Search Results

Search found 12367 results on 495 pages for 'disk io'.

Page 125/495 | < Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >

  • SQL SERVER – Introduction to SQL Server 2014 In-Memory OLTP

    - by Pinal Dave
    In SQL Server 2014 Microsoft has introduced a new database engine component called In-Memory OLTP aka project “Hekaton” which is fully integrated into the SQL Server Database Engine. It is optimized for OLTP workloads accessing memory resident data. In-memory OLTP helps us create memory optimized tables which in turn offer significant performance improvement for our typical OLTP workload. The main objective of memory optimized table is to ensure that highly transactional tables could live in memory and remain in memory forever without even losing out a single record. The most significant part is that it still supports majority of our Transact-SQL statement. Transact-SQL stored procedures can be compiled to machine code for further performance improvements on memory-optimized tables. This engine is designed to ensure higher concurrency and minimal blocking. In-Memory OLTP alleviates the issue of locking, using a new type of multi-version optimistic concurrency control. It also substantially reduces waiting for log writes by generating far less log data and needing fewer log writes. Points to remember Memory-optimized tables refer to tables using the new data structures and key words added as part of In-Memory OLTP. Disk-based tables refer to your normal tables which we used to create in SQL Server since its inception. These tables use a fixed size 8 KB pages that need to be read from and written to disk as a unit. Natively compiled stored procedures refer to an object Type which is new and is supported by in-memory OLTP engine which convert it into machine code, which can further improve the data access performance for memory –optimized tables. Natively compiled stored procedures can only reference memory-optimized tables, they can’t be used to reference any disk –based table. Interpreted Transact-SQL stored procedures, which is what SQL Server has always used. Cross-container transactions refer to transactions that reference both memory-optimized tables and disk-based tables. Interop refers to interpreted Transact-SQL that references memory-optimized tables. Using In-Memory OLTP In-Memory OLTP engine has been available as part of SQL Server 2014 since June 2013 CTPs. Installation of In-Memory OLTP is part of the SQL Server setup application. The In-Memory OLTP components can only be installed with a 64-bit edition of SQL Server 2014 hence they are not available with 32-bit editions. Creating Databases Any database that will store memory-optimized tables must have a MEMORY_OPTIMIZED_DATA filegroup. This filegroup is specifically designed to store the checkpoint files needed by SQL Server to recover the memory-optimized tables, and although the syntax for creating the filegroup is almost the same as for creating a regular filestream filegroup, it must also specify the option CONTAINS MEMORY_OPTIMIZED_DATA. Here is an example of a CREATE DATABASE statement for a database that can support memory-optimized tables: CREATE DATABASE InMemoryDB ON PRIMARY(NAME = [InMemoryDB_data], FILENAME = 'D:\data\InMemoryDB_data.mdf', size=500MB), FILEGROUP [SampleDB_mod_fg] CONTAINS MEMORY_OPTIMIZED_DATA (NAME = [InMemoryDB_mod_dir], FILENAME = 'S:\data\InMemoryDB_mod_dir'), (NAME = [InMemoryDB_mod_dir], FILENAME = 'R:\data\InMemoryDB_mod_dir') LOG ON (name = [SampleDB_log], Filename='L:\log\InMemoryDB_log.ldf', size=500MB) COLLATE Latin1_General_100_BIN2; Above example code creates files on three different drives (D:  S: and R:) for the data files and in memory storage so if you would like to run this code kindly change the drive and folder locations as per your convenience. Also notice that binary collation was specified as Windows (non-SQL). BIN2 collation is the only collation support at this point for any indexes on memory optimized tables. It is also possible to add a MEMORY_OPTIMIZED_DATA file group to an existing database, use the below command to achieve the same. ALTER DATABASE AdventureWorks2012 ADD FILEGROUP hekaton_mod CONTAINS MEMORY_OPTIMIZED_DATA; GO ALTER DATABASE AdventureWorks2012 ADD FILE (NAME='hekaton_mod', FILENAME='S:\data\hekaton_mod') TO FILEGROUP hekaton_mod; GO Creating Tables There is no major syntactical difference between creating a disk based table or a memory –optimized table but yes there are a few restrictions and a few new essential extensions. Essentially any memory-optimized table should use the MEMORY_OPTIMIZED = ON clause as shown in the Create Table query example. DURABILITY clause (SCHEMA_AND_DATA or SCHEMA_ONLY) Memory-optimized table should always be defined with a DURABILITY value which can be either SCHEMA_AND_DATA or  SCHEMA_ONLY the former being the default. A memory-optimized table defined with DURABILITY=SCHEMA_ONLY will not persist the data to disk which means the data durability is compromised whereas DURABILITY= SCHEMA_AND_DATA ensures that data is also persisted along with the schema. Indexing Memory Optimized Table A memory-optimized table must always have an index for all tables created with DURABILITY= SCHEMA_AND_DATA and this can be achieved by declaring a PRIMARY KEY Constraint at the time of creating a table. The following example shows a PRIMARY KEY index created as a HASH index, for which a bucket count must also be specified. CREATE TABLE Mem_Table ( [Name] VARCHAR(32) NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000), [City] VARCHAR(32) NULL, [State_Province] VARCHAR(32) NULL, [LastModified] DATETIME NOT NULL, ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA); Now as you can see in the above query example we have used the clause MEMORY_OPTIMIZED = ON to make sure that it is considered as a memory optimized table and not just a normal table and also used the DURABILITY Clause= SCHEMA_AND_DATA which means it will persist data along with metadata and also you can notice this table has a PRIMARY KEY mentioned upfront which is also a mandatory clause for memory-optimized tables. We will talk more about HASH Indexes and BUCKET_COUNT in later articles on this topic which will be focusing more on Row and Index storage on Memory-Optimized tables. So stay tuned for that as well. Now as we covered the basics of Memory Optimized tables and understood the key things to remember while using memory optimized tables, let’s explore more using examples to understand the Performance gains using memory-optimized tables. I will be using the database which i created earlier in this article i.e. InMemoryDB in the below Demo Exercise. USE InMemoryDB GO -- Creating a disk based table CREATE TABLE dbo.Disktable ( Id INT IDENTITY, Name CHAR(40) ) GO CREATE NONCLUSTERED INDEX IX_ID ON dbo.Disktable (Id) GO -- Creating a memory optimized table with similar structure and DURABILITY = SCHEMA_AND_DATA CREATE TABLE dbo.Memorytable_durable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA) GO -- Creating an another memory optimized table with similar structure but DURABILITY = SCHEMA_Only CREATE TABLE dbo.Memorytable_nondurable ( Id INT NOT NULL PRIMARY KEY NONCLUSTERED Hash WITH (bucket_count =1000000), Name CHAR(40) ) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_only) GO -- Now insert 100000 records in dbo.Disktable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Disktable(Name) VALUES('sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Do the same inserts for Memory table dbo.Memorytable_durable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_durable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END -- Now finally do the same inserts for Memory table dbo.Memorytable_nondurable and observe the Time Taken DECLARE @i_t bigint SET @i_t =1 WHILE @i_t<= 100000 BEGIN INSERT INTO dbo.Memorytable_nondurable VALUES(@i_t, 'sachin' + CONVERT(VARCHAR,@i_t)) SET @i_t+=1 END The above 3 Inserts took 1.20 minutes, 54 secs, and 2 secs respectively to insert 100000 records on my machine with 8 Gb RAM. This proves the point that memory-optimized tables can definitely help businesses achieve better performance for their highly transactional business table and memory- optimized tables with Durability SCHEMA_ONLY is even faster as it does not bother persisting its data to disk which makes it supremely fast. Koenig Solutions is one of the few organizations which offer IT training on SQL Server 2014 and all its updates. Now, I leave the decision on using memory_Optimized tables on you, I hope you like this article and it helped you understand  the fundamentals of IN-Memory OLTP . Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: Koenig

    Read the article

  • Finding nuggets in ARC discussions

    - by alanc
    A bit over twenty years ago, Sun formed an Architecture Review Committee (ARC) that evaluates proposals to change interfaces between components in Sun software products. During the OpenSolaris days, we opened many of these discussions to the community. While they’re back behind closed doors, and at a different company now, we still continue to hold these reviews for the software from what’s now the Sun Systems Group division of Oracle. Recently one of these reviews was held (via e-mail discussion) to review a proposal to update our GNU findutils package to the latest upstream release. One of the upstream changes discussed was the addition of an “oldfind” program. In findutils 4.3, find was modified to use the fts() function to walk the directory tree, and oldfind was created to provide the old mechanism in case there were bugs in the new implementation that users needed to workaround. In Solaris 11 though, we still ship the find descended from SVR4 as /usr/bin/find and the GNU find is available as either /usr/bin/gfind or /usr/gnu/bin/find. This raised the discussion of if we should add oldfind, and if so what should we call it. Normally our policy is to only add the g* names for GNU commands that conflict with an existing Solaris command – for instance, we ship /usr/bin/emacs, not /usr/bin/gemacs. In this case however, that seemed like it would be more confusing to have /usr/bin/oldfind be the older version of /usr/bin/gfind not of /usr/bin/find. Thus if we shipped it, it would make more sense to call it /usr/bin/goldfind, which several ARC members noted read more naturally as “gold find” than as “g old find”. One of the concerns we often discuss in ARC is if a change is likely to be understood by users or if it will result in more calls to support. As we hit this part of the discussion on a Friday at the end of a long week, I couldn’t resist putting forth a hypothetical support call for this command: “Hello, Oracle Solaris Support, how may I help you?” “My admin is out sick, but he sent an email that he put the findutils package on our server, and I can run goldfind now. I tried it, but goldfind didn’t find gold.” “Did he get the binutils package too?” “No he just said findutils, do we need binutils?” “Well, gold comes in the binutils package, so goldfind would be able to find gold if you got that package.” “How much does Oracle charge for that package?” “It’s free for Solaris users.” “You mean Oracle ships packages of gold to customers for free?” “Yes, if you get the binutils package, it includes GNU gold.” “New gold? Is that some sort of alchemy, turning stuff into gold?” “Not new gold, gold from the GNU project.” “Oracle’s taking gold from the GNU project and shipping it to me?” “Yes, if you get binutils, that package includes gold along with the other tools from the GNU project.” “And GNU doesn’t mind Oracle taking their gold and giving it to customers?” “No, GNU is a non-profit whose goal is to share their software.” “Sharing software sure, but gold? Where does a non-profit like GNU get gold anyway?” “Oh, Google donated it to them.” “Ah! So Oracle will give me the gold that GNU got from Google!” “Yes, if you get the package from us.” “How do I get the package with the gold?” “Just run pkg install binutils and it will put it on your disk.” “We’ve got multiple disks here - which one will it put it on?” “The one with the system image - do you know which one that is? “Well the note from the admin says the system is on the first disk and the users are on the second disk.” “Okay, so it should go on the first disk then.” “And where will I find the gold?” “It will be in the /usr/bin directory.” “In the user’s bin? So thats on the second disk?” “No, it would be on the system disk, with the other development tools, like make, as, and what.” “So what’s on the first disk?” “Well if the system image is there the commands should all be there.” “All the commands? Not just what?” “Right, all the commands that come with the OS, like the shell, ps, and who.” “So who’s on the first disk too?” “Yes. Did your admin say when he’d be back?” “No, just that he had a massive headache and was going home after I tried to get him to explain this stuff to me.” “I can’t imagine why.” “Oh, is why a command too?” “No, _why was a Ruby programmer.” “Ruby? Do you give those away with the gold too?” “Yes, but it comes in the ruby package, not binutils.” “Oh, I’ll have to have my admin get that package too! Thanks!” Needless to say, we decided this might not be the best idea. Since the GNU package hasn’t had to release a serious bug fix in the new find in the past few years, the new GNU find seems pretty stable, and we always have the SVR4 find to use as a fallback in Solaris, so it didn’t seem that adding oldfind was really necessary, so we passed on including it when we update to the new findutils release. [Apologies to Abbott, Costello, their fans, and everyone who read this far. The Gold (linker) page on Wikipedia may explain some of the above, but can’t explain why goldfind is the old GNU find, but gold is the new GNU ld.]

