Search Results

Search found 15878 results on 636 pages for 'hidden field'.

Page 125/636 | < Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >

  • Not getting concept of null

    - by appu
    Hy Guys, Beginning with mysql. I am not able to grasp the concept of NULL. Check screen-shot (*declare_not_null, link*). In it when I specifically declared 'name' field to be NOT NULL. When i run the 'desc test' table command, the table description shows default value for name field to be NULL.Why is that so? From what I have read about NULL, it connotes a missing or information that is not applicable. So when I declare a field to be NOT NULL it implies (as per my understanding) that user must enter a value for the name field else the DB engine should generate an error i.e. record will not be entered in DB. However when i run 'insert into test value();' the DB engine enters the record in table. Check screen-shot(*empty_value, link*). FLICKR LINKS *declare_not_null* http://www.flickr.com/photos/55097319@N03/5302758813/ *empty_values* Check the second screenshot on flickr Q.2 what would be sql statemetn to drop a primary key from a table's field. If I use 'ALTER TABLE test drop key id;' it gives the following: ERROR: Incorrect table definition; there can be only one auto column and it must be defined as a key. Thanks for your help..

    Read the article

  • C# equivalent of typeof for fields

    - by rwallace
    With reflection, you can look up a class from a string at run time, but you can also say typeof(Foo) and get compile time type checking, auto completion etc. If what you want is a field not a class, you can look it up from a string at runtime, but if you want compile time type checking etc., is there anyway to say something like fieldof(Foo.Bar)? I know the name of both the class and the field in advance, and I want to be able to refer to the field at compile time rather than with a run-time string lookup.

    Read the article

  • Crystal Report and LINQ

    - by user356760
    hi I am using crystal report for get a report . I have two table , table1 and table2. Primary key of table2 is foreign key of table1, I set some field in my report file to show the data of table1 and I want to show a specefic field of table2 insted of a field that is foreign key of table1, What is the query of LINQ for this problem?

    Read the article

  • Java reflection Method invocations yield result faster than Fields?

    - by omerkudat
    I was microbenchmarking some code (please be nice) and came across this puzzle: when reading a field using reflection, invoking the getter Method is faster than reading the Field. Simple test class: private static final class Foo { public Foo(double val) { this.val = val; } public double getVal() { return val; } public final double val; // only public for demo purposes } We have two reflections: Method m = Foo.class.getDeclaredMethod("getVal", null); Field f = Foo.class.getDeclaredField("val"); Now I call the two reflections in a loop, invoke on the Method, and get on the Field. A first run is done to warm up the VM, a second run is done with 10M iterations. The Method invocation is consistently 30% faster, but why? Note that getDeclaredMethod and getDeclaredField are not called in the loop. They are called once and executed on the same object in the loop. I also tried some minor variations: made the field non-final, transitive, non-public, etc. All of these combinations resulted in statistically similar performance. Edit: This is on WinXP, Intel Core2 Duo, Sun JavaSE build 1.6.0_16-b01, running under jUnit4 and Eclipse.

    Read the article

  • Sinatra: rendering snippets (partials)

    - by Michael
    I'm following along with an O'Reilly book that's building a twitter clone with Sinatra. As Sinatra doesn't have 'partials' (in the way that Rails does), the author creates his own 'snippets' that work like partials. I understand that this is fairly common in Sinatra. Anyways, inside one of his snippets (see the first one below) he calls another snippet text_limiter_js (which is copied below). Text_limiter_js is basically a javascript function. If you look at the javascript function in text_limiter_js, you'll notice that it takes two parameters. I don't understand where these parameters are coming from because they're not getting passed in when text_limiter_js is rendered inside the other snippet. I'm not sure if I've given enough information/code for someone to help me understand this, but if you can, please explain. =snippet :'/snippets/text_limiter_js' %h2.comic What are you doing? %form{:method => 'post', :action => '/update'} %textarea.update.span-15#update{:name => 'status', :rows => 2, :onKeyDown => "text_limiter($('#update'), $('#counter'))"} .span-6 %span#counter 140 characters left .prepend-12 %input#button{:type => 'submit', :value => 'update'} text_limiter_js.haml :javascript function text_limiter(field,counter_field) { limit = 139; if (field.val().length > limit) field.val(field.val().substring(0, limit)); else counter_field.text(limit - field.val().length); }

    Read the article

  • Select only half the records

    - by coffeeaddict
    I am trying to figure out how to select half the records where an ID is null. I want half because I am going to use that result set to update another ID field. Then I am going to update the rest with another value for that ID field. So essentially I want to update half the records someFieldID with one number and the rest with another number splitting the update basically between two values for someFieldID the field I want to update.

    Read the article

  • Index a mysql table of 3 integer fields

    - by Doori Bar
    I have a mysql table of 3 integer fields. None of the fields have a unique value - but the three of them combined are unique. When I query this table, I only search by the first field. Which approach is recommended for indexing such table? Having a multiple-field primary key on the 3 fields, or setting an index on the first field, which is not unique? Thanks, Doori Bar

    Read the article

  • Python: Sort a dictionary by value

    - by the empirical programmer
    I have a dictionary of values read from 2 fields in a database: a string field and a numeric field. The string field is unique so that is the key of the dictionary. I can sort on the keys, but how can I sort based on the values? Note: I have read this post 72899 and probably could change my code to have a list of dictionaries but since I do not really need a list of dictionaries I wanted to know if there a simpler solution.

    Read the article

  • getting (this) at different function

    - by twen_ta
    I have couple of input fields with the class "link". All of them should start the jqueryUI dialog so this is why I bind the method to a class and not an single id. The difficulty is now that i can't use the (this) in line 12, because that gives me the identity of the dialog and not the input element. As I am an beginner I don't know how to pass a variable to this event with the element of the input field. What I want to archive is that the dialog should start from the input field and should write the result back to that input field. 1. // this is the click event for the input-field class called "link" 2. $('.link') 3. .button() 4. .click(function() { 5. $('#dialog-form').dialog('open'); 6. 7. }); 8. 9. //this is an excerpt from the opened dialog box and the write back to the input field 10. $("#dialog-form").dialog({ 11. if (bValid) { 12. $('.link').val('' + 14. name.val() + ''); 15. $(this).dialog('close'); 16. } 17. });

    Read the article

  • My blackberry app will not display on simulator even thou it tells me I have no errors

    - by user1334120
    I am trying to run this code on my blakberry simulator, but it will not appear on the main menu. Can anybody please help me out. import net.rim.device.api.ui.FieldChangeListener; import net.rim.device.api.ui.Field; import net.rim.device.api.ui.UiApplication; import net.rim.device.api.ui.component.ButtonField; import net.rim.device.api.ui.component.LabelField; import net.rim.device.api.ui.container.MainScreen; public class FirstScreen extends MainScreen implements FieldChangeListener { ButtonField theButton; public FirstScreen() { add(new LabelField("First Screen")); theButton = new ButtonField("New Screen", ButtonField.CONSUME_CLICK); theButton.setChangeListener(this); add(theButton); } public void fieldChanged(Field field, int context) { if (field == theButton) { UiApplication.getUiApplication().pushScreen(new SecondScreen()); } } public class SecondScreen extends MainScreen { public SecondScreen() { add(new LabelField("Second Screen")); } } }

    Read the article

  • jquery add either of two fields to form

    - by user2891182
    I have worked out how to add a field to a form through JQuery but cannot figure out how to have two add field buttons so I can add one or the other fields? Could someone lead me in the right direction? <html> <head> <title>jQuery add / remove textbox example</title> <script type="text/javascript" src="jquery-1.3.2.min.js"></script> <style type="text/css"> div{ padding:8px; } </style> </head> <body> <h1>jQuery add / remove textbox example</h1> <script type="text/javascript"> $(document).ready(function(){ var counter = 2; $("#addButton").click(function () { if(counter>10){ alert("Only 10 textboxes allow"); return false; } var newTextBoxDiv = $(document.createElement('div')) .attr("id", 'TextBoxDiv' + counter); newTextBoxDiv.after().html('<label>Textbox #'+ counter + ' : </label>' + '<input type="text" name="textbox' + counter + '" id="textbox' + counter + '" value="" >'); newTextBoxDiv.appendTo("#TextBoxesGroup"); counter++; }); $("#removeButton").click(function () { if(counter==1){ alert("No more textbox to remove"); return false; } counter--; $("#TextBoxDiv" + counter).remove(); }); $("#getButtonValue").click(function () { var msg = ''; for(i=1; i<counter; i++){ msg += "\n Textbox #" + i + " : " + $('#textbox' + i).val(); } alert(msg); }); }); </script> </head><body> <div id='TextBoxesGroup'> <div id="TextBoxDiv1"> <label>Textbox #1 : </label><input type='textbox' id='textbox1' > </div> </div> --I am trying to have a use click on either of these two buttons and have the appropriate field added next.-- <input type='button' value='Add field #01' id='addButton'> <input type='button' value='Add field #02' id='addButton'> <input type='button' value='Remove Last Field' id='removeButton'> </body> </html>

    Read the article

  • Preventing user from inserting *

    - by user990635
    I'm trying to prevent user from inserting * in a textbox. This is what I was trying to do, but here it only detects * if this is the only inserted character. For example texts like: *, etc. When allowed characters are mixed with *, then it cannot detect it. For example inputs such as: *hjh, etc.. and maybe how to make it replace only * with "" and not the whole field? <script type="text/javascript"> function testField(field) { var regExpr = new RegExp("[^*]"); if(!regExpr.test(field.value)) { field.value = ""; } } </script> <input type="text" id="searchGamesKeyword" class="searchGamesTextBox" name="searchGamesKeyword" onblur="testField(this);" />

    Read the article

  • Corrupted Views when migrating document libraries from SharePoint 2003 to 2007

    - by Kelly Jones
    A coworker of mine ran into this error recently, while migrating a document library from SharePoint 2003 to 2007: “A WebPartZone can only exist on a page which contains a SPWebPartManager. The SPWebPartManager must be placed before any WebPartZones on the page.” He saw this when he tried to see the All Documents view for the library. After looking into it, we figured out what had happened.  He was migrating documents using the Explorer View in SharePoint.  He had copied the contents of the library from one server (a remote server that we didn’t have administrative access to) to his desktop.  He then opened an Explorer View of the new library and copied the files to it.  Well, it turns out he had copied the hidden “Forms” folder, which contained the files necessary to display the different views for the library. (He had set his explorer to show hidden files, which made them visible.) So, he had copied the 2003 forms to the 2007 library, which are incompatible. We fixed it, by simply deleting the new document library, recreating it, and then copied everything except that hidden Forms folder.  Another option might have been to create a new document library on 2007, and copy the Forms folder from it to the broken library.  Since we didn’t need to save anything in the broken BTW, I confirmed my suspicion with this blog post: http://palmettotq.com/blog/?p=54

    Read the article

  • Inside the DLR – Invoking methods

    - by Simon Cooper
    So, we’ve looked at how a dynamic call is represented in a compiled assembly, and how the dynamic lookup is performed at runtime. The last piece of the puzzle is how the resolved method gets invoked, and that is the subject of this post. Invoking methods As discussed in my previous posts, doing a full lookup and bind at runtime each and every single time the callsite gets invoked would be far too slow to be usable. The results obtained from the callsite binder must to be cached, along with a series of conditions to determine whether the cached result can be reused. So, firstly, how are the conditions represented? These conditions can be anything; they are determined entirely by the semantics of the language the binder is representing. The binder has to be able to return arbitary code that is then executed to determine whether the conditions apply or not. Fortunately, .NET 4 has a neat way of representing arbitary code that can be easily combined with other code – expression trees. All the callsite binder has to return is an expression (called a ‘restriction’) that evaluates to a boolean, returning true when the restriction passes (indicating the corresponding method invocation can be used) and false when it does’t. If the bind result is also represented in an expression tree, these can be combined easily like so: if ([restriction is true]) { [invoke cached method] } Take my example from my previous post: public class ClassA { public static void TestDynamic() { CallDynamic(new ClassA(), 10); CallDynamic(new ClassA(), "foo"); } public static void CallDynamic(dynamic d, object o) { d.Method(o); } public void Method(int i) {} public void Method(string s) {} } When the Method(int) method is first bound, along with an expression representing the result of the bind lookup, the C# binder will return the restrictions under which that bind can be reused. In this case, it can be reused if the types of the parameters are the same: if (thisArg.GetType() == typeof(ClassA) && arg1.GetType() == typeof(int)) { thisClassA.Method(i); } Caching callsite results So, now, it’s up to the callsite to link these expressions returned from the binder together in such a way that it can determine which one from the many it has cached it should use. This caching logic is all located in the System.Dynamic.UpdateDelegates class. It’ll help if you’ve got this type open in a decompiler to have a look yourself. For each callsite, there are 3 layers of caching involved: The last method invoked on the callsite. All methods that have ever been invoked on the callsite. All methods that have ever been invoked on any callsite of the same type. We’ll cover each of these layers in order Level 1 cache: the last method called on the callsite When a CallSite<T> object is first instantiated, the Target delegate field (containing the delegate that is called when the callsite is invoked) is set to one of the UpdateAndExecute generic methods in UpdateDelegates, corresponding to the number of parameters to the callsite, and the existance of any return value. These methods contain most of the caching, invoke, and binding logic for the callsite. The first time this method is invoked, the UpdateAndExecute method finds there aren’t any entries in the caches to reuse, and invokes the binder to resolve a new method. Once the callsite has the result from the binder, along with any restrictions, it stitches some extra expressions in, and replaces the Target field in the callsite with a compiled expression tree similar to this (in this example I’m assuming there’s no return value): if ([restriction is true]) { [invoke cached method] return; } if (callSite._match) { _match = false; return; } else { UpdateAndExecute(callSite, arg0, arg1, ...); } Woah. What’s going on here? Well, this resulting expression tree is actually the first level of caching. The Target field in the callsite, which contains the delegate to call when the callsite is invoked, is set to the above code compiled from the expression tree into IL, and then into native code by the JIT. This code checks whether the restrictions of the last method that was invoked on the callsite (the ‘primary’ method) match, and if so, executes that method straight away. This means that, the next time the callsite is invoked, the first code that executes is the restriction check, executing as native code! This makes this restriction check on the primary cached delegate very fast. But what if the restrictions don’t match? In that case, the second part of the stitched expression tree is executed. What this section should be doing is calling back into the UpdateAndExecute method again to resolve a new method. But it’s slightly more complicated than that. To understand why, we need to understand the second and third level caches. Level 2 cache: all methods that have ever been invoked on the callsite When a binder has returned the result of a lookup, as well as updating the Target field with a compiled expression tree, stitched together as above, the callsite puts the same compiled expression tree in an internal list of delegates, called the rules list. This list acts as the level 2 cache. Why use the same delegate? Stitching together expression trees is an expensive operation. You don’t want to do it every time the callsite is invoked. Ideally, you would create one expression tree from the binder’s result, compile it, and then use the resulting delegate everywhere in the callsite. But, if the same delegate is used to invoke the callsite in the first place, and in the caches, that means each delegate needs two modes of operation. An ‘invoke’ mode, for when the delegate is set as the value of the Target field, and a ‘match’ mode, used when UpdateAndExecute is searching for a method in the callsite’s cache. Only in the invoke mode would the delegate call back into UpdateAndExecute. In match mode, it would simply return without doing anything. This mode is controlled by the _match field in CallSite<T>. The first time the callsite is invoked, _match is false, and so the Target delegate is called in invoke mode. Then, if the initial restriction check fails, the Target delegate calls back into UpdateAndExecute. This method sets _match to true, then calls all the cached delegates in the rules list in match mode to try and find one that passes its restrictions, and invokes it. However, there needs to be some way for each cached delegate to inform UpdateAndExecute whether it passed its restrictions or not. To do this, as you can see above, it simply re-uses _match, and sets it to false if it did not pass the restrictions. This allows the code within each UpdateAndExecute method to check for cache matches like so: foreach (T cachedDelegate in Rules) { callSite._match = true; cachedDelegate(); // sets _match to false if restrictions do not pass if (callSite._match) { // passed restrictions, and the cached method was invoked // set this delegate as the primary target to invoke next time callSite.Target = cachedDelegate; return; } // no luck, try the next one... } Level 3 cache: all methods that have ever been invoked on any callsite with the same signature The reason for this cache should be clear – if a method has been invoked through a callsite in one place, then it is likely to be invoked on other callsites in the codebase with the same signature. Rather than living in the callsite, the ‘global’ cache for callsite delegates lives in the CallSiteBinder class, in the Cache field. This is a dictionary, typed on the callsite delegate signature, providing a RuleCache<T> instance for each delegate signature. This is accessed in the same way as the level 2 callsite cache, by the UpdateAndExecute methods. When a method is matched in the global cache, it is copied into the callsite and Target cache before being executed. Putting it all together So, how does this all fit together? Like so (I’ve omitted some implementation & performance details): That, in essence, is how the DLR performs its dynamic calls nearly as fast as statically compiled IL code. Extensive use of expression trees, compiled to IL and then into native code. Multiple levels of caching, the first of which executes immediately when the dynamic callsite is invoked. And a clever re-use of compiled expression trees that can be used in completely different contexts without being recompiled. All in all, a very fast and very clever reflection caching mechanism.

    Read the article

  • Ubuntu won't fit 10" netbook's native display

    - by Daniel
    I recently removed Windows 7 Starter from my netbook, and replaced it with Ubuntu 12.10. The problem is some bits of the system doesn't fit the native display resolution of 1024x600 i.e. the bottom bits of Ubuntu is hidden beneath the screen & the only 2 available resolutions are: the default 1024x768 and 800x600. I've also thought about replacing Ubuntu with Lubuntu or Puppy Linux, as the system does run a bit slow, but I can't, as then I won't be able to access the taskbar and application menu which will be hidden beneath the screen. Only Ubuntu with Unity is currently usable, as I can see the Unity Launcher. My Netbook model is HP Mini 210-1004sa, which comes with Intel Graphics Media Accelerator 3150, and has a display 10.1" Active Matrix Colour TFT 1024 x 600. I was able to define a custom resolution 1024x600 using the Q&A: How set my monitor resolution? but when I set that resolution, the desktop area is lowered, with bits of it hidden beneath the screen; & there's a black space left at the top of the screen. I had to revert to the old setting 1024x768 to push the desktop upwards and remove the black space.

    Read the article

  • How do I write to an outer truecrypt volume when the inner volume protection prevents writng?

    - by con-f-use
    In a nutshell After some time using the outer volume of a hidden volume in Truecrypt I cannot write to the outer volume anymore. The protection of the inner volume always kicks in before. How do I fix this? Details I'm using truecrypt's two layered encryption of a USB stick. The outer container carries my semi-sensitive stuff while the inner hidden values has a bit more valuable information. I use both, the inner and outer volume regularly and that is part of the problem. Truecrypt can mount the outer volume for writing while protecting the inner. Usually the inner volume, when not protected this way (or mounted read-only) would be indistinguishable from free space. That is of course part of the plausible deniability scheme of truecrypt. At the beginning, everything worked as expected. I could copy and delete data to the outer volume as I pleased. Now it seams that I have written and deleted enough data to have filled the outer volume once. Despite the write protection Ubuntu tries now to write to the continuous "free space" that is the inner volume. It does that although enough other free space is on the outer volume. But on this free space there used to be data so its fragmented and the file system write prefers continuous space. The write on the continuous free space of the outer volume of course fails (with the error message in the picture above) as Truecrypt's inner-volume-protection kicks in. The Question I know this is expected behaviour, but is there a better way to write to the outer volume that does not attempt to write to the hidden free space at the end? The whole question could be more generally rephrased to: How do I control, where on a partition data is written in Ubuntu?

    Read the article

  • What's is the point of PImpl pattern while we can use interface for same purpose in C++?

    - by ZijingWu
    I see a lot of source code which using PIMPL idiom in C++. I assume Its purposes are hidden the private data/type/implementation, so it can resolve dependence, and then reduce compile time and header include issue. But interface class in C++ also have this capability, it can also used to hidden data/type and implementation. And to hidden let the caller just see the interface when create object, we can add an factory method in it declaration in interface header. The comparison is: Cost: The interface way cost is lower, because you doesn't even need to repeat the public wrapper function implementation void Bar::doWork() { return m_impl->doWork(); }, you just need to define the signature in the interface. Well understand: The interface technology is more well understand by every C++ developer. Performance: Interface way performance not worse than PIMPL idiom, both an extra memory access. I assume the performance is same. Following is the pseudocode code to illustrate my question: // Forward declaration can help you avoid include BarImpl header, and those included in BarImpl header. class BarImpl; class Bar { public: // public functions void doWork(); private: // You doesn't need to compile Bar.cpp after change the implementation in BarImpl.cpp BarImpl* m_impl; }; The same purpose can be implement using interface: // Bar.h class IBar { public: virtual ~IBar(){} // public functions virtual void doWork() = 0; }; // to only expose the interface instead of class name to caller IBar* createObject(); So what's the point of PIMPL?

    Read the article

  • Fill a list from JSP in Spring

    - by Javi
    Hello, I have something like this in my Spring Application: public class Book{ public Book(){ sheets = new LinkedList<Sheet>(); } protected List<Sheet> sheets; //getter and setter } I add several Sheets to the sheet list and I print a form in a JSP like this: <form:form modelAttribute="book" action="${dest_url}" method="POST"> <c:forEach items="${mybook.sheets}" var="sheet" varStatus="status"> <form:hidden path="sheet[${status.count -1}].header"/> <form:hidden path="sheet[${status.count -1}].footer"/> <form:hidden path="sheet[${status.count -1}].operador"/> <form:hidden path="sheet[${status.count -1}].number"/> <form:hidden path="sheet[${status.count -1}].lines"/> </c:forEach> ... </form:form> I need to get back this list in the controller when the form is submitted. So in my controller I have a method with a parameter like this: public String myMethod (@ModelAttribute("book") Book book, Model model){ ... } The problem is that it doesn't fill the sheets list unless in the constructor of Book I add as much Sheet's as I want to get. The problem is that I don't know in advance the number of Sheets the book is going to have. I think the problem is that in my method it instantiates Book which has a list of sheets with 0 elements. When it tries to access to sheets[0] the list is empty and it doen't add a Sheet. I've tried to create a getter method for the list with an index parameter (so it can create the element if it doesn't exists in the list like in Struts framework) like this one: public Sheet getSheets(int index){ if(sheets.size() <= index){ Sheet sheet = new Sheet(); sheets.add(index, sheet); } Sheet sheetToReturn = sheets.get(index); if(sheetToReturn == null){ sheetToReturn = new Sheet(); sheets.add(index, sheetToReturn); } return sheetToReturn; } but with this method the JSP doesn't work because sheets has an invalid getter. What's the proper way of filling a list when you don't know the number of items in advanced? Thanks

    Read the article

  • Php INNER JOING jqGrid help

    - by yanike
    I'm trying to get INNER JOIN to work with JQGRID, but I can't get it working. I want the code to get the first_name and last_name from members using the "efrom" from messages that matches the "id" from members. $col = array(); $col["title"] = "From"; $col["name"] = "messages.efrom"; $col["width"] = "70"; $col["hidden"] = false; $col["editable"] = false; $col["sortable"] = true; $col["search"] = true; $cols[] = $col; $col = array(); $col["title"] = "First Name"; $col["name"] = "members.first_name"; $col["width"] = "80"; $col["hidden"] = false; $col["editable"] = false; $col["sortable"] = true; $col["search"] = true; $cols[] = $col; $col = array(); $col["title"] = "Last Name"; $col["name"] = "members.last_name"; $col["width"] = "80"; $col["hidden"] = false; $col["editable"] = false; $col["sortable"] = true; $col["search"] = true; $cols[] = $col; $col = array(); $col["title"] = "Subject"; $col["name"] = "messages.esubject"; $col["width"] = "300"; $col["hidden"] = false; $col["editable"] = false; $col["sortable"] = true; $col["search"] = true; $cols[] = $col; $col = array(); $col["title"] = "Date"; $col["name"] = "messages.edatetime"; $col["width"] = "150"; $col["hidden"] = false; $col["editable"] = false; $col["sortable"] = true; $col["search"] = true; $cols[] = $col; $g = new jqgrid(); $grid["sortname"] = 'messages.edatetime'; $g->select_command = "SELECT messages.efrom, messages.esubject, messages.edatetime, members.first_name, members.last_name FROM messages INNER JOIN members ON messages.efrom = members.id";

    Read the article

  • How to program and calculate multiple subtotal and grandtotal using jquery?

    - by Victor
    I'm stump figuring out how to do this in jquery, I need to do it without any plug-in. Imagine a shopping cart for books, each change of quantity (using select dropdown) will update the total price, grandtotal and then the hidden input value. <table> <tr> <td class="qty"> <select class="item-1"> <option value="1">1</option> <option value="2">2</option> <option value="3">3</option> ... </select> </td> <td class="product"> Book 1 </td> <td class="price-item-1"> $20 </td> <td class="total-item-1"> $20 </td> </tr> <tr> <td class="qty"> <select class="item-2"> <option value="1">1</option> <option value="2">2</option> <option value="3">3</option> ... </select> </td> <td class="product"> Book 2 </td> <td class="price-item-2"> $10 </td> <td class="total-item-2"> $10 </td> </tr> ... ... <tr> <td colspan="3" align="right"> <strong>Grand Total:</strong> </td> <td class="grandtotal"> </td> </tr> </table> <input type="hidden" id="qty-item-1" value="0" /> <input type="hidden" id="total-item-1" value="0" /> <input type="hidden" id="qty-item-2" value="0" /> <input type="hidden" id="total-item-2" value="0" />

    Read the article

  • Collpasible menu needs all header needs to be closed on initial loading

    - by Maju
    I have a sidebar with collapsible menu it works fine but all the values come expanded the initial loading time.I want it to be closed on load and toggled thereafter. Here is the jquery used // Sidebar Toggle var fluid = { Toggle : function(){ var default_hide = {"grid": true }; $.each( ["pagesnav", "commentsnav", "userssnav", "imagesnav"], function() { var el = $("#" + (this == 'accordon' ? 'accordion-block' : this) ); if (default_hide[this]) { el.hide(); $("[id='toggle-"+this+"']").addClass("hidden"); } $("[id='toggle-"+this+"']") .bind("click", function(e) { if ($(this).hasClass('hidden')){ $(this).removeClass('hidden').addClass('visible'); el.slideDown(); } else { $(this).removeClass('visible').addClass('hidden'); el.slideUp(); } e.preventDefault(); }); } ); } } jQuery(function ($) { if($("[id^='toggle']").length){fluid.Toggle();} }); here is the html <span class="ul-header"><a id="toggle-pagesnav" href="#" class="toggle visible">Content</a></span> <ul id="pagesnav"> <li><a class="icn_manage_pages" href="#">Manage Pages</a></li> <li><a class="icn_add_pages" href="#">Add Pages</a></li> <li><a class="icn_edit_pages" href="#">Edit Pages</a></li> <li><a class="icn_delete_pages" href="#">Delete Pages</a></li> </ul> <!-- End Content Nav --> <!-- Start Comments Nav --> <span class="ul-header"><a id="toggle-commentsnav" href="#" class="toggle visible">Comments</a></span> <ul id="commentsnav"> <li><a class="icn_manage_comments" href="#">Manage Comments</a></li> <li><a class="icn_add_comments" href="#">Add Comments</a></li> <li><a class="icn_edit_comments" href="#">Edit Comments</a></li> <li><a class="icn_delete_comments" href="#">Delete Comments</a></li> </ul> here is the css used .toggle { display:block; } .ul-header a.visible { background:url('../img/icons/small/toggle_close.png') no-repeat scroll 97% 50%; } .ul-header a.hidden { background:url('../img/icons/small/toggle_open.png') no-repeat scroll 97% 50%; } Please help.

    Read the article

  • .live event doesnt work till second click

    - by ChampionChris
    I have 2 list on a page that are linked. When I drag a li element from list 1 to list 2 the live events on list 1 don't work on the first click only second click. Below is the code that adds the li (obj) to list 2. function AddToDropBox(obj) { $(obj).children(".handle").animate({ width: "20px" }).children("strong").fadeOut(); $(obj).children("span:not(.track,.play,.handle,:has(.btn-edit))").fadeOut('fast'); $(obj).children(".play").css("margin-right", "8px"); $(obj).css({ "opacity": "0.0", "width": "284px" }).animate({ opacity: "1.0" }); if ($(".sidebar-drop-box ul").children(".admin-song").length > 0) { $(".dropTitle").fadeOut("fast"); $(".sidebar-drop-box ul.admin-song-list").css("min-height", "0"); } if (typeof SetLinks == 'function') { SetLinks(); } //CBG Changes adds media ID to hidden field //checks id there is a value in field then adds comma if(document.getElementById("ctl00_cphBody_hfRemoveMedia").value==""||document.getElementById("ctl00_cphBody_hfRemoveMedia").value==null) { document.getElementById("ctl00_cphBody_hfRemoveMedia").value=(obj).attr("mediaid"); } else { var localMediaIDs=document.getElementById("ctl00_cphBody_hfRemoveMedia").value; document.getElementById("ctl00_cphBody_hfRemoveMedia").value=localMediaIDs+", "+(obj).attr("mediaid"); } // alert("hfid: "+document.getElementById("ctl00_cphBody_hfRemoveMedia").value); //END CBG Modifications } this is one of the live() events that dont fire until the second click after the drag. This live() event is in a document.ready function(). // Live for deleting. $(".btn-del").live("click", function(e) { DeleteItem(this); $(this).removeClass("btn-del").addClass("btn-add").parents("li").removeClass("alt").addClass("removed"); var oldTxt = $(this).parents("li").find(".status").text(); $(this).parents("li").find(".status").text("Removed").attr("oldstat", oldTxt); $("#timeHolder input[type=hidden]").val(($("#timeHolder input[type=hidden]").val() * 1) - ($(this).parents("li").find(".time").attr("length") * 1)); CalculateAggregates(); isDirty = false; }); EDIT @dreaton.. Im new to jquery and javascript so thanks for the last tip... Im not sure what you mean about cache the query's. ... the delegete feature is giving me this Microsoft JScript runtime error: Object doesn't support this property or method this is the way I have the code $('#ulPlaylist').delegate('.btn-del', 'click', function (e) { DeleteItem(this); $(this).removeClass("btn-del").addClass("btn-add").parents("li").removeClass("alt").addClass("removed"); var oldTxt = $(this).parents("li").find(".status").text(); $(this).parents("li").find(".status").text("Removed").attr("oldstat", oldTxt); $("#timeHolder input[type=hidden]").val(($("#timeHolder input[type=hidden]").val() * 1) - ($(this).parents("li").find(".time").attr("length") * 1)); CalculateAggregates(); isDirty = false; });

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • Web Services for Info Explorer Zones

    - by Anthony Shorten
    One of the most interesting uses for XAI and Configurable objects is the exposure of a query portal as a Web Service. Let me illustrate this with an example. Say you have an interface that requires a list of data from a number of product tables. In the past you would have to build a java program to do this with SQL then use an application service but it is now possible with just configuration. The first step in the process is to create the SQL you want to use for the interface. It can be any valid static SQL or use host variables for the WHERE clause (we call that filtered). Once you are happy with the SQL (and it performs acceptably) you can incorporate that SQL into a Info-Explorer Zone. You can use any of the explorer zone types but I typically recommend F1-DE-SINGLE as it supports a single SQL statement with multiple filters (up to 15) as well as hidden filters (up to 5). Hidden filters are typically not displayed in the UI for criteria (remember explorer zones can be used on the user Interface as well) but for web services they can be used as normal filters (this means you can use up to 20 filters all up). Once you are happy with the zone, you now need to define it as a Business Service. We have a generic service called FWLZDEXP which allows a explorer zone to be defined as a Business Service. If you open any Business Service based upon FWLZDEXP you will see some examples. The schema is standard and pretty self explanatory in terms of the structure. The schema pattern looks like this: Zone element - maps to the ZONE_CD element and the default value is the zone name you just created. This links the business service to the zone. Filter elements - You name the filters as you like but the mapField is set to Fx_VALUE where x is the filter number corresponding to the filter element in the zone definition. Hidden filter elements - You name the filters as you like but the mapField is set to Hx_VALUE where x is the filter number corresponding to the hidden filter element in the zone definition. results group - this holds the elements of the result set. Each element in your result set has a tagname and is linked to the COL_VALUE mapField and the row element is lists the SEQNO of the column. This corresponds to the column number in the results set in the zone. An example schema is shown below for the F1-USGRACML zone, which returns the access modes for a user group and application service filters. In the example, the userGroup and applicationService elements are the filters and the rows would contain a list of accessModeDescr. This is just a simple example to illustrate the point. There are lots of examples in the product that you can investigate. One recommendation, to save time, is that you copy the schema from one of the examples to save you typing it from scratch. You can simply modify the tags and other elements to suit your needs. Once the Business Service is defined it can simply be defined as a Web Service by registering an XAI Inbound Service using the Business Service definition as a basis. You now have a Web Service based upon a Info Explorer Zone. This is one of my favorite components as it allows interfaces to be simplified. This will be my last blog entry for this year. I hope you all have a great and safe Christmas and an even greater new year. Next year promises to be an exciting year and I look forward to communicating exciting developments we are working on at the moment as they are released.

    Read the article

  • EPM 11.1.2 - Configure a data source to support Essbase failover in active-passive clustering mode

    - by Ahmed A
    To configure a data source to support Essbase fail-over in active-passive clustering mode, replace the Essbase Server name value with the APS URL followed by the Essbase cluster name; for example, if the APS URL is http://<hostname>:13090/aps and the Essbase cluster name is EssbaseCluster-1, then the value in the Essbase Server name field would be:http://<hostname>:13090/aps/Essbase?clusterName=EssbaseCluster-1Note: Entering the Essbase cluster name without the APS URL in the Essbase Server name field is not supported in this release.

    Read the article

< Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >