with signal 7, Bus error. #0 0x00002b0c5754a24e in memcpy () from /lib64/libc.so.6 Thread 1 (Thread 0x2b0c59549300 (LWP 12403)): #0 0x00002b0c5754a24e in memcpy () from /lib64/libc.so.6 No symbol table info available. #1 0x00002b0c558519c7 in ?? () from /usr/lib64/php/modules//php_ioncube_loader_lin_5.2_x86_64.so No symbol table info available. #2 0x00002b0c558bad47 in _zval_dup () from /usr/lib64/php/modules//php_ioncube_loader_lin_5.2_x86_64.so No symbol table info available. #3 0x00002b0c558b3ffb in ?? () from /usr/lib64/php/modules//php_ioncube_loader_lin_5.2_x86_64.so No symbol table info available. #4 0x00002b0c60d650bf in compile_filename () from /etc/httpd/modules/libphp5.so No symbol table info available. #5 0x00002b0c60dd4ded in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #6 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #7 0x00002b0c60d77796 in zend_call_function () from /etc/httpd/modules/libphp5.so No symbol table info available. #8 0x00002b0c60d971e1 in zend_call_method () from /etc/httpd/modules/libphp5.so No symbol table info available. #9 0x00002b0c60cafbf4 in zif_spl_autoload_call () from /etc/httpd/modules/libphp5.so No symbol table info available. #10 0x00002b0c60d77945 in zend_call_function () from /etc/httpd/modules/libphp5.so No symbol table info available. #11 0x00002b0c60d7851e in zend_lookup_class_ex () from /etc/httpd/modules/libphp5.so No symbol table info available. #12 0x00002b0c60d78728 in zend_fetch_class () from /etc/httpd/modules/libphp5.so No symbol table info available. #13 0x00002b0c60de21ab in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #14 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #15 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #16 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #17 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #18 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #19 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #20 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #21 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #22 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #23 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #24 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #25 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #26 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #27 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #28 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #29 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #30 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #31 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #32 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #33 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #34 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #35 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #36 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #37 0x00002b0c60da2b91 in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #38 0x00002b0c60da228c in execute () from /etc/httpd/modules/libphp5.so No symbol table info available. #39 0x00002b0c60d82943 in zend_execute_scripts () from /etc/httpd/modules/libphp5.so No symbol table info available. #40 0x00002b0c60d42898 in php_execute_script () from /etc/httpd/modules/libphp5.so No symbol table info available. #41 0x00002b0c60e0709d in ?? () from /etc/httpd/modules/libphp5.so No symbol table info available. #42 0x00002b0c555d3a0a in ap_run_handler () No symbol table info available. #43 0x00002b0c555d6e98 in ap_invoke_handler () No symbol table info available. #44 0x00002b0c555e174a in ap_internal_redirect () No symbol table info available. #45 0x00002b0c5e41cbf0 in ap_make_dirstr_parent () from /etc/httpd/modules/mod_rewrite.so No symbol table info available. #46 0x00002b0c555d3a0a in ap_run_handler () No symbol table info available. #47 0x00002b0c555d6e98 in ap_invoke_handler () No symbol table info available. #48 0x00002b0c555e18f8 in ap_process_request () No symbol table info available. #49 0x00002b0c555deb30 in ?? () No symbol table info available. #50 0x00002b0c555dac92 in ap_run_process_connection () No symbol table info available. #51 0x00002b0c555e57a9 in ?? () No symbol table info available. #52 0x00002b0c555e5a3a in ?? () No symbol table info available. #53 0x00002b0c555e629d in ap_mpm_run () No symbol table info available. #54 0x00002b0c555c0e48 in main () No symbol table info available.

    Read the article

  • Referencing movie clips from within an actionscript class

    - by Ant
    Hi all, I have been given the task of adding a scoring system to various flash games. This simply involves taking input, adding functionality such as pausing and replaying and then outputting the score, time left etc. at the end. I've so far successfully edited two games. Both these games used the "actions" code on frames. The latest game I'm trying to do uses an actionscript class which makes it both easier and harder. I'm not very adept at flash at all, but I've worked it out so far. I've added various movie clips that are to be used for displaying the pause screen background, buttons for replaying etc. I've been showing and hiding these using: back._visible = true; //movie clip, instance of back (back.png) I doubt it's best practice, but it's quick and has been working. However, now with the change of coding style to classes, this doesn't seem to work. I kinda understand why, but I'm now unsure how to hide/show these elements. Any help would be greatly appreciated :) I've attached the modified AS. class RivalOrbs extends MovieClip { var infinite_levels, orbs_start, orbs_inc, orbs_per_level, show_timer, _parent, one_time_per_level, speed_start, speed_inc_percent, max_speed, percent_starting_on_wrong_side, colorize, colors, secs_per_level; function RivalOrbs() { super(); mc = this; this.init(); } // End of the function function get_num_orbs() { if (infinite_levels) { return (orbs_start + (level - 1) * orbs_inc); } else if (level > orbs_per_level.length) { return (0); } else { return (orbs_per_level[level - 1]); } // end else if } // End of the function function get_timer_str(secs) { var _loc2 = Math.floor(secs / 60); var _loc1 = secs % 60; return ((_loc2 > 0 ? (_loc2) : ("0")) + ":" + (_loc1 >= 10 ? (_loc1) : ("0" + _loc1))); } // End of the function function frame() { //PLACE PAUSE CODE HERE if (!Key.isDown(80) and !Key.isDown(Key.ESCAPE)) { _root.offKey = true; } else if (Key.isDown(80) or Key.isDown(Key.ESCAPE)) { if (_root.offKey and _root.game_mode == "play") { _root.game_mode = "pause"; /* back._visible = true; btn_resume._visible = true; btn_exit._visible = true; txt_pause._visible = true; */ } else if (_root.offKey and _root.game_mode == "pause") { _root.game_mode = "play"; } _root.offKey = false; } if (_root.game_mode == "pause" or paused) { return; } else { /* back._visible = false; btn_resume._visible = false; btn_exit._visible = false; txt_pause._visible = false; */ } if (show_timer && total_secs != -1 || show_timer && _parent.timesup) { _loc7 = total_secs - Math.ceil((getTimer() - timer) / 1000); var diff = oldSeconds - (_loc7 + additional); if (diff > 1) additional = additional + diff; _loc7 = _loc7 + additional; oldSeconds = _loc7; trace(oldSeconds); mc.timer_field.text = this.get_timer_str(Math.max(0, _loc7)); if (_loc7 <= -1 || _parent.timesup) { if (one_time_per_level) { _root.gotoAndPlay("Lose"); } else { this.show_dialog(false); return; } // end if } // end if } // end else if var _loc9 = _root._xmouse; var _loc8 = _root._ymouse; var _loc6 = {x: _loc9, y: _loc8}; mc.globalToLocal(_loc6); _loc6.y = Math.max(-mc.bg._height / 2 + gap / 2, _loc6.y); _loc6.y = Math.min(mc.bg._height / 2 - gap / 2, _loc6.y); mc.wall1._y = _loc6.y - gap / 2 - mc.wall1._height / 2; mc.wall2._y = _loc6.y + gap / 2 + mc.wall1._height / 2; var _loc5 = true; for (var _loc4 = 0; _loc4 < this.get_num_orbs(); ++_loc4) { var _loc3 = mc.stage["orb" + _loc4]; _loc3.x_last = _loc3._x; _loc3.y_last = _loc3._y; _loc3._x = _loc3._x + _loc3.x_speed; _loc3._y = _loc3._y + _loc3.y_speed; if (_loc3._x < l_thresh) { _loc3.x_speed = _loc3.x_speed * -1; _loc3._x = l_thresh + (l_thresh - _loc3._x); _loc3.gotoAndPlay("hit"); } // end if if (_loc3._x > r_thresh) { _loc3.x_speed = _loc3.x_speed * -1; _loc3._x = r_thresh - (_loc3._x - r_thresh); _loc3.gotoAndPlay("hit"); } // end if if (_loc3._y < t_thresh) { _loc3.y_speed = _loc3.y_speed * -1; _loc3._y = t_thresh + (t_thresh - _loc3._y); _loc3.gotoAndPlay("hit"); } // end if if (_loc3._y > b_thresh) { _loc3.y_speed = _loc3.y_speed * -1; _loc3._y = b_thresh - (_loc3._y - b_thresh); _loc3.gotoAndPlay("hit"); } // end if if (_loc3.x_speed > 0) { if (_loc3._x >= m1_thresh && _loc3.x_last < m1_thresh || _loc3._x >= m1_thresh && _loc3._x <= m2_thresh) { if (_loc3._y <= mc.wall1._y + mc.wall1._height / 2 || _loc3._y >= mc.wall2._y - mc.wall2._height / 2) { _loc3.x_speed = _loc3.x_speed * -1; _loc3._x = m1_thresh - (_loc3._x - m1_thresh); _loc3.gotoAndPlay("hit"); } // end if } // end if } else if (_loc3._x <= m2_thresh && _loc3.x_last > m2_thresh || _loc3._x >= m1_thresh && _loc3._x <= m2_thresh) { if (_loc3._y <= mc.wall1._y + mc.wall1._height / 2 || _loc3._y >= mc.wall2._y - mc.wall2._height / 2) { _loc3.x_speed = _loc3.x_speed * -1; _loc3._x = m2_thresh + (m2_thresh - _loc3._x); _loc3.gotoAndPlay("hit"); } // end if } // end else if if (_loc3.side == 1 && _loc3._x > 0) { _loc5 = false; } // end if if (_loc3.side == 2 && _loc3._x < 0) { _loc5 = false; } // end if } // end of for if (_loc5) { this.end_level(); } // end if } // End of the function function colorize_hex(mc, hex) { var _loc4 = hex >> 16; var _loc5 = (hex ^ hex >> 16 << 16) >> 8; var _loc3 = hex >> 8 << 8 ^ hex; var _loc2 = new flash.geom.ColorTransform(0, 0, 0, 1, _loc4, _loc5, _loc3, 0); mc.transform.colorTransform = _loc2; } // End of the function function tint_hex(mc, hex, amount) { var _loc4 = hex >> 16; var _loc5 = hex >> 8 & 255; var _loc3 = hex & 255; this.tint(mc, _loc4, _loc5, _loc3, amount); } // End of the function function tint(mc, r, g, b, amount) { var _loc4 = 100 - amount; var _loc1 = new Object(); _loc1.ra = _loc1.ga = _loc1.ba = _loc4; var _loc2 = amount / 100; _loc1.rb = r * _loc2; _loc1.gb = g * _loc2; _loc1.bb = b * _loc2; var _loc3 = new Color(mc); _loc3.setTransform(_loc1); } // End of the function function get_num_levels() { if (infinite_levels) { return (Number.MAX_VALUE); } else { return (orbs_per_level.length); } // end else if } // End of the function function end_level() { _global.inputTimeAvailable = _global.inputTimeAvailable - (60 - oldSeconds); ++level; _parent.levelOver = true; if (level <= this.get_num_levels()) { this.show_dialog(true); } else { _root.gotoAndPlay("Win"); } // end else if } // End of the function function get_speed() { var _loc3 = speed_start; for (var _loc2 = 0; _loc2 < level - 1; ++_loc2) { _loc3 = _loc3 + _loc3 * (speed_inc_percent / 100); } // end of for return (Math.min(_loc3, Math.max(max_speed, speed_start))); } // End of the function function init_orbs() { var _loc6 = this.get_speed(); var _loc7 = Math.max(1, Math.ceil(this.get_num_orbs() * (percent_starting_on_wrong_side / 100))); for (var _loc3 = 0; _loc3 < this.get_num_orbs(); ++_loc3) { var _loc2 = null; if (_loc3 % 2 == 0) { _loc2 = mc.stage.attachMovie("Orb1", "orb" + _loc3, _loc3); _loc2.side = 1; if (colorize && color1 != -1) { this.colorize_hex(_loc2.orb.bg, color1); } // end if _loc2._x = Math.random() * (mc.bg._width * 4.000000E-001) - mc.bg._width * 2.000000E-001 - mc.bg._width / 4; } else { _loc2 = mc.stage.attachMovie("Orb2", "orb" + _loc3, _loc3); _loc2.side = 2; if (colorize && color2 != -1) { this.colorize_hex(_loc2.orb.bg, color2); } // end if _loc2._x = Math.random() * (mc.bg._width * 4.000000E-001) - mc.bg._width * 2.000000E-001 + mc.bg._width / 4; } // end else if _loc2._width = _loc2._height = orb_w; _loc2._y = Math.random() * (mc.bg._height * 8.000000E-001) - mc.bg._height * 4.000000E-001; if (_loc3 < _loc7) { _loc2._x = _loc2._x * -1; } // end if var _loc5 = Math.random() * 60; var _loc4 = _loc5 / 180 * 3.141593E+000; _loc2.x_speed = Math.cos(_loc4) * _loc6; _loc2.y_speed = Math.sin(_loc4) * _loc6; if (Math.random() >= 5.000000E-001) { _loc2.x_speed = _loc2.x_speed * -1; } // end if if (Math.random() >= 5.000000E-001) { _loc2.y_speed = _loc2.y_speed * -1; } // end if } // end of for } // End of the function function init_colors() { if (colorize && colors.length >= 2) { color1 = colors[Math.floor(Math.random() * colors.length)]; for (color2 = colors[Math.floor(Math.random() * colors.length)]; color2 == color1; color2 = colors[Math.floor(Math.random() * colors.length)]) { } // end of for this.tint_hex(mc.side1, color1, 40); this.tint_hex(mc.side2, color2, 40); } else { color1 = -1; color2 = -1; } // end else if } // End of the function function get_total_secs() { if (show_timer) { if (secs_per_level.length > 0) { if (level > secs_per_level.length) { return (secs_per_level[secs_per_level.length - 1]); } else { return (secs_per_level[level - 1]); } // end if } // end if } // end else if return (-1); } // End of the function function start_level() { trace ("start_level"); _parent.timesup = false; _parent.levelOver = false; _parent.times_up_comp.start_timer(); this.init_orbs(); mc.level_field.text = "LEVEL " + level; total_secs = _global.inputTimeAvailable; if (total_secs > 60) total_secs = 60; timer = getTimer(); paused = false; mc.dialog.gotoAndPlay("off"); } // End of the function function clear_orbs() { for (var _loc2 = 0; mc.stage["orb" + _loc2]; ++_loc2) { mc.stage["orb" + _loc2].removeMovieClip(); } // end of for } // End of the function function show_dialog(new_level) { mc.back._visible = false; trace("yes"); paused = true; if (new_level) { this.init_colors(); } // end if this.clear_orbs(); mc.dialog.gotoAndPlay("level"); if (!new_level || _parent.timesup) { mc.dialog.level_top.text = "Time\'s Up!"; /* dyn_line1.text = "Goodbye " + _global.inputName + "!"; dyn_line2.text = "You scored " + score; //buttons if (_global.inputTimeAvailable > 60) btn_replay._visible = true; btn_resume._visible = false; btn_exit._visible = false; txt_pause._visible = false; sendInfo = new LoadVars(); sendLoader = new LoadVars(); sendInfo.game_name = 'rival_orbs'; sendInfo.timeavailable = _global.inputTimeAvailable; if (sendInfo.timeavailable < 0) sendInfo.timeavailable = 0; sendInfo.id = _global.inputId; sendInfo.score = level*_global.inputFactor; sendInfo.directive = 'record'; //sendInfo.sendAndLoad('ncc1701e.aspx', sendLoader, "GET"); sendInfo.sendAndLoad('http://keyload.co.uk/output.php', sendLoader, "POST"); */ } else if (level > 1) { mc.dialog.level_top.text = "Next Level:"; } else { mc.dialog.level_top.text = ""; } // end else if mc.dialog.level_num.text = "LEVEL " + level; mc.dialog.level_mid.text = "Number of Orbs: " + this.get_num_orbs(); _root.max_level = level; var _this = this; mc.dialog.btn.onRelease = function () { _this.start_level(); }; } // End of the function function init() { var getInfo = new LoadVars(); var getLoader = new LoadVars(); getInfo.directive = "read"; getInfo.sendAndLoad('http://keyload.co.uk/input.php', getLoader, "GET"); getLoader.onLoad = function (success) { if (success) { _global.inputId = this.id; _global.inputTimeAvailable = this.timeavailable; _global.inputFactor = this.factor; _global.inputName = this.name; } else { trace("Failed"); } } _root.game_mode = "play"; /* back._visible = false; btn_exit._visible = false; btn_replay._visible = false; btn_resume._visible = false; txt_pause._visible = false; */ l_thresh = -mc.bg._width / 2 + orb_w / 2; t_thresh = -mc.bg._height / 2 + orb_w / 2; r_thresh = mc.bg._width / 2 - orb_w / 2; b_thresh = mc.bg._height / 2 - orb_w / 2; m1_thresh = -wall_w / 2 - orb_w / 2; m2_thresh = wall_w / 2 + orb_w / 2; this.show_dialog(true); mc.onEnterFrame = frame; } // End of the function var mc = null; var orb_w = 15; var wall_w = 2; var l_thresh = 0; var r_thresh = 0; var t_thresh = 0; var b_thresh = 0; var m1_thresh = 0; var m2_thresh = 0; var color1 = -1; var color2 = -1; var level = 1; var total_secs = 30; var gap = 60; var timer = 0; var additional = 0; var oldSeconds = 0; var paused = true; var _loc7 = 0; } // End of Class

