Search Results

Search found 6205 results on 249 pages for 'linq to nhibernate'.

Page 125/249 | < Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >

  • How Can I Get a List<int> From Linq to XML that Produces List<List<int>>?

    - by DaveDev
    I have an XML snippet as follows: <PerformancePanel> <LegalText> <Line id="300" /> <Line id="304" /> <Line id="278" /> </LegalText> </PerformancePanel> I'm using the following code to get an object: var performancePanels = new { Panels = (from panel in doc.Elements("PerformancePanel") select new { LegalTextIds = (from legalText in panel.Elements("LegalText").Elements("Line") select new List<int>() { (int)legalText.Attribute("id") }).ToList() }).ToList() }; The type of LegalTextIds is List<List<int>>. How can I get this as a List<int>?

    Read the article

  • How to query for entities with no matching siblings, with LINQ?

    - by Ryan
    I've got the two following entities ... class Citation { public int CitationId { get; set; } public string Identifier { get; set; } } class CitationIdentifier { public int CitationIdentifierId { get; set; } public string Identifier { get; set; } } I'm trying to query for all Citation records where the Identifier property does not match any of the CitationIdentifiers record Identifier property. So, if I have a Citation with an Identifier property containing "foo", but there are no CitationIdentifier records with an Identifier property containing "foo", then I'd like to retrieve that Citation. I'm working with an IDbSet<Citation>. Any ideas? Thanks.

    Read the article

  • If I'm projecting with linq and not using a range variable what is the proper syntax?

    - by itchi
    I have a query that sums and aggregates alot of data something like this: var anonType = from x in collection let value = collection.Where(c=>c.Code == "A") select new { sum = value.Sum(v=>v.Amount) }; I find it really weird that I have to declare the range variable x, especially if I'm not using it. So, am I doing something wrong or is there a different format I should be following? Also, keep in mind that anonType has about 15 different properties that are all types of aggregates (sums,counts, etc). So I couldn't do something like: int x = collection.Where(c=>c.Code == "A").Sum(v=>v.Amount);

    Read the article

  • Using LINQ, how do you get all label controls.

    - by John
    I want to get a collection of all label controls that are part of a user control. I have the following code: var labelControls = from Control ctl in this.Controls where ctl.GetType() == typeof(Label) select ctl; but the result is zero results. Please assist. Thanks.

    Read the article

  • Same Salt, Different Encrypted Password is not working? Using Linq to update password.

    - by Xaisoft
    Hello, I am running into a wall regarding changing the password and was wondering if anyone had any ideas. Here are the database values prior to changing the password: Clear Text password = abc1980 Encrypted Password = Yn1N5l+4AUqkOM3WYO7ww/sCN+o= Salt = 82qVIhUIoblBRIRvFSZ1fw== After I change my password to abc1973, salt remains the same, but the Encrypted Password changes which is supposed to happen: Encrypted Password = rHtjLq3qxAl/7T1GfkxrsHzPsNk= However, when I try to login with abc1973 as the password, it does not login. If I try abc1980, it logs me in. It is updating the database, is it caching the values somewhere? Any ideas?

    Read the article

  • [Linq to sql] query result what should i use Count() or Any()...

    - by Pandiya Chendur
    I am checking login of a user by this repository method, public bool getLoginStatus(string emailId, string password) { var query = from r in taxidb.Registrations where (r.EmailId == emailId && r.Password==password) select r; if (query.Count() != 0) { return true; } return false; } I saw in one of the previous questions !query.Any() would be faster... Which should i use? Any suggestion....

    Read the article

  • How do I select the item with the highest value using LINQ?

    - by mafutrct
    Imagine you got a class like this: class Foo { string key; int value; } How would you select the Foo with the highest value from an IEnumeralbe<Foo>? A basic problem is to keep the number of iterations low (i.e. at 1), but that affects readability. After all, the best I could find was something along the lines of this: IEnumerable<Foo> list; Foo max = list.Aggregate ((l, r) => l.value > r.value ? l : r); Can you think of a more better way?