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

  • Writing the tests for FluentPath

    Writing the tests for FluentPath is a challenge. The library is a wrapper around a legacy API (System.IO) that wasnt designed to be easily testable. If it were more testable, the sensible testing methodology would be to tell System.IO to act against a mock file system, which would enable me to verify that my code is doing the expected file system operations without having to manipulate the actual, physical file system: what we are testing here is FluentPath, not System.IO. Unfortunately, that...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Talend Enterprise Data Integration overperforms on Oracle SPARC T4

    - by Amir Javanshir
    The SPARC T microprocessor, released in 2005 by Sun Microsystems, and now continued at Oracle, has a good track record in parallel execution and multi-threaded performance. However it was less suited for pure single-threaded workloads. The new SPARC T4 processor is now filling that gap by offering a 5x better single-thread performance over previous generations. Following our long-term relationship with Talend, a fast growing ISV positioned by Gartner in the “Visionaries” quadrant of the “Magic Quadrant for Data Integration Tools”, we decided to test some of their integration components with the T4 chip, more precisely on a T4-1 system, in order to verify first hand if this new processor stands up to its promises. Several tests were performed, mainly focused on: Single-thread performance of the new SPARC T4 processor compared to an older SPARC T2+ processor Overall throughput of the SPARC T4-1 server using multiple threads The tests consisted in reading large amounts of data --ten's of gigabytes--, processing and writing them back to a file or an Oracle 11gR2 database table. They are CPU, memory and IO bound tests. Given the main focus of this project --CPU performance--, bottlenecks were removed as much as possible on the memory and IO sub-systems. When possible, the data to process was put into the ZFS filesystem cache, for instance. Also, two external storage devices were directly attached to the servers under test, each one divided in two ZFS pools for read and write operations. Multi-thread: Testing throughput on the Oracle T4-1 The tests were performed with different number of simultaneous threads (1, 2, 4, 8, 12, 16, 32, 48 and 64) and using different storage devices: Flash, Fibre Channel storage, two stripped internal disks and one single internal disk. All storage devices used ZFS as filesystem and volume management. Each thread read a dedicated 1GB-large file containing 12.5M lines with the following structure: customerID;FirstName;LastName;StreetAddress;City;State;Zip;Cust_Status;Since_DT;Status_DT 1;Ronald;Reagan;South Highway;Santa Fe;Montana;98756;A;04-06-2006;09-08-2008 2;Theodore;Roosevelt;Timberlane Drive;Columbus;Louisiana;75677;A;10-05-2009;27-05-2008 3;Andrew;Madison;S Rustle St;Santa Fe;Arkansas;75677;A;29-04-2005;09-02-2008 4;Dwight;Adams;South Roosevelt Drive;Baton Rouge;Vermont;75677;A;15-02-2004;26-01-2007 […] The following graphs present the results of our tests: Unsurprisingly up to 16 threads, all files fit in the ZFS cache a.k.a L2ARC : once the cache is hot there is no performance difference depending on the underlying storage. From 16 threads upwards however, it is clear that IO becomes a bottleneck, having a good IO subsystem is thus key. Single-disk performance collapses whereas the Sun F5100 and ST6180 arrays allow the T4-1 to scale quite seamlessly. From 32 to 64 threads, the performance is almost constant with just a slow decline. For the database load tests, only the best IO configuration --using external storage devices-- were used, hosting the Oracle table spaces and redo log files. Using the Sun Storage F5100 array allows the T4-1 server to scale up to 48 parallel JVM processes before saturating the CPU. The final result is a staggering 646K lines per second insertion in an Oracle table using 48 parallel threads. Single-thread: Testing the single thread performance Seven different tests were performed on both servers. Given the fact that only one thread, thus one file was read, no IO bottleneck was involved, all data being served from the ZFS cache. Read File ? Filter ? Write File: Read file, filter data, write the filtered data in a new file. The filter is set on the “Status” column: only lines with status set to “A” are selected. This limits each output file to about 500 MB. Read File ? Load Database Table: Read file, insert into a single Oracle table. Average: Read file, compute the average of a numeric column, write the result in a new file. Division & Square Root: Read file, perform a division and square root on a numeric column, write the result data in a new file. Oracle DB Dump: Dump the content of an Oracle table (12.5M rows) into a CSV file. Transform: Read file, transform, write the result data in a new file. The transformations applied are: set the address column to upper case and add an extra column at the end, which is the concatenation of two columns. Sort: Read file, sort a numeric and alpha numeric column, write the result data in a new file. The following table and graph present the final results of the tests: Throughput unit is thousand lines per second processed (K lines/second). Improvement is the % of improvement between the T5140 and T4-1. Test T4-1 (Time s.) T5140 (Time s.) Improvement T4-1 (Throughput) T5140 (Throughput) Read/Filter/Write 125 806 645% 100 16 Read/Load Database 195 1111 570% 64 11 Average 96 557 580% 130 22 Division & Square Root 161 1054 655% 78 12 Oracle DB Dump 164 945 576% 76 13 Transform 159 1124 707% 79 11 Sort 251 1336 532% 50 9 The improvement of single-thread performance is quite dramatic: depending on the tests, the T4 is between 5.4 to 7 times faster than the T2+. It seems clear that the SPARC T4 processor has gone a long way filling the gap in single-thread performance, without sacrifying the multi-threaded capability as it still shows a very impressive scaling on heavy-duty multi-threaded jobs. Finally, as always at Oracle ISV Engineering, we are happy to help our ISV partners test their own applications on our platforms, so don't hesitate to contact us and let's see what the SPARC T4-based systems can do for your application! "As describe in this benchmark, Talend Enterprise Data Integration has overperformed on T4. I was generally happy to see that the T4 gave scaling opportunities for many scenarios like complex aggregations. Row by row insertion in Oracle DB is faster with more than 650,000 rows per seconds without using any bulk Oracle capabilities !" Cedric Carbone, Talend CTO.

    Read the article

  • Is it a good idea to put all assembly: WebResource in the same cs file?

    - by Guilherme J Santos
    I have a .NET library, with some WebControls. These webControls have Embed Resources. And we declare them like it, in all webcontrols for each cs file: Something like this: [assembly: WebResource("IO.Css.MyCSS.css", "text/css")] namespace MyNamespace.MyClass { [ParseChildren(true)] [PersistChildren(false)] [Designer(typeof(MyNamespace.MyClassDesigner))] public class QuickTip : Control, INamingContainer { //My code... } } Would it be a good idea to create a cs file and include all WebResource declarations there? Example a cs file with just: [assembly: WebResource("IO.Css.MyCSS.css", "text/css")] [assembly: WebResource("IO.Image.MyImage.png", "image/png")] //And many other WebResources of all WebControls of the Assembly

    Read the article

  • Availability Best Practices on Oracle VM Server for SPARC

    - by jsavit
    This is the first of a series of blog posts on configuring Oracle VM Server for SPARC (also called Logical Domains) for availability. This series will show how to how to plan for availability, improve serviceability, avoid single points of failure, and provide resiliency against hardware and software failures. Availability is a broad topic that has filled entire books, so these posts will focus on aspects specifically related to Oracle VM Server for SPARC. The goal is to improve Reliability, Availability and Serviceability (RAS): An article defining RAS can be found here. Oracle VM Server for SPARC Principles for Availability Let's state some guiding principles for availability that apply to Oracle VM Server for SPARC: Avoid Single Points Of Failure (SPOFs). Systems should be configured so a component failure does not result in a loss of application service. The general method to avoid SPOFs is to provide redundancy so service can continue without interruption if a component fails. For a critical application there may be multiple levels of redundancy so multiple failures can be tolerated. Oracle VM Server for SPARC makes it possible to configure systems that avoid SPOFs. Configure for availability at a level of resource and effort consistent with business needs. Effort and resource should be consistent with business requirements. Production has different availability requirements than test/development, so it's worth expending resources to provide higher availability. Even within the category of production there may be different levels of criticality, outage tolerances, recovery and repair time requirements. Keep in mind that a simple design may be more understandable and effective than a complex design that attempts to "do everything". Design for availability at the appropriate tier or level of the platform stack. Availability can be provided in the application, in the database, or in the virtualization, hardware and network layers they depend on - or using a combination of all of them. It may not be necessary to engineer resilient virtualization for stateless web applications applications where availability is provided by a network load balancer, or for enterprise applications like Oracle Real Application Clusters (RAC) and WebLogic that provide their own resiliency. It's (often) the same architecture whether virtual or not: For example, providing resiliency against a lost device path or failing disk media is done for the same reasons and may use the same design whether in a domain or not. It's (often) the same technique whether using domains or not: Many configuration steps are the same. For example, configuring IPMP or creating a redundant ZFS pool is pretty much the same within the guest whether you're in a guest domain or not. There are configuration steps and choices for provisioning the guest with the virtual network and disk devices, which we will discuss. Sometimes it is different using domains: There are new resources to configure. Most notable is the use of alternate service domains, which provides resiliency in case of a domain failure, and also permits improved serviceability via "rolling upgrades". This is an important differentiator between Oracle VM Server for SPARC and traditional virtual machine environments where all virtual I/O is provided by a monolithic infrastructure that itself is a SPOF. Alternate service domains are widely used to provide resiliency in production logical domains environments. Some things are done via logical domains commands, and some are done in the guest: For example, with Oracle VM Server for SPARC we provide multiple network connections to the guest, and then configure network resiliency in the guest via IP Multi Pathing (IPMP) - essentially the same as for non-virtual systems. On the other hand, we configure virtual disk availability in the virtualization layer, and the guest sees an already-resilient disk without being aware of the details. These blogs will discuss configuration details like this. Live migration is not "high availability" in the sense of "continuous availability": If the server is down, then you don't live migrate from it! (A cluster or VM restart elsewhere would be used). However, live migration can be part of the RAS (Reliability, Availability, Serviceability) picture by improving Serviceability - you can move running domains off of a box before planned service or maintenance. The blog Best Practices - Live Migration on Oracle VM Server for SPARC discusses this. Topics Here are some of the topics that will be covered: Network availability using IP Multipathing and aggregates Disk path availability using virtual disks defined with multipath groups ("mpgroup") Disk media resiliency configuring for redundant disks that can tolerate media loss Multiple service domains - this is probably the most significant item and the one most specific to Oracle VM Server for SPARC. It is very widely deployed in production environments as the means to provide network and disk availability, but it can be confusing. Subsequent articles will describe why and how to configure multiple service domains. Note, for the sake of precision: an I/O domain is any domain that has a physical I/O resource (such as a PCIe bus root complex). A service domain is a domain providing virtual device services to other domains; it is almost always an I/O domain too (so it can have something to serve). Resources Here are some important links; we'll be drawing on their content in the next several articles: Oracle VM Server for SPARC Documentation Maximizing Application Reliability and Availability with SPARC T5 Servers whitepaper by Gary Combs Maximizing Application Reliability and Availability with the SPARC M5-32 Server whitepaper by Gary Combs Summary Oracle VM Server for SPARC offers features that can be used to provide highly-available environments. This and the following blog entries will describe how to plan and deploy them.

    Read the article

  • Mouse takes a while to start working after boot

    - by warkior
    I just recently installed Ubuntu 12.04 (64 bit) and a number of my USB devices have stopped working. At least, they don't work for the first 3-5 minutes. I have two mice (one wireless, one wired) and a camera, which seem to take Ubuntu 3-5 minutes to recognize after booting up. Eventually, they do start to work, but it takes ages! lsusb results: (when the mice are working...) $ lsusb Bus 001 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 002 Device 001: ID 1d6b:0002 Linux Foundation 2.0 root hub Bus 003 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 004 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 005 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 006 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 007 Device 001: ID 1d6b:0001 Linux Foundation 1.1 root hub Bus 003 Device 002: ID 046d:c512 Logitech, Inc. LX-700 Cordless Desktop Receiver Bus 003 Device 003: ID 03f0:3f11 Hewlett-Packard PSC-1315/PSC-1317 Bus 006 Device 002: ID 046d:c00c Logitech, Inc. Optical Wheel Mouse Bus 006 Device 003: ID 046d:c52b Logitech, Inc. Unifying Receiver syslog entries for what seems (to my very untrained eye) to be the problem: Oct 12 20:12:51 REMOVED-GA-MA785GM-US2H kernel: [ 17.420117] usb 2-3: device descriptor read/64, error -110 Oct 12 20:12:57 REMOVED-GA-MA785GM-US2H goa[1879]: goa-daemon version 3.4.0 starting [main.c:112, main()] Oct 12 20:13:06 REMOVED-GA-MA785GM-US2H kernel: [ 32.636107] usb 2-3: device descriptor read/64, error -110 Oct 12 20:13:06 REMOVED-GA-MA785GM-US2H kernel: [ 32.852122] usb 2-3: new high-speed USB device number 3 using ehci_hcd Oct 12 20:13:21 REMOVED-GA-MA785GM-US2H kernel: [ 47.964131] usb 2-3: device descriptor read/64, error -110 Oct 12 20:13:37 REMOVED-GA-MA785GM-US2H kernel: [ 63.180115] usb 2-3: device descriptor read/64, error -110 Oct 12 20:13:37 REMOVED-GA-MA785GM-US2H kernel: [ 63.396126] usb 2-3: new high-speed USB device number 4 using ehci_hcd Oct 12 20:13:47 REMOVED-GA-MA785GM-US2H kernel: [ 73.804158] usb 2-3: device not accepting address 4, error -110 Oct 12 20:13:47 REMOVED-GA-MA785GM-US2H kernel: [ 73.916190] usb 2-3: new high-speed USB device number 5 using ehci_hcd Oct 12 20:13:58 REMOVED-GA-MA785GM-US2H kernel: [ 84.324160] usb 2-3: device not accepting address 5, error -110 Oct 12 20:13:58 REMOVED-GA-MA785GM-US2H kernel: [ 84.324197] hub 2-0:1.0: unable to enumerate USB device on port 3 Oct 12 20:13:58 REMOVED-GA-MA785GM-US2H udev-configure-printer: failed to claim interface Oct 12 20:13:58 REMOVED-GA-MA785GM-US2H udev-configure-printer: Failed to get parent Oct 12 20:13:58 REMOVED-GA-MA785GM-US2H udev-configure-printer: device devpath is /devices/pci0000:00/0000:00:12.0/usb3/3-3 Oct 12 20:13:58 REMOVED-GA-MA785GM-US2H udev-configure-printer: MFG:hp MDL:psc 1310 series SERN:CN47CB60BJO2 serial:CN47CB60BJO2 Oct 12 20:13:58 REMOVED-GA-MA785GM-US2H kernel: [ 84.768132] usb 5-3: new full-speed USB device number 2 using ohci_hcd Oct 12 20:14:01 REMOVED-GA-MA785GM-US2H udev-configure-printer: no corresponding CUPS device found Oct 12 20:14:13 REMOVED-GA-MA785GM-US2H kernel: [ 99.904185] usb 5-3: device descriptor read/64, error -110 Oct 12 20:14:29 REMOVED-GA-MA785GM-US2H kernel: [ 115.144188] usb 5-3: device descriptor read/64, error -110 Oct 12 20:14:29 REMOVED-GA-MA785GM-US2H kernel: [ 115.384178] usb 5-3: new full-speed USB device number 3 using ohci_hcd Oct 12 20:14:44 REMOVED-GA-MA785GM-US2H kernel: [ 130.520196] usb 5-3: device descriptor read/64, error -110 Oct 12 20:14:59 REMOVED-GA-MA785GM-US2H kernel: [ 145.760179] usb 5-3: device descriptor read/64, error -110 Oct 12 20:14:59 REMOVED-GA-MA785GM-US2H kernel: [ 146.000173] usb 5-3: new full-speed USB device number 4 using ohci_hcd Oct 12 20:15:10 REMOVED-GA-MA785GM-US2H kernel: [ 156.408168] usb 5-3: device not accepting address 4, error -110 Oct 12 20:15:10 REMOVED-GA-MA785GM-US2H kernel: [ 156.544188] usb 5-3: new full-speed USB device number 5 using ohci_hcd Oct 12 20:15:20 REMOVED-GA-MA785GM-US2H kernel: [ 166.952181] usb 5-3: device not accepting address 5, error -110 Oct 12 20:15:20 REMOVED-GA-MA785GM-US2H kernel: [ 166.952215] hub 5-0:1.0: unable to enumerate USB device on port 3 Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H kernel: [ 167.216164] usb 6-2: new low-speed USB device number 2 using ohci_hcd Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H mtp-probe: checking bus 6, device 2: "/sys/devices/pci0000:00/0000:00:13.1/usb6/6-2" Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H mtp-probe: bus: 6, device: 2 was not an MTP device Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H kernel: [ 167.396138] input: Logitech USB Mouse as /devices/pci0000:00/0000:00:13.1/usb6/6-2/6-2:1.0/input/input16 Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H kernel: [ 167.396442] generic-usb 0003:046D:C00C.0003: input,hidraw2: USB HID v1.10 Mouse [Logitech USB Mouse] on usb-0000:00:13.1-2/input0 Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H kernel: [ 167.660187] usb 6-3: new full-speed USB device number 3 using ohci_hcd Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H mtp-probe: checking bus 6, device 3: "/sys/devices/pci0000:00/0000:00:13.1/usb6/6-3" Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H mtp-probe: bus: 6, device: 3 was not an MTP device Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H kernel: [ 167.859045] logitech-djreceiver 0003:046D:C52B.0006: hiddev0,hidraw3: USB HID v1.11 Device [Logitech USB Receiver] on usb-0000:00:13.1-3/input2 Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H kernel: [ 167.865086] input: Logitech Unifying Device. Wireless PID:400a as /devices/pci0000:00/0000:00:13.1/usb6/6-3/6-3:1.2/0003:046D:C52B.0006/input/input17 Oct 12 20:15:21 REMOVED-GA-MA785GM-US2H kernel: [ 167.865291] logitech-djdevice 0003:046D:C52B.0007: input,hidraw4: USB HID v1.11 Mouse [Logitech Unifying Device. Wireless PID:400a] on usb-0000:00:13.1-3:1 Oct 12 20:15:24 REMOVED-GA-MA785GM-US2H colord: io/hpmud/musb.c 139: unable get_string_descriptor -1: Operation not permitted Oct 12 20:15:24 REMOVED-GA-MA785GM-US2H colord: io/hpmud/musb.c 2040: invalid product id string ret=-1 Oct 12 20:15:24 REMOVED-GA-MA785GM-US2H colord: io/hpmud/musb.c 139: unable get_string_descriptor -1: Operation not permitted Oct 12 20:15:24 REMOVED-GA-MA785GM-US2H colord: io/hpmud/musb.c 2045: invalid serial id string ret=-1 Oct 12 20:15:24 REMOVED-GA-MA785GM-US2H colord: io/hpmud/musb.c 139: unable get_string_descriptor -1: Operation not permitted Oct 12 20:15:24 REMOVED-GA-MA785GM-US2H colord: io/hpmud/musb.c 2050: invalid manufacturer string ret=-1