    Read the article

  • How to use onSensorChanged sensor data in combination with OpenGL

    - by Sponge
    I have written a TestSuite to find out how to calculate the rotation angles from the data you get in SensorEventListener.onSensorChanged(). I really hope you can complete my solution to help people who will have the same problems like me. Here is the code, i think you will understand it after reading it. Feel free to change it, the main idea was to implement several methods to send the orientation angles to the opengl view or any other target which would need it. method 1 to 4 are working, they are directly sending the rotationMatrix to the OpenGl view. all other methods are not working or buggy and i hope someone knows to get them working. i think the best method would be method 5 if it would work, because it would be the easiest to understand but i'm not sure how efficient it is. the complete code isn't optimized so i recommend to not use it as it is in your project. here it is: import java.nio.ByteBuffer; import java.nio.ByteOrder; import java.nio.FloatBuffer; import javax.microedition.khronos.egl.EGL10; import javax.microedition.khronos.egl.EGLConfig; import javax.microedition.khronos.opengles.GL10; import static javax.microedition.khronos.opengles.GL10.*; import android.app.Activity; import android.content.Context; import android.content.pm.ActivityInfo; import android.hardware.Sensor; import android.hardware.SensorEvent; import android.hardware.SensorEventListener; import android.hardware.SensorManager; import android.opengl.GLSurfaceView; import android.opengl.GLSurfaceView.Renderer; import android.os.Bundle; import android.util.Log; import android.view.WindowManager; /** * This class provides a basic demonstration of how to use the * {@link android.hardware.SensorManager SensorManager} API to draw a 3D * compass. */ public class SensorToOpenGlTests extends Activity implements Renderer, SensorEventListener { private static final boolean TRY_TRANSPOSED_VERSION = false; /* * MODUS overview: * * 1 - unbufferd data directly transfaired from the rotation matrix to the * modelview matrix * * 2 - buffered version of 1 where both acceleration and magnetometer are * buffered * * 3 - buffered version of 1 where only magnetometer is buffered * * 4 - buffered version of 1 where only acceleration is buffered * * 5 - uses the orientation sensor and sets the angles how to rotate the * camera with glrotate() * * 6 - uses the rotation matrix to calculate the angles * * 7 to 12 - every possibility how the rotationMatrix could be constructed * in SensorManager.getRotationMatrix (see * http://www.songho.ca/opengl/gl_anglestoaxes.html#anglestoaxes for all * possibilities) */ private static int MODUS = 2; private GLSurfaceView openglView; private FloatBuffer vertexBuffer; private ByteBuffer indexBuffer; private FloatBuffer colorBuffer; private SensorManager mSensorManager; private float[] rotationMatrix = new float[16]; private float[] accelGData = new float[3]; private float[] bufferedAccelGData = new float[3]; private float[] magnetData = new float[3]; private float[] bufferedMagnetData = new float[3]; private float[] orientationData = new float[3]; // private float[] mI = new float[16]; private float[] resultingAngles = new float[3]; private int mCount; final static float rad2deg = (float) (180.0f / Math.PI); private boolean mirrorOnBlueAxis = false; private boolean landscape; public SensorToOpenGlTests() { } /** Called with the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); mSensorManager = (SensorManager) getSystemService(Context.SENSOR_SERVICE); openglView = new GLSurfaceView(this); openglView.setRenderer(this); setContentView(openglView); } @Override protected void onResume() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onResume(); openglView.onResume(); if (((WindowManager) getSystemService(WINDOW_SERVICE)) .getDefaultDisplay().getOrientation() == 1) { landscape = true; } else { landscape = false; } mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_ACCELEROMETER), SensorManager.SENSOR_DELAY_GAME); mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD), SensorManager.SENSOR_DELAY_GAME); mSensorManager.registerListener(this, mSensorManager .getDefaultSensor(Sensor.TYPE_ORIENTATION), SensorManager.SENSOR_DELAY_GAME); } @Override protected void onPause() { // Ideally a game should implement onResume() and onPause() // to take appropriate action when the activity looses focus super.onPause(); openglView.onPause(); mSensorManager.unregisterListener(this); } public int[] getConfigSpec() { // We want a depth buffer, don't care about the // details of the color buffer. int[] configSpec = { EGL10.EGL_DEPTH_SIZE, 16, EGL10.EGL_NONE }; return configSpec; } public void onDrawFrame(GL10 gl) { // clear screen and color buffer: gl.glClear(GL10.GL_COLOR_BUFFER_BIT | GL10.GL_DEPTH_BUFFER_BIT); // set target matrix to modelview matrix: gl.glMatrixMode(GL10.GL_MODELVIEW); // init modelview matrix: gl.glLoadIdentity(); // move camera away a little bit: if ((MODUS == 1) || (MODUS == 2) || (MODUS == 3) || (MODUS == 4)) { if (landscape) { // in landscape mode first remap the rotationMatrix before using // it with glMultMatrixf: float[] result = new float[16]; SensorManager.remapCoordinateSystem(rotationMatrix, SensorManager.AXIS_Y, SensorManager.AXIS_MINUS_X, result); gl.glMultMatrixf(result, 0); } else { gl.glMultMatrixf(rotationMatrix, 0); } } else { //in all other modes do the rotation by hand: gl.glRotatef(resultingAngles[1], 1, 0, 0); gl.glRotatef(resultingAngles[2], 0, 1, 0); gl.glRotatef(resultingAngles[0], 0, 0, 1); if (mirrorOnBlueAxis) { //this is needed for mode 6 to work gl.glScalef(1, 1, -1); } } //move the axis to simulate augmented behaviour: gl.glTranslatef(0, 2, 0); // draw the 3 axis on the screen: gl.glVertexPointer(3, GL_FLOAT, 0, vertexBuffer); gl.glColorPointer(4, GL_FLOAT, 0, colorBuffer); gl.glDrawElements(GL_LINES, 6, GL_UNSIGNED_BYTE, indexBuffer); } public void onSurfaceChanged(GL10 gl, int width, int height) { gl.glViewport(0, 0, width, height); float r = (float) width / height; gl.glMatrixMode(GL10.GL_PROJECTION); gl.glLoadIdentity(); gl.glFrustumf(-r, r, -1, 1, 1, 10); } public void onSurfaceCreated(GL10 gl, EGLConfig config) { gl.glDisable(GL10.GL_DITHER); gl.glClearColor(1, 1, 1, 1); gl.glEnable(GL10.GL_CULL_FACE); gl.glShadeModel(GL10.GL_SMOOTH); gl.glEnable(GL10.GL_DEPTH_TEST); gl.glEnableClientState(GL10.GL_VERTEX_ARRAY); gl.glEnableClientState(GL10.GL_COLOR_ARRAY); // load the 3 axis and there colors: float vertices[] = { 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1 }; float colors[] = { 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 1 }; byte indices[] = { 0, 1, 0, 2, 0, 3 }; ByteBuffer vbb; vbb = ByteBuffer.allocateDirect(vertices.length * 4); vbb.order(ByteOrder.nativeOrder()); vertexBuffer = vbb.asFloatBuffer(); vertexBuffer.put(vertices); vertexBuffer.position(0); vbb = ByteBuffer.allocateDirect(colors.length * 4); vbb.order(ByteOrder.nativeOrder()); colorBuffer = vbb.asFloatBuffer(); colorBuffer.put(colors); colorBuffer.position(0); indexBuffer = ByteBuffer.allocateDirect(indices.length); indexBuffer.put(indices); indexBuffer.position(0); } public void onAccuracyChanged(Sensor sensor, int accuracy) { } public void onSensorChanged(SensorEvent event) { // load the new values: loadNewSensorData(event); if (MODUS == 1) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); } if (MODUS == 2) { rootMeanSquareBuffer(bufferedAccelGData, accelGData); rootMeanSquareBuffer(bufferedMagnetData, magnetData); SensorManager.getRotationMatrix(rotationMatrix, null, bufferedAccelGData, bufferedMagnetData); } if (MODUS == 3) { rootMeanSquareBuffer(bufferedMagnetData, magnetData); SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, bufferedMagnetData); } if (MODUS == 4) { rootMeanSquareBuffer(bufferedAccelGData, accelGData); SensorManager.getRotationMatrix(rotationMatrix, null, bufferedAccelGData, magnetData); } if (MODUS == 5) { // this mode uses the sensor data recieved from the orientation // sensor resultingAngles = orientationData.clone(); if ((-90 > resultingAngles[1]) || (resultingAngles[1] > 90)) { resultingAngles[1] = orientationData[0]; resultingAngles[2] = orientationData[1]; resultingAngles[0] = orientationData[2]; } } if (MODUS == 6) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); final float[] anglesInRadians = new float[3]; SensorManager.getOrientation(rotationMatrix, anglesInRadians); if ((-90 < anglesInRadians[2] * rad2deg) && (anglesInRadians[2] * rad2deg < 90)) { // device camera is looking on the floor // this hemisphere is working fine mirrorOnBlueAxis = false; resultingAngles[0] = anglesInRadians[0] * rad2deg; resultingAngles[1] = anglesInRadians[1] * rad2deg; resultingAngles[2] = anglesInRadians[2] * -rad2deg; } else { mirrorOnBlueAxis = true; // device camera is looking in the sky // this hemisphere is mirrored at the blue axis resultingAngles[0] = (anglesInRadians[0] * rad2deg); resultingAngles[1] = (anglesInRadians[1] * rad2deg); resultingAngles[2] = (anglesInRadians[2] * rad2deg); } } if (MODUS == 7) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in x y z * order Rx*Ry*Rz */ resultingAngles[2] = (float) (Math.asin(rotationMatrix[2])); final float cosB = (float) Math.cos(resultingAngles[2]); resultingAngles[2] = resultingAngles[2] * rad2deg; resultingAngles[0] = -(float) (Math.acos(rotationMatrix[0] / cosB)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[10] / cosB)) * rad2deg; } if (MODUS == 8) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in z y x */ resultingAngles[2] = (float) (Math.asin(-rotationMatrix[8])); final float cosB = (float) Math.cos(resultingAngles[2]); resultingAngles[2] = resultingAngles[2] * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[9] / cosB)) * rad2deg; resultingAngles[0] = (float) (Math.asin(rotationMatrix[4] / cosB)) * rad2deg; } if (MODUS == 9) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in z x y * * note z axis looks good at this one */ resultingAngles[1] = (float) (Math.asin(rotationMatrix[9])); final float minusCosA = -(float) Math.cos(resultingAngles[1]); resultingAngles[1] = resultingAngles[1] * rad2deg; resultingAngles[2] = (float) (Math.asin(rotationMatrix[8] / minusCosA)) * rad2deg; resultingAngles[0] = (float) (Math.asin(rotationMatrix[1] / minusCosA)) * rad2deg; } if (MODUS == 10) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in y x z */ resultingAngles[1] = (float) (Math.asin(-rotationMatrix[6])); final float cosA = (float) Math.cos(resultingAngles[1]); resultingAngles[1] = resultingAngles[1] * rad2deg; resultingAngles[2] = (float) (Math.asin(rotationMatrix[2] / cosA)) * rad2deg; resultingAngles[0] = (float) (Math.acos(rotationMatrix[5] / cosA)) * rad2deg; } if (MODUS == 11) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in y z x */ resultingAngles[0] = (float) (Math.asin(rotationMatrix[4])); final float cosC = (float) Math.cos(resultingAngles[0]); resultingAngles[0] = resultingAngles[0] * rad2deg; resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC)) * rad2deg; } if (MODUS == 12) { SensorManager.getRotationMatrix(rotationMatrix, null, accelGData, magnetData); rotationMatrix = transpose(rotationMatrix); /* * this assumes that the rotation matrices are multiplied in x z y */ resultingAngles[0] = (float) (Math.asin(-rotationMatrix[1])); final float cosC = (float) Math.cos(resultingAngles[0]); resultingAngles[0] = resultingAngles[0] * rad2deg; resultingAngles[2] = (float) (Math.acos(rotationMatrix[0] / cosC)) * rad2deg; resultingAngles[1] = (float) (Math.acos(rotationMatrix[5] / cosC)) * rad2deg; } logOutput(); } /** * transposes the matrix because it was transposted (inverted, but here its * the same, because its a rotation matrix) to be used for opengl * * @param source * @return */ private float[] transpose(float[] source) { final float[] result = source.clone(); if (TRY_TRANSPOSED_VERSION) { result[1] = source[4]; result[2] = source[8]; result[4] = source[1]; result[6] = source[9]; result[8] = source[2]; result[9] = source[6]; } // the other values in the matrix are not relevant for rotations return result; } private void rootMeanSquareBuffer(float[] target, float[] values) { final float amplification = 200.0f; float buffer = 20.0f; target[0] += amplification; target[1] += amplification; target[2] += amplification; values[0] += amplification; values[1] += amplification; values[2] += amplification; target[0] = (float) (Math .sqrt((target[0] * target[0] * buffer + values[0] * values[0]) / (1 + buffer))); target[1] = (float) (Math .sqrt((target[1] * target[1] * buffer + values[1] * values[1]) / (1 + buffer))); target[2] = (float) (Math .sqrt((target[2] * target[2] * buffer + values[2] * values[2]) / (1 + buffer))); target[0] -= amplification; target[1] -= amplification; target[2] -= amplification; values[0] -= amplification; values[1] -= amplification; values[2] -= amplification; } private void loadNewSensorData(SensorEvent event) { final int type = event.sensor.getType(); if (type == Sensor.TYPE_ACCELEROMETER) { accelGData = event.values.clone(); } if (type == Sensor.TYPE_MAGNETIC_FIELD) { magnetData = event.values.clone(); } if (type == Sensor.TYPE_ORIENTATION) { orientationData = event.values.clone(); } } private void logOutput() { if (mCount++ > 30) { mCount = 0; Log.d("Compass", "yaw0: " + (int) (resultingAngles[0]) + " pitch1: " + (int) (resultingAngles[1]) + " roll2: " + (int) (resultingAngles[2])); } } }

    Read the article

  • SQL SERVER – Retrieve and Explore Database Backup without Restoring Database – Idera virtual databas

    - by pinaldave
    I recently downloaded Idera’s SQL virtual database, and tested it. There are a few things about this tool which caught my attention. My Scenario It is quite common in real life that sometimes observing or retrieving older data is necessary; however, it had changed as time passed by. The full database backup was 40 GB in size, and, to restore it on our production server, it usually takes around 16 to 22 minutes, depending on the load server that is usually present. This range in time varies from one server to another as per the configuration of the computer. Some other issues we used to have are the following: When we try to restore a large 40-GB database, we needed at least that much space on our production server. Once in a while, we even had to make changes in the restored database, and use the said changed and restored database for our purpose, making it more time-consuming. My Solution I have heard a lot about the Idera’s SQL virtual database tool.. Well, right after we started to test this tool, we found out that it really delivers what it promises. Using this software was very easy and we were able to restore our database from backup in less than 2 minutes, sparing us from the usual longer time of 16–22 minutes. The needful was finished in a total of 10 minutes. Another interesting observation is that there is no need to have an additional space for restoring the database. For complete database restoration, the single additional MB on the drive is not required anymore. We can use the database in the same way as our regular database, and there is no need for any additional configuration and setup. Let us look at the most relevant points of this product based on my initial experience: Quick restoration of the database backup No additional space required for database restoration virtual database has no physical .MDF or .LDF The database which is restored is, in fact, the backup file converted in the virtual database. DDL and DML queries can be executed against this virtually restored database. Regular backup operation can be implemented against virtual database, creating a physical .bak file that can be used for future use. There was no observed degradation in performance on the original database as well the restored virtual database. Additional T-SQL queries can be let off on the virtual database. Well, this summarizes my quick review. And, as I was saying, I am very impressed with the product and I plan to explore it more. There are many features that I have noticed in this tool, which I think can be very useful if properly understood. I had taken a few screenshots using my demo database afterwards. Let us see what other things this tool can do besides the mentioned activities. I am surprised with its performance so I want to know how exactly this feature works, specifically in the matter of why it does not create any additional files and yet, it still allows update on the virtually restored database. I guess I will have to send an e-mail to the developers of Idera and try to figure this out from them. I think this tool is very useful, and it delivers a high level of performance way more than what I expected. Soon, I will write a review for additional uses of SQL virtual database.. If you are using SQL virtual database in your production environment, I am eager to learn more about it and your experience while using it. The ‘Virtual’ Part of virtual database When I set out to test this software, I thought virtual database had something to do with Hyper-V or visualization. In fact, the virtual database is a kind of database which shows up in your SQL Server Management Studio without actually restoring or even creating it. This tool creates a database in SSMS from the backup of the same database. The backup, however, works virtually the same way as original database. Potential Usage of virtual database: As soon as I described this tool to my teammate, I think his very first reaction was, “hey, if we have this then there is no need for log shipping.” I find his comment very interesting as log shipping is something where logs are moved to another server. In fact, there are no updates on the database from log; I would rather compare it with Snapshot Replication. In fact, whatever we use, snapshot replicated database can be similarly used and configured with virtual database. I totally believe that we can use it for reporting purpose. In fact, after this database was configured, I think the uses of this tool are unlimited. I will have to spend some more time studying it and will get back to you. Click on images to see larger images. virtual database Console Harddrive Space before virtual database Setup Attach Full Backup Screen Backup on Harddrive Attach Full Backup Screen with Settings virtual database Setup – less than 60 sec virtual database Setup – Online Harddrive Space after virtual database Setup Point in Time Recovery Option – Timeline View virtual database Summary No Performance Difference between Regular DB vs Virtual DB Please note that all SQL Server MVP gets free license of this software. Reference: Pinal Dave (http://blog.SQLAuthority.com), Idera (virtual database) Filed under: Database, Pinal Dave, SQL, SQL Add-On, SQL Authority, SQL Backup and Restore, SQL Data Storage, SQL Query, SQL Server, SQL Tips and Tricks, SQL Utility, SQLAuthority News, T SQL, Technology Tagged: Idera