    Read the article

  • Announcing Entity Framework Code-First (CTP5 release)

    - by ScottGu
    This week the data team released the CTP5 build of the new Entity Framework Code-First library.  EF Code-First enables a pretty sweet code-centric development workflow for working with data.  It enables you to: Develop without ever having to open a designer or define an XML mapping file Define model objects by simply writing “plain old classes” with no base classes required Use a “convention over configuration” approach that enables database persistence without explicitly configuring anything Optionally override the convention-based persistence and use a fluent code API to fully customize the persistence mapping I’m a big fan of the EF Code-First approach, and wrote several blog posts about it this summer: Code-First Development with Entity Framework 4 (July 16th) EF Code-First: Custom Database Schema Mapping (July 23rd) Using EF Code-First with an Existing Database (August 3rd) Today’s new CTP5 release delivers several nice improvements over the CTP4 build, and will be the last preview build of Code First before the final release of it.  We will ship the final EF Code First release in the first quarter of next year (Q1 of 2011).  It works with all .NET application types (including both ASP.NET Web Forms and ASP.NET MVC projects). Installing EF Code First You can install and use EF Code First CTP5 using one of two ways: Approach 1) By downloading and running a setup program.  Once installed you can reference the EntityFramework.dll assembly it provides within your projects.      or: Approach 2) By using the NuGet Package Manager within Visual Studio to download and install EF Code First within a project.  To do this, simply bring up the NuGet Package Manager Console within Visual Studio (View->Other Windows->Package Manager Console) and type “Install-Package EFCodeFirst”: Typing “Install-Package EFCodeFirst” within the Package Manager Console will cause NuGet to download the EF Code First package, and add it to your current project: Doing this will automatically add a reference to the EntityFramework.dll assembly to your project:   NuGet enables you to have EF Code First setup and ready to use within seconds.  When the final release of EF Code First ships you’ll also be able to just type “Update-Package EFCodeFirst” to update your existing projects to use the final release. EF Code First Assembly and Namespace The CTP5 release of EF Code First has an updated assembly name, and new .NET namespace: Assembly Name: EntityFramework.dll Namespace: System.Data.Entity These names match what we plan to use for the final release of the library. Nice New CTP5 Improvements The new CTP5 release of EF Code First contains a bunch of nice improvements and refinements. Some of the highlights include: Better support for Existing Databases Built-in Model-Level Validation and DataAnnotation Support Fluent API Improvements Pluggable Conventions Support New Change Tracking API Improved Concurrency Conflict Resolution Raw SQL Query/Command Support The rest of this blog post contains some more details about a few of the above changes. Better Support for Existing Databases EF Code First makes it really easy to create model layers that work against existing databases.  CTP5 includes some refinements that further streamline the developer workflow for this scenario. Below are the steps to use EF Code First to create a model layer for the Northwind sample database: Step 1: Create Model Classes and a DbContext class Below is all of the code necessary to implement a simple model layer using EF Code First that goes against the Northwind database: EF Code First enables you to use “POCO” – Plain Old CLR Objects – to represent entities within a database.  This means that you do not need to derive model classes from a base class, nor implement any interfaces or data persistence attributes on them.  This enables the model classes to be kept clean, easily testable, and “persistence ignorant”.  The Product and Category classes above are examples of POCO model classes. EF Code First enables you to easily connect your POCO model classes to a database by creating a “DbContext” class that exposes public properties that map to the tables within a database.  The Northwind class above illustrates how this can be done.  It is mapping our Product and Category classes to the “Products” and “Categories” tables within the database.  The properties within the Product and Category classes in turn map to the columns within the Products and Categories tables – and each instance of a Product/Category object maps to a row within the tables. The above code is all of the code required to create our model and data access layer!  Previous CTPs of EF Code First required an additional step to work against existing databases (a call to Database.Initializer<Northwind>(null) to tell EF Code First to not create the database) – this step is no longer required with the CTP5 release.  Step 2: Configure the Database Connection String We’ve written all of the code we need to write to define our model layer.  Our last step before we use it will be to setup a connection-string that connects it with our database.  To do this we’ll add a “Northwind” connection-string to our web.config file (or App.Config for client apps) like so:   <connectionStrings>          <add name="Northwind"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;AttachDBFilename=|DataDirectory|\northwind.mdf;User Instance=true"          providerName="System.Data.SqlClient" />   </connectionStrings> EF “code first” uses a convention where DbContext classes by default look for a connection-string that has the same name as the context class.  Because our DbContext class is called “Northwind” it by default looks for a “Northwind” connection-string to use.  Above our Northwind connection-string is configured to use a local SQL Express database (stored within the \App_Data directory of our project).  You can alternatively point it at a remote SQL Server. Step 3: Using our Northwind Model Layer We can now easily query and update our database using the strongly-typed model layer we just built with EF Code First. The code example below demonstrates how to use LINQ to query for products within a specific product category.  This query returns back a sequence of strongly-typed Product objects that match the search criteria: The code example below demonstrates how we can retrieve a specific Product object, update two of its properties, and then save the changes back to the database: EF Code First handles all of the change-tracking and data persistence work for us, and allows us to focus on our application and business logic as opposed to having to worry about data access plumbing. Built-in Model Validation EF Code First allows you to use any validation approach you want when implementing business rules with your model layer.  