    Read the article

  • SQLIO Writes

    - by Grant Fritchey
    SQLIO is a fantastic utility for testing the abilities of the disks in your system. It has a very unfortunate name though, since it's not really a SQL Server testing utility at all. It really is a disk utility. They ought to call it DiskIO because they'd get more people using I think. Anyway, branding is not the point of this blog post. Writes are the point of this blog post. SQLIO works by slamming your disk. It performs as mean reads as it can or it performs as many writes as it can depending on how you've configured your tests. There are much smarter people than me who will get into all the various types of tests you should run. I'd suggest reading a bit of what Jonathan Kehayias (blog|twitter) has to say or wade into Denny Cherry's (blog|twitter) work. They're going to do a better job than I can describing all the benefits and mechanisms around using this excellent piece of software. My concerns are very focused. I needed to set up a series of tests to see how well our product SQL Storage Compress worked. I wanted to know the effects it would have on a system, the disk for sure, but also memory and CPU. How to stress the system? SQLIO of course. But when I set it up and ran it, following the documentation that comes with it, I was seeing better than 99% compression on the files. Don't get me wrong. Our product is magnificent, wonderful, all things great and beautiful, gets you coffee in the morning and is made mostly from bacon. But 99% compression. No, it's not that good. So what's up? Well, it's the configuration. The default mechanism is to load up a file, something large that will overwhelm your disk cache. You're instructed to load the file with a character 0x0. I never got a computer science degree. I went to film school. Because of this, I didn't memorize ASCII tables so when I saw this, I thought it was zero's or something. Nope. It's NULL. That's right, you're making a very large file, but you're filling it with NULL values. That's actually ok when all you're testing is the disk sub-system. But, when you want to test a compression and decompression, that can be an issue. I got around this fairly quickly. Instead of generating a file filled with NULL values, I just copied a database file for my tests. And to test it with SQL Storage Compress, I used a database file that had already been run through compression (about 40% compression on that file if you're interested). Now the reads were taken care of. I am seeing very realistic performance from decompressing the information for reads through SQLIO. But what about writes? Well, the issue is, what does SQLIO write? I don't have access to the code. But I do have access to the results. I did two different tests, just to be sure of what I was seeing. First test, use the .DAT file as described in the documentation. I opened the .DAT file after I was done with SQLIO, using WordPad. Guess what? It's a giant file full of air. SQLIO writes NULL values. What does that do to compression? I did the test again on a copy of an uncompressed database file. Then I ran the original and the SQLIO modified copy through ZIP to see what happened. I got better than 99% compression out of the SQLIO modified file (original file of 624,896kb went to 275,871kb compressed, after SQLIO it went to 608kb compressed). So, what does SQLIO write? It writes air. If you're trying to test it with compression or maybe some other type of file storage mechanism like dedupe, you need to know this because your tests really won't be valid. Should I find some other mechanism for testing? Yeah, if all I'm interested in is establishing performance to my own satisfaction, yes. But, I want to be able to compare my results with other people's results and we all need to be using the same tool in order for that to happen. SQLIO is the common mechanism that most people I know use to establish disk performance behavior. It'd be better if we could get SQLIO to do writes in some other fashion. Oh, and before I go, I get to brag a bit. Measuring IOPS, SQL Storage Compress outperforms my disk alone by about 30%.

    Read the article

  • How to add another OS entry in Wubi grub

    - by Amey Jah
    I am trying to install another linux distro besides ubuntu. However, I want to retain my existing windows based loader. Currently, as per my knowledge, MsDos loads grub which then loads Ubuntu (with loop back trick). Now, I have a new linux distro installed on /dev/sda8 (/boot for new distro) where as /root for that OS is installed on /dev/sda9. I tried following steps 1. Add entry into 40_custom of ubuntu grub 2. update grub But upon booting via that entry, it is not able to load the new OS and shows me blank screen. What could be the problem? Additional data: grub.cfg file of ubuntu menuentry 'Ubuntu' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-simple-fc296be2-8c59-4f21-a3f8-47c38cd0d537' { gfxmode $linux_gfx_mode insmod gzio insmod ntfs set root='hd0,msdos5' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos5 --hint-efi=hd0,msdos5 --hint-baremetal=ahci0,msdos5 01CD7BB998DB0870 else search --no-floppy --fs-uuid --set=root 01CD7BB998DB0870 fi loopback loop0 /ubuntu/disks/root.disk set root=(loop0) linux /boot/vmlinuz-3.5.0-19-generic root=UUID=01CD7BB998DB0870 loop=/ubuntu/disks/root.disk ro quiet splash $vt_handoff initrd /boot/initrd.img-3.5.0-19-generic } submenu 'Advanced options for Ubuntu' $menuentry_id_option 'gnulinux-advanced-fc296be2-8c59-4f21-a3f8-47c38cd0d537' { menuentry 'Ubuntu, with Linux 3.5.0-19-generic' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-19-generic-advanced-fc296be2-8c59-4f21-a3f8-47c38cd0d537' { gfxmode $linux_gfx_mode insmod gzio insmod ntfs set root='hd0,msdos5' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos5 --hint-efi=hd0,msdos5 --hint-baremetal=ahci0,msdos5 01CD7BB998DB0870 else search --no-floppy --fs-uuid --set=root 01CD7BB998DB0870 fi loopback loop0 /ubuntu/disks/root.disk set root=(loop0) echo 'Loading Linux 3.5.0-19-generic ...' linux /boot/vmlinuz-3.5.0-19-generic root=UUID=01CD7BB998DB0870 loop=/ubuntu/disks/root.disk ro quiet splash $vt_handoff echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-19-generic } menuentry 'Ubuntu, with Linux 3.5.0-19-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-3.5.0-19-generic-recovery-fc296be2-8c59-4f21-a3f8-47c38cd0d537' { insmod gzio insmod ntfs set root='hd0,msdos5' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos5 --hint-efi=hd0,msdos5 --hint-baremetal=ahci0,msdos5 01CD7BB998DB0870 else search --no-floppy --fs-uuid --set=root 01CD7BB998DB0870 fi loopback loop0 /ubuntu/disks/root.disk set root=(loop0) echo 'Loading Linux 3.5.0-19-generic ...' linux /boot/vmlinuz-3.5.0-19-generic root=UUID=01CD7BB998DB0870 loop=/ubuntu/disks/root.disk ro recovery nomodeset echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-3.5.0-19-generic } } ### END /etc/grub.d/10_lupin ### menuentry 'Linux, with Linux core repo kernel' --class arch --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-core repo kernel-true-0f490b6c-e92d-42f0-88e1-0bd3c0d27641'{ load_video set gfxpayload=keep insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos8' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos8 --hint-efi=hd0,msdos8 --hint-baremetal=ahci0,msdos8 0f490b6c-e92d-42f0-88e1-0bd3c0d27641 else search --no-floppy --fs-uuid --set=root 0f490b6c-e92d-42f0-88e1-0bd3c0d27641 fi echo 'Loading Linux core repo kernel ...' linux /boot/vmlinuz-linux root=UUID=0f490b6c-e92d-42f0-88e1-0bd3c0d27641 ro quiet echo 'Loading initial ramdisk ...' initrd /boot/initramfs-linux.img } menuentry 'Linux, with Linux core repo kernel (Fallback initramfs)' --class arch --class gnu-linux --class gnu --class os $menuentry_id_option 'gnulinux-core repo kernel-fallback-0f490b6c-e92d-42f0-88e1-0bd3c0d27641' { load_video set gfxpayload=keep insmod gzio insmod part_msdos insmod ext2 set root='hd0,msdos8' if [ x$feature_platform_search_hint = xy ]; then search --no-floppy --fs-uuid --set=root --hint-bios=hd0,msdos8 --hint-efi=hd0,msdos8 --hint-baremetal=ahci0,msdos8 0f490b6c-e92d-42f0-88e1-0bd3c0d27641 else search --no-floppy --fs-uuid --set=root 0f490b6c-e92d-42f0-88e1-0bd3c0d27641 fi echo 'Loading Linux core repo kernel ...' linux /boot/vmlinuz-linux root=UUID=0f490b6c-e92d-42f0-88e1-0bd3c0d27641 ro quiet echo 'Loading initial ramdisk ...' initrd /boot/initramfs-linux-fallback.img } lsblk NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT sda 8:0 0 931.5G 0 disk +-sda1 8:1 0 39.2M 0 part +-sda2 8:2 0 19.8G 0 part +-sda3 8:3 0 205.1G 0 part +-sda4 8:4 0 1K 0 part +-sda5 8:5 0 333.7G 0 part /host +-sda6 8:6 0 233.4G 0 part +-sda7 8:7 0 100.4G 0 part +-sda8 8:8 0 100M 0 part +-sda9 8:9 0 14.7G 0 part +-sda10 8:10 0 21.4G 0 part +-sda11 8:11 0 3G 0 part sr0 11:0 1 1024M 0 rom loop0 7:0 0 29G 0 loop / blkid /dev/loop0: UUID="fc296be2-8c59-4f21-a3f8-47c38cd0d537" TYPE="ext4" /dev/sda1: SEC_TYPE="msdos" LABEL="DellUtility" UUID="5450-4444" TYPE="vfat" /dev/sda2: LABEL="RECOVERY" UUID="78C4FAC1C4FA80A4" TYPE="ntfs" /dev/sda3: LABEL="OS" UUID="DACEFCF1CEFCC6B3" TYPE="ntfs" /dev/sda5: UUID="01CD7BB998DB0870" TYPE="ntfs" /dev/sda6: UUID="01CD7BB99CA3F750" TYPE="ntfs" /dev/sda7: LABEL="Windows 8" UUID="01CDBFB52F925F40" TYPE="ntfs" /dev/sda8: UUID="cdbb5770-d29c-401d-850d-ee30a048ca5e" TYPE="ext2" /dev/sda9: UUID="0f490b6c-e92d-42f0-88e1-0bd3c0d27641" TYPE="ext2" /dev/sda10: UUID="2e7682e5-8917-4edc-9bf9-044fea2ad738" TYPE="ext2" /dev/sda11: UUID="6081da70-d622-42b9-b489-309f922b284e" TYPE="swap Any help is appreciated. Please let me know if you need any extra data.