    Read the article

  • Why i disconnect every few seconds? using USB wireless adapter

    - by Rev3rse
    i know it's for ubuntu questions..but mint and ubuntu are very similiar and i had the same problem with linux ubuntu too..so i think this is the right place for my question anyway i don't have experience with drivers and other things,after installing Linux on my machine( i did dist-upgrade btw) everything seem to be great because i didn't have to install any driver, after a while i realized that my connection stop after few minutes(actually it shows that I'm connected but it's not) so i have to reconnect and after few minutes it disconnect again. I'm using Alfa USB wireless adapter AWS036H, and my Linux version is 11 i think the driver i'm using is Realtek i searched in the Internet and i found nothing. these are some outputs of few things people usually ask for: Note: I'm NOT using a laptop. dmsg: [19445.604448] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.174.220.77 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=104 ID=10466 DF PROTO=TCP SPT=55150 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19448.164050] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=41982 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=7566 DF PROTO=TCP INCOMPLETE [8 bytes] ] [19465.079565] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=80.128.216.31 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=5100 DF PROTO=TCP SPT=50169 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19486.270328] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=90.130.13.122 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=22207 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19497.480522] wlan0: deauthenticating from 00:24:c8:4b:46:e0 by local choice (reason=3) [19497.593276] cfg80211: All devices are disconnected, going to restore regulatory settings [19497.593282] cfg80211: Restoring regulatory settings [19497.593346] cfg80211: Calling CRDA to update world regulatory domain [19497.638740] cfg80211: Updating information on frequency 2412 MHz for a 20 MHz width channel with regulatory rule: [19497.638745] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638749] cfg80211: Updating information on frequency 2417 MHz for a 20 MHz width channel with regulatory rule: [19497.638753] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638756] cfg80211: Updating information on frequency 2422 MHz for a 20 MHz width channel with regulatory rule: [19497.638760] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638763] cfg80211: Updating information on frequency 2427 MHz for a 20 MHz width channel with regulatory rule: [19497.638766] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638770] cfg80211: Updating information on frequency 2432 MHz for a 20 MHz width channel with regulatory rule: [19497.638773] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638776] cfg80211: Updating information on frequency 2437 MHz for a 20 MHz width channel with regulatory rule: [19497.638780] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638783] cfg80211: Updating information on frequency 2442 MHz for a 20 MHz width channel with regulatory rule: [19497.638787] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638790] cfg80211: Updating information on frequency 2447 MHz for a 20 MHz width channel with regulatory rule: [19497.638794] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638797] cfg80211: Updating information on frequency 2452 MHz for a 20 MHz width channel with regulatory rule: [19497.638801] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638804] cfg80211: Updating information on frequency 2457 MHz for a 20 MHz width channel with regulatory rule: [19497.638807] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638811] cfg80211: Updating information on frequency 2462 MHz for a 20 MHz width channel with regulatory rule: [19497.638814] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638817] cfg80211: Updating information on frequency 2467 MHz for a 20 MHz width channel with regulatory rule: [19497.638821] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638824] cfg80211: Updating information on frequency 2472 MHz for a 20 MHz width channel with regulatory rule: [19497.638828] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638831] cfg80211: Updating information on frequency 2484 MHz for a 20 MHz width channel with regulatory rule: [19497.638835] cfg80211: 2474000 KHz - 2494000 KHz @ KHz), (300 mBi, 2000 mBm) [19497.638838] cfg80211: World regulatory domain updated: [19497.638841] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) [19497.638845] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19497.638848] cfg80211: (2457000 KHz - 2482000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [19497.638852] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [19497.638855] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19497.638859] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [19513.145150] wlan0: authenticate with 00:24:c8:4b:46:e0 (try 1) [19513.146910] wlan0: authenticated [19513.252775] wlan0: associate with 00:24:c8:4b:46:e0 (try 1) [19513.255149] wlan0: RX AssocResp from 00:24:c8:4b:46:e0 (capab=0x411 status=0 aid=2) [19513.255154] wlan0: associated [19515.675091] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.79.8.40 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x20 TTL=110 ID=42720 DF PROTO=TCP SPT=1945 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19525.684312] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=49890 DF PROTO=TCP SPT=53401 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19551.856766] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=85.228.39.93 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=103 ID=1162 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19564.623005] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=90.202.21.238 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=17881 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19584.855364] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.49.151.87 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=117 ID=31716 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19604.688647] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.225.124.155 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=6656 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19626.362529] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.184.50.41 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=23241 DF PROTO=TCP SPT=1416 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19645.040906] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=92.250.245.244 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=51 ID=0 DF PROTO=TCP SPT=50061 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19665.212659] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.183.3.18 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=111 ID=1689 DF PROTO=TCP SPT=62817 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19685.036415] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=50638 DF PROTO=TCP SPT=49624 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19705.487915] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=217.122.17.82 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=112 ID=19070 DF PROTO=TCP SPT=54795 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19726.779185] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=80.88.116.239 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=109 ID=32168 DF PROTO=TCP SPT=57330 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19744.755673] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.124.5.43 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=2288 DF PROTO=TCP SPT=6475 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [19764.449183] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.216.35.19 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=4281 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19784.456189] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.82.25.149 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=114 ID=1866 DF PROTO=TCP SPT=59507 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19804.836687] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.56.199.3 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=14749 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19824.812685] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=186.28.7.159 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=44686 PROTO=UDP SPT=23418 DPT=6881 LEN=28 [19847.683314] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.13.80.169 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=63046 DF PROTO=TCP SPT=52192 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [19884.711455] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.146.24.238 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=27914 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19884.983589] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=2.107.130.61 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=7742 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19905.681078] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=95.21.11.121 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=114 ID=31775 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19926.035707] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=109.76.132.55 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=28140 DF PROTO=TCP SPT=51905 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19945.668326] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=188.92.0.197 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=7865 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [19967.200339] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=83.252.102.172 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=105 ID=28408 DF PROTO=TCP SPT=63505 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [19999.752732] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.166.171.200 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=110 ID=36405 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20007.928719] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=79.235.59.16 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=46415 DF PROTO=TCP SPT=4537 DPT=6881 WINDOW=16384 RES=0x00 SYN URGP=0 [20026.181726] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.182.169.36 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=106 ID=25126 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20048.845358] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.66.118.104 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=111 ID=18068 DF PROTO=TCP SPT=49928 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20064.341857] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=77.2.63.153 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=7242 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20090.093490] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=93.16.17.210 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=108 ID=894 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20104.443995] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=89.83.235.99 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=114 ID=17295 DF PROTO=TCP SPT=58979 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20128.625374] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=81.62.91.79 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=21793 DF PROTO=TCP SPT=51446 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20151.055506] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.135.217.213 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=112 ID=32452 DF PROTO=TCP SPT=55136 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20164.618874] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.79.8.40 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x20 TTL=110 ID=47784 DF PROTO=TCP SPT=2422 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20184.337745] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=83.252.212.71 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=107 ID=14544 PROTO=UDP SPT=6881 DPT=6881 LEN=28 [20205.007512] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=91.62.158.247 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=110 ID=21562 DF PROTO=TCP SPT=3933 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20225.204018] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=84.146.24.238 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=113 ID=15045 DF PROTO=TCP SPT=49630 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20244.842290] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=82.82.190.168 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=112 ID=23741 DF PROTO=TCP SPT=50766 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20266.701649] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=88.153.108.124 DST=192.168.1.6 LEN=48 TOS=0x02 PREC=0x00 TTL=111 ID=206 DF PROTO=TCP SPT=2451 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20286.305414] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=78.240.86.73 DST=192.168.1.6 LEN=52 TOS=0x00 PREC=0x00 TTL=107 ID=325 DF PROTO=TCP SPT=65184 DPT=6881 WINDOW=8192 RES=0x00 SYN URGP=0 [20294.293989] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43133 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56899 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20294.297015] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43134 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.40 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=12080 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20294.297242] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43135 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=25195 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20295.478338] wlan0: deauthenticating from 00:24:c8:4b:46:e0 by local choice (reason=3) [20295.552735] cfg80211: All devices are disconnected, going to restore regulatory settings [20295.552742] cfg80211: Restoring regulatory settings [20295.552748] cfg80211: Calling CRDA to update world regulatory domain [20295.680635] cfg80211: Updating information on frequency 2412 MHz for a 20 MHz width channel with regulatory rule: [20295.680641] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680644] cfg80211: Updating information on frequency 2417 MHz for a 20 MHz width channel with regulatory rule: [20295.680648] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680652] cfg80211: Updating information on frequency 2422 MHz for a 20 MHz width channel with regulatory rule: [20295.680655] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680658] cfg80211: Updating information on frequency 2427 MHz for a 20 MHz width channel with regulatory rule: [20295.680662] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680665] cfg80211: Updating information on frequency 2432 MHz for a 20 MHz width channel with regulatory rule: [20295.680669] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680672] cfg80211: Updating information on frequency 2437 MHz for a 20 MHz width channel with regulatory rule: [20295.680676] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680679] cfg80211: Updating information on frequency 2442 MHz for a 20 MHz width channel with regulatory rule: [20295.680683] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680687] cfg80211: Updating information on frequency 2447 MHz for a 20 MHz width channel with regulatory rule: [20295.680690] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680693] cfg80211: Updating information on frequency 2452 MHz for a 20 MHz width channel with regulatory rule: [20295.680697] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680700] cfg80211: Updating information on frequency 2457 MHz for a 20 MHz width channel with regulatory rule: [20295.680704] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680708] cfg80211: Updating information on frequency 2462 MHz for a 20 MHz width channel with regulatory rule: [20295.680711] cfg80211: 2402000 KHz - 2472000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680715] cfg80211: Updating information on frequency 2467 MHz for a 20 MHz width channel with regulatory rule: [20295.680718] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680722] cfg80211: Updating information on frequency 2472 MHz for a 20 MHz width channel with regulatory rule: [20295.680725] cfg80211: 2457000 KHz - 2482000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680728] cfg80211: Updating information on frequency 2484 MHz for a 20 MHz width channel with regulatory rule: [20295.680732] cfg80211: 2474000 KHz - 2494000 KHz @ KHz), (300 mBi, 2000 mBm) [20295.680736] cfg80211: World regulatory domain updated: [20295.680738] cfg80211: (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp) [20295.680742] cfg80211: (2402000 KHz - 2472000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20295.680745] cfg80211: (2457000 KHz - 2482000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [20295.680749] cfg80211: (2474000 KHz - 2494000 KHz @ 20000 KHz), (300 mBi, 2000 mBm) [20295.680752] cfg80211: (5170000 KHz - 5250000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20295.680756] cfg80211: (5735000 KHz - 5835000 KHz @ 40000 KHz), (300 mBi, 2000 mBm) [20306.009341] wlan0: authenticate with 00:24:c8:4b:46:e0 (try 1) [20306.011225] wlan0: authenticated [20306.118095] wlan0: associate with 00:24:c8:4b:46:e0 (try 1) [20306.120963] wlan0: RX AssocResp from 00:24:c8:4b:46:e0 (capab=0x411 status=0 aid=2) [20306.120967] wlan0: associated [20307.364427] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=87.91.101.130 DST=192.168.1.6 LEN=64 TOS=0x00 PREC=0x00 TTL=49 ID=36839 DF PROTO=TCP SPT=62492 DPT=6881 WINDOW=65535 RES=0x00 SYN URGP=0 [20310.914290] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43180 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56900 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20310.936634] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43181 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.40 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=12081 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20310.939017] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43182 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=25196 DF PROTO=TCP INCOMPLETE [8 bytes] ] [20325.941050] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=217.118.78.99 DST=192.168.1.6 LEN=48 TOS=0x00 PREC=0x00 TTL=113 ID=4407 PROTO=UDP SPT=2970 DPT=6881 LEN=28 [20328.801724] [UFW BLOCK] IN=wlan0 OUT= MAC=00:c0:ca:44:62:d1:00:24:c8:4b:46:e0:08:00 SRC=192.168.1.254 DST=192.168.1.6 LEN=56 TOS=0x00 PREC=0x00 TTL=255 ID=43196 PROTO=ICMP TYPE=3 CODE=0 [SRC=192.168.1.6 DST=91.189.88.33 LEN=52 TOS=0x00 PREC=0x00 TTL=63 ID=56901 DF PROTO=TCP INCOMPLETE [8 bytes] ] ... inxi -N Network: Card-1 Realtek RTL8101E/RTL8102E PCI Express Fast Ethernet controller driver r8169 Card-2 Realtek RTL-8139/8139C/8139C+ driver 8139too /usr/lib/linuxmint/mintWifi/mintWifi.py ------------------------- * I. scanning WIFI PCI devices... ------------------------- * II. querying ndiswrapper... ------------------------- * III. querying iwconfig... lo no wireless extensions. eth0 no wireless extensions. eth1 no wireless extensions. wlan0 IEEE 802.11bg ESSID:"Home" Mode:Managed Frequency:2.437 GHz Access Point: 00:24:C8:4B:46:E0 Bit Rate=54 Mb/s Tx-Power=20 dBm Retry long limit:7 RTS thr:off Fragment thr:off Power Management:off Link Quality=68/70 Signal level=-42 dBm Rx invalid nwid:0 Rx invalid crypt:0 Rx invalid frag:0 Tx excessive retries:0 Invalid misc:1132 Missed beacon:0 ------------------------- * IV. querying ifconfig... eth0 Link encap:Ethernet HWaddr 00:1f:d0:c9:b8:8e UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:43 Base address:0x4000 eth1 Link encap:Ethernet HWaddr 00:0e:2e:77:88:16 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:19 Base address:0xd000 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:10696 errors:0 dropped:0 overruns:0 frame:0 TX packets:10696 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:3823011 (3.8 MB) TX bytes:3823011 (3.8 MB) wlan0 Link encap:Ethernet HWaddr 00:c0:ca:44:62:d1 inet addr:192.168.1.6 Bcast:255.255.255.255 Mask:255.255.255.0 inet6 addr: fe80::2c0:caff:fe44:62d1/64 Scope:Link UP BROADCAST RUNNING MULTICAST MTU:1500 Metric:1 RX packets:90424 errors:0 dropped:0 overruns:0 frame:0 TX packets:65201 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:98024465 (98.0 MB) TX bytes:10345450 (10.3 MB) ------------------------- * V. querying DHCP... lspci 00:00.0 Host bridge: Intel Corporation 82G33/G31/P35/P31 Express DRAM Controller (rev 10) 00:01.0 PCI bridge: Intel Corporation 82G33/G31/P35/P31 Express PCI Express Root Port (rev 10) 00:1b.0 Audio device: Intel Corporation N10/ICH 7 Family High Definition Audio Controller (rev 01) 00:1c.0 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 1 (rev 01) 00:1c.1 PCI bridge: Intel Corporation N10/ICH 7 Family PCI Express Port 2 (rev 01) 00:1d.0 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #1 (rev 01) 00:1d.1 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #2 (rev 01) 00:1d.2 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #3 (rev 01) 00:1d.3 USB Controller: Intel Corporation N10/ICH 7 Family USB UHCI Controller #4 (rev 01) 00:1d.7 USB Controller: Intel Corporation N10/ICH 7 Family USB2 EHCI Controller (rev 01) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev e1) 00:1f.0 ISA bridge: Intel Corporation 82801GB/GR (ICH7 Family) LPC Interface Bridge (rev 01) 00:1f.2 IDE interface: Intel Corporation N10/ICH7 Family SATA IDE Controller (rev 01) 00:1f.3 SMBus: Intel Corporation N10/ICH 7 Family SMBus Controller (rev 01) 01:00.0 VGA compatible controller: nVidia Corporation G96 [GeForce 9400 GT] (rev a1) 03:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8101E/RTL8102E PCI Express Fast Ethernet controller (rev 02) 04:01.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) lsmod Module Size Used by ipt_REJECT 12512 1 ipt_LOG 12784 5 xt_limit 12541 7 xt_tcpudp 12531 8 ipt_addrtype 12535 4 xt_state 12514 7 ip6table_filter 12711 1 ip6_tables 22545 1 ip6table_filter nf_nat_irc 12542 0 nf_conntrack_irc 13138 1 nf_nat_irc nf_nat_ftp 12548 0 nf_nat 24827 2 nf_nat_irc,nf_nat_ftp nf_conntrack_ipv4 19024 9 nf_nat nf_defrag_ipv4 12649 1 nf_conntrack_ipv4 nf_conntrack_ftp 13106 1 nf_nat_ftp nf_conntrack 69744 7 xt_state,nf_nat_irc,nf_conntrack_irc,nf_nat_ftp,nf_nat,nf_conntrack_ipv4,nf_conntrack_ftp iptable_filter 12706 1 ip_tables 18125 1 iptable_filter x_tables 21907 10 ipt_REJECT,ipt_LOG,xt_limit,xt_tcpudp,ipt_addrtype,xt_state,ip6table_filter,ip6_tables,iptable_filter,ip_tables nls_utf8 12493 10 udf 83795 1 crc_itu_t 12627 1 udf usb_storage 43946 1 uas 17676 0 snd_seq_dummy 12686 0 cryptd 19801 0 aes_i586 16956 1 aes_generic 38023 1 aes_i586 binfmt_misc 13213 1 dm_crypt 22463 0 vesafb 13449 1 nvidia 9766978 44 arc4 12473 2 rtl8187 56206 0 mac80211 257001 1 rtl8187 cfg80211 156212 2 rtl8187,mac80211 ppdev 12849 0 snd_hda_codec_realtek 255882 1 parport_pc 32111 1 psmouse 73312 0 eeprom_93cx6 12653 1 rtl8187 snd_hda_intel 24113 5 snd_hda_codec 90901 2 snd_hda_codec_realtek,snd_hda_intel snd_hwdep 13274 1 snd_hda_codec snd_pcm 80042 3 snd_hda_intel,snd_hda_codec snd_seq_midi 13132 0 snd_rawmidi 25269 1 snd_seq_midi snd_seq_midi_event 14475 1 snd_seq_midi snd_seq 51291 3 snd_seq_dummy,snd_seq_midi,snd_seq_midi_event snd_timer 28659 2 snd_pcm,snd_seq snd_seq_device 14110 4 snd_seq_dummy,snd_seq_midi,snd_rawmidi,snd_seq joydev 17322 0 snd 55295 18 snd_hda_codec_realtek,snd_hda_intel,snd_hda_codec,snd_hwdep,snd_pcm,snd_rawmidi,snd_seq,snd_timer,snd_seq_device serio_raw 12990 0 soundcore 12600 1 snd snd_page_alloc 14073 2 snd_hda_intel,snd_pcm lp 13349 0 parport 36746 3 ppdev,parport_pc,lp usbhid 41704 0 hid 77084 1 usbhid dm_raid45 88410 0 xor 21860 1 dm_raid45 btrfs 527388 0 zlib_deflate 26594 1 btrfs libcrc32c 12543 1 btrfs 8139too 23208 0 8139cp 22497 0 r8169 42534 0 floppy 60032 0

    Read the article

  • LWJGL - Eclipse error [on hold]