This enables a great deal of flexibility and power. Starting with this week’s CTP5 release, EF Code First also now includes built-in support for both the DataAnnotation and IValidatorObject validation support built-into .NET 4.  This enables you to easily implement validation rules on your models, and have these rules automatically be enforced by EF Code First whenever you save your model layer.  It provides a very convenient “out of the box” way to enable validation within your applications. Applying DataAnnotations to our Northwind Model The code example below demonstrates how we could add some declarative validation rules to two of the properties of our “Product” model: We are using the [Required] and [Range] attributes above.  These validation attributes live within the System.ComponentModel.DataAnnotations namespace that is built-into .NET 4, and can be used independently of EF.  The error messages specified on them can either be explicitly defined (like above) – or retrieved from resource files (which makes localizing applications easy). Validation Enforcement on SaveChanges() EF Code-First (starting with CTP5) now automatically applies and enforces DataAnnotation rules when a model object is updated or saved.  You do not need to write any code to enforce this – this support is now enabled by default.  This new support means that the below code – which violates our above rules – will automatically throw an exception when we call the “SaveChanges()” method on our Northwind DbContext: The DbEntityValidationException that is raised when the SaveChanges() method is invoked contains a “EntityValidationErrors” property that you can use to retrieve the list of all validation errors that occurred when the model was trying to save.  This enables you to easily guide the user on how to fix them.  Note that EF Code-First will abort the entire transaction of changes if a validation rule is violated – ensuring that our database is always kept in a valid, consistent state. EF Code First’s validation enforcement works both for the built-in .NET DataAnnotation attributes (like Required, Range, RegularExpression, StringLength, etc), as well as for any custom validation rule you create by sub-classing the System.ComponentModel.DataAnnotations.ValidationAttribute base class. UI Validation Support A lot of our UI frameworks in .NET also provide support for DataAnnotation-based validation rules. For example, ASP.NET MVC, ASP.NET Dynamic Data, and Silverlight (via WCF RIA Services) all provide support for displaying client-side validation UI that honor the DataAnnotation rules applied to model objects. The screen-shot below demonstrates how using the default “Add-View” scaffold template within an ASP.NET MVC 3 application will cause appropriate validation error messages to be displayed if appropriate values are not provided: ASP.NET MVC 3 supports both client-side and server-side enforcement of these validation rules.  The error messages displayed are automatically picked up from the declarative validation attributes – eliminating the need for you to write any custom code to display them. Keeping things DRY The “DRY Principle” stands for “Do Not Repeat Yourself”, and is a best practice that recommends that you avoid duplicating logic/configuration/code in multiple places across your application, and instead specify it only once and have it apply everywhere. EF Code First CTP5 now enables you to apply declarative DataAnnotation validations on your model classes (and specify them only once) and then have the validation logic be enforced (and corresponding error messages displayed) across all applications scenarios – including within controllers, views, client-side scripts, and for any custom code that updates and manipulates model classes. This makes it much easier to build good applications with clean code, and to build applications that can rapidly iterate and evolve. Other EF Code First Improvements New to CTP5 EF Code First CTP5 includes a bunch of other improvements as well.  Below are a few short descriptions of some of them: Fluent API Improvements EF Code First allows you to override an “OnModelCreating()” method on the DbContext class to further refine/override the schema mapping rules used to map model classes to underlying database schema.  CTP5 includes some refinements to the ModelBuilder class that is passed to this method which can make defining mapping rules cleaner and more concise.  The ADO.NET Team blogged some samples of how to do this here. Pluggable Conventions Support EF Code First CTP5 provides new support that allows you to override the “default conventions” that EF Code First honors, and optionally replace them with your own set of conventions. New Change Tracking API EF Code First CTP5 exposes a new set of change tracking information that enables you to access Original, Current & Stored values, and State (e.g. Added, Unchanged, Modified, Deleted).  This support is useful in a variety of scenarios. Improved Concurrency Conflict Resolution EF Code First CTP5 provides better exception messages that allow access to the affected object instance and the ability to resolve conflicts using current, original and database values.  Raw SQL Query/Command Support EF Code First CTP5 now allows raw SQL queries and commands (including SPROCs) to be executed via the SqlQuery and SqlCommand methods exposed off of the DbContext.Database property.  The results of these method calls can be materialized into object instances that can be optionally change-tracked by the DbContext.  This is useful for a variety of advanced scenarios. Full Data Annotations Support EF Code First CTP5 now supports all standard DataAnnotations within .NET, and can use them both to perform validation as well as to automatically create the appropriate database schema when EF Code First is used in a database creation scenario.  Summary EF Code First provides an elegant and powerful way to work with data.  I really like it because it is extremely clean and supports best practices, while also enabling solutions to be implemented very, very rapidly.  The code-only approach of the library means that model layers end up being flexible and easy to customize. This week’s CTP5 release further refines EF Code First and helps ensure that it will be really sweet when it ships early next year.  I recommend using NuGet to install and give it a try today.  I think you’ll be pleasantly surprised by how awesome it is. Hope this helps, Scott