    Read the article

  • Writing the tests for FluentPath

    Writing the tests for FluentPath is a challenge. The library is a wrapper around a legacy API (System.IO) that wasnt designed to be easily testable. If it were more testable, the sensible testing methodology would be to tell System.IO to act against a mock file system, which would enable me to verify that my code is doing the expected file system operations without having to manipulate the actual, physical file system: what we are testing here is FluentPath, not System.IO. Unfortunately, that...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • PC hangs and reboots from time to time

    - by Bevor
    Hello, I have a very strange problem: Since I have my new PC, I have always had problems with it. From time to time the computer freezes for some seconds and suddendly reboots by itself. I've had this problem since Ubuntu 9.10. The same with 10.04 and 10.10. That's why I don't think it's a software failure because the problem persist too long. It doesn't have anything to do with what I'm doing at this time. Sometimes I listen to music, sometimes I only use Firefox, sometimes I'm running 2 or 3 VMs, sometimes I watch DVD. So it's not isolatable. I could freeze once a day or once a week. I put the PC to the vendor twice(!). The first time they changed my power supply but the problem persisted. The second time they told me that they made some heavy performance tests 50 hours long but they didn't find anything. (How can that be that I have daily freezes with normal usage). The vendor didn't check the hard discs because they used their own disc with Windows. (So they never checked the Linux installation). Yesterday I made some intensive hard disc scans with "SMART" but no errors were found. I ran memtest for 3 times but no errors found. I already had this problem in my old flat, so I doubt that I has something to do with current fluctuation. I already tried another electrical socket and changed to connector strip but the problem persists. At the moment I removed 2 of the RAMs (2x 2GB). In all I have 6GB, 2x2GB and 2x1GB. Could this difference maybe be a problem? Here is a list of my components. I hope that anybody find something I didn't think about yet. And here a list of my components: 1x AMD Phenom II X4 965 Black Edition, 3,4Ghz, Quad Core, S-AM3, Boxed 2x DDR3-RAM 2048MB, PC3-1333 Mhz, CL9, Kingston ValueRAM 2x DDR3-RAM 1024MB, PC3-1333 Mhz, CL9, Kingston ValueRAM 2x SATA II Seagate Barracuda 7200.12, 1TB 32MB Cache = RAID 1 1x DVD ROM SATA LG DH16NSR, 16x/52x 1x DVD-+R/-+RW SATA LG GH-22NS50 1x Cardreader 18in1 1x PCI-E 2.0 GeForce GTS 250, Retail, 1024MB 1x Power Supply ATX 400 Watt, CHIEFTEC APS-400S, 80 Plus 1x Network card PCI Intel PRO/1000GT 10/100/1000 MBit 1x Mainboard Socket-AM3 ASUS M4A79XTD EVO, ATX lshw: description: Desktop Computer product: System Product Name vendor: System manufacturer version: System Version serial: System Serial Number width: 64 bits capabilities: smbios-2.5 dmi-2.5 vsyscall64 vsyscall32 configuration: boot=normal chassis=desktop uuid=80E4001E-8C00-002C-AA59-E0CB4EBAC29A *-core description: Motherboard product: M4A79XTD EVO vendor: ASUSTeK Computer INC. physical id: 0 version: Rev X.0X serial: MT709CK11101196 slot: To Be Filled By O.E.M. *-firmware description: BIOS vendor: American Megatrends Inc. physical id: 0 version: 0704 (11/25/2009) size: 64KiB capacity: 960KiB capabilities: isa pci pnp apm upgrade shadowing escd cdboot bootselect socketedrom edd int13floppy1200 int13floppy720 int13floppy2880 int5printscreen int9keyboard int14serial int17printer int10video acpi usb ls120boot zipboot biosbootspecification *-cpu description: CPU product: AMD Phenom(tm) II X4 965 Processor vendor: Advanced Micro Devices [AMD] physical id: 4 bus info: cpu@0 version: AMD Phenom(tm) II X4 965 Processor serial: To Be Filled By O.E.M. slot: AM3 size: 800MHz capacity: 3400MHz width: 64 bits clock: 200MHz capabilities: fpu fpu_exception wp vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp x86-64 3dnowext 3dnow constant_tsc rep_good nonstop_tsc extd_apicid pni monitor cx16 popcnt lahf_lm cmp_legacy svm extapic cr8_legacy abm sse4a misalignsse 3dnowprefetch osvw ibs skinit wdt npt lbrv svm_lock nrip_save cpufreq *-cache:0 description: L1 cache physical id: 5 slot: L1-Cache size: 512KiB capacity: 512KiB capabilities: pipeline-burst internal varies data *-cache:1 description: L2 cache physical id: 6 slot: L2-Cache size: 2MiB capacity: 2MiB capabilities: pipeline-burst internal varies unified *-cache:2 description: L3 cache physical id: 7 slot: L3-Cache size: 6MiB capacity: 6MiB capabilities: pipeline-burst internal varies unified *-memory description: System Memory physical id: 36 slot: System board or motherboard size: 2GiB *-bank:0 description: DIMM Synchronous 1333 MHz (0.8 ns) product: ModulePartNumber00 vendor: Manufacturer00 physical id: 0 serial: SerNum00 slot: DIMM0 size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:1 description: DIMM Synchronous 1333 MHz (0.8 ns) product: ModulePartNumber01 vendor: Manufacturer01 physical id: 1 serial: SerNum01 slot: DIMM1 size: 1GiB width: 64 bits clock: 1333MHz (0.8ns) *-bank:2 description: DIMM [empty] product: ModulePartNumber02 vendor: Manufacturer02 physical id: 2 serial: SerNum02 slot: DIMM2 *-bank:3 description: DIMM [empty] product: ModulePartNumber03 vendor: Manufacturer03 physical id: 3 serial: SerNum03 slot: DIMM3 *-pci:0 description: Host bridge product: RD780 Northbridge only dual slot PCI-e_GFX and HT1 K8 part vendor: ATI Technologies Inc physical id: 100 bus info: pci@0000:00:00.0 version: 00 width: 32 bits clock: 66MHz *-pci:0 description: PCI bridge product: RD790 PCI to PCI bridge (external gfx0 port A) vendor: ATI Technologies Inc physical id: 2 bus info: pci@0000:00:02.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:40 ioport:a000(size=4096) memory:f8000000-fbbfffff ioport:d0000000(size=268435456) *-display description: VGA compatible controller product: G92 [GeForce GTS 250] vendor: nVidia Corporation physical id: 0 bus info: pci@0000:01:00.0 version: a2 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vga_controller bus_master cap_list rom configuration: driver=nvidia latency=0 resources: irq:18 memory:fa000000-faffffff memory:d0000000-dfffffff memory:f8000000-f9ffffff ioport:ac00(size=128) memory:fbbe0000-fbbfffff *-pci:1 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port C) vendor: ATI Technologies Inc physical id: 6 bus info: pci@0000:00:06.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:41 ioport:b000(size=4096) memory:fbc00000-fbcfffff ioport:f6f00000(size=1048576) *-network description: Ethernet interface product: RTL8111/8168B PCI Express Gigabit Ethernet controller vendor: Realtek Semiconductor Co., Ltd. physical id: 0 bus info: pci@0000:02:00.0 logical name: eth0 version: 03 serial: e0:cb:4e:ba:c2:9a size: 10MB/s capacity: 1GB/s width: 64 bits clock: 33MHz capabilities: pm msi pciexpress msix vpd bus_master cap_list rom ethernet physical tp mii 10bt 10bt-fd 100bt 100bt-fd 1000bt 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=r8169 driverversion=2.3LK-NAPI duplex=half latency=0 link=no multicast=yes port=MII speed=10MB/s resources: irq:45 ioport:b800(size=256) memory:f6fff000-f6ffffff memory:f6ff8000-f6ffbfff memory:fbcf0000-fbcfffff *-pci:2 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port D) vendor: ATI Technologies Inc physical id: 7 bus info: pci@0000:00:07.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:42 ioport:c000(size=4096) memory:fbd00000-fbdfffff *-firewire description: FireWire (IEEE 1394) product: VT6315 Series Firewire Controller vendor: VIA Technologies, Inc. physical id: 0 bus info: pci@0000:03:00.0 version: 00 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress ohci bus_master cap_list configuration: driver=firewire_ohci latency=0 resources: irq:19 memory:fbdff800-fbdfffff ioport:c800(size=256) *-pci:3 description: PCI bridge product: RD790 PCI to PCI bridge (PCI express gpp port E) vendor: ATI Technologies Inc physical id: 9 bus info: pci@0000:00:09.0 version: 00 width: 32 bits clock: 33MHz capabilities: pci pm pciexpress msi ht normal_decode bus_master cap_list configuration: driver=pcieport resources: irq:43 ioport:d000(size=4096) memory:fbe00000-fbefffff *-ide description: IDE interface product: 88SE6121 SATA II Controller vendor: Marvell Technology Group Ltd. physical id: 0 bus info: pci@0000:04:00.0 version: b2 width: 32 bits clock: 33MHz capabilities: ide pm msi pciexpress bus_master cap_list configuration: driver=pata_marvell latency=0 resources: irq:17 ioport:dc00(size=8) ioport:d880(size=4) ioport:d800(size=8) ioport:d480(size=4) ioport:d400(size=16) memory:fbeffc00-fbefffff *-storage description: SATA controller product: SB700/SB800 SATA Controller [IDE mode] vendor: ATI Technologies Inc physical id: 11 bus info: pci@0000:00:11.0 logical name: scsi0 logical name: scsi2 version: 00 width: 32 bits clock: 66MHz capabilities: storage msi ahci_1.0 bus_master cap_list emulated configuration: driver=ahci latency=64 resources: irq:44 ioport:9000(size=8) ioport:8000(size=4) ioport:7000(size=8) ioport:6000(size=4) ioport:5000(size=16) memory:f7fffc00-f7ffffff *-disk:0 description: ATA Disk product: ST31000528AS vendor: Seagate physical id: 0 bus info: scsi@0:0.0.0 logical name: /dev/sda version: CC38 serial: 9VP3WD9Z size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000ad206 *-volume:0 UNCLAIMED description: Linux filesystem partition vendor: Linux physical id: 1 bus info: scsi@0:0.0.0,1 version: 1.0 serial: 81839235-21ea-4853-90a4-814779f49000 size: 972MiB capacity: 972MiB capabilities: primary ext2 initialized configuration: filesystem=ext2 modified=2010-12-06 18:32:58 mounted=2010-11-01 07:05:10 state=unknown *-volume:1 UNCLAIMED description: Linux swap volume physical id: 2 bus info: scsi@0:0.0.0,2 version: 1 serial: 22b881d5-6f5c-484d-94e8-e231896fa91b size: 486MiB capacity: 486MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-volume:2 UNCLAIMED description: EXT3 volume vendor: Linux physical id: 3 bus info: scsi@0:0.0.0,3 version: 1.0 serial: ad5b0daf-11e8-4f8f-8598-4e89da9c0d84 size: 47GiB capacity: 47GiB capabilities: primary journaled extended_attributes large_files recover ext3 ext2 initialized configuration: created=2010-02-16 20:42:29 filesystem=ext3 modified=2010-11-29 17:02:34 mounted=2010-12-06 18:32:50 state=clean *-volume:3 UNCLAIMED description: Extended partition physical id: 4 bus info: scsi@0:0.0.0,4 size: 882GiB capacity: 882GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume UNCLAIMED description: Linux filesystem partition physical id: 5 capacity: 882GiB *-disk:1 description: ATA Disk product: ST31000528AS vendor: Seagate physical id: 1 bus info: scsi@2:0.0.0 logical name: /dev/sdb version: CC38 serial: 9VP3SCPF size: 931GiB (1TB) capabilities: partitioned partitioned:dos configuration: ansiversion=5 signature=000ad206 *-volume:0 UNCLAIMED description: Linux filesystem partition vendor: Linux physical id: 1 bus info: scsi@2:0.0.0,1 version: 1.0 serial: 81839235-21ea-4853-90a4-814779f49000 size: 972MiB capacity: 972MiB capabilities: primary ext2 initialized configuration: filesystem=ext2 modified=2010-12-06 18:32:58 mounted=2010-11-01 07:05:10 state=unknown *-volume:1 UNCLAIMED description: Linux swap volume physical id: 2 bus info: scsi@2:0.0.0,2 version: 1 serial: 22b881d5-6f5c-484d-94e8-e231896fa91b size: 486MiB capacity: 486MiB capabilities: primary nofs swap initialized configuration: filesystem=swap pagesize=4096 *-volume:2 UNCLAIMED description: EXT3 volume vendor: Linux physical id: 3 bus info: scsi@2:0.0.0,3 version: 1.0 serial: ad5b0daf-11e8-4f8f-8598-4e89da9c0d84 size: 47GiB capacity: 47GiB capabilities: primary journaled extended_attributes large_files recover ext3 ext2 initialized configuration: created=2010-02-16 20:42:29 filesystem=ext3 modified=2010-11-29 17:02:34 mounted=2010-12-06 18:32:50 state=clean *-volume:3 UNCLAIMED description: Extended partition physical id: 4 bus info: scsi@2:0.0.0,4 size: 882GiB capacity: 882GiB capabilities: primary extended partitioned partitioned:extended *-logicalvolume UNCLAIMED description: Linux filesystem partition physical id: 5 capacity: 882GiB *-usb:0 description: USB Controller product: SB700/SB800 USB OHCI0 Controller vendor: ATI Technologies Inc physical id: 12 bus info: pci@0000:00:12.0 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:16 memory:f7ffd000-f7ffdfff *-usb:1 description: USB Controller product: SB700 USB OHCI1 Controller vendor: ATI Technologies Inc physical id: 12.1 bus info: pci@0000:00:12.1 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:16 memory:f7ffe000-f7ffefff *-usb:2 description: USB Controller product: SB700/SB800 USB EHCI Controller vendor: ATI Technologies Inc physical id: 12.2 bus info: pci@0000:00:12.2 version: 00 width: 32 bits clock: 66MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=64 resources: irq:17 memory:f7fff800-f7fff8ff *-usb:3 description: USB Controller product: SB700/SB800 USB OHCI0 Controller vendor: ATI Technologies Inc physical id: 13 bus info: pci@0000:00:13.0 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffb000-f7ffbfff *-usb:4 description: USB Controller product: SB700 USB OHCI1 Controller vendor: ATI Technologies Inc physical id: 13.1 bus info: pci@0000:00:13.1 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffc000-f7ffcfff *-usb:5 description: USB Controller product: SB700/SB800 USB EHCI Controller vendor: ATI Technologies Inc physical id: 13.2 bus info: pci@0000:00:13.2 version: 00 width: 32 bits clock: 66MHz capabilities: pm debug ehci bus_master cap_list configuration: driver=ehci_hcd latency=64 resources: irq:19 memory:f7fff400-f7fff4ff *-serial UNCLAIMED description: SMBus product: SBx00 SMBus Controller vendor: ATI Technologies Inc physical id: 14 bus info: pci@0000:00:14.0 version: 3c width: 32 bits clock: 66MHz capabilities: ht cap_list configuration: latency=0 *-ide description: IDE interface product: SB700/SB800 IDE Controller vendor: ATI Technologies Inc physical id: 14.1 bus info: pci@0000:00:14.1 logical name: scsi5 version: 00 width: 32 bits clock: 66MHz capabilities: ide msi bus_master cap_list emulated configuration: driver=pata_atiixp latency=64 resources: irq:16 ioport:1f0(size=8) ioport:3f6 ioport:170(size=8) ioport:376 ioport:ff00(size=16) *-cdrom:0 description: DVD reader product: DVDROM DH16NS30 vendor: HL-DT-ST physical id: 0.0.0 bus info: scsi@5:0.0.0 logical name: /dev/cdrom1 logical name: /dev/dvd1 logical name: /dev/scd0 logical name: /dev/sr0 version: 1.00 capabilities: removable audio dvd configuration: ansiversion=5 status=nodisc *-cdrom:1 description: DVD-RAM writer product: DVDRAM GH22NS50 vendor: HL-DT-ST physical id: 0.1.0 bus info: scsi@5:0.1.0 logical name: /dev/cdrom logical name: /dev/cdrw logical name: /dev/dvd logical name: /dev/dvdrw logical name: /dev/scd1 logical name: /dev/sr1 version: TN02 capabilities: removable audio cd-r cd-rw dvd dvd-r dvd-ram configuration: ansiversion=5 status=nodisc *-multimedia description: Audio device product: SBx00 Azalia (Intel HDA) vendor: ATI Technologies Inc physical id: 14.2 bus info: pci@0000:00:14.2 version: 00 width: 64 bits clock: 33MHz capabilities: pm bus_master cap_list configuration: driver=HDA Intel latency=64 resources: irq:16 memory:f7ff4000-f7ff7fff *-isa description: ISA bridge product: SB700/SB800 LPC host controller vendor: ATI Technologies Inc physical id: 14.3 bus info: pci@0000:00:14.3 version: 00 width: 32 bits clock: 66MHz capabilities: isa bus_master configuration: latency=0 *-pci:4 description: PCI bridge product: SBx00 PCI to PCI Bridge vendor: ATI Technologies Inc physical id: 14.4 bus info: pci@0000:00:14.4 version: 00 width: 32 bits clock: 66MHz capabilities: pci subtractive_decode bus_master resources: ioport:e000(size=4096) memory:fbf00000-fbffffff *-network description: Ethernet interface product: 82541PI Gigabit Ethernet Controller vendor: Intel Corporation physical id: 5 bus info: pci@0000:05:05.0 logical name: eth1 version: 05 serial: 00:1b:21:56:f3:60 size: 100MB/s capacity: 1GB/s width: 32 bits clock: 66MHz capabilities: pm pcix bus_master cap_list rom ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd 1000bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=e1000 driverversion=7.3.21-k6-NAPI duplex=full firmware=N/A ip=192.168.1.2 latency=64 link=yes mingnt=255 multicast=yes port=twisted pair speed=100MB/s resources: irq:20 memory:fbfe0000-fbffffff memory:fbfc0000-fbfdffff ioport:ec00(size=64) memory:fbfa0000-fbfbffff *-usb:6 description: USB Controller product: SB700/SB800 USB OHCI2 Controller vendor: ATI Technologies Inc physical id: 14.5 bus info: pci@0000:00:14.5 version: 00 width: 32 bits clock: 66MHz capabilities: ohci bus_master configuration: driver=ohci_hcd latency=64 resources: irq:18 memory:f7ffa000-f7ffafff *-pci:1 description: Host bridge product: Family 10h Processor HyperTransport Configuration vendor: Advanced Micro Devices [AMD] physical id: 101 bus info: pci@0000:00:18.0 version: 00 width: 32 bits clock: 33MHz *-pci:2 description: Host bridge product: Family 10h Processor Address Map vendor: Advanced Micro Devices [AMD] physical id: 102 bus info: pci@0000:00:18.1 version: 00 width: 32 bits clock: 33MHz *-pci:3 description: Host bridge product: Family 10h Processor DRAM Controller vendor: Advanced Micro Devices [AMD] physical id: 103 bus info: pci@0000:00:18.2 version: 00 width: 32 bits clock: 33MHz *-pci:4 description: Host bridge product: Family 10h Processor Miscellaneous Control vendor: Advanced Micro Devices [AMD] physical id: 104 bus info: pci@0000:00:18.3 version: 00 width: 32 bits clock: 33MHz configuration: driver=k10temp resources: irq:0 *-pci:5 description: Host bridge product: Family 10h Processor Link Control vendor: Advanced Micro Devices [AMD] physical id: 105 bus info: pci@0000:00:18.4 version: 00 width: 32 bits clock: 33MHz *-scsi physical id: 1 bus info: usb@2:3 logical name: scsi8 capabilities: emulated scsi-host configuration: driver=usb-storage *-disk:0 description: SCSI Disk physical id: 0.0.0 bus info: scsi@8:0.0.0 logical name: /dev/sdc *-disk:1 description: SCSI Disk physical id: 0.0.1 bus info: scsi@8:0.0.1 logical name: /dev/sdd *-disk:2 description: SCSI Disk physical id: 0.0.2 bus info: scsi@8:0.0.2 logical name: /dev/sde *-disk:3 description: SCSI Disk physical id: 0.0.3 bus info: scsi@8:0.0.3 logical name: /dev/sdf *-network DISABLED description: Ethernet interface physical id: 1 logical name: vboxnet0 serial: 0a:00:27:00:00:00 capabilities: ethernet physical configuration: broadcast=yes multicast=yes