    - by Zarkopafilis
    When I try to run my lwjgl project, an error pops . Here is the log file: # A fatal error has been detected by the Java Runtime Environment: # EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x6d8fcc0a, pid=5612, tid=900 # JRE version: 6.0_16-b01 Java VM: Java HotSpot(TM) Client VM (14.2-b01 mixed mode windows-x86 ) Problematic frame: V [jvm.dll+0xfcc0a] # If you would like to submit a bug report, please visit: http://java.sun.com/webapps/bugreport/crash.jsp # --------------- T H R E A D --------------- Current thread (0x016b9000): JavaThread "main" [_thread_in_vm, id=900, stack(0x00160000,0x001b0000)] siginfo: ExceptionCode=0xc0000005, reading address 0x00000000 Registers: EAX=0x00000000, EBX=0x00000000, ECX=0x00000006, EDX=0x00000000 ESP=0x001af4d4, EBP=0x001af524, ESI=0x016b9000, EDI=0x016b9110 EIP=0x6d8fcc0a, EFLAGS=0x00010246 Top of Stack: (sp=0x001af4d4) 0x001af4d4: 6da44bd8 016b9110 00000000 001af668 0x001af4e4: ffffffff 22200000 001af620 76ec39c2 0x001af4f4: 001af524 6d801086 0000000b 001afd34 0x001af504: 016b9000 016dd990 016b9000 00000000 0x001af514: 001af5f4 6d9ee000 6d9ef2f0 ffffffff 0x001af524: 001af58c 10008c85 016b9110 00000000 0x001af534: 00000000 000a0554 00000000 00000024 0x001af544: 00000000 00000000 001af6ac 00000000 Instructions: (pc=0x6d8fcc0a) 0x6d8fcbfa: e8 e8 d0 1d 08 00 8b 45 10 c7 45 d8 0b 00 00 00 0x6d8fcc0a: 8b 00 8b 48 08 0f b7 51 26 8b 40 0c 8b 4c 90 20 Stack: [0x00160000,0x001b0000], sp=0x001af4d4, free space=317k Native frames: (J=compiled Java code, j=interpreted, Vv=VM code, C=native code) V [jvm.dll+0xfcc0a] C [lwjgl.dll+0x8c85] C [USER32.dll+0x18876] C [USER32.dll+0x170f4] C [USER32.dll+0x1119e] C [ntdll.dll+0x460ce] C [USER32.dll+0x10e29] C [USER32.dll+0x10e84] C [lwjgl.dll+0x1cf0] j org.lwjgl.opengl.WindowsDisplay.createWindow(Lorg/lwjgl/opengl/DrawableLWJGL;Lorg/lwjgl/opengl/DisplayMode;Ljava/awt/Canvas;II)V+102 j org.lwjgl.opengl.Display.createWindow()V+71 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;Lorg/lwjgl/opengl/Drawable;Lorg/lwjgl/opengl/ContextAttribs;)V+72 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;)V+12 j org.lwjgl.opengl.Display.create()V+7 j zarkopafilis.koding.io.javafx.Main.main([Ljava/lang/String;)V+16 v ~StubRoutines::call_stub V [jvm.dll+0xecf9c] V [jvm.dll+0x1741e1] V [jvm.dll+0xed01d] V [jvm.dll+0xf5be5] V [jvm.dll+0xfd83d] C [javaw.exe+0x2155] C [javaw.exe+0x833e] C [kernel32.dll+0x51154] C [ntdll.dll+0x5b2b9] C [ntdll.dll+0x5b28c] Java frames: (J=compiled Java code, j=interpreted, Vv=VM code) j org.lwjgl.opengl.WindowsDisplay.nCreateWindow(IIIIZZJ)J+0 j org.lwjgl.opengl.WindowsDisplay.createWindow(Lorg/lwjgl/opengl/DrawableLWJGL;Lorg/lwjgl/opengl/DisplayMode;Ljava/awt/Canvas;II)V+102 j org.lwjgl.opengl.Display.createWindow()V+71 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;Lorg/lwjgl/opengl/Drawable;Lorg/lwjgl/opengl/ContextAttribs;)V+72 j org.lwjgl.opengl.Display.create(Lorg/lwjgl/opengl/PixelFormat;)V+12 j org.lwjgl.opengl.Display.create()V+7 j zarkopafilis.koding.io.javafx.Main.main([Ljava/lang/String;)V+16 v ~StubRoutines::call_stub --------------- P R O C E S S --------------- Java Threads: ( = current thread ) 0x0179a400 JavaThread "Low Memory Detector" daemon [_thread_blocked, id=4460, stack(0x0b900000,0x0b950000)] 0x01795400 JavaThread "CompilerThread0" daemon [_thread_blocked, id=5264, stack(0x0b8b0000,0x0b900000)] 0x01790c00 JavaThread "Attach Listener" daemon [_thread_blocked, id=6080, stack(0x0b860000,0x0b8b0000)] 0x01786400 JavaThread "Signal Dispatcher" daemon [_thread_blocked, id=1204, stack(0x0b810000,0x0b860000)] 0x01759c00 JavaThread "Finalizer" daemon [_thread_blocked, id=5772, stack(0x0b7c0000,0x0b810000)] 0x01755000 JavaThread "Reference Handler" daemon [_thread_blocked, id=4696, stack(0x01640000,0x01690000)] =0x016b9000 JavaThread "main" [_thread_in_vm, id=900, stack(0x00160000,0x001b0000)] Other Threads: 0x01751c00 VMThread [stack: 0x015f0000,0x01640000] [id=4052] 0x0179c800 WatcherThread [stack: 0x0b950000,0x0b9a0000] [id=3340] VM state:not at safepoint (normal execution) VM Mutex/Monitor currently owned by a thread: None Heap def new generation total 960K, used 816K [0x037c0000, 0x038c0000, 0x03ca0000) eden space 896K, 91% used [0x037c0000, 0x0388c2c0, 0x038a0000) from space 64K, 0% used [0x038a0000, 0x038a0000, 0x038b0000) to space 64K, 0% used [0x038b0000, 0x038b0000, 0x038c0000) tenured generation total 4096K, used 0K [0x03ca0000, 0x040a0000, 0x077c0000) the space 4096K, 0% used [0x03ca0000, 0x03ca0000, 0x03ca0200, 0x040a0000) compacting perm gen total 12288K, used 2143K [0x077c0000, 0x083c0000, 0x0b7c0000) the space 12288K, 17% used [0x077c0000, 0x079d7e38, 0x079d8000, 0x083c0000) No shared spaces configured. Dynamic libraries: 0x00400000 - 0x00424000 C:\Program Files\Java\jre6\bin\javaw.exe 0x77550000 - 0x7768e000 C:\Windows\SYSTEM32\ntdll.dll 0x75a80000 - 0x75b54000 C:\Windows\system32\kernel32.dll 0x758d0000 - 0x7591b000 C:\Windows\system32\KERNELBASE.dll 0x759e0000 - 0x75a80000 C:\Windows\system32\ADVAPI32.dll 0x76070000 - 0x7611c000 C:\Windows\system32\msvcrt.dll 0x77250000 - 0x77269000 C:\Windows\SYSTEM32\sechost.dll 0x771a0000 - 0x77241000 C:\Windows\system32\RPCRT4.dll 0x76eb0000 - 0x76f79000 C:\Windows\system32\USER32.dll 0x76e60000 - 0x76eae000 C:\Windows\system32\GDI32.dll 0x77770000 - 0x7777a000 C:\Windows\system32\LPK.dll 0x75fd0000 - 0x7606e000 C:\Windows\system32\USP10.dll 0x770b0000 - 0x770cf000 C:\Windows\system32\IMM32.DLL 0x770d0000 - 0x7719c000 C:\Windows\system32\MSCTF.dll 0x7c340000 - 0x7c396000 C:\Program Files\Java\jre6\bin\msvcr71.dll 0x6d800000 - 0x6da8b000 C:\Program Files\Java\jre6\bin\client\jvm.dll 0x73a00000 - 0x73a32000 C:\Windows\system32\WINMM.dll 0x75610000 - 0x7565b000 C:\Windows\system32\apphelp.dll 0x6d7b0000 - 0x6d7bc000 C:\Program Files\Java\jre6\bin\verify.dll 0x6d330000 - 0x6d34f000 C:\Program Files\Java\jre6\bin\java.dll 0x6d290000 - 0x6d298000 C:\Program Files\Java\jre6\bin\hpi.dll 0x776e0000 - 0x776e5000 C:\Windows\system32\PSAPI.DLL 0x6d7f0000 - 0x6d7ff000 C:\Program Files\Java\jre6\bin\zip.dll 0x10000000 - 0x1004c000 C:\Users\theo\Desktop\workspace\JavaFX1\lib\natives\windows\lwjgl.dll 0x5d170000 - 0x5d238000 C:\Windows\system32\OPENGL32.dll 0x6e7b0000 - 0x6e7d2000 C:\Windows\system32\GLU32.dll 0x70620000 - 0x70707000 C:\Windows\system32\DDRAW.dll 0x70610000 - 0x70616000 C:\Windows\system32\DCIMAN32.dll 0x75b60000 - 0x75cfd000 C:\Windows\system32\SETUPAPI.dll 0x759b0000 - 0x759d7000 C:\Windows\system32\CFGMGR32.dll 0x76d70000 - 0x76dff000 C:\Windows\system32\OLEAUT32.dll 0x75db0000 - 0x75f0c000 C:\Windows\system32\ole32.dll 0x758b0000 - 0x758c2000 C:\Windows\system32\DEVOBJ.dll 0x74060000 - 0x74073000 C:\Windows\system32\dwmapi.dll 0x74b60000 - 0x74b69000 C:\Windows\system32\VERSION.dll 0x745f0000 - 0x7478e000 C:\Windows\WinSxS\x86_microsoft.windows.common-controls_6595b64144ccf1df_6.0.7600.16661_none_420fe3fa2b8113bd\COMCTL32.dll 0x75d50000 - 0x75da7000 C:\Windows\system32\SHLWAPI.dll 0x74370000 - 0x743b0000 C:\Windows\system32\uxtheme.dll 0x22200000 - 0x22206000 C:\Program Files\ESET\ESET Smart Security\eplgHooks.dll VM Arguments: jvm_args: -Djava.library.path=C:\Users\theo\Desktop\workspace\JavaFX1\lib\natives\windows -Dfile.encoding=Cp1253 java_command: zarkopafilis.koding.io.javafx.Main Launcher Type: SUN_STANDARD Environment Variables: PATH=C:/Program Files/Java/jre6/bin/client;C:/Program Files/Java/jre6/bin;C:/Program Files/Java/jre6/lib/i386;C:\Perl\site\bin;C:\Perl\bin;C:\Ruby200\bin;C:\Program Files\Common Files\Microsoft Shared\Windows Live;C:\Windows\system32;C:\Windows;C:\Windows\System32\Wbem;C:\Windows\System32\WindowsPowerShell\v1.0\;C:\Program Files\Windows Live\Shared;C:\Users\theo\Desktop\eclipse; USERNAME=theo OS=Windows_NT PROCESSOR_IDENTIFIER=x86 Family 6 Model 37 Stepping 5, GenuineIntel --------------- S Y S T E M --------------- OS: Windows 7 Build 7600 CPU:total 4 (8 cores per cpu, 2 threads per core) family 6 model 37 stepping 5, cmov, cx8, fxsr, mmx, sse, sse2, sse3, ssse3, sse4.1, sse4.2, ht Memory: 4k page, physical 2097151k(1257972k free), swap 4194303k(4194303k free) vm_info: Java HotSpot(TM) Client VM (14.2-b01) for windows-x86 JRE (1.6.0_16-b01), built on Jul 31 2009 11:26:58 by "java_re" with MS VC++ 7.1 time: Wed Oct 23 22:00:12 2013 elapsed time: 0 seconds Code: Display.setDisplayMode(new DisplayMode(800,600)); Display.create();//Error here I am using JDK 6

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Cannot Install/Start MySQL Server

    - by Peezy Bro
    Okay, I decided to migrate from MySQL Server 5.5.37 to Percona Server 5.6. I ended up removing MySQL Server by the following: sudo apt-get --purge remove mysql-server mysql-server-5.5 mysql-server-core-5.5 mysql-client mysql-client-core-5.5 mysql-common sudo apt-get autoremove sudo apt-get autoclean rm -rf /var/lib/mysql rm -rf /etc/mysql Now here is my problem, when I try to install MySQL Server 5.6 it goes through its process and when it asks me for a password, it comes up with Cannot set MySQL "root" password. After it "installs" MySQL wont start up and I get permission denied?. Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 35 not upgraded. brandon@brandon-DB:~$ sudo apt-get install mysql-server Reading package lists... Done Building dependency tree Reading state information... Done The following extra packages will be installed: libdbd-mysql-perl libdbi-perl libmysqlclient18 libterm-readkey-perl mysql-client-5.5 mysql-client-core-5.5 mysql-common mysql-server-5.5 mysql-server-core-5.5 Suggested packages: libmldbm-perl libnet-daemon-perl libplrpc-perl libsql-statement-perl tinyca mailx The following NEW packages will be installed: libdbd-mysql-perl libdbi-perl libmysqlclient18 libterm-readkey-perl mysql-client-5.5 mysql-client-core-5.5 mysql-common mysql-server mysql-server-5.5 mysql-server-core-5.5 0 upgraded, 10 newly installed, 0 to remove and 35 not upgraded. Need to get 0 B/8,955 kB of archives. After this operation, 96.3 MB of additional disk space will be used. Do you want to continue? [Y/n] y Preconfiguring packages ... Selecting previously unselected package mysql-common. (Reading database ... 167760 files and directories currently installed.) Preparing to unpack .../mysql-common_5.5.37-0ubuntu0.14.04.1_all.deb ... Unpacking mysql-common (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package libmysqlclient18:amd64. Preparing to unpack .../libmysqlclient18_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking libmysqlclient18:amd64 (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package libdbi-perl. Preparing to unpack .../libdbi-perl_1.630-1_amd64.deb ... Unpacking libdbi-perl (1.630-1) ... Selecting previously unselected package libdbd-mysql-perl. Preparing to unpack .../libdbd-mysql-perl_4.025-1_amd64.deb ... Unpacking libdbd-mysql-perl (4.025-1) ... Selecting previously unselected package libterm-readkey-perl. Preparing to unpack .../libterm-readkey-perl_2.31-1_amd64.deb ... Unpacking libterm-readkey-perl (2.31-1) ... Selecting previously unselected package mysql-client-core-5.5. Preparing to unpack .../mysql-client-core-5.5_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking mysql-client-core-5.5 (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package mysql-client-5.5. Preparing to unpack .../mysql-client-5.5_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking mysql-client-5.5 (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package mysql-server-core-5.5. Preparing to unpack .../mysql-server-core-5.5_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking mysql-server-core-5.5 (5.5.37-0ubuntu0.14.04.1) ... Processing triggers for man-db (2.6.7.1-1) ... Setting up mysql-common (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package mysql-server-5.5. (Reading database ... 168116 files and directories currently installed.) Preparing to unpack .../mysql-server-5.5_5.5.37-0ubuntu0.14.04.1_amd64.deb ... Unpacking mysql-server-5.5 (5.5.37-0ubuntu0.14.04.1) ... Selecting previously unselected package mysql-server. Preparing to unpack .../mysql-server_5.5.37-0ubuntu0.14.04.1_all.deb ... Unpacking mysql-server (5.5.37-0ubuntu0.14.04.1) ... Processing triggers for ureadahead (0.100.0-16) ... Processing triggers for man-db (2.6.7.1-1) ... Setting up libmysqlclient18:amd64 (5.5.37-0ubuntu0.14.04.1) ... Setting up libdbi-perl (1.630-1) ... Setting up libdbd-mysql-perl (4.025-1) ... Setting up libterm-readkey-perl (2.31-1) ... Setting up mysql-client-core-5.5 (5.5.37-0ubuntu0.14.04.1) ... Setting up mysql-client-5.5 (5.5.37-0ubuntu0.14.04.1) ... Setting up mysql-server-core-5.5 (5.5.37-0ubuntu0.14.04.1) ... Setting up mysql-server-5.5 (5.5.37-0ubuntu0.14.04.1) ... start: Job failed to start invoke-rc.d: initscript mysql, action "start" failed. dpkg: error processing package mysql-server-5.5 (--configure): subprocess installed post-installation script returned error exit status 1 dpkg: dependency problems prevent configuration of mysql-server: mysql-server depends on mysql-server-5.5; however: Package mysql-server-5.5 is not configured yet. dpkg: error processing package mysql-server (--configure): dependency problems - leaving unconfigured Processing triggers for libc-bin (2.19-0ubuntu6) ... No apport report written because the error message indicates its a followup error from a previous failure. Processing triggers for ureadahead (0.100.0-16) ... Errors were encountered while processing: mysql-server-5.5 mysql-server E: Sub-process /usr/bin/dpkg returned an error code (1) I have all my database/tables dumped and on a seperate HDD. This is also a Dev Machine and not my main Production Machine. I also backed up the MySQL_Config and MySQL_Data.

    Read the article

  • SQL SERVER – Puzzle – Challenge – Error While Converting Money to Decimal

    - by pinaldave
    Earlier I wrote SQL SERVER – Challenge – Puzzle – Usage of FAST Hint and I did receive some good comments. Here is another question to tease your mind. Run following script and you will see that it will thrown an error. DECLARE @mymoney MONEY; SET @mymoney = 12345.67; SELECT CAST(@mymoney AS DECIMAL(5,2)) MoneyInt; GO The datatype of money is also visually look similar to the decimal, why it would throw following error: Msg 8115, Level 16, State 8, Line 3 Arithmetic overflow error converting money to data type numeric. Please leave a comment with explanation and I will post a your answer on this blog with due credit. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Error Messages, SQL Puzzle, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQLServer, T SQL, Technology

    Read the article

  • C#/.NET Little Wonders: The Concurrent Collections (1 of 3)