    Read the article

  • LINQ Query using Multiple From and Multiple Collections

    1: using System; 2: using System.Collections.Generic; 3: using System.Linq; 4: using System.Text; 5:  6: namespace ConsoleApplication2 7: { 8: class Program 9: { 10: static void Main(string[] args) 11: { 12: var emps = GetEmployees(); 13: var deps = GetDepartments(); 14:  15: var results = from e in emps 16: from d in deps 17: where e.EmpNo >= 1 && d.DeptNo <= 30 18: select new { Emp = e, Dept = d }; 19: 20: foreach (var item in results) 21: { 22: Console.WriteLine("{0},{1},{2},{3}", item.Dept.DeptNo, item.Dept.DName, item.Emp.EmpNo, item.Emp.EmpName); 23: } 24: } 25:  26: private static List<Emp> GetEmployees() 27: { 28: return new List<Emp>() { 29: new Emp() { EmpNo = 1, EmpName = "Smith", DeptNo = 10 }, 30: new Emp() { EmpNo = 2, EmpName = "Narayan", DeptNo = 20 }, 31: new Emp() { EmpNo = 3, EmpName = "Rishi", DeptNo = 30 }, 32: new Emp() { EmpNo = 4, EmpName = "Guru", DeptNo = 10 }, 33: new Emp() { EmpNo = 5, EmpName = "Priya", DeptNo = 20 }, 34: new Emp() { EmpNo = 6, EmpName = "Riya", DeptNo = 10 } 35: }; 36: } 37:  38: private static List<Department> GetDepartments() 39: { 40: return new List<Department>() { 41: new Department() { DeptNo=10, DName="Accounts" }, 42: new Department() { DeptNo=20, DName="Finance" }, 43: new Department() { DeptNo=30, DName="Travel" } 44: }; 45: } 46: } 47:  48: class Emp 49: { 50: public int EmpNo { get; set; } 51: public string EmpName { get; set; } 52: public int DeptNo { get; set; } 53: } 54:  55: class Department 56: { 57: public int DeptNo { get; set; } 58: public String DName { get; set; } 59: } 60: } span.fullpost {display:none;}