    Read the article

  • Boot From a USB Drive Even if your BIOS Won’t Let You

    - by Trevor Bekolay
    You’ve always got a trusty bootable USB flash drive with you to solve computer problems, but what if a PC’s BIOS won’t let you boot from USB? We’ll show you how to make a CD or floppy disk that will let you boot from your USB drive. This boot menu, like many created before USB drives became cheap and commonplace, does not include an option to boot from a USB drive. A piece of freeware called PLoP Boot Manager solves this problem, offering an image that can burned to a CD or put on a floppy disk, and enables you to boot to a variety of devices, including USB drives. Put PLoP on a CD PLoP comes as a zip file, which includes a variety of files. To put PLoP on a CD, you will need either plpbt.iso or plpbtnoemul.iso from that zip file. Either disc image should work on most computers, though if in doubt plpbtnoemul.iso should work “everywhere,” according to the readme included with PLoP Boot Manager. Burn plpbtnoemul.iso or plpbt.iso to a CD and then skip to the “booting PLoP Boot Manager” section. Put PLoP on a Floppy Disk If your computer is old enough to still have a floppy drive, then you will need to put the contents of the plpbt.img image file found in PLoP’s zip file on a floppy disk. To do this, we’ll use a freeware utility called RawWrite for Windows. We aren’t fortunate enough to have a floppy drive installed, but if you do it should be listed in the Floppy drive drop-down box. Select your floppy drive, then click on the “…” button and browse to plpbt.img. Press the Write button to write PLoP boot manager to your floppy disk. Booting PLoP Boot Manager To boot PLoP, you will need to have your CD or floppy drive boot with higher precedence than your hard drive. In many cases, especially with floppy disks, this is done by default. If the CD or floppy drive is not set to boot first, then you will need to access your BIOS’s boot menu, or the setup menu. The exact steps to do this vary depending on your BIOS – to get a detailed description of the process, search for your motherboard’s manual (or your laptop’s manual if you’re working with a laptop). In general, however, as the computer boots up, some important keyboard strokes are noted somewhere prominent on the screen. In our case, they are at the bottom of the screen. Press Escape to bring up the Boot Menu. Previously, we burned a CD with PLoP Boot Manager on it, so we will select the CD-ROM Drive option and hit Enter. If your BIOS does not have a Boot Menu, then you will need to access the Setup menu and change the boot order to give the floppy disk or CD-ROM Drive higher precedence than the hard drive. Usually this setting is found in the “Boot” or “Advanced” section of the Setup menu. If done correctly, PLoP Boot Manager will load up, giving a number of boot options. Highlight USB and press Enter. PLoP begins loading from the USB drive. Despite our BIOS not having the option, we’re now booting using the USB drive, which in our case holds an Ubuntu Live CD! This is a pretty geeky way to get your PC to boot from a USB…provided your computer still has a floppy drive. Of course if your BIOS won’t boot from a USB it probably has one…or you really need to update it. Download PLoP Boot Manager Download RawWrite for Windows Similar Articles Productive Geek Tips Create a Bootable Ubuntu 9.10 USB Flash DriveReinstall Ubuntu Grub Bootloader After Windows Wipes it OutCreate a Bootable Ubuntu USB Flash Drive the Easy WayBuilding a New Computer – Part 3: Setting it UpInstall Windows XP on Your Pre-Installed Windows Vista Computer TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Office 2010 reviewed in depth by Ed Bott FoxClocks adds World Times in your Statusbar (Firefox) Have Fun Editing Photo Editing with Citrify Outlook Connector Upgrade Error Gadfly is a cool Twitter/Silverlight app Enable DreamScene in Windows 7

    Read the article

  • cannot make ubuntu 64-bit v12.04 install work

    - by honestann
    I decided it was time to update my ubuntu (single boot) computer from 64-bit v10.04 to 64-bit v12.04. Unfortunately, for some reason (or reasons) I just can't make it work. Note that I am attempting a fresh install of 64-bit v12.04 onto a new 3TB hard disk, not an upgrade of the 1TB hard disk that contains my working 64-bit v10.04 installation. To perform the attempted install of v12.04 I unplug the SATA cable from the 1TB drive and plug it into the 3TB drive (to avoid risking damage to my working v10.04 installation). I downloaded the ubuntu 64-bit v12.04 install DVD ISO file (~1.6 GB) from the ubuntu releases webpage and burned it onto a DVD. I have downloaded the DVD ISO file 3 times and burned 3 of these installation DVDs (twice with v10.04 and once with my winxp64 system), but none of them work. I run the "check disk" on the DVDs at the beginning of the installation process to assure the DVD is valid. When installation completes and the system boots the 3TB drive, it reports "unknown filesystem". After installation on the 250GB drives, the system boots up fine. During every install I plug the same SATA cable (sda) into only one disk drive (the 3TB or one of the 250GB drives) and leave the other disk drives unconnected (for simplicity). It is my understanding that 64-bit ubuntu (and 64-bit linux in general) has no problem with 3TB disk drives. In the BIOS I have tried having EFI set to "enabled" and "auto" with no apparent difference (no success). I never bothered setting the BIOS to "non-EFI". I have tried partitioning the drive in a few ways to see if that makes a difference, but so far it has not mattered. Typically I manually create partitions something like this: 8GB /boot ext4 8GB swap 3TB / ext4 But I've also tried the following, just in case it matters: 8GB boot efi 8GB swap 8GB /boot ext4 3TB / ext4 Note: In the partition dialog I specify bootup on the same drive I am partitioning and installing ubuntu v12.04 onto. It is a VERY DANGEROUS FACT that the default for this always comes up with the wrong drive (some other drive, generally the external drive). Unless I'm stupid or misunderstanding something, this is very wrong and very dangerous default behavior. Note: If I connect the SATA cable to the 1TB drive that has been my ubuntu 64-bit v10.04 system drive for the past 2 years, it boots up and runs fine. I guess there must be a log file somewhere, and maybe it gives some hints as to what the problem is. I should be able to boot off the 1TB drive with the 3TB drive connected as a secondary (non-boot) drive and get the log file, assuming there is one and someone tells me the name (and where to find it if the name is very generic). After installation on the 3TB drive completes and the system reboots, the following prints out on a black screen: Loading Operating System ... Boot from CD/DVD : Boot from CD/DVD : error: unknown filesystem grub rescue> Note: I have two DVD burners in the system, hence the duplicate line above. Note: I install and boot 64-bit ubuntu v12.04 on both of my 250GB in this same system, but still cannot make the 3TB drive boot. Sigh. Any ideas? ========== motherboard == gigabyte 990FXA-UD7 CPU == AMD FX-8150 8-core bulldozer @ 3.6 GHz RAM == 8GB of DDR3 in 2 sticks (matched pair) HDD == seagate 3TB SATA3 @ 7200 rpm (new install 64-bit v12.04 FAILS) HDD == seagate 1TB SATA3 @ 7200 rpm (64-bit v10.04 WORKS for two years) HDD == seagate 250GB SATA2 @ 7200 rpm (new install 64-bit v12.04 WORKS) HDD == seagate 250GB SATA2 @ 7200 rpm (new install 64-bit v12.04 WORKS) GPU == nvidia GTX-285 ??? == no overclocking or other funky business USB == external seagate 2TB HDD for making backups DVD == one bluray burner (SATA) DVD == one DVD burner (SATA) 64-bit ubuntu v10.04 has booted and run fine on the seagate 1TB drive for 2 years.