    - by James Michael Hare
    Once again we consider some of the lesser known classes and keywords of C#.  In the next few weeks, we will discuss the concurrent collections and how they have changed the face of concurrent programming. This week’s post will begin with a general introduction and discuss the ConcurrentStack<T> and ConcurrentQueue<T>.  Then in the following post we’ll discuss the ConcurrentDictionary<T> and ConcurrentBag<T>.  Finally, we shall close on the third post with a discussion of the BlockingCollection<T>. For more of the "Little Wonders" posts, see the index here. A brief history of collections In the beginning was the .NET 1.0 Framework.  And out of this framework emerged the System.Collections namespace, and it was good.  It contained all the basic things a growing programming language needs like the ArrayList and Hashtable collections.  The main problem, of course, with these original collections is that they held items of type object which means you had to be disciplined enough to use them correctly or you could end up with runtime errors if you got an object of a type you weren't expecting. Then came .NET 2.0 and generics and our world changed forever!  With generics the C# language finally got an equivalent of the very powerful C++ templates.  As such, the System.Collections.Generic was born and we got type-safe versions of all are favorite collections.  The List<T> succeeded the ArrayList and the Dictionary<TKey,TValue> succeeded the Hashtable and so on.  The new versions of the library were not only safer because they checked types at compile-time, in many cases they were more performant as well.  So much so that it's Microsoft's recommendation that the System.Collections original collections only be used for backwards compatibility. So we as developers came to know and love the generic collections and took them into our hearts and embraced them.  The problem is, thread safety in both the original collections and the generic collections can be problematic, for very different reasons. Now, if you are only doing single-threaded development you may not care – after all, no locking is required.  Even if you do have multiple threads, if a collection is “load-once, read-many” you don’t need to do anything to protect that container from multi-threaded access, as illustrated below: 1: public static class OrderTypeTranslator 2: { 3: // because this dictionary is loaded once before it is ever accessed, we don't need to synchronize 4: // multi-threaded read access 5: private static readonly Dictionary<string, char> _translator = new Dictionary<string, char> 6: { 7: {"New", 'N'}, 8: {"Update", 'U'}, 9: {"Cancel", 'X'} 10: }; 11:  12: // the only public interface into the dictionary is for reading, so inherently thread-safe 13: public static char? Translate(string orderType) 14: { 15: char charValue; 16: if (_translator.TryGetValue(orderType, out charValue)) 17: { 18: return charValue; 19: } 20:  21: return null; 22: } 23: } Unfortunately, most of our computer science problems cannot get by with just single-threaded applications or with multi-threading in a load-once manner.  Looking at  today's trends, it's clear to see that computers are not so much getting faster because of faster processor speeds -- we've nearly reached the limits we can push through with today's technologies -- but more because we're adding more cores to the boxes.  With this new hardware paradigm, it is even more important to use multi-threaded applications to take full advantage of parallel processing to achieve higher application speeds. So let's look at how to use collections in a thread-safe manner. Using historical collections in a concurrent fashion The early .NET collections (System.Collections) had a Synchronized() static method that could be used to wrap the early collections to make them completely thread-safe.  This paradigm was dropped in the generic collections (System.Collections.Generic) because having a synchronized wrapper resulted in atomic locks for all operations, which could prove overkill in many multithreading situations.  Thus the paradigm shifted to having the user of the collection specify their own locking, usually with an external object: 1: public class OrderAggregator 2: { 3: private static readonly Dictionary<string, List<Order>> _orders = new Dictionary<string, List<Order>>(); 4: private static readonly _orderLock = new object(); 5:  6: public void Add(string accountNumber, Order newOrder) 7: { 8: List<Order> ordersForAccount; 9:  10: // a complex operation like this should all be protected 11: lock (_orderLock) 12: { 13: if (!_orders.TryGetValue(accountNumber, out ordersForAccount)) 14: { 15: _orders.Add(accountNumber, ordersForAccount = new List<Order>()); 16: } 17:  18: ordersForAccount.Add(newOrder); 19: } 20: } 21: } Notice how we’re performing several operations on the dictionary under one lock.  With the Synchronized() static methods of the early collections, you wouldn’t be able to specify this level of locking (a more macro-level).  So in the generic collections, it was decided that if a user needed synchronization, they could implement their own locking scheme instead so that they could provide synchronization as needed. The need for better concurrent access to collections Here’s the problem: it’s relatively easy to write a collection that locks itself down completely for access, but anything more complex than that can be difficult and error-prone to write, and much less to make it perform efficiently!  For example, what if you have a Dictionary that has frequent reads but in-frequent updates?  Do you want to lock down the entire Dictionary for every access?  This would be overkill and would prevent concurrent reads.  In such cases you could use something like a ReaderWriterLockSlim which allows for multiple readers in a lock, and then once a writer grabs the lock it blocks all further readers until the writer is done (in a nutshell).  This is all very complex stuff to consider. Fortunately, this is where the Concurrent Collections come in.  The Parallel Computing Platform team at Microsoft went through great pains to determine how to make a set of concurrent collections that would have the best performance characteristics for general case multi-threaded use. Now, as in all things involving threading, you should always make sure you evaluate all your container options based on the particular usage scenario and the degree of parallelism you wish to acheive. This article should not be taken to understand that these collections are always supperior to the generic collections. Each fills a particular need for a particular situation. Understanding what each container is optimized for is key to the success of your application whether it be single-threaded or multi-threaded. General points to consider with the concurrent collections The MSDN points out that the concurrent collections all support the ICollection interface. However, since the collections are already synchronized, the IsSynchronized property always returns false, and SyncRoot always returns null.  Thus you should not attempt to use these properties for synchronization purposes. Note that since the concurrent collections also may have different operations than the traditional data structures you may be used to.  Now you may ask why they did this, but it was done out of necessity to keep operations safe and atomic.  For example, in order to do a Pop() on a stack you have to know the stack is non-empty, but between the time you check the stack’s IsEmpty property and then do the Pop() another thread may have come in and made the stack empty!  This is why some of the traditional operations have been changed to make them safe for concurrent use. In addition, some properties and methods in the concurrent collections achieve concurrency by creating a snapshot of the collection, which means that some operations that were traditionally O(1) may now be O(n) in the concurrent models.  I’ll try to point these out as we talk about each collection so you can be aware of any potential performance impacts.  Finally, all the concurrent containers are safe for enumeration even while being modified, but some of the containers support this in different ways (snapshot vs. dirty iteration).  Once again I’ll highlight how thread-safe enumeration works for each collection. ConcurrentStack<T>: The thread-safe LIFO container The ConcurrentStack<T> is the thread-safe counterpart to the System.Collections.Generic.Stack<T>, which as you may remember is your standard last-in-first-out container.  If you think of algorithms that favor stack usage (for example, depth-first searches of graphs and trees) then you can see how using a thread-safe stack would be of benefit. The ConcurrentStack<T> achieves thread-safe access by using System.Threading.Interlocked operations.  This means that the multi-threaded access to the stack requires no traditional locking and is very, very fast! For the most part, the ConcurrentStack<T> behaves like it’s Stack<T> counterpart with a few differences: Pop() was removed in favor of TryPop() Returns true if an item existed and was popped and false if empty. PushRange() and TryPopRange() were added Allows you to push multiple items and pop multiple items atomically. Count takes a snapshot of the stack and then counts the items. This means it is a O(n) operation, if you just want to check for an empty stack, call IsEmpty instead which is O(1). ToArray() and GetEnumerator() both also take snapshots. This means that iteration over a stack will give you a static view at the time of the call and will not reflect updates. Pushing on a ConcurrentStack<T> works just like you’d expect except for the aforementioned PushRange() method that was added to allow you to push a range of items concurrently. 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: // but you can also push multiple items in one atomic operation (no interleaves) 7: stack.PushRange(new [] { "Second", "Third", "Fourth" }); For looking at the top item of the stack (without removing it) the Peek() method has been removed in favor of a TryPeek().  This is because in order to do a peek the stack must be non-empty, but between the time you check for empty and the time you execute the peek the stack contents may have changed.  Thus the TryPeek() was created to be an atomic check for empty, and then peek if not empty: 1: // to look at top item of stack without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (stack.TryPeek(out item)) 5: { 6: Console.WriteLine("Top item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Stack was empty."); 11: } Finally, to remove items from the stack, we have the TryPop() for single, and TryPopRange() for multiple items.  Just like the TryPeek(), these operations replace Pop() since we need to ensure atomically that the stack is non-empty before we pop from it: 1: // to remove items, use TryPop or TryPopRange to get multiple items atomically (no interleaves) 2: if (stack.TryPop(out item)) 3: { 4: Console.WriteLine("Popped " + item); 5: } 6:  7: // TryPopRange will only pop up to the number of spaces in the array, the actual number popped is returned. 8: var poppedItems = new string[2]; 9: int numPopped = stack.TryPopRange(poppedItems); 10:  11: foreach (var theItem in poppedItems.Take(numPopped)) 12: { 13: Console.WriteLine("Popped " + theItem); 14: } Finally, note that as stated before, GetEnumerator() and ToArray() gets a snapshot of the data at the time of the call.  That means if you are enumerating the stack you will get a snapshot of the stack at the time of the call.  This is illustrated below: 1: var stack = new ConcurrentStack<string>(); 2:  3: // adding to stack is much the same as before 4: stack.Push("First"); 5:  6: var results = stack.GetEnumerator(); 7:  8: // but you can also push multiple items in one atomic operation (no interleaves) 9: stack.PushRange(new [] { "Second", "Third", "Fourth" }); 10:  11: while(results.MoveNext()) 12: { 13: Console.WriteLine("Stack only has: " + results.Current); 14: } The only item that will be printed out in the above code is "First" because the snapshot was taken before the other items were added. This may sound like an issue, but it’s really for safety and is more correct.  You don’t want to enumerate a stack and have half a view of the stack before an update and half a view of the stack after an update, after all.  In addition, note that this is still thread-safe, whereas iterating through a non-concurrent collection while updating it in the old collections would cause an exception. ConcurrentQueue<T>: The thread-safe FIFO container The ConcurrentQueue<T> is the thread-safe counterpart of the System.Collections.Generic.Queue<T> class.  The concurrent queue uses an underlying list of small arrays and lock-free System.Threading.Interlocked operations on the head and tail arrays.  Once again, this allows us to do thread-safe operations without the need for heavy locks! The ConcurrentQueue<T> (like the ConcurrentStack<T>) has some departures from the non-concurrent counterpart.  Most notably: Dequeue() was removed in favor of TryDequeue(). Returns true if an item existed and was dequeued and false if empty. Count does not take a snapshot It subtracts the head and tail index to get the count.  This results overall in a O(1) complexity which is quite good.  It’s still recommended, however, that for empty checks you call IsEmpty instead of comparing Count to zero. ToArray() and GetEnumerator() both take snapshots. This means that iteration over a queue will give you a static view at the time of the call and will not reflect updates. The Enqueue() method on the ConcurrentQueue<T> works much the same as the generic Queue<T>: 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5: queue.Enqueue("Second"); 6: queue.Enqueue("Third"); For front item access, the TryPeek() method must be used to attempt to see the first item if the queue.  There is no Peek() method since, as you’ll remember, we can only peek on a non-empty queue, so we must have an atomic TryPeek() that checks for empty and then returns the first item if the queue is non-empty. 1: // to look at first item in queue without removing it, can use TryPeek. 2: // Note that there is no Peek(), this is because you need to check for empty first. TryPeek does. 3: string item; 4: if (queue.TryPeek(out item)) 5: { 6: Console.WriteLine("First item was " + item); 7: } 8: else 9: { 10: Console.WriteLine("Queue was empty."); 11: } Then, to remove items you use TryDequeue().  Once again this is for the same reason we have TryPeek() and not Peek(): 1: // to remove items, use TryDequeue. If queue is empty returns false. 2: if (queue.TryDequeue(out item)) 3: { 4: Console.WriteLine("Dequeued first item " + item); 5: } Just like the concurrent stack, the ConcurrentQueue<T> takes a snapshot when you call ToArray() or GetEnumerator() which means that subsequent updates to the queue will not be seen when you iterate over the results.  Thus once again the code below will only show the first item, since the other items were added after the snapshot. 1: var queue = new ConcurrentQueue<string>(); 2:  3: // adding to queue is much the same as before 4: queue.Enqueue("First"); 5:  6: var iterator = queue.GetEnumerator(); 7:  8: queue.Enqueue("Second"); 9: queue.Enqueue("Third"); 10:  11: // only shows First 12: while (iterator.MoveNext()) 13: { 14: Console.WriteLine("Dequeued item " + iterator.Current); 15: } Using collections concurrently You’ll notice in the examples above I stuck to using single-threaded examples so as to make them deterministic and the results obvious.  Of course, if we used these collections in a truly multi-threaded way the results would be less deterministic, but would still be thread-safe and with no locking on your part required! For example, say you have an order processor that takes an IEnumerable<Order> and handles each other in a multi-threaded fashion, then groups the responses together in a concurrent collection for aggregation.  This can be done easily with the TPL’s Parallel.ForEach(): 1: public static IEnumerable<OrderResult> ProcessOrders(IEnumerable<Order> orderList) 2: { 3: var proxy = new OrderProxy(); 4: var results = new ConcurrentQueue<OrderResult>(); 5:  6: // notice that we can process all these in parallel and put the results 7: // into our concurrent collection without needing any external locking! 8: Parallel.ForEach(orderList, 9: order => 10: { 11: var result = proxy.PlaceOrder(order); 12:  13: results.Enqueue(result); 14: }); 15:  16: return results; 17: } Summary Obviously, if you do not need multi-threaded safety, you don’t need to use these collections, but when you do need multi-threaded collections these are just the ticket! The plethora of features (I always think of the movie The Three Amigos when I say plethora) built into these containers and the amazing way they acheive thread-safe access in an efficient manner is wonderful to behold. Stay tuned next week where we’ll continue our discussion with the ConcurrentBag<T> and the ConcurrentDictionary<TKey,TValue>. For some excellent information on the performance of the concurrent collections and how they perform compared to a traditional brute-force locking strategy, see this wonderful whitepaper by the Microsoft Parallel Computing Platform team here.   Tweet Technorati Tags: C#,.NET,Concurrent Collections,Collections,Multi-Threading,Little Wonders,BlackRabbitCoder,James Michael Hare

    Read the article

  • SQL SERVER – Disabled Index and Update Statistics

    - by pinaldave
    When we try to update the statistics, it throws an error as if the clustered index is disabled. Now let us enable the clustered index only and attempt to update the statistics of the table right after that. Have you ever come across the situation where a conversation never gets over and it continues even though original point of discussion has passed. I am facing the same situation in the case of Disabled Index. Here is the link to original conversations. SQL SERVER – Disable Clustered Index and Data Insert – Reader had a issue here with Disabled Index SQL SERVER – Understanding ALTER INDEX ALL REBUILD with Disabled Clustered Index – Reader asked the effect of Rebuilding Indexes The same reader asked me today – “I understood what the disabled indexes do; what is their effect on statistics. Is it true that even though indexes are disabled, they continue updating the statistics?“ The answer is very interesting: If you have disabled clustered index, you will be not able to update the statistics at all for any index. If you have enabled clustered index and disabled non clustered index when you update the statistics of the table, it automatically updates the statistics of the ALL (disabled and enabled – both) the indexes on the table. If you are not satisfied with the answer, let us go over a simple example. I have written necessary comments in the code itself to have a clear idea. USE tempdb GO -- Drop Table if Exists IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[TableName]') AND type IN (N'U')) DROP TABLE [dbo].[TableName] GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL ) GO -- Insert Some data INSERT INTO TableName SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' UNION ALL SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Five' GO -- Create Clustered Index ALTER TABLE [TableName] ADD CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Now let us update the statistics of the table and check the statistics update date. -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO Now let us disable the indexes and check if they are disabled using sys.indexes. -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO Let us try to update the statistics of the table. -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO /* -- Above operation should thrown following error Msg 1974, Level 16, State 1, Line 1 Cannot perform the specified operation on table 'TableName' because its clustered index 'PK_TableName' is disabled. */ When we try to update the statistics it throws an error as it clustered index is disabled. Now let us enable the clustered index only and attempt to update the statistics of the table right after that. -- Now let us rebuild clustered index only ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Check that all the indexes status SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO We can clearly see that even though the nonclustered index is disabled it is also updated. If you do not need a nonclustered index, I suggest you to drop it as keeping them disabled is an overhead on your system. This is because every time the statistics are updated for system all the statistics for disabled indexesare also updated. -- Clean up DROP TABLE [TableName] GO The complete script is given below for easy reference. USE tempdb GO -- Drop Table if Exists IF EXISTS (SELECT * FROM sys.objects WHERE OBJECT_ID = OBJECT_ID(N'[dbo].[TableName]') AND type IN (N'U')) DROP TABLE [dbo].[TableName] GO -- Create Table CREATE TABLE [dbo].[TableName]( [ID] [int] NOT NULL, [FirstCol] [varchar](50) NULL ) GO -- Insert Some data INSERT INTO TableName SELECT 1, 'First' UNION ALL SELECT 2, 'Second' UNION ALL SELECT 3, 'Third' UNION ALL SELECT 4, 'Fourth' UNION ALL SELECT 5, 'Five' GO -- Create Clustered Index ALTER TABLE [TableName] ADD CONSTRAINT [PK_TableName] PRIMARY KEY CLUSTERED ([ID] ASC) GO -- Create Nonclustered Index CREATE UNIQUE NONCLUSTERED INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] ([FirstCol] ASC) GO -- Check that all the indexes are enabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Disable Indexes -- Disable Nonclustered Index ALTER INDEX [IX_NonClustered_TableName] ON [dbo].[TableName] DISABLE GO -- Disable Clustered Index ALTER INDEX [PK_TableName] ON [dbo].[TableName] DISABLE GO -- Check that all the indexes are disabled SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO /* -- Above operation should thrown following error Msg 1974, Level 16, State 1, Line 1 Cannot perform the specified operation on table 'TableName' because its clustered index 'PK_TableName' is disabled. */ -- Now let us rebuild clustered index only ALTER INDEX [PK_TableName] ON [dbo].[TableName] REBUILD GO -- Check that all the indexes status SELECT OBJECT_NAME(OBJECT_ID), Name, type_desc, is_disabled FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'TableName' GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Update the stats of table UPDATE STATISTICS TableName WITH FULLSCAN GO -- Check Statistics Last Updated Datetime SELECT name AS index_name, STATS_DATE(OBJECT_ID, index_id) AS StatsUpdated FROM sys.indexes WHERE OBJECT_ID = OBJECT_ID('TableName') GO -- Clean up DROP TABLE [TableName] GO Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, SQL, SQL Authority, SQL Index, SQL Optimization, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics

    Read the article

  • Visio 2010 forward engineer add-in for office 2010

    - by Ryan Ternier
    I have been scouring the internet for ages trying to see if there was a usable add-on for Visio 2010 that could export SQL Scripts. MS stopping putting that functionality in Visio since 2003 – which is a huge shame. Today I found an open source project from Alberto Ferrari. It’s an add-in for Visio 2010 that allows you to generate SQL Scripts from your DB diagram. It’s still in beta, and the source is available.   Check it out here:http://sqlblog.com/blogs/alberto_ferrari/archive/2010/04/16/visio-forward-engineer-addin-for-office-2010.aspx This saves me from having to do all my diagramming in SQL Server / VS 2010. And brings back the much needed functionality that has been lost.

    Read the article

  • Three Steps to Becoming an Expert Oracle Linux System Administrator

    - by Antoinette O'Sullivan
    Oracle provides a complete system administration curriculum to take you from your initial experience of Unix to being an expert Oracle Linux system administrator. You can take these live instructor-led courses from your own desk through live-virtual events or by traveling to an education center through in-class events. Step 1: Unix and Linux Essentials This 3-day course is designed for users and administrators who are new to Oracle Linux. It will help you develop the basic UNIX skills needed to interact comfortably and confidently with the operating system. Below is a sample of the in-class events already on the schedule.  Location  Date  Delivery Language  Vivoorde, Belgium  28 October 2013  English  Berlin, Germany  15 July 2013  German  Utrecht, Netherlands  19 August 2013  Dutch  Bucarest, Romania  12 August 2013  Romanian  Ankara, Turkey  6 January 2013  Turkish  Nairobi, Kenya  5 August 2013  English  Kaduna, Nigeria  15 July 2013  English   Woodmead, South Africa  15 July 2013  English   Jakarta, Indonesia  23 September 2013  English  Petaling Jaya, Malaysia  22 July 2013  English  Makati City, Philippines  3 July 2013  English  Bangkok, Thailand  20 November 2013  English  Auckland, New Zealand  5 August 2013  English  Melbourne, Australia  12 August 2013  English  Ottawa, Montreal, Toronto, Canada  3 September 2013  English  San Francisco and San Jose, CA, United States  15 July 2013  English  Reston, VA, United States  7 August 2013  English  Edison, NJ, and King of Prussia, PA, United States  3 September 2013  English  Denver, CO, United States  25 September 2013  English  Cambridge, MA, and Roseville MN, United States  6 November 2013  English  Phoenix, AZ, and Sacramento, CA, United States  25 November 2013  English Step 2: Oracle Linux System Administration Through this 5-day course, become a knowledgeable Oracle Linux system administrator, learning how to install Oracle Linux and the benefits of Oracle's Unbreakable Enterprise Kernel and Ksplice. Below is a sample of in-class events already on the schedule.  Location  Date  Delivery Language  Vienna, Austria  1 July 2013  German  Vivoorde, Belgium  18 November 2013  English  Zagreb, Croatia  16 September 2013  Croatian  London, England  3 September 2013  English  Manchester, England  9 September 2013  English  Paris, France  29 July 2013  French  Budapest, Hungary  8 July 2013  Hungarian  Utrecht, Netherland  2 September 2013  Dutch  Warsaw, Poland  15 July 2013  Polish  Bucharest, Romania  2 December 2013  Romanian  Ankara, Turkey  7 October 2013  Turkish  Istanbul, Turkey  9 September 2013  Turkish  Nairobi, Kenya  12 August 2013  English  Petaling Jaya, Malaysia  29 July 2013  English  Kuala Lumpur, Malaysia  21 October 2013  English  Makati City, Philippines  8 July 2013  English  Singapore  24 July 2013  English  Bangkok, Thailand  26 July 2013  English  Canberra, Australia  19 August 2013  English  Melbourne, Australia  16 September 2013  English   Sydney, Australia 19 August 2013   English   Mississauga, Canada  26 August 2013  English  Ottawa, Canada  4 November 2013  English  Phoenix, AZ, United States  7 October 2013  English  Belmont, CA, United States  23 September 2013  English  Irvine, CA, United States  18 November 2013  English  Sacramento, CA, United States  19 August 2013  English  San Francisco, CA, United States  15 July 2013  English  Denver, CO, United States  19 August 2013  English  Schaumburg, IL, United States  26 August 2013  English  Indianapolis, IN, United States  14 October 2013  English  Columbia, MD, United States  30 September 2013  English  Roseville, MN, United States  19 August 2013  English  St Louis, MO, United States  7 October 2013  English  Edison, NJ, United States  28 October 2013  English  Beaverton, OR, United States  12 August 2013  English  Pittsburg, PA, United States 9 December 2013   English  Reston, VA, United States 12 August 2013   English  Brookfield, WI, United States 30 September 2013   English  Sao Paolo, Brazil 15 July 2013   Brazilian Portugese Step 3: Oracle Linux Advanced System Administration This new 3-day course is ideal for administrators who want to learn about managing resources and file systems while developing troubleshooting and advanced storage administration skills. You will learn about Linux Containers, Cgroups, btrfs, DTrace and more. Below is a sample of in-class events already on the schedule.  Location  Date  Delivery Language  Melbourne, Australia  9 October 2013  English  Roseville, MN, United States  3 September 2013  English To register for or learn more about these courses, go to http://oracle.com/education/linux. Watch this video to learn more about Oracle's operating system training.