    Read the article

  • Use Expressions with LINQ to Entities

    - by EltonStoneman
    [Source: http://geekswithblogs.net/EltonStoneman] Recently I've been putting together a generic approach for paging the response from a WCF service. Paging changes the service signature, so it's not as simple as adding a behavior to an existing service in config, but the complexity of the paging is isolated in a generic base class. We're using the Entity Framework talking to SQL Server, so when we ask for a page using LINQ's .Take() method we get a nice efficient SQL query for just the rows we want, with minimal impact on SQL Server and network traffic. We use the maximum ID of the record returned as a high-water mark (rather than using .Skip() to go to the next record), so the approach caters for records being deleted between page requests. In the paged response we include a HasMorePages indicator, computed by comparing the max ID in the page of results to the max ID for the whole resultset - if the latter is bigger, then there are more pages. In some quick performance testing, the paged version of the service performed much more slowly than the unpaged version, which was unexpected. We narrowed it down to the code which gets the max ID for the full resultset - instead of building an efficient MAX() SQL query, EF was returning the whole resultset and then computing the max ID in the service layer. It's easy to reproduce - take this AdventureWorks query:             var context = new AdventureWorksEntities();             var query = from od in context.SalesOrderDetail                         where od.ModifiedDate >= modified                          && od.SalesOrderDetailID.CompareTo(id) > 0                         orderby od.SalesOrderDetailID                         select od;   We can find the maximum SalesOrderDetailID like this:             var maxIdEfficiently = query.Max(od => od.SalesOrderDetailID);   which produces our efficient MAX() SQL query. If we're doing this generically and we already have the ID function in a Func:             Func<SalesOrderDetail, int> idFunc = od => od.SalesOrderDetailID;             var maxIdInefficiently = query.Max(idFunc);   This fetches all the results from the query and then runs the Max() function in code. If you look at the difference in Reflector, the first call passes an Expression to the Max(), while the second call passes a Func. So it's an easy fix - wrap the Func in an Expression:             Expression<Func<SalesOrderDetail, int>> idExpression = od => od.SalesOrderDetailID;             var maxIdEfficientlyAgain = query.Max(idExpression);   - and we're back to running an efficient MAX() statement. Evidently the EF provider can dissect an Expression and build its equivalent in SQL, but it can't do that with Funcs.

    Read the article

  • How to perform Cross Join with Linq

    - by berthin
    Cross join consists to perform a Cartesian product of two sets or sequences. The following example shows a simple Cartesian product of the sets A and B: A (a1, a2) B (b1, b2) => C (a1 b1,            a1 b2,            a2 b1,            a2, b2 ) is the Cartesian product's result. Linq to Sql allows using Cross join operations. Cross join is not equijoin, means that no predicate expression of equality in the Join clause of the query. To define a cross join query, you can use multiple from clauses. Note that there's no explicit operator for the cross join. In the following example, the query must join a sequence of Product with a sequence of Pricing Rules: 1: //Fill the data source 2: var products = new List<Product> 3: { 4: new Product{ProductID="P01",ProductName="Amaryl"}, 5: new Product {ProductID="P02", ProductName="acetaminophen"} 6: }; 7:  8: var pricingRules = new List<PricingRule> 9: { 10: new PricingRule {RuleID="R_1", RuleType="Free goods"}, 11: new PricingRule {RuleID="R_2", RuleType="Discount"}, 12: new PricingRule {RuleID="R_3", RuleType="Discount"} 13: }; 14: 15: //cross join query 16: var crossJoin = from p in products 17: from r in pricingRules 18: select new { ProductID = p.ProductID, RuleID = r.RuleID };   Below the definition of the two entities using in the above example.   1: public class Product 2: { 3: public string ProductID { get; set; } 4: public string ProductName { get; set; } 5: } 1: public class PricingRule 2: { 3: public string RuleID { get; set; } 4: public string RuleType { get; set; } 5: }   Doing this: 1: foreach (var result in crossJoin) 2: { 3: Console.WriteLine("({0} , {1})", result.ProductID, result.RuleID); 4: }   The output should be similar on this:   ( P01   -    R_1 )   ( P01   -    R_2 )   ( P01   -    R_3 )   ( P02   -    R_1 )   ( P02   -    R_2 )   ( P02   -    R_3) Conclusion Cross join operation is useful when performing a Cartesian product of two sequences object. However, it can produce very large result sets that may caused a problem of performance. So use with precautions :)