    Read the article

  • Install Problem (Ubuntu Server 10.04) with USB as it reboots when I hit 'enter' for 'Install Ubuntu Server' option! Help

    - by Alastair
    We cannot seem to install Ubuntu Server with USB as it reboots when I hit 'enter' for 'Install Ubuntu Server' option. My friend wants to try setting up a server so; we downloaded Ubuntu Server 10.04.4 we created a boot CD and installed ubuntu server no problem at all. But then the problem arose the hardrive we wanted to use is a 1tb sata drive and the computer orginally has 40gb IDE. So I bought a Sata to IDE and IDE to Sata converter from: http://www.microdirect.co.uk/Home/Product/52926/IDE-to-SATA-converter---Converts-IDE-HDD-to-SATA-inc-sata-data-and-power-cables Unfortunately this converter means I cannot plug in the IDE cable meaning I only have one IDE connection i.e CD drive has to be disconnected for the 1tb sata Hardrive to be connected. So now the 1tb drive is connected, powered it on opened the bios to make sure the hdd appeared it did as ST3ASDAPFKG (somthing like that). Fortunately the computer supports USB booting, so I read ubuntu server usb install instructions I tried: Startup Disk Creator & Unebootin Startup Disk Creator made the usb bootable with the 'ubuntu-10.04.4-server-i386.iso' All looked fine stuck the usb drive in, booted the machine up and I am quickly presented with ubuntu language choice. I hit enter to select English then I am presented with: Install Ubuntu Server, Install Ubuntu Enterprise Cloud, Check Disk for defects, test memory, Boot from first hard disk, Rescue a broken system I can move up and down the menu fine everything seems ok, I select 'Install Ubuntu Server', computer just hangs and screen either goes blank or locks. So I rebooted the computer loads the same menus fine, I select 'Install Ubuntu Server' hit 'enter' and the computer just restarts then brings me back to the same menu. hmmm Then I tried choosing the rest of the options separately: Install Ubuntu Server, Install Ubuntu Enterprise Cloud, Check Disk for defects, test memory, Boot from first hard disk, Rescue a broken system computer just restarts and back to the same ubuntu menu every-time. Grrrr At this point I wish I actually new how to command line install or something but I don't have a clue how to do that. So I tried hitting 'f6' for 'other options' and I tried them all in various combinations and individually. No Luck: (Expert mode, acpi=off, noapic, nolapic, edd=on, nodmraid, nomodeset, Free Software only) At this point I am wondering if it is a bios setting causing problems, I tried turning every option in there on off that I don't understand. No Luck. I then discovered by accident if you hit esc in the ubuntu install menu it says "you are leaving the graphical boot menu and starting the text mode interface" I hit 'Ok'. Next a prompt pops up saying 'boot:' One time it responded when I typed somthing with 'Cannot find kernal image (something like that but since then it just restarts when I hit enter in that prompt). I had a browse on the net and found someone suggesting removing quiet from install command for 'Install Ubuntu Server'. Made no difference at all just reboots... Orginal boot options noprompt cdrom-detect/try-usb=true persistent file=/cdrom/preseed/ubuntu-server.seed initrd=/install/initrd.gz quiet -- Modified boot options noprompt cdrom-detect/try-usb=true persistent file=/cdrom/preseed/ubuntu-server.seed initrd=/install/initrd.gz -- Still I cannot install Ubuntu Server by USB as it, reboots when I hit 'enter' for 'Install Ubuntu Server' option. This is a real pain as we cannot take the 1tb Sata Hardrive and swap it for IDE to be able to use the cd drive. Why is is it so hard to install ubuntu server with usb? I have wasted a full day and half on this really frustrated any help would be amazing! I know the answers out there just seems a bit illusive at the moment! Computer Spec- Asus Motherboard, 1gb RAM 2X512MB, Powersupply 200watt, 2.8ghz Processor Intel, On-board 64mb graphics, 100mb Ethernet, 54mb Wireless,

    Read the article

  • help: cannot make ubuntu 64-bit v12.04 install work

    - by honestann
    I decided it was time to update my ubuntu (single boot) computer from 64-bit v10.04 to 64-bit v12.04. Unfortunately, for some reason (or reasons) I just can't make it work. Note that I am attempting a fresh install of 64-bit v12.04 onto a new 3TB hard disk, not an upgrade of the 1TB hard disk that has contained my 64-bit v10.04 installation. To perform the attempted install of v12.04 I unplug the SATA cable from the 1TB drive and plug it into the 3TB drive (to avoid risking damage to my working v10.04 installation). I downloaded the ubuntu 64-bit v12.04 install DVD ISO file (~1.6 GB) from the ubuntu releases webpage and burned it onto a DVD. I have downloaded the DVD ISO file 3 times and burned 3 of these installation DVDs (twice with v10.04 and once with my winxp64 system), but none of them work. I run the "check disk" on the DVDs at the beginning of the installation process to assure the DVD is valid. I also tried to install on two older 250GB seagate drives in the same computer. During every attempt I plug the same SATA cable (sda) into only one disk drive (the 3TB or one of the 250GB drives) and leave the other disk drives unconnected (for simplicity). Installation takes about 30 minutes on the 250GB drives, and about 60 minutes on the 3TB drive - not sure why. When I install on the 250GB drives, the install process finishes, the computer reboots (after the install DVD is removed), but I get a grub error 15. It is my understanding that 64-bit ubuntu (and 64-bit linux in general) has no problem with 3TB disk drives. In the BIOS I have tried having EFI set to "enabled" and "auto" with no apparent difference (no success). I have tried partitioning the drive in a few ways to see if that makes a difference, but so far it has not mattered. Typically I manually create partitions something like this: 8GB swap 8GB /boot ext4 3TB / ext4 But I've also tried the following, just in case it matters: 100MB boot efi 8GB swap 8GB /boot ext4 3TB / ext4 Note: In the partition dialog I specify bootup on the same drive I am partitioning and installing ubuntu v12.04 onto. It is a VERY DANGEROUS FACT that the default for this always comes up with the wrong drive (some other drive, generally the external drive). Unless I'm stupid or misunderstanding something, this is very wrong and very dangerous default behavior. Note: If I connect the SATA cable to the 1TB drive that has been my ubuntu 64-bit v10.04 system drive for the past 2 years, it boots up and runs fine. I guess there must be a log file somewhere, and maybe it gives some hints as to what the problem is. I should be able to boot off the 1TB drive with the 3TB drive connected as a secondary (non-boot) drive and get the log file, assuming there is one and someone tells me the name (and where to find it if the name is very generic). After installation on the 3TB drive completes and the system reboots, the following prints out on a black screen: Loading Operating System ... Boot from CD/DVD : Boot from CD/DVD : error: unknown filesystem grub rescue Note: I have two DVD burners in the system, hence the duplicate line above. The same install and reboot on the 250GB drives generates "grub error 15". Sigh. Any ideas? ========== motherboard == gigabyte 990FXA-UD7 CPU == AMD FX-8150 8-core bulldozer @ 3.6 GHz RAM == 8GB of DDR3 in 2 sticks (matched pair) HDD == seagate 3TB SATA3 @ 7200 rpm (new install 64-bit v12.04) HDD == seagate 1TB SATA3 @ 7200 rpm (current install 64-bit v10.04) GPU == nvidia GTX-285 ??? == no overclocking or other funky business USB == external seagate 2TB HDD for making backups DVD == one bluray burner (SATA) DVD == one DVD burner (SATA) The current ubuntu 64-bit v10.04 system boots and runs fine on a seagate 1TB.

    Read the article

  • Grub Rescue Unknown Filesystem Error. Grub Corrupted or Filesystem?

    - by nightcrawler
    Now it has happened twice & have been pulling my hairs now... I have installed xubuntu on my external hardisk & have been using it for about 3 months. It has three partitions, one of 500 mb mounted at /boot, 2nd one of 48gb mounted at / & the rest (out of 160gb) is ntfs partition....used as normal external storage. The last storage supposedly acts as a buffer b/w Linux distributions & Win platform, buffer in the sense that it provides a universal channel for data transfers. I have constantly used this external hardisk for data transfers b/w win7 laptop & xubuntu (on this external hd) without any hassle. However, on of my desktops where I have ubuntu I (for the first time) attached this external drive which let me do data transfers where all three partitions properly mounted....but then nasty thing occurred the same that occurred before. I (as usual) tried booting via this external hd (one having xubuntu, one having being formerly used under Ubuntu) I got error Now I am totally devastated because similar thing happened ~6months before when I had fedora 17 in my external hd (instead of xubuntu) & after it was used under ubuntu the same happened...i didn't reported it because I already had planned towards debian instead of rpm! The mystery is that as long as I don't attach this external hd under ubuntu the data never** corrupts whereas under win xp/7 I can use it as a normal usb storage of coarse linux partitions aren’t available under win platforms... **From corrupts I mean hd fails to boot with the error mentioned however cant say whether data within remains untouched? It seems that my grub & or MBR is corrupted. Please sir guide me to solve this issue also why I cant attach & use linux external hds under linux platform Disk /dev/sdc: 160.0 GB, 160041884672 bytes 255 heads, 63 sectors/track, 19457 cylinders, total 312581806 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x0004e7d0 Device Boot Start End Blocks Id System /dev/sdc1 * 2048 976895 487424 83 Linux /dev/sdc2 978942 96874495 47947777 5 Extended /dev/sdc3 96874496 312575999 107850752 7 HPFS/NTFS/exFAT /dev/sdc5 978944 94726143 46873600 83 Linux /dev/sdc6 94728192 96874495 1073152 82 Linux swap / Solaris I can recall for sure that have seen a thread here when a similar problem occurred & in response someone gave solution of how to mount (now invisible) partitions & recover important data in them. I have misplaced that URL so if any can guide me thither because my important documents resides in / partition What I already have done: Without success I have tried this & related solutions What I plan to do: I believe that filesystem has corrupted & would you recommend solution like this provided I cant recall whether my /boot (500mb) partition was ext4 or ext2 though I am sure that my / (48gb) partition was ext4 UPDATE 1 Attached my external hd under Ubuntu ran followinf command as root grub-install /dev/sdc where /dev/sdc was my external hd containing corrupted xubuntu....it reported all done! I re-ran fdisk -l but to my disappointment it reported Disk /dev/sdc: 160.0 GB, 160041884672 bytes 255 heads, 63 sectors/track, 19457 cylinders, total 312581806 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x1b6b9167 Disk /dev/sdc doesn't contain a valid partition table ...& now I can't even access its ntfs partition (former /dev/sdc3) please help? UPDATE 2 TestDisk (by cgsecurity) failed at founding any partition table :( TestDisk 6.13, Data Recovery Utility, November 2011 Christophe GRENIER <[email protected]> http://www.cgsecurity.org Disk /dev/sdc - 160 GB / 149 GiB - CHS 19457 255 63 Partition Start End Size in sectors

    Read the article

  • Grub2 : Windows 7 can't boot installing with Ubuntu 10.04 on different hard drive