    Read the article

  • Look Inside WebLogic Server Embedded LDAP with an LDAP Explorer

    - by james.bayer
    Today a question came up on our internal WebLogic Server mailing lists about an issue deleting a Group from WebLogic Server.  The group had a special character in the name. The WLS console refused to delete the group with the message a java.net.MalformedURLException and another message saying “Errors must be corrected before proceeding.” as shown below. The group aa:bb is the one with the issue.  Click to enlarge. WebLogic Server includes an embedded LDAP server that can be used for managing users and groups for “reasonably small environments (10,000 or fewer users)”.  For organizations scaling larger or using more high-end features, I recommend looking at one of Oracle’s very popular enterprise directory services products like Oracle Internet Directory or Oracle Directory Server Enterprise Edition.  You can configure multiple authenicators in WebLogic Server so that you can use multiple directories at the same time. I am not sure WebLogic Server supports special characters in group names for the Embedded LDAP server, but in this case both the console and WLST reported the same issue deleting the group with the special character in the name.  Here’s the WLST output: wls:/hotspot_domain/serverConfig/SecurityConfiguration/hotspot_domain/Realms/myrealm/AuthenticationProviders/DefaultAuthenticator> cmo.removeGroup('aa:bb') Traceback (innermost last): File "<console>", line 1, in ? weblogic.security.providers.authentication.LDAPAtnDelegateException: [Security:090296]invalid URL ldap:///ou=people,ou=myrealm,dc=hotspot_domain??sub?(&(objectclass=person)(wlsMemberOf=cn=aa:bb,ou=groups,ou=myrealm,dc=hotspot_domain)) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.advance(LDAPAtnGroupMembersNameList.java:254) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.<init>(LDAPAtnGroupMembersNameList.java:119) at weblogic.security.providers.authentication.LDAPAtnDelegate.listGroupMembers(LDAPAtnDelegate.java:1392) at weblogic.security.providers.authentication.LDAPAtnDelegate.removeGroup(LDAPAtnDelegate.java:1989) at weblogic.security.providers.authentication.DefaultAuthenticatorImpl.removeGroup(DefaultAuthenticatorImpl.java:242) at weblogic.security.providers.authentication.DefaultAuthenticatorMBeanImpl.removeGroup(DefaultAuthenticatorMBeanImpl.java:407) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at weblogic.management.jmx.modelmbean.WLSModelMBean.invoke(WLSModelMBean.java:437) at com.sun.jmx.interceptor.DefaultMBeanServerInterceptor.invoke(DefaultMBeanServerInterceptor.java:836) at com.sun.jmx.mbeanserver.JmxMBeanServer.invoke(JmxMBeanServer.java:761) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase$16.run(WLSMBeanServerInterceptorBase.java:449) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase.invoke(WLSMBeanServerInterceptorBase.java:447) at weblogic.management.mbeanservers.internal.JMXContextInterceptor.invoke(JMXContextInterceptor.java:263) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase$16.run(WLSMBeanServerInterceptorBase.java:449) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.jmx.mbeanserver.WLSMBeanServerInterceptorBase.invoke(WLSMBeanServerInterceptorBase.java:447) at weblogic.management.mbeanservers.internal.SecurityInterceptor.invoke(SecurityInterceptor.java:444) at weblogic.management.jmx.mbeanserver.WLSMBeanServer.invoke(WLSMBeanServer.java:323) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder$11$1.run(JMXConnectorSubjectForwarder.java:663) at java.security.AccessController.doPrivileged(Native Method) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder$11.run(JMXConnectorSubjectForwarder.java:661) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:363) at weblogic.management.mbeanservers.internal.JMXConnectorSubjectForwarder.invoke(JMXConnectorSubjectForwarder.java:654) at javax.management.remote.rmi.RMIConnectionImpl.doOperation(RMIConnectionImpl.java:1427) at javax.management.remote.rmi.RMIConnectionImpl.access$200(RMIConnectionImpl.java:72) at javax.management.remote.rmi.RMIConnectionImpl$PrivilegedOperation.run(RMIConnectionImpl.java:1265) at java.security.AccessController.doPrivileged(Native Method) at javax.management.remote.rmi.RMIConnectionImpl.doPrivilegedOperation(RMIConnectionImpl.java:1367) at javax.management.remote.rmi.RMIConnectionImpl.invoke(RMIConnectionImpl.java:788) at javax.management.remote.rmi.RMIConnectionImpl_WLSkel.invoke(Unknown Source) at weblogic.rmi.internal.BasicServerRef.invoke(BasicServerRef.java:667) at weblogic.rmi.internal.BasicServerRef$1.run(BasicServerRef.java:522) at weblogic.security.acl.internal.AuthenticatedSubject.doAs(AuthenticatedSubject.java:363) at weblogic.security.service.SecurityManager.runAs(SecurityManager.java:146) at weblogic.rmi.internal.BasicServerRef.handleRequest(BasicServerRef.java:518) at weblogic.rmi.internal.wls.WLSExecuteRequest.run(WLSExecuteRequest.java:118) at weblogic.work.ExecuteThread.execute(ExecuteThread.java:207) at weblogic.work.ExecuteThread.run(ExecuteThread.java:176) Caused by: java.net.MalformedURLException at netscape.ldap.LDAPUrl.readNextConstruct(LDAPUrl.java:651) at netscape.ldap.LDAPUrl.parseUrl(LDAPUrl.java:277) at netscape.ldap.LDAPUrl.<init>(LDAPUrl.java:114) at weblogic.security.providers.authentication.LDAPAtnGroupMembersNameList.advance(LDAPAtnGroupMembersNameList.java:224) ... 41 more It’s fairly clear that in order to work that the : character needs to be URL encoded to %3A or similar.  But all is not lost, there is another way.  You can configure an LDAP Explorer like JXplorer to WebLogic Server Embedded LDAP and browse/edit the entries. Follow the instructions here, being sure to change the authentication credentials to the Embedded LDAP server to some value you know, as by default they are some unknown value.  You’ll need to reboot the WebLogic Server Admin Server after making this change. Now configure JXplorer to connect as described in the documentation.  I’ve circled the important inputs.  In this example, my domain name is “hotspot_domain” which listens on the localhost listen address and port 7001.  The cn=Admin user name is a constant identifier for the Administrator of the embedded LDAP and that does not change, but you need to know what it is so you can enter it into the tool you use. Once you connect successfully, you can explore the entries and in this case delete the group that is no longer desired.

    Read the article

  • The Best Free Online First Person Shooter (FPS) Games

    - by Lori Kaufman
    First Person Shooter (FPS) games are action games centered around gun and projectile weapon-based combat. As the player, you experience the action directly through the eyes of the protagonist. FPS games have become a very popular type of game online. A lot of FPS games are paid, but there are many you can play for free. Most FPS games have online versions where you play in a supported browser or download a program for your PC that allows you to connect to the game online. We have collected links and information about some of the more popular free FPS games available. All the games listed here are free to play, but there may be some limitations, and you have to register for many of them and download game clients to your computer to be able to connect to the game online. Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor How to Factory Reset Your Android Phone or Tablet When It Won’t Boot

    Read the article

  • Real Life Pixar Lamp Can’t Get Enough Of Human Interaction

    - by Jason Fitzpatrick
    This curious lamp, powered by an Arduino board and servo motors, is just as playful as the on-screen counterpart that inspired its creation. The New Zealand Herald reports on the creation of the lamp, seen in action in the video above: The project is a collaborative effort by Victoria University students Shanshan Zhou, Adam Ben-Gur and Joss Doggett, who met in a Physical Computing class. The lamp’s movements are informed by a webcam with an algorithm working behind it. Robotics and facial recognition technology enable the lamp to search for faces in the images from its webcam. When it spots a face, it follows as if trying to maintain eye contact. How to Access Your Router If You Forget the Password Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor

    Read the article

  • Xubuntu 14.04 install fails on Dell Inspiron B130 with Broadcom 4318

    - by K7AAY
    I have a Dell Inspiron B130 I am trying to install 32-bit Xubuntu 14.04 on. The install of 13.10 was AOK but the update failed catastrophically, so I am reinstalling from scratch. WiFi and the Ethernet port work AOK in Windows 8.1u1 (70 secs to boot) and Mint 16 Cinnamon (135 secs to boot), but neither work in 14.04 and the install fails on the Dell; it won't find the network (which also fails on Bodhi 32-bit). Since any install fails whether or not I have an Internet connection (with "An attempt to configure apt to install additional packages from the CD failed") whether or not I select to update apps in the install, whether or not I choose to install MP3 and other Multiverse items, I am unable to install then go get drivers.

    Read the article

  • Can't install wine (or ia32-libs) in Ubuntu 12.10 64 bit

    - by carestad
    As already pointed out here, people seems to have issues with installing wine in the latest version of Ubuntu. I'm suspecting this only happens with 64 bit users. For example, when trying to install wine, wine1.4, wine1.4:i386, wine1.5, wine1.5:i386, ia32-libs or ia32-libs:i386 with apt-get, I get a lot of dependency errors. Doing a sudo apt-get -f install doesn't seem to do the trick, neither does using aptitude. The errors I get is normally that the packages depend on some :i386 package, but installing those manually doesn't work either because they also have dependency issues (isn't APT supposed to do this automatically?!). I also downloaded CrossOver today and tried installing the .deb manually, but the dependency issues show up there as well. When running sudo apt-get -f install after trying to install the CrossOver .deb, apt-get wants to purge the following packages: ia32-crossover intel-gpu-tools libdrm-nouveau2 libgl1-mesa-dri libva-x11-1 ubuntu-desktop vlc xorg xserver-xorg-video-ati xserver-xorg-video-intel xserver-xorg-video-modesetting xserver-xorg-video-openchrome xserver-xorg-video-radeon xserver-xorg-video-vmware What I've tried so far (and didn't work): Installing synaptic, reloading my repositories, searching for ia32 and installing ia32-libs. Using Ubuntu Software Center to install Wine and ia32-libs. Using apt-get and aptitude to install all the differend varieties of the wine packages, both with and without the :i386 and -amd64 suffixes in package names. Disabling the universe and multiverse repos, run a sudo apt-get update and then re-enable them again. Boot a newly downloaded Ubuntu 12.10 x64 live USB and try to install all the different packages there. What I haven't tried (yet): Boot a newly downloaded Ubuntu 12.10 x32 image and try to install wine there (I'm just guessing that will work). Reinstall Ubuntu. Throw my computer out a window. wine alexander@cosmo:~$ LANGUAGE=en_US sudo apt-get install wine Reading package lists... Done Building dependency tree Reading state information... Done Some packages could not be installed. This may mean that you have requested an impossible situation or if you are using the unstable distribution that some required packages have not yet been created or been moved out of Incoming. The following information may help to resolve the situation: The following packages have unmet dependencies: wine : Depends: wine1.5 but it is not going to be installed E: Unable to correct problems, you have held broken packages. wine-1.4 alexander@cosmo:~$ LANGUAGE=en_US sudo apt-get install wine1.4 (...) The following packages have unmet dependencies: wine1.4 : Depends: wine1.4-i386 (= 1.4.1-0ubuntu1) E: Unable to correct problems, you have held broken packages. wine-1.4:i386 alexander@cosmo:~$ LANGUAGE=en_US sudo apt-get install wine1.4:i386 (...) The following packages have unmet dependencies: libaudio2:i386 : Depends: libxt6:i386 but it is not going to be installed libqtgui4:i386 : Depends: libsm6:i386 but it is not going to be installed libunity-webapps0 : Depends: unity-webapps-service but it is not going to be installed openssh-client : Depends: adduser (>= 3.10) but it is not going to be installed Depends: passwd ssh : Depends: openssh-server wine1.4:i386 : Depends: wine1.4-i386:i386 (= 1.4.1-0ubuntu1) Depends: binfmt-support:i386 (>= 1.1.2) Depends: procps:i386 Recommends: cups-bsd:i386 Recommends: gnome-exe-thumbnailer:i386 but it is not installable or kde-runtime:i386 but it is not going to be installed Recommends: ttf-droid:i386 but it is not installable Recommends: ttf-liberation:i386 but it is not installable Recommends: ttf-mscorefonts-installer:i386 Recommends: ttf-umefont:i386 but it is not installable Recommends: ttf-unfonts-core:i386 but it is not installable Recommends: ttf-wqy-microhei:i386 but it is not installable Recommends: winbind:i386 Recommends: winetricks:i386 but it is not going to be installed Recommends: xdg-utils:i386 but it is not installable E: Error, pkgProblemResolver::Resolve generated breaks, this may be caused by held packages. wine-1.5 alexander@cosmo:~$ sudo apt-get install wine1.5 (...) The following packages have unmet dependencies: wine1.5 : Depends: wine1.5-i386 (= 1.5.16-0ubuntu1) E: Unable to correct problems, you have held broken packages. wine-1.5:i386 alexander@cosmo:~$ sudo apt-get install wine1.5:i386 (...) The following packages have unmet dependencies: libaudio2:i386 : Depends: libxt6:i386 but it is not going to be installed libqtgui4:i386 : Depends: libsm6:i386 but it is not going to be installed libunity-webapps0 : Depends: unity-webapps-service but it is not going to be installed openssh-client : Depends: adduser (>= 3.10) but it is not going to be installed Depends: passwd ssh : Depends: openssh-server wine1.5:i386 : Depends: wine1.5-i386:i386 (= 1.5.16-0ubuntu1) but it is not going to be installed Depends: binfmt-support:i386 (>= 1.1.2) Depends: procps:i386 Recommends: cups-bsd:i386 Recommends: gnome-exe-thumbnailer:i386 but it is not installable or kde-runtime:i386 but it is not going to be installed Recommends: ttf-droid:i386 but it is not installable Recommends: ttf-liberation:i386 but it is not installable Recommends: ttf-mscorefonts-installer:i386 Recommends: ttf-umefont:i386 but it is not installable Recommends: ttf-unfonts-core:i386 but it is not installable Recommends: ttf-wqy-microhei:i386 but it is not installable Recommends: winbind:i386 Recommends: winetricks:i386 but it is not going to be installed Recommends: xdg-utils:i386 but it is not installable E: Error, pkgProblemResolver::Resolve generated breaks, this may be caused by held packages. ia32-libs alexander@cosmo:~$ sudo apt-get install ia32-libs (...) The following packages have unmet dependencies: ia32-libs : Depends: ia32-libs-multiarch E: Unable to correct problems, you have held broken packages. ia32-libs:i386 alexander@cosmo:~$ sudo apt-get install ia32-libs:i386 (...) Package ia32-libs:i386 is not available, but is referred to by another package. This may mean that the package is missing, has been obsoleted, or is only available from another source However the following packages replace it: lib32z1 lib32ncurses5 lib32bz2-1.0 lib32asound2 E: Package 'ia32-libs:i386' has no installation candidate

    Read the article

  • SQLAuthority News – Training and Consultancy and Travel – Story of 30 Last 30 Days

    - by pinaldave
    Today’s blog post is not technical as usual. Here, I present a real story, and I also invite you all to share your thoughts or opinions on this post. I am a professional SQL Server Trainer; I also do consultation in the area of the Performance Tuning and Query Optimizations. In any month, I like the mix of both in my schedule. I prefer to do training for one week, and then commit the next week for some consultation work. Due to the advancement in technology, for most of the consultation works, there is no client location visit or first time visit for understanding the project. Usually, I conduct high-end training sessions or 400 level training, and these training sessions are very intensive most of the time. Always after completing the training for 5 days straight away at 400 level, I make sure to take out some time to cool down and relax. During this time, I prefer to work on optimization projects. Consultancy is great as it keeps me updated regarding what is going on in the real world. As we all know, all those trainers who have real world experience are always considered to be the best trainers. My learning is immense during my consultations with the real client and while resolving real problems. I share the same with my students the very next week when I go for training sessions. For the same reason, every class is different from the previous ones. An experience trainer would tell you that the class is best if it is driven by Students the way instructor wants! The best scenario is as described above; but you won’t get the best scenario all the time. I was on road for nearly 25 days out of the last 30 days and involved in doing various SQL Server-related trainings. Here is what I have done in the last 30 days. I have gathered the following details from my expenditure reports, which are maintained by my wife. There are few points related to my personal expenses and few other related to business. I maintain a separate list for each of these expenses, but here I have aggregated them. Last 30 days - Training 23 days - 4 – two days training classes – 8 days of training 3 – five days training classes – 15 days of training 1 – one day training classes – 2 days of training Flights 18 flights - 8 – Kingfisher 6 – Spicejet 2 – Jet light 2 – Jet connect Stay in different cities Hyderabad – 16 days Chennai – 6 days Bangalore – 2 days Ahmedabad – 6 days (Hometown) Meals – 54 (Averaging less than 2 per day) Room Services – 16 times Training Campuses – 20 times Restaurants – 6 times Home – 12 times Taxi/Cabs – 64 times (Averaging more than 2 per day) Hotel Cab – 34 times Meru Cab – 8 times Easy Cabs – 10 times Auto Rickshaw – 2 times Looking at the above statistics, I can see that I have eaten less than what I should have, which is not good, and traveled in taxi more than what I should have. Also the temperatures in different cities were very different, not to mention the humidity as well. I missed my family, especially my little girl (9 months). When I was at home, I used to have a proper healthy meal every single day; however, when I was traveling, the food was something I had to compromise on. I have previously written about my travel experience with different airlines, my opinion is still same about them. Well, I have question to all of you road warriors, how do you manage your health and enthusiasm during situations I am going through. I have couple of time stomach upset as well sour throat. I drink lots of water and do my best to keep up. Any idea? Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: About Me, Pinal Dave, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • what, why, when, should I learn computer science?