    Read the article

  • C#, Delegates and LINQ

    - by JustinGreenwood
    One of the topics many junior programmers struggle with is delegates. And today, anonymous delegates and lambda expressions are profuse in .net APIs.  To help some VB programmers adapt to C# and the many equivalent flavors of delegates, I walked through some simple samples to show them the different flavors of delegates. using System; using System.Collections.Generic; using System.Linq; namespace DelegateExample { class Program { public delegate string ProcessStringDelegate(string data); public static string ReverseStringStaticMethod(string data) { return new String(data.Reverse().ToArray()); } static void Main(string[] args) { var stringDelegates = new List<ProcessStringDelegate> { //========================================================== // Declare a new delegate instance and pass the name of the method in new ProcessStringDelegate(ReverseStringStaticMethod), //========================================================== // A shortcut is to just and pass the name of the method in ReverseStringStaticMethod, //========================================================== // You can create an anonymous delegate also delegate (string inputString) //Scramble { var outString = inputString; if (!string.IsNullOrWhiteSpace(inputString)) { var rand = new Random(); var chs = inputString.ToCharArray(); for (int i = 0; i < inputString.Length * 3; i++) { int x = rand.Next(chs.Length), y = rand.Next(chs.Length); char c = chs[x]; chs[x] = chs[y]; chs[y] = c; } outString = new string(chs); } return outString; }, //========================================================== // yet another syntax would be the lambda expression syntax inputString => { // ROT13 var array = inputString.ToCharArray(); for (int i = 0; i < array.Length; i++) { int n = (int)array[i]; n += (n >= 'a' && n <= 'z') ? ((n > 'm') ? 13 : -13) : ((n >= 'A' && n <= 'Z') ? ((n > 'M') ? 13 : -13) : 0); array[i] = (char)n; } return new string(array); } //========================================================== }; // Display the results of the delegate calls var stringToTransform = "Welcome to the jungle!"; System.Console.ForegroundColor = ConsoleColor.Cyan; System.Console.Write("String to Process: "); System.Console.ForegroundColor = ConsoleColor.Yellow; System.Console.WriteLine(stringToTransform); stringDelegates.ForEach(delegatePointer => { System.Console.WriteLine(); System.Console.ForegroundColor = ConsoleColor.Cyan; System.Console.Write("Delegate Method Name: "); System.Console.ForegroundColor = ConsoleColor.Magenta; System.Console.WriteLine(delegatePointer.Method.Name); System.Console.ForegroundColor = ConsoleColor.Cyan; System.Console.Write("Delegate Result: "); System.Console.ForegroundColor = ConsoleColor.White; System.Console.WriteLine(delegatePointer(stringToTransform)); }); System.Console.ReadKey(); } } } The output of the program is below: String to Process: Welcome to the jungle! Delegate Method Name: ReverseStringStaticMethod Delegate Result: !elgnuj eht ot emocleW Delegate Method Name: ReverseStringStaticMethod Delegate Result: !elgnuj eht ot emocleW Delegate Method Name: b__1 Delegate Result: cg ljotWotem!le une eh Delegate Method Name: b__2 Delegate Result: dX_V|`X ?| ?[X ]?{Z_X!

    Read the article

  • ORM market analysis

    - by bonefisher
    I would like to see your experience with popular ORM tools outhere, like NHibernate, LLBLGen, EF, S2Q, Genom-e, LightSpeed, DataObjects.NET, OpenAccess, ... From my exp: - Genom-e is quiet capable of Linq & performance, dev support - EF lacks on some key features like lazy loading, Poco support, pers.ignorance... but in 4.o it may have overcome .. - DataObjects.Net so far good, althrough I found some bugs - NHibernate steep learning curve, no 100% Linq support (like in Genom-e and DataObjects.Net), but very supportive, extensible and mature

    Read the article

  • How to resolve conflicting assemblies in .Net?

    - by Amitabh
    In my web application I am using NHibernate.dll. This has a dependency on folowing assembly. 'Antlr3.Runtime, Version=3.1.0.39271, Culture=neutral, PublicKeyToken=3a9cab8f8d22bfb7' Now in the same project for another requirement I have to introduce Antlr3.StringTemplate.dll. Which has a dependency on another version of the above assembly. If I use the version of Antlr3.Runtime.dll which satisfies NHibernate , Antlr3.StringTemplate starts complaining and vice-versa. How to resolve a situation like this?

    Read the article

  • Castle ActiveRecord Table name conflict

    - by Shane
    When you run into a reserved word like "User" in NHibernate you would just put single quotes around the offending text and nHibernate will surround the text with square brackets for querying. My question is how do you do the same thing using Castle.ActiveRecord?