    - by dellphi
    I use a dual boot with two hard disks and two OS is Ubuntu 10.04 and Windows 7. Windows 7 installed on the first disk, first partition. Grub is installed on a second hard disk MBR, and Ubuntu installed on an extended partition on a second hard drive. When I select Windows 7 on the Grub menu, the HDD lamp lights up briefly and then black screen on the monitor, with the status of the keyboard is still functioning. Until now (with the default boot from first HDD), I have to press F12 to get into the Grub to run Linux on a second HDD. ================ fdisk -l ================================ dellph1@dellph1-desktop:~$ fdisk -l omitting empty partition (5) Disk /dev/sda: 1000.2 GB, 1000204886016 bytes 255 heads, 63 sectors/track, 121601 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x00087dec Device Boot Start End Blocks Id System /dev/sda1 * 1 23104 185582848+ 7 HPFS/NTFS /dev/sda2 23105 121601 791177122 5 Extended /dev/sda5 36107 74408 307660783+ 7 HPFS/NTFS /dev/sda6 74409 100081 206218341 7 HPFS/NTFS /dev/sda7 100082 121601 172859368+ 7 HPFS/NTFS Disk /dev/sdb: 160.0 GB, 160041885696 bytes 255 heads, 63 sectors/track, 19457 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x6d43dfb2 Device Boot Start End Blocks Id System /dev/sdb1 1 10030 80560066 5 Extended /dev/sdb5 * 1 5560 44657601 83 Linux /dev/sdb6 5560 9387 30736384 83 Linux /dev/sdb7 9387 10030 5164032 82 Linux swap / Solaris dellph1@dellph1-desktop:~$ ================= grub.cfg ================== # DO NOT EDIT THIS FILE # It is automatically generated by /usr/sbin/grub-mkconfig using templates from /etc/grub.d and settings from /etc/default/grub # BEGIN /etc/grub.d/00_header if [ -s $prefix/grubenv ]; then load_env fi set default="0" if [ ${prev_saved_entry} ]; then set saved_entry=${prev_saved_entry} save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z ${boot_once} ]; then saved_entry=${chosen} save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n ${have_grubenv} ]; then if [ -z ${boot_once} ]; then save_env recordfail; fi; fi } insmod ext2 set root='(hd1,5)' search --no-floppy --fs-uuid --set 2f014a3a-35f3-4d05-87aa-34ca677160b7 if loadfont /usr/share/grub/unicode.pf2 ; then set gfxmode=1024x768 insmod gfxterm insmod vbe if terminal_output gfxterm ; then true ; else # For backward compatibility with versions of terminal.mod that don't # understand terminal_output terminal gfxterm fi fi insmod ext2 set root='(hd1,5)' search --no-floppy --fs-uuid --set 2f014a3a-35f3-4d05-87aa-34ca677160b7 set locale_dir=($root)/boot/grub/locale set lang=en insmod gettext if [ ${recordfail} = 1 ]; then set timeout=-1 else set timeout=5 fi END /etc/grub.d/00_header BEGIN /etc/grub.d/05_debian_theme insmod ext2 set root='(hd1,5)' search --no-floppy --fs-uuid --set 2f014a3a-35f3-4d05-87aa-34ca677160b7 insmod jpeg if background_image /usr/share/backgrounds/CurlsbyCandy.jpg ; then set color_normal=white/black set color_highlight=black/light-gray else set menu_color_normal=white/black set menu_color_highlight=black/light-gray fi END /etc/grub.d/05_debian_theme BEGIN /etc/grub.d/10_linux menuentry 'Ubuntu, with Linux 2.6.32-24-generic' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod ext2 set root='(hd1,5)' search --no-floppy --fs-uuid --set 2f014a3a-35f3-4d05-87aa-34ca677160b7 linux /boot/vmlinuz-2.6.32-24-generic root=UUID=2f014a3a-35f3-4d05-87aa-34ca677160b7 ro splash vga=795 quiet splash nomodeset video=uvesafb:mode_option=1280x1024-24,mtrr=3,scroll=ywrap initrd /boot/initrd.img-2.6.32-24-generic } menuentry 'Ubuntu, with Linux 2.6.32-24-generic (recovery mode)' --class ubuntu --class gnu-linux --class gnu --class os { recordfail insmod ext2 set root='(hd1,5)' search --no-floppy --fs-uuid --set 2f014a3a-35f3-4d05-87aa-34ca677160b7 echo 'Loading Linux 2.6.32-24-generic ...' linux /boot/vmlinuz-2.6.32-24-generic root=UUID=2f014a3a-35f3-4d05-87aa-34ca677160b7 ro single splash vga=795 echo 'Loading initial ramdisk ...' initrd /boot/initrd.img-2.6.32-24-generic } END /etc/grub.d/10_linux BEGIN /etc/grub.d/30_os-prober menuentry "Windows 7 (loader) (on /dev/sda1)" { insmod ntfs set root='(hd0,1)' search --no-floppy --fs-uuid --set 5cac2139ac210f58 chainloader +1 } END /etc/grub.d/30_os-prober BEGIN /etc/grub.d/40_multisystem Ajout de MultiSystem MULTISYSTEM MENU menuentry "PLoP Boot Manager" { linux16 /boot/plpbt } menuentry "Smart Boot Manager" { search --set -f /boot/sbootmgr.dsk linux16 /boot/memdisk initrd16 /boot/sbootmgr.dsk } FIN MULTISYSTEM MENU END /etc/grub.d/40_multisystem ================================================ I want to keep the Grub on the second HDD. I have been using the Startup Manager, Boot Manager and Grub Customizer, and this problem still unsolved. The easiest thing that I can possibly do is to install Grub on first HDD, but I was curious and maybe someone can help.

    Read the article

  • CLSF & CLK 2013 Trip Report by Jeff Liu

    - by jamesmorris
    This is a contributed post from Jeff Liu, lead XFS developer for the Oracle mainline Linux kernel team. Recently, I attended both the China Linux Storage and Filesystem workshop (CLSF), and the China Linux Kernel conference (CLK), which were held in Shanghai. Here are the highlights for both events. CLSF - 17th October XFS update (led by Jeff Liu) XFS keeps rapid progress with a lot of changes, especially focused on the infrastructure/performance improvements as well as  new feature development.  This can be reflected with a sample statistics among XFS/Ext4+JBD2/Btrfs via: # git diff --stat --minimal -C -M v3.7..v3.12-rc4 -- fs/xfs|fs/ext4+fs/jbd2|fs/btrfs XFS: 141 files changed, 27598 insertions(+), 19113 deletions(-) Ext4+JBD2: 39 files changed, 10487 insertions(+), 5454 deletions(-) Btrfs: 70 files changed, 19875 insertions(+), 8130 deletions(-) What made up those changes in XFS? Self-describing metadata(CRC32c). This is a new feature and it contributed about 70% code changes, it can be enabled via `mkfs.xfs -m crc=1 /dev/xxx` for v5 superblock. Transaction log space reservation improvements. With this change, we can calculate the log space reservation at mount time rather than runtime to reduce the the CPU overhead. User namespace support. So both XFS and USERNS can be enabled on kernel configuration begin from Linux 3.10. Thanks Dwight Engen's efforts for this thing. Split project/group quota inodes. Originally, project quota can not be enabled with group quota at the same time because they were share the same quota file inode, now it works but only for v5 super block. i.e, CRC enabled. CONFIG_XFS_WARN, an new lightweight runtime debugger which can be deployed in production environment. Readahead log object recovery, this change can speed up the log replay progress significantly. Speculative preallocation inode tracking, clearing and throttling. The main purpose is to deal with inodes with post-EOF space due to speculative preallocation, support improved quota management to free up a significant amount of unwritten space when at or near EDQUOT. It support backgroup scanning which occurs on a longish interval(5 mins by default, tunable), and on-demand scanning/trimming via ioctl(2). Bitter arguments ensued from this session, especially for the comparison between Ext4 and Btrfs in different areas, I have to spent a whole morning of the 1st day answering those questions. We basically agreed on XFS is the best choice in Linux nowadays because: Stable, XFS has a good record in stability in the past 10 years. Fengguang Wu who lead the 0-day kernel test project also said that he has observed less error than other filesystems in the past 1+ years, I own it to the XFS upstream code reviewer, they always performing serious code review as well as testing. Good performance for large/small files, XFS does not works very well for small files has already been an old story for years. Best choice (maybe) for distributed PB filesystems. e.g, Ceph recommends delopy OSD daemon on XFS because Ext4 has limited xattr size. Best choice for large storage (>16TB). Ext4 does not support a single file more than around 15.95TB. Scalability, any objection to XFS is best in this point? :) XFS is better to deal with transaction concurrency than Ext4, why? The maximum size of the log in XFS is 2038MB compare to 128MB in Ext4. Misc. Ext4 is widely used and it has been proved fast/stable in various loads and scenarios, XFS just need more customers, and Btrfs is still on the road to be a manhood. Ceph Introduction (Led by Li Wang) This a hot topic.  Li gave us a nice introduction about the design as well as their current works. Actually, Ceph client has been included in Linux kernel since 2.6.34 and supported by Openstack since Folsom but it seems that it has not yet been widely deployment in production environment. Their major work is focus on the inline data support to separate the metadata and data storage, reduce the file access time, i.e, a file access need communication twice, fetch the metadata from MDS and then get data from OSD, and also, the small file access is limited by the network latency. The solution is, for the small files they would like to store the data at metadata so that when accessing a small file, the metadata server can push both metadata and data to the client at the same time. In this way, they can reduce the overhead of calculating the data offset and save the communication to OSD. For this feature, they have only run some small scale testing but really saw noticeable improvements. Test environment: Intel 2 CPU 12 Core, 64GB RAM, Ubuntu 12.04, Ceph 0.56.6 with 200GB SATA disk, 15 OSD, 1 MDS, 1 MON. The sequence read performance for 1K size files improved about 50%. I have asked Li and Zheng Yan (the core developer of Ceph, who also worked on Btrfs) whether Ceph is really stable and can be deployed at production environment for large scale PB level storage, but they can not give a positive answer, looks Ceph even does not spread over Dreamhost (subject to confirmation). From Li, they only deployed Ceph for a small scale storage(32 nodes) although they'd like to try 6000 nodes in the future. Improve Linux swap for Flash storage (led by Shaohua Li) Because of high density, low power and low price, flash storage (SSD) is a good candidate to partially replace DRAM. A quick answer for this is using SSD as swap. But Linux swap is designed for slow hard disk storage, so there are a lot of challenges to efficiently use SSD for swap. SWAPOUT swap_map scan swap_map is the in-memory data structure to track swap disk usage, but it is a slow linear scan. It will become a bottleneck while finding many adjacent pages in the use of SSD. Shaohua Li have changed it to a cluster(128K) list, resulting in O(1) algorithm. However, this apporoach needs restrictive cluster alignment and only enabled for SSD. IO pattern In most cases, the swap io is in interleaved pattern because of mutiple reclaimers or a free cluster is shared by all reclaimers. Even though block layer can merge interleaved IO to some extent, but we cannot count on it completely. Hence the per-cpu cluster is added base on the previous change, it can help reclaimer do sequential IO and the block layer will be easier to merge IO. TLB flush: If we're reclaiming one active page, we should first move the page from active lru list to inactive lru list, and then reclaim the page from inactive lru to swap it out. During the process, we need to clear PTE twice: first is 'A'(ACCESS) bit, second is 'P'(PRESENT) bit. Processors need to send lots of ipi which make the TLB flush really expensive. Some works have been done to improve this, including rework smp_call_functiom_many() or remove the first TLB flush in x86, but there still have some arguments here and only parts of works have been pushed to mainline. SWAPIN: Page fault does iodepth=1 sync io, but it's a little waste if only issue a page size's IO. The obvious solution is doing swap readahead. But the current in-kernel swap readahead is arbitary(always 8 pages), and it always doesn't perform well for both random and sequential access workload. Shaohua introduced a new flag for madvise(MADV_WILLNEED) to do swap prefetch, so the changes happen in userspace API and leave the in-kernel readahead unchanged(but I think some improvement can also be done here). SWAP discard As we know, discard is important for SSD write throughout, but the current swap discard implementation is synchronous. He changed it to async discard which allow discard and write run in the same time. Meanwhile, the unit of discard is also optimized to cluster. Misc: lock contention For many concurrent swapout and swapin , the lock contention such as anon_vma or swap_lock is high, so he changed the swap_lock to a per-swap lock. But there still have some lock contention in very high speed SSD because of swapcache address_space lock. Zproject (led by Bob Liu) Bob gave us a very nice introduction about the current memory compression status. Now there are 3 projects(zswap/zram/zcache) which all aim at smooth swap IO storm and promote performance, but they all have their own pros and cons. ZSWAP It is implemented based on frontswap API and it uses a dynamic allocater named Zbud to allocate free pages. Zbud means pairs of zpages are "buddied" and it can only store at most two compressed pages in one page frame, so the max compress ratio is 50%. Each page frame is lru-linked and can do shink in memory pressure. If the compressed memory pool reach its limitation, shink or reclaim happens. It decompress the page frame into two new allocated pages and then write them to real swap device, but it can fail when allocating the two pages. ZRAM Acts as a compressed ramdisk and used as swap device, and it use zsmalloc as its allocator which has high density but may have fragmentation issues. Besides, page reclaim is hard since it will need more pages to uncompress and free just one page. ZRAM is preferred by embedded system which may not have any real swap device. Now both ZRAM and ZSWAP are in driver/staging tree, and in the mm community there are some disscussions of merging ZRAM into ZSWAP or viceversa, but no agreement yet. ZCACHE Handles file page compression but it is removed out of staging recently. From industry (led by Tang Jie, LSI) An LSI engineer introduced several new produces to us. The first is raid5/6 cards that it use full stripe writes to improve performance. The 2nd one he introduced is SandForce flash controller, who can understand data file types (data entropy) to reduce write amplification (WA) for nearly all writes. It's called DuraWrite and typical WA is 0.5. What's more, if enable its Dynamic Logical Capacity function module, the controller can do data compression which is transparent to upper layer. LSI testing shows that with this virtual capacity enables 1x TB drive can support up to 2x TB capacity, but the application must monitor free flash space to maintain optimal performance and to guard against free flash space exhaustion. He said the most useful application is for datebase. Another thing I think it's worth to mention is that a NV-DRAM memory in NMR/Raptor which is directly exposed to host system. Applications can directly access the NV-DRAM via a memory address - using standard system call mmap(). He said that it is very useful for database logging now. This kind of NVM produces are beginning to appear in recent years, and it is said that Samsung is building a research center in China for related produces. IMHO, NVM will bring an effect to current os layer especially on file system, e.g. its journaling may need to redesign to fully utilize these nonvolatile memory. OCFS2 (led by Canquan Shen) Without a doubt, HuaWei is the biggest contributor to OCFS2 in the past two years. They have posted 46 upstream patches and 39 patches have been merged. Their current project is based on 32/64 nodes cluster, but they also tried 128 nodes at the experimental stage. The major work they are working is to support ATS (atomic test and set), it can be works with DLM at the same time. Looks this idea is inspired by the vmware VMFS locking, i.e, http://blogs.vmware.com/vsphere/2012/05/vmfs-locking-uncovered.html CLK - 18th October 2013 Improving Linux Development with Better Tools (Andi Kleen) This talk focused on how to find/solve bugs along with the Linux complexity growing. Generally, we can do this with the following kind of tools: Static code checkers tools. e.g, sparse, smatch, coccinelle, clang checker, checkpatch, gcc -W/LTO, stanse. This can help check a lot of things, simple mistakes, complex problems, but the challenges are: some are very slow, false positives, may need a concentrated effort to get false positives down. Especially, no static checker I found can follow indirect calls (“OO in C”, common in kernel): struct foo_ops { int (*do_foo)(struct foo *obj); } foo->do_foo(foo); Dynamic runtime checkers, e.g, thread checkers, kmemcheck, lockdep. Ideally all kernel code would come with a test suite, then someone could run all the dynamic checkers. Fuzzers/test suites. e.g, Trinity is a great tool, it finds many bugs, but needs manual model for each syscall. Modern fuzzers around using automatic feedback, but notfor kernel yet: http://taviso.decsystem.org/making_software_dumber.pdf Debuggers/Tracers to understand code, e.g, ftrace, can dump on events/oops/custom triggers, but still too much overhead in many cases to run always during debug. Tools to read/understand source, e.g, grep/cscope work great for many cases, but do not understand indirect pointers (OO in C model used in kernel), give us all “do_foo” instances: struct foo_ops { int (*do_foo)(struct foo *obj); } = { .do_foo = my_foo }; foo>do_foo(foo); That would be great to have a cscope like tool that understands this based on types/initializers XFS: The High Performance Enterprise File System (Jeff Liu) [slides] I gave a talk for introducing the disk layout, unique features, as well as the recent changes.   The slides include some charts to reflect the performances between XFS/Btrfs/Ext4 for small files. About a dozen users raised their hands when I asking who has experienced with XFS. I remembered that when I asked the same question in LinuxCon/Japan, only 3 people raised their hands, but they are Chris Mason, Ric Wheeler, and another attendee. The attendee questions were mainly focused on stability, and comparison with other file systems. Linux Containers (Feng Gao) The speaker introduced us that the purpose for those kind of namespaces, include mount/UTS/IPC/Network/Pid/User, as well as the system API/ABI. For the userspace tools, He mainly focus on the Libvirt LXC rather than us(LXC). Libvirt LXC is another userspace container management tool, implemented as one type of libvirt driver, it can manage containers, create namespace, create private filesystem layout for container, Create devices for container and setup resources controller via cgroup. In this talk, Feng also mentioned another two possible new namespaces in the future, the 1st is the audit, but not sure if it should be assigned to user namespace or not. Another is about syslog, but the question is do we really need it? In-memory Compression (Bob Liu) Same as CLSF, a nice introduction that I have already mentioned above. Misc There were some other talks related to ACPI based memory hotplug, smart wake-affinity in scheduler etc., but my head is not big enough to record all those things. -- Jeff Liu