    - by dramasea
    I'm 16 years old and really an enthusiast on web programming. I know (X)HTML, css, javascript and php. And i heard about computer science. Below are my question: What is computer science? Should a web programmer learn computer science? If the answer of question 2 is yes, then what programming language(s) should I learn before I get into computer science (I saw the video of 'Introduction to computer science' which is one of the MIT opencourse and it started to use python without teaching you from scratch.) Can I learn computer science now? (Without a university degree, I can watch open courseware.)

    Read the article

  • Do you have any “Family Feud” style questions and answers for a game for high school students?

    - by Ben Jakuben
    I am gathering questions and responses in math, science, and technology for a "Family Feud" style game for high school students. I am having trouble finding and thinking of questions, especially in the technology realm. Technology (programming or general tech) questions are preferred. If you have never seen the game show, "Family Feud" involves two teams trying to guess the most popular responses to questions asked to a group of 100 respondents. The team must guess all the popular responses to get the points for the question. For example, if the question is, "What are the major tags in HTML 4.0?", the responses might be: P (64 votes) DIV (16 votes) TABLE (8 votes) BLINK (4 votes)

    Read the article

  • High CPU usage with Team Speak 3.0.0-rc2

    - by AlexTheBird
    The CPU usage is always around 40 percent. I use push-to-talk and I had uninstalled pulseaudio. Now I use Alsa. I don't even have to connect to a Server. By simply starting TS the cpu usage goes up 40 percent and stays there. The CPU usage of 3.0.0-rc1 [Build: 14468] is constantly 14 percent. This is the output of top, mpstat and ps aux while I am running TS3 ... of course: alexandros@alexandros-laptop:~$ top top - 18:20:07 up 2:22, 3 users, load average: 1.02, 0.85, 0.77 Tasks: 163 total, 1 running, 162 sleeping, 0 stopped, 0 zombie Cpu(s): 5.3%us, 1.9%sy, 0.1%ni, 91.8%id, 0.7%wa, 0.1%hi, 0.1%si, 0.0%st Mem: 2061344k total, 964028k used, 1097316k free, 69116k buffers Swap: 3997688k total, 0k used, 3997688k free, 449032k cached PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 2714 alexandr 20 0 206m 31m 24m S 37 1.6 0:12.78 ts3client_linux 868 root 20 0 47564 27m 10m S 8 1.4 3:21.73 Xorg 1 root 20 0 2804 1660 1204 S 0 0.1 0:00.53 init 2 root 20 0 0 0 0 S 0 0.0 0:00.00 kthreadd 3 root RT 0 0 0 0 S 0 0.0 0:00.01 migration/0 4 root 20 0 0 0 0 S 0 0.0 0:00.45 ksoftirqd/0 5 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/0 6 root RT 0 0 0 0 S 0 0.0 0:00.00 migration/1 7 root 20 0 0 0 0 S 0 0.0 0:00.08 ksoftirqd/1 8 root RT 0 0 0 0 S 0 0.0 0:00.00 watchdog/1 9 root 20 0 0 0 0 S 0 0.0 0:01.17 events/0 10 root 20 0 0 0 0 S 0 0.0 0:00.81 events/1 11 root 20 0 0 0 0 S 0 0.0 0:00.00 cpuset 12 root 20 0 0 0 0 S 0 0.0 0:00.00 khelper 13 root 20 0 0 0 0 S 0 0.0 0:00.00 async/mgr 14 root 20 0 0 0 0 S 0 0.0 0:00.00 pm 16 root 20 0 0 0 0 S 0 0.0 0:00.00 sync_supers 17 root 20 0 0 0 0 S 0 0.0 0:00.00 bdi-default 18 root 20 0 0 0 0 S 0 0.0 0:00.00 kintegrityd/0 19 root 20 0 0 0 0 S 0 0.0 0:00.00 kintegrityd/1 20 root 20 0 0 0 0 S 0 0.0 0:00.05 kblockd/0 21 root 20 0 0 0 0 S 0 0.0 0:00.02 kblockd/1 22 root 20 0 0 0 0 S 0 0.0 0:00.00 kacpid 23 root 20 0 0 0 0 S 0 0.0 0:00.00 kacpi_notify 24 root 20 0 0 0 0 S 0 0.0 0:00.00 kacpi_hotplug 25 root 20 0 0 0 0 S 0 0.0 0:00.99 ata/0 26 root 20 0 0 0 0 S 0 0.0 0:00.92 ata/1 27 root 20 0 0 0 0 S 0 0.0 0:00.00 ata_aux 28 root 20 0 0 0 0 S 0 0.0 0:00.00 ksuspend_usbd 29 root 20 0 0 0 0 S 0 0.0 0:00.00 khubd alexandros@alexandros-laptop:~$ mpstat Linux 2.6.32-32-generic (alexandros-laptop) 16.06.2011 _i686_ (2 CPU) 18:20:15 CPU %usr %nice %sys %iowait %irq %soft %steal %guest %idle 18:20:15 all 5,36 0,09 1,91 0,68 0,07 0,06 0,00 0,00 91,83 alexandros@alexandros-laptop:~$ ps aux USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND root 1 0.0 0.0 2804 1660 ? Ss 15:58 0:00 /sbin/init root 2 0.0 0.0 0 0 ? S 15:58 0:00 [kthreadd] root 3 0.0 0.0 0 0 ? S 15:58 0:00 [migration/0] root 4 0.0 0.0 0 0 ? S 15:58 0:00 [ksoftirqd/0] root 5 0.0 0.0 0 0 ? S 15:58 0:00 [watchdog/0] root 6 0.0 0.0 0 0 ? S 15:58 0:00 [migration/1] root 7 0.0 0.0 0 0 ? S 15:58 0:00 [ksoftirqd/1] root 8 0.0 0.0 0 0 ? S 15:58 0:00 [watchdog/1] root 9 0.0 0.0 0 0 ? S 15:58 0:01 [events/0] root 10 0.0 0.0 0 0 ? S 15:58 0:00 [events/1] root 11 0.0 0.0 0 0 ? S 15:58 0:00 [cpuset] root 12 0.0 0.0 0 0 ? S 15:58 0:00 [khelper] root 13 0.0 0.0 0 0 ? S 15:58 0:00 [async/mgr] root 14 0.0 0.0 0 0 ? S 15:58 0:00 [pm] root 16 0.0 0.0 0 0 ? S 15:58 0:00 [sync_supers] root 17 0.0 0.0 0 0 ? S 15:58 0:00 [bdi-default] root 18 0.0 0.0 0 0 ? S 15:58 0:00 [kintegrityd/0] root 19 0.0 0.0 0 0 ? S 15:58 0:00 [kintegrityd/1] root 20 0.0 0.0 0 0 ? S 15:58 0:00 [kblockd/0] root 21 0.0 0.0 0 0 ? S 15:58 0:00 [kblockd/1] root 22 0.0 0.0 0 0 ? S 15:58 0:00 [kacpid] root 23 0.0 0.0 0 0 ? S 15:58 0:00 [kacpi_notify] root 24 0.0 0.0 0 0 ? S 15:58 0:00 [kacpi_hotplug] root 25 0.0 0.0 0 0 ? S 15:58 0:00 [ata/0] root 26 0.0 0.0 0 0 ? S 15:58 0:00 [ata/1] root 27 0.0 0.0 0 0 ? S 15:58 0:00 [ata_aux] root 28 0.0 0.0 0 0 ? S 15:58 0:00 [ksuspend_usbd] root 29 0.0 0.0 0 0 ? S 15:58 0:00 [khubd] root 30 0.0 0.0 0 0 ? S 15:58 0:00 [kseriod] root 31 0.0 0.0 0 0 ? S 15:58 0:00 [kmmcd] root 34 0.0 0.0 0 0 ? S 15:58 0:00 [khungtaskd] root 35 0.0 0.0 0 0 ? S 15:58 0:00 [kswapd0] root 36 0.0 0.0 0 0 ? SN 15:58 0:00 [ksmd] root 37 0.0 0.0 0 0 ? S 15:58 0:00 [aio/0] root 38 0.0 0.0 0 0 ? S 15:58 0:00 [aio/1] root 39 0.0 0.0 0 0 ? S 15:58 0:00 [ecryptfs-kthrea] root 40 0.0 0.0 0 0 ? S 15:58 0:00 [crypto/0] root 41 0.0 0.0 0 0 ? S 15:58 0:00 [crypto/1] root 48 0.0 0.0 0 0 ? S 15:58 0:03 [scsi_eh_0] root 50 0.0 0.0 0 0 ? S 15:58 0:00 [scsi_eh_1] root 53 0.0 0.0 0 0 ? S 15:58 0:00 [kstriped] root 54 0.0 0.0 0 0 ? S 15:58 0:00 [kmpathd/0] root 55 0.0 0.0 0 0 ? S 15:58 0:00 [kmpathd/1] root 56 0.0 0.0 0 0 ? S 15:58 0:00 [kmpath_handlerd] root 57 0.0 0.0 0 0 ? S 15:58 0:00 [ksnapd] root 58 0.0 0.0 0 0 ? S 15:58 0:03 [kondemand/0] root 59 0.0 0.0 0 0 ? S 15:58 0:02 [kondemand/1] root 60 0.0 0.0 0 0 ? S 15:58 0:00 [kconservative/0] root 61 0.0 0.0 0 0 ? S 15:58 0:00 [kconservative/1] root 213 0.0 0.0 0 0 ? S 15:58 0:00 [scsi_eh_2] root 222 0.0 0.0 0 0 ? S 15:58 0:00 [scsi_eh_3] root 234 0.0 0.0 0 0 ? S 15:58 0:00 [scsi_eh_4] root 235 0.0 0.0 0 0 ? S 15:58 0:01 [usb-storage] root 255 0.0 0.0 0 0 ? S 15:58 0:00 [jbd2/sda5-8] root 256 0.0 0.0 0 0 ? S 15:58 0:00 [ext4-dio-unwrit] root 257 0.0 0.0 0 0 ? S 15:58 0:00 [ext4-dio-unwrit] root 290 0.0 0.0 0 0 ? S 15:58 0:00 [flush-8:0] root 318 0.0 0.0 2316 888 ? S 15:58 0:00 upstart-udev-bridge --daemon root 321 0.0 0.0 2616 1024 ? S<s 15:58 0:00 udevd --daemon root 526 0.0 0.0 0 0 ? S 15:58 0:00 [kpsmoused] root 528 0.0 0.0 0 0 ? S 15:58 0:00 [led_workqueue] root 650 0.0 0.0 0 0 ? S 15:58 0:00 [radeon/0] root 651 0.0 0.0 0 0 ? S 15:58 0:00 [radeon/1] root 652 0.0 0.0 0 0 ? S 15:58 0:00 [ttm_swap] root 654 0.0 0.0 2612 984 ? S< 15:58 0:00 udevd --daemon root 656 0.0 0.0 0 0 ? S 15:58 0:00 [hd-audio0] root 657 0.0 0.0 2612 916 ? S< 15:58 0:00 udevd --daemon root 674 0.6 0.0 0 0 ? S 15:58 0:57 [phy0] syslog 715 0.0 0.0 34812 1776 ? Sl 15:58 0:00 rsyslogd -c4 102 731 0.0 0.0 3236 1512 ? Ss 15:58 0:02 dbus-daemon --system --fork root 740 0.0 0.1 19088 3380 ? Ssl 15:58 0:00 gdm-binary root 744 0.0 0.1 18900 4032 ? Ssl 15:58 0:01 NetworkManager avahi 749 0.0 0.0 2928 1520 ? S 15:58 0:00 avahi-daemon: running [alexandros-laptop.local] avahi 752 0.0 0.0 2928 544 ? Ss 15:58 0:00 avahi-daemon: chroot helper root 753 0.0 0.1 4172 2300 ? S 15:58 0:00 /usr/sbin/modem-manager root 762 0.0 0.1 20584 3152 ? Sl 15:58 0:00 /usr/sbin/console-kit-daemon --no-daemon root 836 0.0 0.1 20856 3864 ? Sl 15:58 0:00 /usr/lib/gdm/gdm-simple-slave --display-id /org/gnome/DisplayManager/Display1 root 856 0.0 0.1 4836 2388 ? S 15:58 0:00 /sbin/wpa_supplicant -u -s root 868 2.3 1.3 36932 27924 tty7 Rs+ 15:58 3:22 /usr/bin/X :0 -nr -verbose -auth /var/run/gdm/auth-for-gdm-a46T4j/database -nolisten root 891 0.0 0.0 1792 564 tty4 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty4 root 901 0.0 0.0 1792 564 tty5 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty5 root 908 0.0 0.0 1792 564 tty2 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty2 root 910 0.0 0.0 1792 568 tty3 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty3 root 913 0.0 0.0 1792 564 tty6 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty6 root 917 0.0 0.0 2180 1072 ? Ss 15:58 0:00 acpid -c /etc/acpi/events -s /var/run/acpid.socket daemon 924 0.0 0.0 2248 432 ? Ss 15:58 0:00 atd root 927 0.0 0.0 2376 900 ? Ss 15:58 0:00 cron root 950 0.0 0.0 11736 1372 ? Ss 15:58 0:00 /usr/sbin/winbindd root 958 0.0 0.0 11736 1184 ? S 15:58 0:00 /usr/sbin/winbindd root 974 0.0 0.1 6832 2580 ? Ss 15:58 0:00 /usr/sbin/cupsd -C /etc/cups/cupsd.conf root 1078 0.0 0.0 1792 564 tty1 Ss+ 15:58 0:00 /sbin/getty -8 38400 tty1 gdm 1097 0.0 0.0 3392 772 ? S 15:58 0:00 /usr/bin/dbus-launch --exit-with-session root 1112 0.0 0.1 19216 3292 ? Sl 15:58 0:00 /usr/lib/gdm/gdm-session-worker root 1116 0.0 0.1 5540 2932 ? S 15:58 0:01 /usr/lib/upower/upowerd root 1131 0.0 0.1 6308 3824 ? S 15:58 0:00 /usr/lib/policykit-1/polkitd 108 1163 0.0 0.2 16788 4360 ? Ssl 15:58 0:01 /usr/sbin/hald root 1164 0.0 0.0 3536 1300 ? S 15:58 0:00 hald-runner root 1188 0.0 0.0 3612 1256 ? S 15:58 0:00 hald-addon-input: Listening on /dev/input/event6 /dev/input/event5 /dev/input/event2 root 1194 0.0 0.0 3612 1224 ? S 15:58 0:00 /usr/lib/hal/hald-addon-rfkill-killswitch root 1200 0.0 0.0 3608 1240 ? S 15:58 0:00 /usr/lib/hal/hald-addon-generic-backlight root 1202 0.0 0.0 3616 1236 ? S 15:58 0:02 hald-addon-storage: polling /dev/sr0 (every 2 sec) root 1204 0.0 0.0 3616 1236 ? S 15:58 0:00 hald-addon-storage: polling /dev/sdb (every 2 sec) root 1211 0.0 0.0 3624 1220 ? S 15:58 0:00 /usr/lib/hal/hald-addon-cpufreq 108 1212 0.0 0.0 3420 1200 ? S 15:58 0:00 hald-addon-acpi: listening on acpid socket /var/run/acpid.socket 1000 1222 0.0 0.1 24196 2816 ? Sl 15:58 0:00 /usr/bin/gnome-keyring-daemon --daemonize --login 1000 1240 0.0 0.3 28228 7312 ? Ssl 15:58 0:00 gnome-session 1000 1274 0.0 0.0 3284 356 ? Ss 15:58 0:00 /usr/bin/ssh-agent /usr/bin/dbus-launch --exit-with-session gnome-session 1000 1277 0.0 0.0 3392 772 ? S 15:58 0:00 /usr/bin/dbus-launch --exit-with-session gnome-session 1000 1278 0.0 0.0 3160 1652 ? Ss 15:58 0:00 /bin/dbus-daemon --fork --print-pid 5 --print-address 7 --session 1000 1281 0.0 0.2 8172 4636 ? S 15:58 0:00 /usr/lib/libgconf2-4/gconfd-2 1000 1287 0.0 0.5 24228 10896 ? Ss 15:58 0:03 /usr/lib/gnome-settings-daemon/gnome-settings-daemon 1000 1290 0.0 0.1 6468 2364 ? S 15:58 0:00 /usr/lib/gvfs/gvfsd 1000 1293 0.0 0.6 38104 13004 ? S 15:58 0:03 metacity 1000 1296 0.0 0.1 30280 2628 ? Ssl 15:58 0:00 /usr/lib/gvfs//gvfs-fuse-daemon /home/alexandros/.gvfs 1000 1301 0.0 0.0 3344 988 ? S 15:58 0:03 syndaemon -i 0.5 -k 1000 1303 0.0 0.1 8060 3488 ? S 15:58 0:00 /usr/lib/gvfs/gvfs-gdu-volume-monitor root 1306 0.0 0.1 15692 3104 ? Sl 15:58 0:00 /usr/lib/udisks/udisks-daemon 1000 1307 0.4 1.0 50748 21684 ? S 15:58 0:34 python -u /usr/share/screenlets/DigiClock/DigiClockScreenlet.py 1000 1308 0.0 0.9 35608 18564 ? S 15:58 0:00 python /usr/share/screenlets-manager/screenlets-daemon.py 1000 1309 0.0 0.3 19524 6468 ? S 15:58 0:00 /usr/lib/policykit-1-gnome/polkit-gnome-authentication-agent-1 1000 1311 0.0 0.5 37412 11788 ? S 15:58 0:01 gnome-power-manager 1000 1312 0.0 1.0 50772 22628 ? S 15:58 0:03 gnome-panel 1000 1313 0.1 1.5 102648 31184 ? Sl 15:58 0:10 nautilus root 1314 0.0 0.0 5188 996 ? S 15:58 0:02 udisks-daemon: polling /dev/sdb /dev/sr0 1000 1315 0.0 0.6 51948 12464 ? SL 15:58 0:01 nm-applet --sm-disable 1000 1317 0.0 0.1 16956 2364 ? Sl 15:58 0:00 /usr/lib/gvfs/gvfs-afc-volume-monitor 1000 1318 0.0 0.3 20164 7792 ? S 15:58 0:00 bluetooth-applet 1000 1321 0.0 0.1 7260 2384 ? S 15:58 0:00 /usr/lib/gvfs/gvfs-gphoto2-volume-monitor 1000 1323 0.0 0.5 37436 12124 ? S 15:58 0:00 /usr/lib/notify-osd/notify-osd 1000 1324 0.0 1.9 197928 40456 ? Ssl 15:58 0:06 /home/alexandros/.dropbox-dist/dropbox 1000 1329 0.0 0.3 20136 7968 ? S 15:58 0:00 /usr/bin/gnome-screensaver --no-daemon 1000 1331 0.0 0.1 7056 3112 ? S 15:58 0:00 /usr/lib/gvfs/gvfsd-trash --spawner :1.6 /org/gtk/gvfs/exec_spaw/0 root 1340 0.0 0.0 2236 1008 ? S 15:58 0:00 /sbin/dhclient -d -sf /usr/lib/NetworkManager/nm-dhcp-client.action -pf /var/run/dhcl 1000 1348 0.0 0.1 42252 3680 ? Ssl 15:58 0:00 /usr/lib/bonobo-activation/bonobo-activation-server --ac-activate --ior-output-fd=19 1000 1384 0.0 1.7 80244 35480 ? Sl 15:58 0:02 /usr/bin/python /usr/lib/deskbar-applet/deskbar-applet/deskbar-applet --oaf-activate- 1000 1388 0.0 0.5 26196 11804 ? S 15:58 0:01 /usr/lib/gnome-panel/wnck-applet --oaf-activate-iid=OAFIID:GNOME_Wncklet_Factory --oa 1000 1393 0.1 0.5 25876 11548 ? S 15:58 0:08 /usr/lib/gnome-applets/multiload-applet-2 --oaf-activate-iid=OAFIID:GNOME_MultiLoadAp 1000 1394 0.0 0.5 25600 11140 ? S 15:58 0:03 /usr/lib/gnome-applets/cpufreq-applet --oaf-activate-iid=OAFIID:GNOME_CPUFreqApplet_F 1000 1415 0.0 0.5 39192 11156 ? S 15:58 0:01 /usr/lib/gnome-power-manager/gnome-inhibit-applet --oaf-activate-iid=OAFIID:GNOME_Inh 1000 1417 0.0 0.7 53544 15488 ? Sl 15:58 0:00 /usr/lib/gnome-applets/mixer_applet2 --oaf-activate-iid=OAFIID:GNOME_MixerApplet_Fact 1000 1419 0.0 0.4 23816 9068 ? S 15:58 0:00 /usr/lib/gnome-panel/notification-area-applet --oaf-activate-iid=OAFIID:GNOME_Notific 1000 1488 0.0 0.3 20964 7548 ? S 15:58 0:00 /usr/lib/gnome-disk-utility/gdu-notification-daemon 1000 1490 0.0 0.1 6608 2484 ? S 15:58 0:00 /usr/lib/gvfs/gvfsd-burn --spawner :1.6 /org/gtk/gvfs/exec_spaw/1 1000 1510 0.0 0.1 6348 2084 ? S 15:58 0:00 /usr/lib/gvfs/gvfsd-metadata 1000 1531 0.0 0.3 19472 6616 ? S 15:58 0:00 /usr/lib/gnome-user-share/gnome-user-share 1000 1535 0.0 0.4 77128 8392 ? Sl 15:58 0:00 /usr/lib/evolution/evolution-data-server-2.28 --oaf-activate-iid=OAFIID:GNOME_Evoluti 1000 1601 0.0 0.5 69576 11800 ? Sl 15:59 0:00 /usr/lib/evolution/2.28/evolution-alarm-notify 1000 1604 0.0 0.7 33924 15888 ? S 15:59 0:00 python /usr/share/system-config-printer/applet.py 1000 1701 0.0 0.5 37116 11968 ? S 15:59 0:00 update-notifier 1000 1892 4.5 7.0 406720 145312 ? Sl 17:11 3:09 /opt/google/chrome/chrome 1000 1896 0.0 0.1 69812 3680 ? S 17:11 0:02 /opt/google/chrome/chrome 1000 1898 0.0 0.6 91420 14080 ? S 17:11 0:00 /opt/google/chrome/chrome --type=zygote 1000 1916 0.2 1.3 140780 27220 ? Sl 17:11 0:12 /opt/google/chrome/chrome --type=extension --disable-client-side-phishing-detection - 1000 1918 0.7 1.8 155720 37912 ? Sl 17:11 0:31 /opt/google/chrome/chrome --type=extension --disable-client-side-phishing-detection - 1000 1921 0.0 1.0 135904 21052 ? Sl 17:11 0:02 /opt/google/chrome/chrome --type=extension --disable-client-side-phishing-detection - 1000 1927 6.5 3.6 194604 74960 ? Sl 17:11 4:32 /opt/google/chrome/chrome --type=renderer --disable-client-side-phishing-detection -- 1000 2156 0.4 0.7 48344 14896 ? Rl 18:03 0:04 gnome-terminal 1000 2157 0.0 0.0 1988 712 ? S 18:03 0:00 gnome-pty-helper 1000 2158 0.0 0.1 6504 3860 pts/0 Ss 18:03 0:00 bash 1000 2564 0.2 0.1 6624 3984 pts/1 Ss+ 18:17 0:00 bash 1000 2711 0.0 0.0 4208 1352 ? S 18:19 0:00 /bin/bash /home/alexandros/Programme/TeamSpeak3-Client-linux_x86_back/ts3client_runsc 1000 2714 36.5 1.5 210872 31960 ? SLl 18:19 0:18 ./ts3client_linux_x86 1000 2743 0.0 0.0 2716 1068 pts/0 R+ 18:20 0:00 ps aux Output of vmstat: alexandros@alexandros-laptop:~$ vmstat procs -----------memory---------- ---swap-- -----io---- -system-- ----cpu---- r b swpd free buff cache si so bi bo in cs us sy id wa 0 0 0 1093324 69840 449496 0 0 27 10 476 667 6 2 91 1 Output of lsusb alexandros@alexandros-laptop:~$ lspci 00:00.0 Host bridge: Silicon Integrated Systems [SiS] 671MX 00:01.0 PCI bridge: Silicon Integrated Systems [SiS] PCI-to-PCI bridge 00:02.0 ISA bridge: Silicon Integrated Systems [SiS] SiS968 [MuTIOL Media IO] (rev 01) 00:02.5 IDE interface: Silicon Integrated Systems [SiS] 5513 [IDE] (rev 01) 00:03.0 USB Controller: Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) 00:03.1 USB Controller: Silicon Integrated Systems [SiS] USB 1.1 Controller (rev 0f) 00:03.3 USB Controller: Silicon Integrated Systems [SiS] USB 2.0 Controller 00:05.0 IDE interface: Silicon Integrated Systems [SiS] SATA Controller / IDE mode (rev 03) 00:06.0 PCI bridge: Silicon Integrated Systems [SiS] PCI-to-PCI bridge 00:07.0 PCI bridge: Silicon Integrated Systems [SiS] PCI-to-PCI bridge 00:0d.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10) 00:0f.0 Audio device: Silicon Integrated Systems [SiS] Azalia Audio Controller 01:00.0 VGA compatible controller: ATI Technologies Inc Mobility Radeon X2300 02:00.0 Ethernet controller: Atheros Communications Inc. AR5001 Wireless Network Adapter (rev 01) The Team Speak log file : 2011-06-19 19:04:04.223522|INFO | | | Logging started, clientlib version: 3.0.0-rc2 [Build: 14642] 2011-06-19 19:04:04.761149|ERROR |SoundBckndIntf| | /home/alexandros/Programme/TeamSpeak3-Client-linux_x86_back/soundbackends/libpulseaudio_linux_x86.so error: NOT_CONNECTED 2011-06-19 19:04:05.871770|INFO |ClientUI | | Failed to init text to speech engine 2011-06-19 19:04:05.894623|INFO |ClientUI | | TeamSpeak 3 client version: 3.0.0-rc2 [Build: 14642] 2011-06-19 19:04:05.895421|INFO |ClientUI | | Qt version: 4.7.2 2011-06-19 19:04:05.895571|INFO |ClientUI | | Using configuration location: /home/alexandros/.ts3client/ts3clientui_qt.conf 2011-06-19 19:04:06.559596|INFO |ClientUI | | Last update check was: Sa. Jun 18 00:08:43 2011 2011-06-19 19:04:06.560506|INFO | | | Checking for updates... 2011-06-19 19:04:07.357869|INFO | | | Update check, my version: 14642, latest version: 14642 2011-06-19 19:05:52.978481|INFO |PreProSpeex | 1| Speex version: 1.2rc1 2011-06-19 19:05:54.055347|INFO |UIHelpers | | setClientVolumeModifier: 10 -8 2011-06-19 19:05:54.057196|INFO |UIHelpers | | setClientVolumeModifier: 11 2 Thanks for taking the time to read my message. UPDATE: Thanks to nickguletskii's link I googled for "alsa cpu usage" (without quotes) and it brought me to a forum. A user wrote that by directly selecting the hardware with "plughw:x.x" won't impact the performance of the system. I have selected it in the TS 3 configuration and it worked. But this solution is not optimal because now no other program can access the sound output. If you need any further information or my question is unclear than please tell me.

    Read the article

  • So Your Laptop’s Fan Has Stopped Working Then? [Humorous Image]

    - by Asian Angel
    There is such a thing as dust build-up and then there are the odd cases of dust-ball evolution… What is the worst case of dust build-up that you have dealt with? Make sure to share your stories with your fellow readers in the comments! Help, my laptop’s fan is not working! [via Reddit Tech Support Gore] Secure Yourself by Using Two-Step Verification on These 16 Web Services How to Fix a Stuck Pixel on an LCD Monitor How to Factory Reset Your Android Phone or Tablet When It Won’t Boot

    Read the article

  • Inserting and Deleting Sub Rows in GridView

    - by Vincent Maverick Durano
    A user in the forums (http://forums.asp.net) is asking how to insert  sub rows in GridView and also add delete functionality for the inserted sub rows. In this post I'm going to demonstrate how to this in ASP.NET WebForms.  The basic idea to achieve this is we just need to insert row data in the DataSource that is being used in GridView since the GridView rows will be generated based on the DataSource data. To make it more clear then let's build up a sample application. To start fire up Visual Studio and create a WebSite or Web Application project and then add a new WebForm. In the WebForm ASPX page add this GridView markup below:   1: <asp:gridview ID="GridView1" runat="server" AutoGenerateColumns="false" onrowdatabound="GridView1_RowDataBound"> 2: <Columns> 3: <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> 4: <asp:TemplateField HeaderText="Header 1"> 5: <ItemTemplate> 6: <asp:TextBox ID="TextBox1" runat="server"></asp:TextBox> 7: </ItemTemplate> 8: </asp:TemplateField> 9: <asp:TemplateField HeaderText="Header 2"> 10: <ItemTemplate> 11: <asp:TextBox ID="TextBox2" runat="server"></asp:TextBox> 12: </ItemTemplate> 13: </asp:TemplateField> 14: <asp:TemplateField HeaderText="Header 3"> 15: <ItemTemplate> 16: <asp:TextBox ID="TextBox3" runat="server"></asp:TextBox> 17: </ItemTemplate> 18: </asp:TemplateField> 19: <asp:TemplateField HeaderText="Action"> 20: <ItemTemplate> 21: <asp:LinkButton ID="LinkButton1" runat="server" onclick="LinkButton1_Click" Text="Insert"></asp:LinkButton> 22: </ItemTemplate> 23: </asp:TemplateField> 24: </Columns> 25: </asp:gridview>   Then at the code behind source of ASPX page you can add this codes below:   1: private DataTable FillData() { 2:   3: DataTable dt = new DataTable(); 4: DataRow dr = null; 5:   6: //Create DataTable columns 7: dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); 8:   9: //Create Row for each columns 10: dr = dt.NewRow(); 11: dr["RowNumber"] = 1; 12: dt.Rows.Add(dr); 13:   14: dr = dt.NewRow(); 15: dr["RowNumber"] = 2; 16: dt.Rows.Add(dr); 17:   18: dr = dt.NewRow(); 19: dr["RowNumber"] = 3; 20: dt.Rows.Add(dr); 21:   22: dr = dt.NewRow(); 23: dr["RowNumber"] = 4; 24: dt.Rows.Add(dr); 25:   26: dr = dt.NewRow(); 27: dr["RowNumber"] = 5; 28: dt.Rows.Add(dr); 29:   30: //Store the DataTable in ViewState for future reference 31: ViewState["CurrentTable"] = dt; 32:   33: return dt; 34:   35: } 36:   37: private void BindGridView(DataTable dtSource) { 38: GridView1.DataSource = dtSource; 39: GridView1.DataBind(); 40: } 41:   42: private DataRow InsertRow(DataTable dtSource, string value) { 43: DataRow dr = dtSource.NewRow(); 44: dr["RowNumber"] = value; 45: return dr; 46: } 47: //private DataRow DeleteRow(DataTable dtSource, 48:   49: protected void Page_Load(object sender, EventArgs e) { 50: if (!IsPostBack) { 51: BindGridView(FillData()); 52: } 53: } 54:   55: protected void LinkButton1_Click(object sender, EventArgs e) { 56: LinkButton lb = (LinkButton)sender; 57: GridViewRow row = (GridViewRow)lb.NamingContainer; 58: DataTable dtCurrentData = (DataTable)ViewState["CurrentTable"]; 59: if (lb.Text == "Insert") { 60: //Insert new row below the selected row 61: dtCurrentData.Rows.InsertAt(InsertRow(dtCurrentData, row.Cells[0].Text + "-sub"), row.RowIndex + 1); 62:   63: } 64: else { 65: //Delete selected sub row 66: dtCurrentData.Rows.RemoveAt(row.RowIndex); 67: } 68:   69: BindGridView(dtCurrentData); 70: ViewState["CurrentTable"] = dtCurrentData; 71: } 72:   73: protected void GridView1_RowDataBound(object sender, GridViewRowEventArgs e) { 74: if (e.Row.RowType == DataControlRowType.DataRow) { 75: if (e.Row.Cells[0].Text.Contains("-sub")) { 76: ((LinkButton)e.Row.FindControl("LinkButton1")).Text = "Delete"; 77: } 78: } 79: }   As you can see the code above is pretty straight forward and self explainatory but just to give you a short explaination the code above is composed of three (3) private methods which are the FillData(), BindGridView and InsertRow(). The FillData() method is a method that returns a DataTable and basically creates a dummy data in the DataTable to be used as the GridView DataSource. You can replace the code in that method if you want to use actual data from database but for the purpose of this example I just fill the DataTable with a dummy data on it. The BindGridVew is a method that handles the actual binding of GridVew. The InsertRow() is a method that returns a DataRow. This method handles the insertion of the sub row. Now in the LinkButton OnClick event, we casted the sender to a LinkButton to determine the specific object that fires up the event and get the row values. We then reference the Data from ViewState to get the current data that is being used in the GridView. If the LinkButton text is "Insert" then we will insert new row to the DataSource ( in this case the DataTable) based on the rowIndex if not then Delete the sub row that was added. Here are some screen shots of the output below: On initial load:   After inserting a sub row:   That's it! I hope someone find this post useful!   Technorati Tags: ASP.NET,C#,GridView

    Read the article

  • SQL SERVER – Guest Post by Sandip Pani – SQL Server Statistics Name and Index Creation

    - by pinaldave
    Sometimes something very small or a common error which we observe in daily life teaches us new things. SQL Server Expert Sandip Pani (winner of Joes 2 Pros Contests) has come across similar experience. Sandip has written a guest post on an error he faced in his daily work. Sandip is working for QSI Healthcare as an Associate Technical Specialist and have more than 5 years of total experience. He blogs at SQLcommitted.com and contribute in various forums. His social media hands are LinkedIn, Facebook and Twitter. Once I faced following error when I was working on performance tuning project and attempt to create an Index. Mug 1913, Level 16, State 1, Line 1 The operation failed because an index or statistics with name ‘Ix_Table1_1′ already exists on table ‘Table1′. The immediate reaction to the error was that I might have created that index earlier and when I researched it further I found the same as the index was indeed created two times. This totally makes sense. This can happen due to many reasons for example if the user is careless and executes the same code two times as well, when he attempts to create index without checking if there was index already on the object. However when I paid attention to the details of the error, I realize that error message also talks about statistics along with the index. I got curious if the same would happen if I attempt to create indexes with the same name as statistics already created. There are a few other questions also prompted in my mind. I decided to do a small demonstration of the subject and build following demonstration script. The goal of my experiment is to find out the relation between statistics and the index. Statistics is one of the important input parameter for the optimizer during query optimization process. If the query is nontrivial then only optimizer uses statistics to perform a cost based optimization to select a plan. For accuracy and further learning I suggest to read MSDN. Now let’s find out the relationship between index and statistics. We will do the experiment in two parts. i) Creating Index ii) Creating Statistics We will be using the following T-SQL script for our example. IF (OBJECT_ID('Table1') IS NOT NULL) DROP TABLE Table1 GO CREATE TABLE Table1 (Col1 INT NOT NULL, Col2 VARCHAR(20) NOT NULL) GO We will be using following two queries to check if there are any index or statistics on our sample table Table1. -- Details of Index SELECT OBJECT_NAME(OBJECT_ID) AS TableName, Name AS IndexName, type_desc FROM sys.indexes WHERE OBJECT_NAME(OBJECT_ID) = 'table1' GO -- Details of Statistics SELECT OBJECT_NAME(OBJECT_ID) TableName, Name AS StatisticsName FROM sys.stats WHERE OBJECT_NAME(OBJECT_ID) = 'table1' GO When I ran above two scripts on the table right after it was created it did not give us any result which was expected. Now let us begin our test. 1) Create an index on the table Create following index on the table. CREATE NONCLUSTERED INDEX Ix_Table1_1 ON Table1(Col1) GO Now let us use above two scripts and see their results. We can see that when we created index at the same time it created statistics also with the same name. Before continuing to next set of demo – drop the table using following script and re-create the table using a script provided at the beginning of the table. DROP TABLE table1 GO 2) Create a statistic on the table Create following statistics on the table. CREATE STATISTICS Ix_table1_1 ON Table1 (Col1) GO Now let us use above two scripts and see their results. We can see that when we created statistics Index is not created. The behavior of this experiment is different from the earlier experiment. Clean up the table setup using the following script: DROP TABLE table1 GO Above two experiments teach us very valuable lesson that when we create indexes, SQL Server generates the index and statistics (with the same name as the index name) together. Now due to the reason if we have already had statistics with the same name but not the index, it is quite possible that we will face the error to create the index even though there is no index with the same name. A Quick Check To validate that if we create statistics first and then index after that with the same name, it will throw an error let us run following script in SSMS. Make sure to drop the table and clean up our sample table at the end of the experiment. -- Create sample table CREATE TABLE TestTable (Col1 INT NOT NULL, Col2 VARCHAR(20) NOT NULL) GO -- Create Statistics CREATE STATISTICS IX_TestTable_1 ON TestTable (Col1) GO -- Create Index CREATE NONCLUSTERED INDEX IX_TestTable_1 ON TestTable(Col1) GO -- Check error /*Msg 1913, Level 16, State 1, Line 2 The operation failed because an index or statistics with name 'IX_TestTable_1' already exists on table 'TestTable'. */ -- Clean up DROP TABLE TestTable GO While creating index it will throw the following error as statistics with the same name is already created. In simple words – when we create index the name of the index should be different from any of the existing indexes and statistics. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Error Messages, SQL Index, SQL Query, SQL Server, SQL Tips and Tricks, T SQL, Technology Tagged: SQL Statistics

    Read the article

< Previous Page | 116 117 118 119 120 121 122 123 124 125 126 127  | Next Page >