    Read the article

  • Generating db schema from c# class

    - by Niran
    Hi, Is there any other method than nHibernate by wich we can generate db schema from class definition? My classes arn't that complex etc (few one-to-many relations). However I would like to just be able to save my objects in db and recreate schema if needed. I am stuck with .NET 2.0. I am not that particular about performance for this project, I am just lazy to create tables and write save/load code and deel with nHibernate xml. Thanks

    Read the article

  • how to dynamically break NHibernation cascade

    - by Joe Black
    The NHibernate cascade setting in the entity mapping is static. Is there anyway to dynamically disable the "cascade" setting in code to avoid expensive cascade operation in NHiberate during a bulky data transaction? We do not want to use stored procedures or native SQL because we need to have the entity changes captured by NHibernate (audit).

    Read the article

  • How to dynamically modify NHibernate load queries at runtime? EventListeners? Interceptors?

    - by snicker
    I need to modify the query used to load many-to-one references in my model. Specifically, I need to be able to further filter this data. Unfortunately, NH will not allow me to filter many-to-one relationships using the built in filtering system (?). I could just be doing something incorrect. Is there a hook where I can manually and dynamically modify the query used to load the data? Or an alternative to filters that will allow me to specify parameters? Background: I am working with a database that is using a form of revision control, with each entity having a natural ID PK, an EntityId, a RevisionValidTo and RevisionValidFrom field. There may be many rows using the same EntityId, which is the reference for other tables to join on, but the Revision ranges are mutually exclusive. Thus, the relationship is only many-to-one IIF the filter is applied. However, NH offers no way to specify a filter on many-to-one references (they do for collections...)

    Read the article

  • Display ‘–Select–’ in an ASP.NET DropDownList

    - by Ken Cox [MVP]
    A purchaser of my book writes: “I would like a drop down list to display the text: "-Select-" initially instead of the first value of the data it is bound to.” Here you go…   <%@ Page Language="VB" %> <script runat="server">     Protected Sub Page_Load(ByVal sender As Object, _                            ...(read more)

    Read the article

  • Class-Level Model Validation with EF Code First and ASP.NET MVC 3

    - by ScottGu
    Earlier this week the data team released the CTP5 build of the new Entity Framework Code-First library.  In my blog post a few days ago I talked about a few of the improvements introduced with the new CTP5 build.  Automatic support for enforcing DataAnnotation validation attributes on models was one of the improvements I discussed.  It provides a pretty easy way to enable property-level validation logic within your model layer. You can apply validation attributes like [Required], [Range], and [RegularExpression] – all of which are built-into .NET 4 – to your model classes in order to enforce that the model properties are valid before they are persisted to a database.  You can also create your own custom validation attributes (like this cool [CreditCard] validator) and have them be automatically enforced by EF Code First as well.  This provides a really easy way to validate property values on your models.  I showed some code samples of this in action in my previous post. Class-Level Model Validation using IValidatableObject DataAnnotation attributes provides an easy way to validate individual property values on your model classes.  Several people have asked - “Does EF Code First also support a way to implement class-level validation methods on model objects, for validation rules than need to span multiple property values?”  It does – and one easy way you can enable this is by implementing the IValidatableObject interface on your model classes. IValidatableObject.Validate() Method Below is an example of using the IValidatableObject interface (which is built-into .NET 4 within the System.ComponentModel.DataAnnotations namespace) to implement two custom validation rules on a Product model class.  The two rules ensure that: New units can’t be ordered if the Product is in a discontinued state New units can’t be ordered if there are already more than 100 units in stock We will enforce these business rules by implementing the IValidatableObject interface on our Product class, and by implementing its Validate() method like so: The IValidatableObject.Validate() method can apply validation rules that span across multiple properties, and can yield back multiple validation errors. Each ValidationResult returned can supply both an error message as well as an optional list of property names that caused the violation (which is useful when displaying error messages within UI). Automatic Validation Enforcement EF Code-First (starting with CTP5) now automatically invokes the Validate() method when a model object that implements the IValidatableObject interface is saved.  You do not need to write any code to cause this to happen – this support is now enabled by default. This new support means that the below code – which violates one of our above business rules – will automatically throw an exception (and abort the transaction) when we call the “SaveChanges()” method on our Northwind DbContext: In addition to reactively handling validation exceptions, EF Code First also allows you to proactively check for validation errors.  Starting with CTP5, you can call the “GetValidationErrors()” method on the DbContext base class to retrieve a list of validation errors within the model objects you are working with.  GetValidationErrors() will return a list of all validation errors – regardless of whether they are generated via DataAnnotation attributes or by an IValidatableObject.Validate() implementation.  Below is an example of proactively using the GetValidationErrors() method to check (and handle) errors before trying to call SaveChanges(): ASP.NET MVC 3 and IValidatableObject ASP.NET MVC 2 included support for automatically honoring and enforcing DataAnnotation attributes on model objects that are used with ASP.NET MVC’s model binding infrastructure.  ASP.NET MVC 3 goes further and also honors the IValidatableObject interface.  This combined support for model validation makes it easy to display appropriate error messages within forms when validation errors occur.  To see this in action, let’s consider a simple Create form that allows users to create a new Product: We can implement the above Create functionality using a ProductsController class that has two “Create” action methods like below: The first Create() method implements a version of the /Products/Create URL that handles HTTP-GET requests - and displays the HTML form to fill-out.  The second Create() method implements a version of the /Products/Create URL that handles HTTP-POST requests - and which takes the posted form data, ensures that is is valid, and if it is valid saves it in the database.  If there are validation issues it redisplays the form with the posted values.  The razor view template of our “Create” view (which renders the form) looks like below: One of the nice things about the above Controller + View implementation is that we did not write any validation logic within it.  The validation logic and business rules are instead implemented entirely within our model layer, and the ProductsController simply checks whether it is valid (by calling the ModelState.IsValid helper method) to determine whether to try and save the changes or redisplay the form with errors. The Html.ValidationMessageFor() helper method calls within our view simply display the error messages our Product model’s DataAnnotations and IValidatableObject.Validate() method returned.  We can see the above scenario in action by filling out invalid data within the form and attempting to submit it: Notice above how when we hit the “Create” button we got an error message.  This was because we ticked the “Discontinued” checkbox while also entering a value for the UnitsOnOrder (and so violated one of our business rules).  You might ask – how did ASP.NET MVC know to highlight and display the error message next to the UnitsOnOrder textbox?  It did this because ASP.NET MVC 3 now honors the IValidatableObject interface when performing model binding, and will retrieve the error messages from validation failures with it. The business rule within our Product model class indicated that the “UnitsOnOrder” property should be highlighted when the business rule we hit was violated: Our Html.ValidationMessageFor() helper method knew to display the business rule error message (next to the UnitsOnOrder edit box) because of the above property name hint we supplied: Keeping things DRY ASP.NET MVC and EF Code First enables you to keep your validation and business rules in one place (within your model layer), and avoid having it creep into your Controllers and Views.  Keeping the validation logic in the model layer helps ensure that you do not duplicate validation/business logic as you add more Controllers and Views to your application.  It allows you to quickly change your business rules/validation logic in one single place (within your model layer) – and have all controllers/views across your application immediately reflect it.  This help keep your application code clean and easily maintainable, and makes it much easier to evolve and update your application in the future. Summary EF Code First (starting with CTP5) now has built-in support for both DataAnnotations and the IValidatableObject interface.  This allows you to easily add validation and business rules to your models, and have EF automatically ensure that they are enforced anytime someone tries to persist changes of them to a database.  ASP.NET MVC 3 also now supports both DataAnnotations and IValidatableObject as well, which makes it even easier to use them with your EF Code First model layer – and then have the controllers/views within your web layer automatically honor and support them as well.  This makes it easy to build clean and highly maintainable applications. You don’t have to use DataAnnotations or IValidatableObject to perform your validation/business logic.  You can always roll your own custom validation architecture and/or use other more advanced validation frameworks/patterns if you want.  But for a lot of applications this built-in support will probably be sufficient – and provide a highly productive way to build solutions. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Daily tech links for .net and related technologies - Mar 29-31, 2010

    - by SanjeevAgarwal
    Daily tech links for .net and related technologies - Mar 29-31, 2010 Web Development Querying the Future With Reactive Extensions - Phil Haack Creating an OData API for StackOverflow including XML and JSON in 30 minutes - Scott Hanselman MVC Automatic Menu - Nuri Halperin jqGrid for ASP.NET MVC - TriRand Team Foolproof Provides Contingent Data Annotation Validation for ASP.NET MVC 2 -Nick Riggs Using FubuMVC.UI in asp.net MVC : Getting started - Cannibal Coder Building A Custom ActionResult in MVC...(read more)

    Read the article

< Previous Page | 121 122 123 124 125 126 127 128 129 130 131 132  | Next Page >