    Read the article

  • SQL SERVER – WRITELOG – Wait Type – Day 17 of 28

    - by pinaldave
    WRITELOG is one of the most interesting wait types. So far we have seen a lot of different wait types, but this log type is associated with log file which makes it interesting to deal with. From Book On-Line: WRITELOG Occurs while waiting for a log flush to complete. Common operations that cause log flushes are checkpoints and transaction commits. WRITELOG Explanation: This wait type is usually seen in the heavy transactional database. When data is modified, it is written both on the log cache and buffer cache. This wait type occurs when data in the log cache is flushing to the disk. During this time, the session has to wait due to WRITELOG. I have recently seen this wait type’s persistence at my client’s place, where one of the long-running transactions was stopped by the user causing it to roll back. In the future, I will see if I could re-create this situation once again on my machine to validate the relation. Reducing WRITELOG wait: There are several suggestions to reduce this wait stats: Move Transaction Log to Separate Disk from mdf and other files. Avoid cursor-like coding methodology and frequent committing of statements. Find the most active file based on IO stall time based on the script written over here. You can also use fn_virtualfilestats to find IO-related issues using the script mentioned over here. Check the IO-related counters (PhysicalDisk:Avg.Disk Queue Length, PhysicalDisk:Disk Read Bytes/sec and PhysicalDisk :Disk Write Bytes/sec) for additional details. Read about them over here. There are two excellent resources by Paul Randal, I suggest you understand the subject from those videos. The links to videos are here and here. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com) Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Virtual Box - How to open a .VDI Virtual Machine

    - by [email protected]
     How to open a .VDI Virtual MachineSometimes someone share with us one Virtual machine with extension .VDI, after that we can wonder how and what with?Well the answer is... It is a VirtualBox - Virtual Machine. If you have not downloaded it you can do this easily just follow this post.http://listeningoracle.blogspot.com/2010/04/que-es-virtualbox.htmlor http://oracleoforacle.wordpress.com/2010/04/14/ques-es-virtualbox/Ok, Now with VirtualBox Installed open it and proceed with the following:1. Open the Virtual File Manager. 2. Click on Actions ? Add and select the .VDI file Click "Ok"3. Now we can register the new Virtual Machine - Click New, and Click Next4. Write down a Name for the virtual Machine a proceed to select a Operating System and Version. (In this case it is a Linux (Oracle Enterprise Linux or RedHat)Click Next5. Select the memory amount base for the Virtual Machine (Minimal 1280 for our case) - Click Next6. Select the Disk 11GR2_OEL5_32GB.vdi it was added in the virtual media manager in the step 2. Dont forget let selected Boot hard Disk (Primary Master) . Given it is the only disk assigned to the virtual machine.Click Next7. Click Finish8. This step is important. Once you have click on the settings Button.9. On General option click the advanced settings. Here you must change the default directory to save your Snapshots; my recommendation set it to the same directory where the .Vdi file is. Otherwise you can have the same Virtual Machine and its snapshots in different paths.10. Now Click on System, and proceed to assign the correct memory (If you did not before) Note: Enable "Enable IO APIC" if you are planning to assign more than one CPU to the Virtual Machine.Define the processors for the Virtual machine. If you processor is dual core choose 211. Select the video memory amount you want to assign to the Virtual Machine 12. Associated more storage disk to the Virtual machine, if you have more VDI files. (Not our case)The disk must be selected as IDE Primary Master. 13. Well you can verify the other options, but with these changes you will be able to start the VM.Note: Sometime the VM owner may share some instructions, if so follow his instructions.14. Finally Start the Virtual Machine (Click > Start)

    Read the article

  • SQL SERVER – LOGBUFFER – Wait Type – Day 18 of 28

    - by pinaldave
    At first, I was not planning to write about this wait type. The reason was simple- I have faced this only once in my lifetime so far maybe because it is one of the top 5 wait types. I am not sure if it is a common wait type or not, but in the samples I had it really looks rare to me. From Book On-Line: LOGBUFFER Occurs when a task is waiting for space in the log buffer to store a log record. Consistently high values may indicate that the log devices cannot keep up with the amount of log being generated by the server. LOGBUFFER Explanation: The book online definition of the LOGBUFFER seems to be very accurate. On the system where I faced this wait type, the log file (LDF) was put on the local disk, and the data files (MDF, NDF) were put on SanDrives. My client then was not familiar about how the file distribution was supposed to be. Once we moved the LDF to a faster drive, this wait type disappeared. Reducing LOGBUFFER wait: There are several suggestions to reduce this wait stats: Move Transaction Log to Separate Disk from mdf and other files. (Make sure your drive where your LDF is has no IO bottleneck issues). Avoid cursor-like coding methodology and frequent commit statements. Find the most-active file based on IO stall time, as shown in the script written over here. You can also use fn_virtualfilestats to find IO-related issues using the script mentioned over here. Check the IO-related counters (PhysicalDisk:Avg.Disk Queue Length, PhysicalDisk:Disk Read Bytes/sec and PhysicalDisk :Disk Write Bytes/sec) for additional details. Read about them over here. If you have noticed, my suggestions for reducing the LOGBUFFER is very similar to WRITELOG. Although the procedures on reducing them are alike, I am not suggesting that LOGBUFFER and WRITELOG are same wait types. From the definition of the two, you will find their difference. However, they are both related to LOG and both of them can severely degrade the performance. Note: The information presented here is from my experience and there is no way that I claim it to be accurate. I suggest reading Book OnLine for further clarification. All the discussion of Wait Stats in this blog is generic and varies from system to system. It is recommended that you test this on a development server before implementing it to a production server. Reference: Pinal Dave (http://blog.SQLAuthority.com)   Filed under: Pinal Dave, PostADay, SQL, SQL Authority, SQL Query, SQL Scripts, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology

    Read the article

  • Ubuntu 11.10 running in windows 7 (wubi) AND on a separate partition

    - by Pareen
    I am in a very strange situation and need some help: I installed Ubuntu 11.10 through Wubi a while back so that I can use it alongside Windows 7. I was running out of space on my disk when trying to install applications. Without understanding how Wubi worked, I partitioned my C drive (creating a new 90 GB partition) in Windows, booted from the Ubuntu 11.10 install/live disk, and used the "something else" option to create a ext4 (setting the mount point to root) and swap space partitions (/sda5 and /sda6). After the install, my computer no longer boots with the previous Wubi menu and is now using the Linux grub. The options I have are /sda2, which boots Windows 7; /sda1, which doesn't do anything and reloads the same menu, and the run Linux options. So I now have Ubuntu running on a separate partition, as well as the original Wubi install. I want to delete the seperate partition and go back to running Ubuntu on Wubi...if I remove the partition will I need the Windows 7 disk to restore the boot loader? I dont have the Windows 7 disk on me so what is the best way to clean this up so I get rid of the seperate partition? -------------------------------------------------UPDATE----------------------------------------------------- ============================================================================================================ thank you so much for your response. Actually, it would be fantastic if I could migrate my Wubi install into the new partition because I had downloaded the AOSP on the Wubi install (as well as other files) and would love to preserve them. If i can do that and work on the new partition with the old files than that would be great, and I can worry about wiping out the partition completely later on i.e. when I have the windows disk or something. Can you tell me how to do this migration?? So when I select the /sda2, it loads up my Windows. If i click on the Linux, it loads up the newly install Linux (my files that were on the Wubi install aren't there) fine. If I click on the /sda1 (SYSTEM_DRIVE... this is what the Wubi was using to boot the menu that let me select Windows 7 or Ubuntu)... it fails and just reloads the original menu. Here is the link to my boot info script http://pastebin.com/dMrY0NL3

    Read the article

  • Gparted can't create partition table

    - by William
    Here's what the problem is. About a day or so ago I used Gparted live cd to create 3 NTFS primary partitions on my external 500 gig Goflex and one extended with 2 logical partitiones. I had planned to install windows 8 on the first partition, then ubuntu and kubuntu on the other 2. After I finished partitioning my drive with gparted, I booted into windows vista to make my bootable windows 8 usb to install it with, I also decided to check to make sure all my partitions were working properly. Then I found they were, and they weren't. My 50 gig first partition I had planned to install windows on showed up normal and the 300 gigs of space left in the extended partition did as well, the rest showed up as raw. So I figured alright, something went awal while making the partitions, so I booted up gparted once again. Then to my surprise gparted showed the entire drive as unallocated, and when I refreshed the list, it showed as all the partitions I had made earlier, buy with a exclamation mark by them all. So I figured ok, might be a problem with the partition table as I'd seen a similar problem in past on a drive that was not partitioned at all, so I decided to create a new partition table and take the time out again to sit and wait. Then I got a message saying gparted could not create the partition table, followed by it showing the entire drive as formatted into ntfs. After that I figured ok I'll take a break, come back in a hour, maybe it's something I did. So a hour later I came back after having booted up windows, plugged the drive in to see if by some miracle windows could access the drive. In disk management when I plugged the drive in, it would freeze attempting to read the drive, as I'd seen in the past with raw disks, yet when I unplugged it I got a glimpse of disk management showing it as a perfectly fine ntfs file system on the drive followed by a "you must format disk K in order to use it". So I then was assured the disk was raw as that is what had happened in the past, followed by a new partition table through gparted to fix the problem and a 10 hour format in windows. So I once again booted up gparted, to get the message "error fsyncing/closing/dev/sdg:input/output error" followed by "error opening dev/sdg No such file in directory" after I refreshed and somehow saw the disk show up as perfectly fine ntfs and then tried to create a new partition table to try to wipe out all my problems and start over again. And not gparted only shows the drive there about 1/10 refreshes the rest I get the directory error. If anybody can assist me in any way shape or form I will be thankful.

    Read the article

  • Virtual Box - How to open a .VDI Virtual Machine

    - by [email protected]
    TUESDAY, APRIL 27, 2010 How to open a .VDI Virtual MachineSometimes someone share with us one Virtual machine with extension .VDI, after that we can wonder how and what with?Well the answer is... It is a VirtualBox - Virtual Machine. If you have not downloaded it you can do this easily just follow this post.http://listeningoracle.blogspot.com/2010/04/que-es-virtualbox.htmlorhttp://oracleoforacle.wordpress.com/2010/04/14/ques-es-virtualbox/Ok, Now with VirtualBox Installed open it and proceed with the following:1. Open the Virtual File Manager.2. Click on Actions ? Add and select the .VDI fileClick "Ok"3. Now we can register the new Virtual Machine - Click New, and Click Next4. Write down a Name for the virtual Machine a proceed to select a Operating System and Version. (In this case it is a Linux (Oracle Enterprise Linux or RedHat)Click Next5. Select the memory amount base for the Virtual Machine(Minimal 1280 for our case) - Click Next6. Select the Disk 11GR2_OEL5_32GB.vdi it was added in the virtual media manager in the step 2.Dont forget let selected Boot hard Disk (Primary Master) . Given it is the only disk assigned to the virtual machine.Click Next7. Click Finish8. This step is important. Once you have click on the settings Button. 9. On General option click the advanced settings. Here you must change the default directory to save your Snapshots; my recommendation set it to the same directory where the .Vdi file is. Otherwise you can have the same Virtual Machine and its snapshots in different paths.10. Now Click on System, and proceed to assign the correct memory (If you did not before)Note: Enable "Enable IO APIC" if you are planning to assign more than one CPU to the Virtual Machine.Define the processors for the Virtual machine. If you processor is dual core choose 211. Select the video memory amount you want to assign to the Virtual Machine12. Associated more storage disk to the Virtual machine, if you have more VDI files.(Not our case)The disk must be selected as IDE Primary Master.13. Well you can verify the other options, but with these changes you will be able to start the VM.Note: Sometime the VM owner may share some instructions, if so follow his instructions.14. Finally Start the Virtual Machine (Click > Start)

    Read the article

< Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >