Search Results

Search found 3160 results on 127 pages for 'nomad zero'.

Page 125/127 | < Previous Page | 121 122 123 124 125 126 127  | Next Page >

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • PTLQueue : a scalable bounded-capacity MPMC queue

    - by Dave
    Title: Fast concurrent MPMC queue -- I've used the following concurrent queue algorithm enough that it warrants a blog entry. I'll sketch out the design of a fast and scalable multiple-producer multiple-consumer (MPSC) concurrent queue called PTLQueue. The queue has bounded capacity and is implemented via a circular array. Bounded capacity can be a useful property if there's a mismatch between producer rates and consumer rates where an unbounded queue might otherwise result in excessive memory consumption by virtue of the container nodes that -- in some queue implementations -- are used to hold values. A bounded-capacity queue can provide flow control between components. Beware, however, that bounded collections can also result in resource deadlock if abused. The put() and take() operators are partial and wait for the collection to become non-full or non-empty, respectively. Put() and take() do not allocate memory, and are not vulnerable to the ABA pathologies. The PTLQueue algorithm can be implemented equally well in C/C++ and Java. Partial operators are often more convenient than total methods. In many use cases if the preconditions aren't met, there's nothing else useful the thread can do, so it may as well wait via a partial method. An exception is in the case of work-stealing queues where a thief might scan a set of queues from which it could potentially steal. Total methods return ASAP with a success-failure indication. (It's tempting to describe a queue or API as blocking or non-blocking instead of partial or total, but non-blocking is already an overloaded concurrency term. Perhaps waiting/non-waiting or patient/impatient might be better terms). It's also trivial to construct partial operators by busy-waiting via total operators, but such constructs may be less efficient than an operator explicitly and intentionally designed to wait. A PTLQueue instance contains an array of slots, where each slot has volatile Turn and MailBox fields. The array has power-of-two length allowing mod/div operations to be replaced by masking. We assume sensible padding and alignment to reduce the impact of false sharing. (On x86 I recommend 128-byte alignment and padding because of the adjacent-sector prefetch facility). Each queue also has PutCursor and TakeCursor cursor variables, each of which should be sequestered as the sole occupant of a cache line or sector. You can opt to use 64-bit integers if concerned about wrap-around aliasing in the cursor variables. Put(null) is considered illegal, but the caller or implementation can easily check for and convert null to a distinguished non-null proxy value if null happens to be a value you'd like to pass. Take() will accordingly convert the proxy value back to null. An advantage of PTLQueue is that you can use atomic fetch-and-increment for the partial methods. We initialize each slot at index I with (Turn=I, MailBox=null). Both cursors are initially 0. All shared variables are considered "volatile" and atomics such as CAS and AtomicFetchAndIncrement are presumed to have bidirectional fence semantics. Finally T is the templated type. I've sketched out a total tryTake() method below that allows the caller to poll the queue. tryPut() has an analogous construction. Zebra stripping : alternating row colors for nice-looking code listings. See also google code "prettify" : https://code.google.com/p/google-code-prettify/ Prettify is a javascript module that yields the HTML/CSS/JS equivalent of pretty-print. -- pre:nth-child(odd) { background-color:#ff0000; } pre:nth-child(even) { background-color:#0000ff; } border-left: 11px solid #ccc; margin: 1.7em 0 1.7em 0.3em; background-color:#BFB; font-size:12px; line-height:65%; " // PTLQueue : Put(v) : // producer : partial method - waits as necessary assert v != null assert Mask = 1 && (Mask & (Mask+1)) == 0 // Document invariants // doorway step // Obtain a sequence number -- ticket // As a practical concern the ticket value is temporally unique // The ticket also identifies and selects a slot auto tkt = AtomicFetchIncrement (&PutCursor, 1) slot * s = &Slots[tkt & Mask] // waiting phase : // wait for slot's generation to match the tkt value assigned to this put() invocation. // The "generation" is implicitly encoded as the upper bits in the cursor // above those used to specify the index : tkt div (Mask+1) // The generation serves as an epoch number to identify a cohort of threads // accessing disjoint slots while s-Turn != tkt : Pause assert s-MailBox == null s-MailBox = v // deposit and pass message Take() : // consumer : partial method - waits as necessary auto tkt = AtomicFetchIncrement (&TakeCursor,1) slot * s = &Slots[tkt & Mask] // 2-stage waiting : // First wait for turn for our generation // Acquire exclusive "take" access to slot's MailBox field // Then wait for the slot to become occupied while s-Turn != tkt : Pause // Concurrency in this section of code is now reduced to just 1 producer thread // vs 1 consumer thread. // For a given queue and slot, there will be most one Take() operation running // in this section. // Consumer waits for producer to arrive and make slot non-empty // Extract message; clear mailbox; advance Turn indicator // We have an obvious happens-before relation : // Put(m) happens-before corresponding Take() that returns that same "m" for T v = s-MailBox if v != null : s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 // unlock slot to admit next producer and consumer return v Pause tryTake() : // total method - returns ASAP with failure indication for auto tkt = TakeCursor slot * s = &Slots[tkt & Mask] if s-Turn != tkt : return null T v = s-MailBox // presumptive return value if v == null : return null // ratify tkt and v values and commit by advancing cursor if CAS (&TakeCursor, tkt, tkt+1) != tkt : continue s-MailBox = null ST-ST barrier s-Turn = tkt + Mask + 1 return v The basic idea derives from the Partitioned Ticket Lock "PTL" (US20120240126-A1) and the MultiLane Concurrent Bag (US8689237). The latter is essentially a circular ring-buffer where the elements themselves are queues or concurrent collections. You can think of the PTLQueue as a partitioned ticket lock "PTL" augmented to pass values from lock to unlock via the slots. Alternatively, you could conceptualize of PTLQueue as a degenerate MultiLane bag where each slot or "lane" consists of a simple single-word MailBox instead of a general queue. Each lane in PTLQueue also has a private Turn field which acts like the Turn (Grant) variables found in PTL. Turn enforces strict FIFO ordering and restricts concurrency on the slot mailbox field to at most one simultaneous put() and take() operation. PTL uses a single "ticket" variable and per-slot Turn (grant) fields while MultiLane has distinct PutCursor and TakeCursor cursors and abstract per-slot sub-queues. Both PTL and MultiLane advance their cursor and ticket variables with atomic fetch-and-increment. PTLQueue borrows from both PTL and MultiLane and has distinct put and take cursors and per-slot Turn fields. Instead of a per-slot queues, PTLQueue uses a simple single-word MailBox field. PutCursor and TakeCursor act like a pair of ticket locks, conferring "put" and "take" access to a given slot. PutCursor, for instance, assigns an incoming put() request to a slot and serves as a PTL "Ticket" to acquire "put" permission to that slot's MailBox field. To better explain the operation of PTLQueue we deconstruct the operation of put() and take() as follows. Put() first increments PutCursor obtaining a new unique ticket. That ticket value also identifies a slot. Put() next waits for that slot's Turn field to match that ticket value. This is tantamount to using a PTL to acquire "put" permission on the slot's MailBox field. Finally, having obtained exclusive "put" permission on the slot, put() stores the message value into the slot's MailBox. Take() similarly advances TakeCursor, identifying a slot, and then acquires and secures "take" permission on a slot by waiting for Turn. Take() then waits for the slot's MailBox to become non-empty, extracts the message, and clears MailBox. Finally, take() advances the slot's Turn field, which releases both "put" and "take" access to the slot's MailBox. Note the asymmetry : put() acquires "put" access to the slot, but take() releases that lock. At any given time, for a given slot in a PTLQueue, at most one thread has "put" access and at most one thread has "take" access. This restricts concurrency from general MPMC to 1-vs-1. We have 2 ticket locks -- one for put() and one for take() -- each with its own "ticket" variable in the form of the corresponding cursor, but they share a single "Grant" egress variable in the form of the slot's Turn variable. Advancing the PutCursor, for instance, serves two purposes. First, we obtain a unique ticket which identifies a slot. Second, incrementing the cursor is the doorway protocol step to acquire the per-slot mutual exclusion "put" lock. The cursors and operations to increment those cursors serve double-duty : slot-selection and ticket assignment for locking the slot's MailBox field. At any given time a slot MailBox field can be in one of the following states: empty with no pending operations -- neutral state; empty with one or more waiting take() operations pending -- deficit; occupied with no pending operations; occupied with one or more waiting put() operations -- surplus; empty with a pending put() or pending put() and take() operations -- transitional; or occupied with a pending take() or pending put() and take() operations -- transitional. The partial put() and take() operators can be implemented with an atomic fetch-and-increment operation, which may confer a performance advantage over a CAS-based loop. In addition we have independent PutCursor and TakeCursor cursors. Critically, a put() operation modifies PutCursor but does not access the TakeCursor and a take() operation modifies the TakeCursor cursor but does not access the PutCursor. This acts to reduce coherence traffic relative to some other queue designs. It's worth noting that slow threads or obstruction in one slot (or "lane") does not impede or obstruct operations in other slots -- this gives us some degree of obstruction isolation. PTLQueue is not lock-free, however. The implementation above is expressed with polite busy-waiting (Pause) but it's trivial to implement per-slot parking and unparking to deschedule waiting threads. It's also easy to convert the queue to a more general deque by replacing the PutCursor and TakeCursor cursors with Left/Front and Right/Back cursors that can move either direction. Specifically, to push and pop from the "left" side of the deque we would decrement and increment the Left cursor, respectively, and to push and pop from the "right" side of the deque we would increment and decrement the Right cursor, respectively. We used a variation of PTLQueue for message passing in our recent OPODIS 2013 paper. ul { list-style:none; padding-left:0; padding:0; margin:0; margin-left:0; } ul#myTagID { padding: 0px; margin: 0px; list-style:none; margin-left:0;} -- -- There's quite a bit of related literature in this area. I'll call out a few relevant references: Wilson's NYU Courant Institute UltraComputer dissertation from 1988 is classic and the canonical starting point : Operating System Data Structures for Shared-Memory MIMD Machines with Fetch-and-Add. Regarding provenance and priority, I think PTLQueue or queues effectively equivalent to PTLQueue have been independently rediscovered a number of times. See CB-Queue and BNPBV, below, for instance. But Wilson's dissertation anticipates the basic idea and seems to predate all the others. Gottlieb et al : Basic Techniques for the Efficient Coordination of Very Large Numbers of Cooperating Sequential Processors Orozco et al : CB-Queue in Toward high-throughput algorithms on many-core architectures which appeared in TACO 2012. Meneghin et al : BNPVB family in Performance evaluation of inter-thread communication mechanisms on multicore/multithreaded architecture Dmitry Vyukov : bounded MPMC queue (highly recommended) Alex Otenko : US8607249 (highly related). John Mellor-Crummey : Concurrent queues: Practical fetch-and-phi algorithms. Technical Report 229, Department of Computer Science, University of Rochester Thomasson : FIFO Distributed Bakery Algorithm (very similar to PTLQueue). Scott and Scherer : Dual Data Structures I'll propose an optimization left as an exercise for the reader. Say we wanted to reduce memory usage by eliminating inter-slot padding. Such padding is usually "dark" memory and otherwise unused and wasted. But eliminating the padding leaves us at risk of increased false sharing. Furthermore lets say it was usually the case that the PutCursor and TakeCursor were numerically close to each other. (That's true in some use cases). We might still reduce false sharing by incrementing the cursors by some value other than 1 that is not trivially small and is coprime with the number of slots. Alternatively, we might increment the cursor by one and mask as usual, resulting in a logical index. We then use that logical index value to index into a permutation table, yielding an effective index for use in the slot array. The permutation table would be constructed so that nearby logical indices would map to more distant effective indices. (Open question: what should that permutation look like? Possibly some perversion of a Gray code or De Bruijn sequence might be suitable). As an aside, say we need to busy-wait for some condition as follows : "while C == 0 : Pause". Lets say that C is usually non-zero, so we typically don't wait. But when C happens to be 0 we'll have to spin for some period, possibly brief. We can arrange for the code to be more machine-friendly with respect to the branch predictors by transforming the loop into : "if C == 0 : for { Pause; if C != 0 : break; }". Critically, we want to restructure the loop so there's one branch that controls entry and another that controls loop exit. A concern is that your compiler or JIT might be clever enough to transform this back to "while C == 0 : Pause". You can sometimes avoid this by inserting a call to a some type of very cheap "opaque" method that the compiler can't elide or reorder. On Solaris, for instance, you could use :"if C == 0 : { gethrtime(); for { Pause; if C != 0 : break; }}". It's worth noting the obvious duality between locks and queues. If you have strict FIFO lock implementation with local spinning and succession by direct handoff such as MCS or CLH,then you can usually transform that lock into a queue. Hidden commentary and annotations - invisible : * And of course there's a well-known duality between queues and locks, but I'll leave that topic for another blog post. * Compare and contrast : PTLQ vs PTL and MultiLane * Equivalent : Turn; seq; sequence; pos; position; ticket * Put = Lock; Deposit Take = identify and reserve slot; wait; extract & clear; unlock * conceptualize : Distinct PutLock and TakeLock implemented as ticket lock or PTL Distinct arrival cursors but share per-slot "Turn" variable provides exclusive role-based access to slot's mailbox field put() acquires exclusive access to a slot for purposes of "deposit" assigns slot round-robin and then acquires deposit access rights/perms to that slot take() acquires exclusive access to slot for purposes of "withdrawal" assigns slot round-robin and then acquires withdrawal access rights/perms to that slot At any given time, only one thread can have withdrawal access to a slot at any given time, only one thread can have deposit access to a slot Permissible for T1 to have deposit access and T2 to simultaneously have withdrawal access * round-robin for the purposes of; role-based; access mode; access role mailslot; mailbox; allocate/assign/identify slot rights; permission; license; access permission; * PTL/Ticket hybrid Asymmetric usage ; owner oblivious lock-unlock pairing K-exclusion add Grant cursor pass message m from lock to unlock via Slots[] array Cursor performs 2 functions : + PTL ticket + Assigns request to slot in round-robin fashion Deconstruct protocol : explication put() : allocate slot in round-robin fashion acquire PTL for "put" access store message into slot associated with PTL index take() : Acquire PTL for "take" access // doorway step seq = fetchAdd (&Grant, 1) s = &Slots[seq & Mask] // waiting phase while s-Turn != seq : pause Extract : wait for s-mailbox to be full v = s-mailbox s-mailbox = null Release PTL for both "put" and "take" access s-Turn = seq + Mask + 1 * Slot round-robin assignment and lock "doorway" protocol leverage the same cursor and FetchAdd operation on that cursor FetchAdd (&Cursor,1) + round-robin slot assignment and dispersal + PTL/ticket lock "doorway" step waiting phase is via "Turn" field in slot * PTLQueue uses 2 cursors -- put and take. Acquire "put" access to slot via PTL-like lock Acquire "take" access to slot via PTL-like lock 2 locks : put and take -- at most one thread can access slot's mailbox Both locks use same "turn" field Like multilane : 2 cursors : put and take slot is simple 1-capacity mailbox instead of queue Borrow per-slot turn/grant from PTL Provides strict FIFO Lock slot : put-vs-put take-vs-take at most one put accesses slot at any one time at most one put accesses take at any one time reduction to 1-vs-1 instead of N-vs-M concurrency Per slot locks for put/take Release put/take by advancing turn * is instrumental in ... * P-V Semaphore vs lock vs K-exclusion * See also : FastQueues-excerpt.java dice-etc/queue-mpmc-bounded-blocking-circular-xadd/ * PTLQueue is the same as PTLQB - identical * Expedient return; ASAP; prompt; immediately * Lamport's Bakery algorithm : doorway step then waiting phase Threads arriving at doorway obtain a unique ticket number Threads enter in ticket order * In the terminology of Reed and Kanodia a ticket lock corresponds to the busy-wait implementation of a semaphore using an eventcount and a sequencer It can also be thought of as an optimization of Lamport's bakery lock was designed for fault-tolerance rather than performance Instead of spinning on the release counter, processors using a bakery lock repeatedly examine the tickets of their peers --

    Read the article

  • Towards Database Continuous Delivery – What Next after Continuous Integration? A Checklist

    - by Ben Rees
    .dbd-banner p{ font-size:0.75em; padding:0 0 10px; margin:0 } .dbd-banner p span{ color:#675C6D; } .dbd-banner p:last-child{ padding:0; } @media ALL and (max-width:640px){ .dbd-banner{ background:#f0f0f0; padding:5px; color:#333; margin-top: 5px; } } -- Database delivery patterns & practices STAGE 4 AUTOMATED DEPLOYMENT If you’ve been fortunate enough to get to the stage where you’ve implemented some sort of continuous integration process for your database updates, then hopefully you’re seeing the benefits of that investment – constant feedback on changes your devs are making, advanced warning of data loss (prior to the production release on Saturday night!), a nice suite of automated tests to check business logic, so you know it’s going to work when it goes live, and so on. But what next? What can you do to improve your delivery process further, moving towards a full continuous delivery process for your database? In this article I describe some of the issues you might need to tackle on the next stage of this journey, and how to plan to overcome those obstacles before they appear. Our Database Delivery Learning Program consists of four stages, really three – source controlling a database, running continuous integration processes, then how to set up automated deployment (the middle stage is split in two – basic and advanced continuous integration, making four stages in total). If you’ve managed to work through the first three of these stages – source control, basic, then advanced CI, then you should have a solid change management process set up where, every time one of your team checks in a change to your database (whether schema or static reference data), this change gets fully tested automatically by your CI server. But this is only part of the story. Great, we know that our updates work, that the upgrade process works, that the upgrade isn’t going to wipe our 4Tb of production data with a single DROP TABLE. But – how do you get this (fully tested) release live? Continuous delivery means being always ready to release your software at any point in time. There’s a significant gap between your latest version being tested, and it being easily releasable. Just a quick note on terminology – there’s a nice piece here from Atlassian on the difference between continuous integration, continuous delivery and continuous deployment. This piece also gives a nice description of the benefits of continuous delivery. These benefits have been summed up by Jez Humble at Thoughtworks as: “Continuous delivery is a set of principles and practices to reduce the cost, time, and risk of delivering incremental changes to users” There’s another really useful piece here on Simple-Talk about the need for continuous delivery and how it applies to the database written by Phil Factor – specifically the extra needs and complexities of implementing a full CD solution for the database (compared to just implementing CD for, say, a web app). So, hopefully you’re convinced of moving on the the next stage! The next step after CI is to get some sort of automated deployment (or “release management”) process set up. But what should I do next? What do I need to plan and think about for getting my automated database deployment process set up? Can’t I just install one of the many release management tools available and hey presto, I’m ready! If only it were that simple. Below I list some of the areas that it’s worth spending a little time on, where a little planning and prep could go a long way. It’s also worth pointing out, that this should really be an evolving process. Depending on your starting point of course, it can be a long journey from your current setup to a full continuous delivery pipeline. If you’ve got a CI mechanism in place, you’re certainly a long way down that path. Nevertheless, we’d recommend evolving your process incrementally. Pages 157 and 129-141 of the book on Continuous Delivery (by Jez Humble and Dave Farley) have some great guidance on building up a pipeline incrementally: http://www.amazon.com/Continuous-Delivery-Deployment-Automation-Addison-Wesley/dp/0321601912 For now, in this post, we’ll look at the following areas for your checklist: You and Your Team Environments The Deployment Process Rollback and Recovery Development Practices You and Your Team It’s a cliché in the DevOps community that “It’s not all about processes and tools, really it’s all about a culture”. As stated in this DevOps report from Puppet Labs: “DevOps processes and tooling contribute to high performance, but these practices alone aren’t enough to achieve organizational success. The most common barriers to DevOps adoption are cultural: lack of manager or team buy-in, or the value of DevOps isn’t understood outside of a specific group”. Like most clichés, there’s truth in there – if you want to set up a database continuous delivery process, you need to get your boss, your department, your company (if relevant) onside. Why? Because it’s an investment with the benefits coming way down the line. But the benefits are huge – for HP, in the book A Practical Approach to Large-Scale Agile Development: How HP Transformed LaserJet FutureSmart Firmware, these are summarized as: -2008 to present: overall development costs reduced by 40% -Number of programs under development increased by 140% -Development costs per program down 78% -Firmware resources now driving innovation increased by a factor of 8 (from 5% working on new features to 40% But what does this mean? It means that, when moving to the next stage, to make that extra investment in automating your deployment process, it helps a lot if everyone is convinced that this is a good thing. That they understand the benefits of automated deployment and are willing to make the effort to transform to a new way of working. Incidentally, if you’re ever struggling to convince someone of the value I’d strongly recommend just buying them a copy of this book – a great read, and a very practical guide to how it can really work at a large org. I’ve spoken to many customers who have implemented database CI who describe their deployment process as “The point where automation breaks down. Up to that point, the CI process runs, untouched by human hand, but as soon as that’s finished we revert to manual.” This deployment process can involve, for example, a DBA manually comparing an environment (say, QA) to production, creating the upgrade scripts, reading through them, checking them against an Excel document emailed to him/her the night before, turning to page 29 in his/her notebook to double-check how replication is switched off and on for deployments, and so on and so on. Painful, error-prone and lengthy. But the point is, if this is something like your deployment process, telling your DBA “We’re changing everything you do and your toolset next week, to automate most of your role – that’s okay isn’t it?” isn’t likely to go down well. There’s some work here to bring him/her onside – to explain what you’re doing, why there will still be control of the deployment process and so on. Or of course, if you’re the DBA looking after this process, you have to do a similar job in reverse. You may have researched and worked out how you’d like to change your methodology to start automating your painful release process, but do the dev team know this? What if they have to start producing different artifacts for you? Will they be happy with this? Worth talking to them, to find out. As well as talking to your DBA/dev team, the other group to get involved before implementation is your manager. And possibly your manager’s manager too. As mentioned, unless there’s buy-in “from the top”, you’re going to hit problems when the implementation starts to get rocky (and what tool/process implementations don’t get rocky?!). You need to have support from someone senior in your organisation – someone you can turn to when you need help with a delayed implementation, lack of resources or lack of progress. Actions: Get your DBA involved (or whoever looks after live deployments) and discuss what you’re planning to do or, if you’re the DBA yourself, get the dev team up-to-speed with your plans, Get your boss involved too and make sure he/she is bought in to the investment. Environments Where are you going to deploy to? And really this question is – what environments do you want set up for your deployment pipeline? Assume everyone has “Production”, but do you have a QA environment? Dedicated development environments for each dev? Proper pre-production? I’ve seen every setup under the sun, and there is often a big difference between “What we want, to do continuous delivery properly” and “What we’re currently stuck with”. Some of these differences are: What we want What we’ve got Each developer with their own dedicated database environment A single shared “development” environment, used by everyone at once An Integration box used to test the integration of all check-ins via the CI process, along with a full suite of unit-tests running on that machine In fact if you have a CI process running, you’re likely to have some sort of integration server running (even if you don’t call it that!). Whether you have a full suite of unit tests running is a different question… Separate QA environment used explicitly for manual testing prior to release “We just test on the dev environments, or maybe pre-production” A proper pre-production (or “staging”) box that matches production as closely as possible Hopefully a pre-production box of some sort. But does it match production closely!? A production environment reproducible from source control A production box which has drifted significantly from anything in source control The big question is – how much time and effort are you going to invest in fixing these issues? In reality this just involves figuring out which new databases you’re going to create and where they’ll be hosted – VMs? Cloud-based? What about size/data issues – what data are you going to include on dev environments? Does it need to be masked to protect access to production data? And often the amount of work here really depends on whether you’re working on a new, greenfield project, or trying to update an existing, brownfield application. There’s a world if difference between starting from scratch with 4 or 5 clean environments (reproducible from source control of course!), and trying to re-purpose and tweak a set of existing databases, with all of their surrounding processes and quirks. But for a proper release management process, ideally you have: Dedicated development databases, An Integration server used for testing continuous integration and running unit tests. [NB: This is the point at which deployments are automatic, without human intervention. Each deployment after this point is a one-click (but human) action], QA – QA engineers use a one-click deployment process to automatically* deploy chosen releases to QA for testing, Pre-production. The environment you use to test the production release process, Production. * A note on the use of the word “automatic” – when carrying out automated deployments this does not mean that the deployment is happening without human intervention (i.e. that something is just deploying over and over again). It means that the process of carrying out the deployment is automatic in that it’s not a person manually running through a checklist or set of actions. The deployment still requires a single-click from a user. Actions: Get your environments set up and ready, Set access permissions appropriately, Make sure everyone understands what the environments will be used for (it’s not a “free-for-all” with all environments to be accessed, played with and changed by development). The Deployment Process As described earlier, most existing database deployment processes are pretty manual. The following is a description of a process we hear very often when we ask customers “How do your database changes get live? How does your manual process work?” Check pre-production matches production (use a schema compare tool, like SQL Compare). Sometimes done by taking a backup from production and restoring in to pre-prod, Again, use a schema compare tool to find the differences between the latest version of the database ready to go live (i.e. what the team have been developing). This generates a script, User (generally, the DBA), reviews the script. This often involves manually checking updates against a spreadsheet or similar, Run the script on pre-production, and check there are no errors (i.e. it upgrades pre-production to what you hoped), If all working, run the script on production.* * this assumes there’s no problem with production drifting away from pre-production in the interim time period (i.e. someone has hacked something in to the production box without going through the proper change management process). This difference could undermine the validity of your pre-production deployment test. Red Gate is currently working on a free tool to detect this problem – sign up here at www.sqllighthouse.com, if you’re interested in testing early versions. There are several variations on this process – some better, some much worse! How do you automate this? In particular, step 3 – surely you can’t automate a DBA checking through a script, that everything is in order!? The key point here is to plan what you want in your new deployment process. There are so many options. At one extreme, pure continuous deployment – whenever a dev checks something in to source control, the CI process runs (including extensive and thorough testing!), before the deployment process keys in and automatically deploys that change to the live box. Not for the faint hearted – and really not something we recommend. At the other extreme, you might be more comfortable with a semi-automated process – the pre-production/production matching process is automated (with an error thrown if these environments don’t match), followed by a manual intervention, allowing for script approval by the DBA. One he/she clicks “Okay, I’m happy for that to go live”, the latter stages automatically take the script through to live. And anything in between of course – and other variations. But we’d strongly recommended sitting down with a whiteboard and your team, and spending a couple of hours mapping out “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” NB: Most of what we’re discussing here is about production deployments. It’s important to note that you will also need to map out a deployment process for earlier environments (for example QA). However, these are likely to be less onerous, and many customers opt for a much more automated process for these boxes. Actions: Sit down with your team and a whiteboard, and draw out the answers to the questions above for your production deployments – “What do we do now?”, “What do we actually want?”, “What will satisfy our needs for continuous delivery, but still maintaining some sort of continuous control over the process?” Repeat for earlier environments (QA and so on). Rollback and Recovery If only every deployment went according to plan! Unfortunately they don’t – and when things go wrong, you need a rollback or recovery plan for what you’re going to do in that situation. Once you move in to a more automated database deployment process, you’re far more likely to be deploying more frequently than before. No longer once every 6 months, maybe now once per week, or even daily. Hence the need for a quick rollback or recovery process becomes paramount, and should be planned for. NB: These are mainly scenarios for handling rollbacks after the transaction has been committed. If a failure is detected during the transaction, the whole transaction can just be rolled back, no problem. There are various options, which we’ll explore in subsequent articles, things like: Immediately restore from backup, Have a pre-tested rollback script (remembering that really this is a “roll-forward” script – there’s not really such a thing as a rollback script for a database!) Have fallback environments – for example, using a blue-green deployment pattern. Different options have pros and cons – some are easier to set up, some require more investment in infrastructure; and of course some work better than others (the key issue with using backups, is loss of the interim transaction data that has been added between the failed deployment and the restore). The best mechanism will be primarily dependent on how your application works and how much you need a cast-iron failsafe mechanism. Actions: Work out an appropriate rollback strategy based on how your application and business works, your appetite for investment and requirements for a completely failsafe process. Development Practices This is perhaps the more difficult area for people to tackle. The process by which you can deploy database updates is actually intrinsically linked with the patterns and practices used to develop that database and linked application. So you need to decide whether you want to implement some changes to the way your developers actually develop the database (particularly schema changes) to make the deployment process easier. A good example is the pattern “Branch by abstraction”. Explained nicely here, by Martin Fowler, this is a process that can be used to make significant database changes (e.g. splitting a table) in a step-wise manner so that you can always roll back, without data loss – by making incremental updates to the database backward compatible. Slides 103-108 of the following slidedeck, from Niek Bartholomeus explain the process: https://speakerdeck.com/niekbartho/orchestration-in-meatspace As these slides show, by making a significant schema change in multiple steps – where each step can be rolled back without any loss of new data – this affords the release team the opportunity to have zero-downtime deployments with considerably less stress (because if an increment goes wrong, they can roll back easily). There are plenty more great patterns that can be implemented – the book Refactoring Databases, by Scott Ambler and Pramod Sadalage is a great read, if this is a direction you want to go in: http://www.amazon.com/Refactoring-Databases-Evolutionary-paperback-Addison-Wesley/dp/0321774515 But the question is – how much of this investment are you willing to make? How often are you making significant schema changes that would require these best practices? Again, there’s a difference here between migrating old projects and starting afresh – with the latter it’s much easier to instigate best practice from the start. Actions: For your business, work out how far down the path you want to go, amending your database development patterns to “best practice”. It’s a trade-off between implementing quality processes, and the necessity to do so (depending on how often you make complex changes). Socialise these changes with your development group. No-one likes having “best practice” changes imposed on them, so good to introduce these ideas and the rationale behind them early.   Summary The next stages of implementing a continuous delivery pipeline for your database changes (once you have CI up and running) require a little pre-planning, if you want to get the most out of the work, and for the implementation to go smoothly. We’ve covered some of the checklist of areas to consider – mainly in the areas of “Getting the team ready for the changes that are coming” and “Planning our your pipeline, environments, patterns and practices for development”, though there will be more detail, depending on where you’re coming from – and where you want to get to. This article is part of our database delivery patterns & practices series on Simple Talk. Find more articles for version control, automated testing, continuous integration & deployment.

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Nagging As A Strategy For Better Linking: -z guidance

    - by user9154181
    The link-editor (ld) in Solaris 11 has a new feature that we call guidance that is intended to help you build better objects. The basic idea behind guidance is that if (and only if) you request it, the link-editor will issue messages suggesting better options and other changes you might make to your ld command to get better results. You can choose to take the advice, or you can disable specific types of guidance while acting on others. In some ways, this works like an experienced friend leaning over your shoulder and giving you advice — you're free to take it or leave it as you see fit, but you get nudged to do a better job than you might have otherwise. We use guidance to build the core Solaris OS, and it has proven to be useful, both in improving our objects, and in making sure that regressions don't creep back in later. In this article, I'm going to describe the evolution in thinking and design that led to the implementation of the -z guidance option, as well as give a brief description of how it works. The guidance feature issues non-fatal warnings. However, experience shows that once developers get used to ignoring warnings, it is inevitable that real problems will be lost in the noise and ignored or missed. This is why we have a zero tolerance policy against build noise in the core Solaris OS. In order to get maximum benefit from -z guidance while maintaining this policy, I added the -z fatal-warnings option at the same time. Much of the material presented here is adapted from the arc case: PSARC 2010/312 Link-editor guidance The History Of Unfortunate Link-Editor Defaults The Solaris link-editor is one of the oldest Unix commands. It stands to reason that this would be true — in order to write an operating system, you need the ability to compile and link code. The original link-editor (ld) had defaults that made sense at the time. As new features were needed, command line option switches were added to let the user use them, while maintaining backward compatibility for those who didn't. Backward compatibility is always a concern in system design, but is particularly important in the case of the tool chain (compilers, linker, and related tools), since it is a basic building block for the entire system. Over the years, applications have grown in size and complexity. Important concepts like dynamic linking that didn't exist in the original Unix system were invented. Object file formats changed. In the case of System V Release 4 Unix derivatives like Solaris, the ELF (Extensible Linking Format) was adopted. Since then, the ELF system has evolved to provide tools needed to manage today's larger and more complex environments. Features such as lazy loading, and direct bindings have been added. In an ideal world, many of these options would be defaults, with rarely used options that allow the user to turn them off. However, the reality is exactly the reverse: For backward compatibility, these features are all options that must be explicitly turned on by the user. This has led to a situation in which most applications do not take advantage of the many improvements that have been made in linking over the last 20 years. If their code seems to link and run without issue, what motivation does a developer have to read a complex manpage, absorb the information provided, choose the features that matter for their application, and apply them? Experience shows that only the most motivated and diligent programmers will make that effort. We know that most programs would be improved if we could just get you to use the various whizzy features that we provide, but the defaults conspire against us. We have long wanted to do something to make it easier for our users to use the linkers more effectively. There have been many conversations over the years regarding this issue, and how to address it. They always break down along the following lines: Change ld Defaults Since the world would be a better place the newer ld features were the defaults, why not change things to make it so? This idea is simple, elegant, and impossible. Doing so would break a large number of existing applications, including those of ISVs, big customers, and a plethora of existing open source packages. In each case, the owner of that code may choose to follow our lead and fix their code, or they may view it as an invitation to reconsider their commitment to our platform. Backward compatibility, and our installed base of working software, is one of our greatest assets, and not something to be lightly put at risk. Breaking backward compatibility at this level of the system is likely to do more harm than good. But, it sure is tempting. New Link-Editor One might create a new linker command, not called 'ld', leaving the old command as it is. The new one could use the same code as ld, but would offer only modern options, with the proper defaults for features such as direct binding. The resulting link-editor would be a pleasure to use. However, the approach is doomed to niche status. There is a vast pile of exiting code in the world built around the existing ld command, that reaches back to the 1970's. ld use is embedded in large and unknown numbers of makefiles, and is used by name by compilers that execute it. A Unix link-editor that is not named ld will not find a majority audience no matter how good it might be. Finally, a new linker command will eventually cease to be new, and will accumulate its own burden of backward compatibility issues. An Option To Make ld Do The Right Things Automatically This line of reasoning is best summarized by a CR filed in 2005, entitled 6239804 make it easier for ld(1) to do what's best The idea is to have a '-z best' option that unchains ld from its backward compatibility commitment, and allows it to turn on the "best" set of features, as determined by the authors of ld. The specific set of features enabled by -z best would be subject to change over time, as requirements change. This idea is more realistic than the other two, but was never implemented because it has some important issues that we could never answer to our satisfaction: The -z best proposal assumes that the user can turn it on, and trust it to select good options without the user needing to be aware of the options being applied. This is a fallacy. Features such as direct bindings require the user to do some analysis to ensure that the resulting program will still operate properly. A user who is willing to do the work to verify that what -z best does will be OK for their application is capable of turning on those features directly, and therefore gains little added benefit from -z best. The intent is that when a user opts into -z best, that they understand that z best is subject to sometimes incompatible evolution. Experience teaches us that this won't work. People will use this feature, the meaning of -z best will change, code that used to build will fail, and then there will be complaints and demands to retract the change. When (not if) this occurs, we will of course defend our actions, and point at the disclaimer. We'll win some of those debates, and lose others. Ultimately, we'll end up with -z best2 (-z better), or other compromises, and our goal of simplifying the world will have failed. The -z best idea rolls up a set of features that may or may not be related to each other into a unit that must be taken wholesale, or not at all. It could be that only a subset of what it does is compatible with a given application, in which case the user is expected to abandon -z best and instead set the options that apply to their application directly. In doing so, they lose one of the benefits of -z best, that if you use it, future versions of ld may choose a different set of options, and automatically improve the object through the act of rebuilding it. I drew two conclusions from the above history: For a link-editor, backward compatibility is vital. If a given command line linked your application 10 years ago, you have every reason to expect that it will link today, assuming that the libraries you're linking against are still available and compatible with their previous interfaces. For an application of any size or complexity, there is no substitute for the work involved in examining the code and determining which linker options apply and which do not. These options are largely orthogonal to each other, and it can be reasonable not to use any or all of them, depending on the situation, even in modern applications. It is a mistake to tie them together. The idea for -z guidance came from consideration of these points. By decoupling the advice from the act of taking the advice, we can retain the good aspects of -z best while avoiding its pitfalls: -z guidance gives advice, but the decision to take that advice remains with the user who must evaluate its merit and make a decision to take it or not. As such, we are free to change the specific guidance given in future releases of ld, without breaking existing applications. The only fallout from this will be some new warnings in the build output, which can be ignored or dealt with at the user's convenience. It does not couple the various features given into a single "take it or leave it" option, meaning that there will never be a need to offer "-zguidance2", or other such variants as things change over time. Guidance has the potential to be our final word on this subject. The user is given the flexibility to disable specific categories of guidance without losing the benefit of others, including those that might be added to future versions of the system. Although -z fatal-warnings stands on its own as a useful feature, it is of particular interest in combination with -z guidance. Used together, the guidance turns from advice to hard requirement: The user must either make the suggested change, or explicitly reject the advice by specifying a guidance exception token, in order to get a build. This is valuable in environments with high coding standards. ld Command Line Options The guidance effort resulted in new link-editor options for guidance and for turning warnings into fatal errors. Before I reproduce that text here, I'd like to highlight the strategic decisions embedded in the guidance feature: In order to get guidance, you have to opt in. We hope you will opt in, and believe you'll get better objects if you do, but our default mode of operation will continue as it always has, with full backward compatibility, and without judgement. Guidance suggestions always offers specific advice, and not vague generalizations. You can disable some guidance without turning off the entire feature. When you get guidance warnings, you can choose to take the advice, or you can specify a keyword to disable guidance for just that category. This allows you to get guidance for things that are useful to you, without being bothered about things that you've already considered and dismissed. As the world changes, we will add new guidance to steer you in the right direction. All such new guidance will come with a keyword that let's you turn it off. In order to facilitate building your code on different versions of Solaris, we quietly ignore any guidance keywords we don't recognize, assuming that they are intended for newer versions of the link-editor. If you want to see what guidance tokens ld does and does not recognize on your system, you can use the ld debugging feature as follows: % ld -Dargs -z guidance=foo,nodefs debug: debug: Solaris Linkers: 5.11-1.2275 debug: debug: arg[1] option=-D: option-argument: args debug: arg[2] option=-z: option-argument: guidance=foo,nodefs debug: warning: unrecognized -z guidance item: foo The -z fatal-warning option is straightforward, and generally useful in environments with strict coding standards. Note that the GNU ld already had this feature, and we accept their option names as synonyms: -z fatal-warnings | nofatal-warnings --fatal-warnings | --no-fatal-warnings The -z fatal-warnings and the --fatal-warnings option cause the link-editor to treat warnings as fatal errors. The -z nofatal-warnings and the --no-fatal-warnings option cause the link-editor to treat warnings as non-fatal. This is the default behavior. The -z guidance option is defined as follows: -z guidance[=item1,item2,...] Provide guidance messages to suggest ld options that can improve the quality of the resulting object, or which are otherwise considered to be beneficial. The specific guidance offered is subject to change over time as the system evolves. Obsolete guidance offered by older versions of ld may be dropped in new versions. Similarly, new guidance may be added to new versions of ld. Guidance therefore always represents current best practices. It is possible to enable guidance, while preventing specific guidance messages, by providing a list of item tokens, representing the class of guidance to be suppressed. In this way, unwanted advice can be suppressed without losing the benefit of other guidance. Unrecognized item tokens are quietly ignored by ld, allowing a given ld command line to be executed on a variety of older or newer versions of Solaris. The guidance offered by the current version of ld, and the item tokens used to disable these messages, are as follows. Specify Required Dependencies Dynamic executables and shared objects should explicitly define all of the dependencies they require. Guidance recommends the use of the -z defs option, should any symbol references remain unsatisfied when building dynamic objects. This guidance can be disabled with -z guidance=nodefs. Do Not Specify Non-Required Dependencies Dynamic executables and shared objects should not define any dependencies that do not satisfy the symbol references made by the dynamic object. Guidance recommends that unused dependencies be removed. This guidance can be disabled with -z guidance=nounused. Lazy Loading Dependencies should be identified for lazy loading. Guidance recommends the use of the -z lazyload option should any dependency be processed before either a -z lazyload or -z nolazyload option is encountered. This guidance can be disabled with -z guidance=nolazyload. Direct Bindings Dependencies should be referenced with direct bindings. Guidance recommends the use of the -B direct, or -z direct options should any dependency be processed before either of these options, or the -z nodirect option is encountered. This guidance can be disabled with -z guidance=nodirect. Pure Text Segment Dynamic objects should not contain relocations to non-writable, allocable sections. Guidance recommends compiling objects with Position Independent Code (PIC) should any relocations against the text segment remain, and neither the -z textwarn or -z textoff options are encountered. This guidance can be disabled with -z guidance=notext. Mapfile Syntax All mapfiles should use the version 2 mapfile syntax. Guidance recommends the use of the version 2 syntax should any mapfiles be encountered that use the version 1 syntax. This guidance can be disabled with -z guidance=nomapfile. Library Search Path Inappropriate dependencies that are encountered by ld are quietly ignored. For example, a 32-bit dependency that is encountered when generating a 64-bit object is ignored. These dependencies can result from incorrect search path settings, such as supplying an incorrect -L option. Although benign, this dependency processing is wasteful, and might hide a build problem that should be solved. Guidance recommends the removal of any inappropriate dependencies. This guidance can be disabled with -z guidance=nolibpath. In addition, -z guidance=noall can be used to entirely disable the guidance feature. See Chapter 7, Link-Editor Quick Reference, in the Linker and Libraries Guide for more information on guidance and advice for building better objects. Example The following example demonstrates how the guidance feature is intended to work. We will build a shared object that has a variety of shortcomings: Does not specify all it's dependencies Specifies dependencies it does not use Does not use direct bindings Uses a version 1 mapfile Contains relocations to the readonly allocable text (not PIC) This scenario is sadly very common — many shared objects have one or more of these issues. % cat hello.c #include <stdio.h> #include <unistd.h> void hello(void) { printf("hello user %d\n", getpid()); } % cat mapfile.v1 # This version 1 mapfile will trigger a guidance message % cc hello.c -o hello.so -G -M mapfile.v1 -lelf As you can see, the operation completes without error, resulting in a usable object. However, turning on guidance reveals a number of things that could be better: % cc hello.c -o hello.so -G -M mapfile.v1 -lelf -zguidance ld: guidance: version 2 mapfile syntax recommended: mapfile.v1 ld: guidance: -z lazyload option recommended before first dependency ld: guidance: -B direct or -z direct option recommended before first dependency Undefined first referenced symbol in file getpid hello.o (symbol belongs to implicit dependency /lib/libc.so.1) printf hello.o (symbol belongs to implicit dependency /lib/libc.so.1) ld: warning: symbol referencing errors ld: guidance: -z defs option recommended for shared objects ld: guidance: removal of unused dependency recommended: libelf.so.1 warning: Text relocation remains referenced against symbol offset in file .rodata1 (section) 0xa hello.o getpid 0x4 hello.o printf 0xf hello.o ld: guidance: position independent (PIC) code recommended for shared objects ld: guidance: see ld(1) -z guidance for more information Given the explicit advice in the above guidance messages, it is relatively easy to modify the example to do the right things: % cat mapfile.v2 # This version 2 mapfile will not trigger a guidance message $mapfile_version 2 % cc hello.c -o hello.so -Kpic -G -Bdirect -M mapfile.v2 -lc -zguidance There are situations in which the guidance does not fit the object being built. For instance, you want to build an object without direct bindings: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance ld: guidance: -B direct or -z direct option recommended before first dependency ld: guidance: see ld(1) -z guidance for more information It is easy to disable that specific guidance warning without losing the overall benefit from allowing the remainder of the guidance feature to operate: % cc -Kpic hello.c -o hello.so -G -M mapfile.v2 -lc -zguidance=nodirect Conclusions The linking guidelines enforced by the ld guidance feature correspond rather directly to our standards for building the core Solaris OS. I'm sure that comes as no surprise. It only makes sense that we would want to build our own product as well as we know how. Solaris is usually the first significant test for any new linker feature. We now enable guidance by default for all builds, and the effect has been very positive. Guidance helps us find suboptimal objects more quickly. Programmers get concrete advice for what to change instead of vague generalities. Even in the cases where we override the guidance, the makefile rules to do so serve as documentation of the fact. Deciding to use guidance is likely to cause some up front work for most code, as it forces you to consider using new features such as direct bindings. Such investigation is worthwhile, but does not come for free. However, the guidance suggestions offer a structured and straightforward way to tackle modernizing your objects, and once that work is done, for keeping them that way. The investment is often worth it, and will replay you in terms of better performance and fewer problems. I hope that you find guidance to be as useful as we have.

    Read the article

  • iPhone SDK vs. Windows Phone 7 Series SDK Challenge, Part 2: MoveMe

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. If youre seeing this series for the first time, check out Part 1: Hello World. A note on methodologyin the prior post there was some feedback about lines of code not being a very good metric for this exercise.  I dont really disagree, theres a lot more to this than lines of code but I believe that is a relevant metric, even if its not the ultimate one.  And theres no perfect answer here.  So I am going to continue to report the number of lines of code that I, as a developer would need to write in these apps as a data point, and Ill leave it up to the reader to determine how that fits in with overall complexity, etc.  The first example was so basic that I think it was difficult to talk about in real terms.  I think that as these apps get more complex, the subjective differences in concept count and will be more important.  MoveMe The MoveMe app is the main end-to-end app writing example in the iPhone SDK, called Creating an iPhone Application.  This application demonstrates a few concepts, including handling touch input, how to do animations, and how to do some basic transforms. The behavior of the application is pretty simple.  User touches the button: The button does a throb type animation where it scales up and then back down briefly. User drags the button: After a touch begins, moving the touch point will drag the button around with the touch. User lets go of the button: The button animates back to its original position, but does a few small bounces as it reaches its original point, which makes the app fun and gives it an extra bit of interactivity. Now, how would I write an app that meets this spec for Windows Phone 7 Series, and how hard would it be?  Lets find out!     Implementing the UI Okay, lets build the UI for this application.  In the HelloWorld example, we did all the UI design in Visual Studio and/or by hand in XAML.  In this example, were going to use the Expression Blend 4 Beta. You might be wondering when to use Visual Studio, when to use Blend, and when to do XAML by hand.  Different people will have different takes on this, but heres mine: XAML by hand simple UI that doesnt contain animations, gradients, etc., and or UI that I want to really optimize and craft when I know exactly what I want to do. Visual Studio Basic UI layout, property setting, data binding, etc. Blend Any serious design work needs to be done in Blend, including animations, handling states and transitions, styling and templating, editing resources. As in Part 1, go ahead and fire up Visual Studio 2010 Express for Windows Phone (yes, soon it will take longer to say the name of our products than to start them up!), and create a new Windows Phone Application.  As in Part 1, clear out the XAML from the designer.  An easy way to do this is to just: Click on the design surface Hit Control+A Hit Delete Theres a little bit left over (the Grid.RowDefinitions element), just go ahead and delete that element so were starting with a clean state of only one outer Grid element. To use Blend, we need to save this project.  See, when you create a project with Visual Studio Express, it doesnt commit it to the disk (well, in a place where you can find it, at least) until you actually save the project.  This is handy if youre doing some fooling around, because it doesnt clutter your disk with WindowsPhoneApplication23-like directories.  But its also kind of dangerous, since when you close VS, if you dont save the projectits all gone.  Yes, this has bitten me since I was saving files and didnt remember that, so be careful to save the project/solution via Save All, at least once. So, save and note the location on disk.  Start Expression Blend 4 Beta, and chose File > Open Project/Solution, and load your project.  You should see just about the same thing you saw over in VS: a blank, black designer surface. Now, thinking about this application, we dont really need a button, even though it looks like one.  We never click it.  So were just going to create a visual and use that.  This is also true in the iPhone example above, where the visual is actually not a button either but a jpg image with a nice gradient and round edges.  Well do something simple here that looks pretty good. In Blend, look in the tool pane on the left for the icon that looks like the below (the highlighted one on the left), and hold it down to get the popout menu, and choose Border:    Okay, now draw out a box in the middle of the design surface of about 300x100.  The Properties Pane to the left should show the properties for this item. First, lets make it more visible by giving it a border brush.  Set the BorderBrush to white by clicking BorderBrush and dragging the color selector all the way to the upper right in the palette.  Then, down a bit farther, make the BorderThickness 4 all the way around, and the CornerRadius set to 6. In the Layout section, do the following to Width, Height, Horizontal and Vertical Alignment, and Margin (all 4 margin values): Youll see the outline now is in the middle of the design surface.  Now lets give it a background color.  Above BorderBrush select Background, and click the third tab over: Gradient Brush.  Youll see a gradient slider at the bottom, and if you click the markers, you can edit the gradient stops individually (or add more).  In this case, you can select something you like, but wheres what I chose: Left stop: #BFACCFE2 (I just picked a spot on the palette and set opacity to 75%, no magic here, feel free to fiddle these or just enter these numbers into the hex area and be done with it) Right stop: #FF3E738F Okay, looks pretty good.  Finally set the name of the element in the Name field at the top of the Properties pane to welcome. Now lets add some text.  Just hit T and itll select the TextBlock tool automatically: Now draw out some are inside our welcome visual and type Welcome!, then click on the design surface (to exit text entry mode) and hit V to go back into selection mode (or the top item in the tool pane that looks like a mouse pointer).  Click on the text again to select it in the tool pane.  Just like the border, we want to center this.  So set HorizontalAlignment and VerticalAlignment to Center, and clear the Margins: Thats it for the UI.  Heres how it looks, on the design surface: Not bad!  Okay, now the fun part Adding Animations Using Blend to build animations is a lot of fun, and its easy.  In XAML, I can not only declare elements and visuals, but also I can declare animations that will affect those visuals.  These are called Storyboards. To recap, well be doing two animations: The throb animation when the element is touched The center animation when the element is released after being dragged. The throb animation is just a scale transform, so well do that first.  In the Objects and Timeline Pane (left side, bottom half), click the little + icon to add a new Storyboard called touchStoryboard: The timeline view will appear.  In there, click a bit to the right of 0 to create a keyframe at .2 seconds: Now, click on our welcome element (the Border, not the TextBlock in it), and scroll to the bottom of the Properties Pane.  Open up Transform, click the third tab ("Scale), and set X and Y to 1.2: This all of this says that, at .2 seconds, I want the X and Y size of this element to scale to 1.2. In fact you can see this happen.  Push the Play arrow in the timeline view, and youll see the animation run! Lets make two tweaks.  First, we want the animation to automatically reverse so it scales up then back down nicely. Click in the dropdown that says touchStoryboard in Objects and Timeline, then in the Properties pane check Auto Reverse: Now run it again, and youll see it go both ways. Lets even make it nicer by adding an easing function. First, click on the Render Transform item in the Objects tree, then, in the Property Pane, youll see a bunch of easing functions to choose from.  Feel free to play with this, then seeing how each runs.  I chose Circle In, but some other ones are fun.  Try them out!  Elastic In is kind of fun, but well stick with Circle In.  Thats it for that animation. Now, we also want an animation to move the Border back to its original position when the user ends the touch gesture.  This is exactly the same process as above, but just targeting a different transform property. Create a new animation called releaseStoryboard Select a timeline point at 1.2 seconds. Click on the welcome Border element again Scroll to the Transforms panel at the bottom of the Properties Pane Choose the first tab (Translate), which may already be selected Set both X and Y values to 0.0 (we do this just to make the values stick, because the value is already 0 and we need Blend to know we want to save that value) Click on RenderTransform in the Objects tree In the properties pane, choose Bounce Out Set Bounces to 6, and Bounciness to 4 (feel free to play with these as well) Okay, were done. Note, if you want to test this Storyboard, you have to do something a little tricky because the final value is the same as the initial value, so playing it does nothing.  If you want to play with it, do the following: Next to the selection dropdown, hit the little "x (Close Storyboard) Go to the Translate Transform value for welcome Set X,Y to 50, 200, respectively (or whatever) Select releaseStoryboard again from the dropdown Hit play, see it run Go into the object tree and select RenderTransform to change the easing function. When youre done, hit the Close Storyboard x again and set the values in Transform/Translate back to 0 Wiring Up the Animations Okay, now go back to Visual Studio.  Youll get a prompt due to the modification of MainPage.xaml.  Hit Yes. In the designer, click on the welcome Border element.  In the Property Browser, hit the Events button, then double click each of ManipulationStarted, ManipulationDelta, ManipulationCompleted.  Youll need to flip back to the designer from code, after each double click. Its code time.  Here we go. Here, three event handlers have been created for us: welcome_ManipulationStarted: This will execute when a manipulation begins.  Think of it as MouseDown. welcome_ManipulationDelta: This executes each time a manipulation changes.  Think MouseMove. welcome_ManipulationCompleted: This will  execute when the manipulation ends. Think MouseUp. Now, in ManipuliationStarted, we want to kick off the throb animation that we called touchAnimation.  Thats easy: 1: private void welcome_ManipulationStarted(object sender, ManipulationStartedEventArgs e) 2: { 3: touchStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Likewise, when the manipulation completes, we want to re-center the welcome visual with our bounce animation: 1: private void welcome_ManipulationCompleted(object sender, ManipulationCompletedEventArgs e) 2: { 3: releaseStoryboard.Begin(); 4: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Note there is actually a way to kick off these animations from Blend directly via something called Triggers, but I think its clearer to show whats going on like this.  A Trigger basically allows you to say When this event fires, trigger this Storyboard, so its the exact same logical process as above, but without the code. But how do we get the object to move?  Well, for that we really dont want an animation because we want it to respond immediately to user input. We do this by directly modifying the transform to match the offset for the manipulation, and then well let the animation bring it back to zero when the manipulation completes.  The manipulation events do a great job of keeping track of all the stuff that you usually had to do yourself when doing drags: where you started from, how far youve moved, etc. So we can easily modify the position as below: 1: private void welcome_ManipulationDelta(object sender, ManipulationDeltaEventArgs e) 2: { 3: CompositeTransform transform = (CompositeTransform)welcome.RenderTransform; 4:   5: transform.TranslateX = e.CumulativeManipulation.Translation.X; 6: transform.TranslateY = e.CumulativeManipulation.Translation.Y; 7: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Thats it! Go ahead and run the app in the emulator.  I suggest running without the debugger, its a little faster (CTRL+F5).  If youve got a machine that supports DirectX 10, youll see nice smooth GPU accelerated graphics, which also what it looks like on the phone, running at about 60 frames per second.  If your machine does not support DX10 (like the laptop Im writing this on!), it wont be quite a smooth so youll have to take my word for it! Comparing Against the iPhone This is an example where the flexibility and power of XAML meets the tooling of Visual Studio and Blend, and the whole experience really shines.  So, for several things that are declarative and 100% toolable with the Windows Phone 7 Series, this example does them with code on the iPhone.  In parens is the lines of code that I count to do these operations. PlacardView.m: 19 total LOC Creating the view that hosts the button-like image and the text Drawing the image that is the background of the button Drawing the Welcome text over the image (I think you could technically do this step and/or the prior one using Interface Builder) MoveMeView.m:  63 total LOC Constructing and running the scale (throb) animation (25) Constructing the path describing the animation back to center plus bounce effect (38) Beyond the code count, yy experience with doing this kind of thing in code is that its VERY time intensive.  When I was a developer back on Windows Forms, doing GDI+ drawing, we did this stuff a lot, and it took forever!  You write some code and even once you get it basically working, you see its not quite right, you go back, tweak the interval, or the math a bit, run it again, etc.  You can take a look at the iPhone code here to judge for yourself.  Scroll down to animatePlacardViewToCenter toward the bottom.  I dont think this code is terribly complicated, but its not what Id call simple and its not at all simple to get right. And then theres a few other lines of code running around for setting up the ViewController and the Views, about 15 lines between MoveMeAppDelegate, PlacardView, and MoveMeView, plus the assorted decls in the h files. Adding those up, I conservatively get something like 100 lines of code (19+63+15+decls) on iPhone that I have to write, by hand, to make this project work. The lines of code that I wrote in the examples above is 5 lines of code on Windows Phone 7 Series. In terms of incremental concept counts beyond the HelloWorld app, heres a shot at that: iPhone: Drawing Images Drawing Text Handling touch events Creating animations Scaling animations Building a path and animating along that Windows Phone 7 Series: Laying out UI in Blend Creating & testing basic animations in Blend Handling touch events Invoking animations from code This was actually the first example I tried converting, even before I did the HelloWorld, and I was pretty surprised.  Some of this is luck that this app happens to match up with the Windows Phone 7 Series platform just perfectly.  In terms of time, I wrote the above application, from scratch, in about 10 minutes.  I dont know how long it would take a very skilled iPhone developer to write MoveMe on that iPhone from scratch, but if I was to write it on Silverlight in the same way (e.g. all via code), I think it would likely take me at least an hour or two to get it all working right, maybe more if I ended up picking the wrong strategy or couldnt get the math right, etc. Making Some Tweaks Silverlight contains a feature called Projections to do a variety of 3D-like effects with a 2D surface. So lets play with that a bit. Go back to Blend and select the welcome Border in the object tree.  In its properties, scroll down to the bottom, open Transform, and see Projection at the bottom.  Set X,Y,Z to 90.  Youll see the element kind of disappear, replaced by a thin blue line. Now Create a new animation called startupStoryboard. Set its key time to .5 seconds in the timeline view Set the projection values above to 0 for X, Y, and Z. Save Go back to Visual Studio, and in the constructor, add the following bold code (lines 7-9 to the constructor: 1: public MainPage() 2: { 3: InitializeComponent(); 4:   5: SupportedOrientations = SupportedPageOrientation.Portrait; 6:   7: this.Loaded += (s, e) => 8: { 9: startupStoryboard.Begin(); 10: }; 11: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If the code above looks funny, its using something called a lambda in C#, which is an inline anonymous method.  Its just a handy shorthand for creating a handler like the manipulation ones above. So with this youll get a nice 3D looking fly in effect when the app starts up.  Here it is, in flight: Pretty cool!Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • How to shoot yourself in the foot (DO NOT Read in the office)

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2013/06/21/how-to-shoot-yourself-in-the-foot-do-not-read.aspxLet me make it absolutely clear - the following is:merely collated by your Geek from http://www.codeproject.com/Lounge.aspx?msg=3917012#xx3917012xxvery, very very funny so you read it in the presence of others at your own riskso here is the list - you have been warned!C You shoot yourself in the foot.   C++ You accidently create a dozen instances of yourself and shoot them all in the foot. Providing emergency medical assistance is impossible since you can't tell which are bitwise copies and which are just pointing at others and saying "That's me, over there."   FORTRAN You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you have no exception-handling facility.   Modula-2 After realizing that you can't actually accomplish anything in this language, you shoot yourself in the head.   COBOL USEing a COLT 45 HANDGUN, AIM gun at LEG.FOOT, THEN place ARM.HAND.FINGER on HANDGUN.TRIGGER and SQUEEZE. THEN return HANDGUN to HOLSTER. CHECK whether shoelace needs to be retied.   Lisp You shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds the gun with which you shoot yourself in the appendage which holds...   BASIC Shoot yourself in the foot with a water pistol. On big systems, continue until entire lower body is waterlogged.   Forth Foot yourself in the shoot.   APL You shoot yourself in the foot; then spend all day figuring out how to do it in fewer characters.   Pascal The compiler won't let you shoot yourself in the foot.   Snobol If you succeed, shoot yourself in the left foot. If you fail, shoot yourself in the right foot.   HyperTalk Put the first bullet of the gun into foot left of leg of you. Answer the result.   Prolog You tell your program you want to be shot in the foot. The program figures out how to do it, but the syntax doesn't allow it to explain.   370 JCL You send your foot down to MIS with a 4000-page document explaining how you want it to be shot. Three years later, your foot comes back deep-fried.   FORTRAN-77 You shoot yourself in each toe, iteratively, until you run out of toes, then you read in the next foot and repeat. If you run out of bullets, you continue anyway because you still can't do exception-processing.   Modula-2 (alternative) You perform a shooting on what might be currently a foot with what might be currently a bullet shot by what might currently be a gun.   BASIC (compiled) You shoot yourself in the foot with a BB using a SCUD missile launcher.   Visual Basic You'll really only appear to have shot yourself in the foot, but you'll have so much fun doing it that you won't care.   Forth (alternative) BULLET DUP3 * GUN LOAD FOOT AIM TRIGGER PULL BANG! EMIT DEAD IF DROP ROT THEN (This takes about five bytes of memory, executes in two to ten clock cycles on any processor and can be used to replace any existing function of the language as well as in any future words). (Welcome to bottom up programming - where you, too, can perform compiler pre-processing instead of writing code)   APL (alternative) You hear a gunshot and there's a hole in your foot, but you don't remember enough linear algebra to understand what happened. or @#&^$%&%^ foot   Pascal (alternative) Same as Modula-2 except that the bullet is not the right type for the gun and your hand is blown off.   Snobol (alternative) You grab your foot with your hand, then rewrite your hand to be a bullet. The act of shooting the original foot then changes your hand/bullet into yet another foot (a left foot).   Prolog (alternative) You attempt to shoot yourself in the foot, but the bullet, failing to find its mark, backtracks to the gun, which then explodes in your face.   COMAL You attempt to shoot yourself in the foot with a water pistol, but the bore is clogged, and the pressure build-up blows apart both the pistol and your hand. or draw_pistol aim_at_foot(left) pull_trigger hop(swearing)   Scheme As Lisp, but none of the other appendages are aware of this happening.   Algol You shoot yourself in the foot with a musket. The musket is aesthetically fascinating and the wound baffles the adolescent medic in the emergency room.   Ada If you are dumb enough to actually use this language, the United States Department of Defense will kidnap you, stand you up in front of a firing squad and tell the soldiers, "Shoot at the feet." or The Department of Defense shoots you in the foot after offering you a blindfold and a last cigarette. or After correctly packaging your foot, you attempt to concurrently load the gun, pull the trigger, scream and shoot yourself in the foot. When you try, however, you discover that your foot is of the wrong type. or After correctly packing your foot, you attempt to concurrently load the gun, pull the trigger, scream, and confidently aim at your foot knowing it is safe. However the cordite in the round does an Unchecked Conversion, fires and shoots you in the foot anyway.   Eiffel   You create a GUN object, two FOOT objects and a BULLET object. The GUN passes both the FOOT objects a reference to the BULLET. The FOOT objects increment their hole counts and forget about the BULLET. A little demon then drives a garbage truck over your feet and grabs the bullet (both of it) on the way. Smalltalk You spend so much time playing with the graphics and windowing system that your boss shoots you in the foot, takes away your workstation and makes you develop in COBOL on a character terminal. or You send the message shoot to gun, with selectors bullet and myFoot. A window pops up saying Gunpowder doesNotUnderstand: spark. After several fruitless hours spent browsing the methods for Trigger, FiringPin and IdealGas, you take the easy way out and create ShotFoot, a subclass of Foot with an additional instance variable bulletHole. Object Oriented Pascal You perform a shooting on what might currently be a foot with what might currently be a bullet fired from what might currently be a gun.   PL/I You consume all available system resources, including all the offline bullets. The Data Processing & Payroll Department doubles its size, triples its budget, acquires four new mainframes and drops the original one on your foot. Postscript foot bullets 6 locate loadgun aim gun shoot showpage or It takes the bullet ten minutes to travel from the gun to your foot, by which time you're long since gone out to lunch. The text comes out great, though.   PERL You stab yourself in the foot repeatedly with an incredibly large and very heavy Swiss Army knife. or You pick up the gun and begin to load it. The gun and your foot begin to grow to huge proportions and the world around you slows down, until the gun fires. It makes a tiny hole, which you don't feel. Assembly Language You crash the OS and overwrite the root disk. The system administrator arrives and shoots you in the foot. After a moment of contemplation, the administrator shoots himself in the foot and then hops around the room rabidly shooting at everyone in sight. or You try to shoot yourself in the foot only to discover you must first reinvent the gun, the bullet, and your foot.or The bullet travels to your foot instantly, but it took you three weeks to load the round and aim the gun.   BCPL You shoot yourself somewhere in the leg -- you can't get any finer resolution than that. Concurrent Euclid You shoot yourself in somebody else's foot.   Motif You spend days writing a UIL description of your foot, the trajectory, the bullet and the intricate scrollwork on the ivory handles of the gun. When you finally get around to pulling the trigger, the gun jams.   Powerbuilder While attempting to load the gun you discover that the LoadGun system function is buggy; as a work around you tape the bullet to the outside of the gun and unsuccessfully attempt to fire it with a nail. In frustration you club your foot with the butt of the gun and explain to your client that this approximates the functionality of shooting yourself in the foot and that the next version of Powerbuilder will fix it.   Standard ML By the time you get your code to typecheck, you're using a shoot to foot yourself in the gun.   MUMPS You shoot 583149 AK-47 teflon-tipped, hollow-point, armour-piercing bullets into even-numbered toes on odd-numbered feet of everyone in the building -- with one line of code. Three weeks later you shoot yourself in the head rather than try to modify that line.   Java You locate the Gun class, but discover that the Bullet class is abstract, so you extend it and write the missing part of the implementation. Then you implement the ShootAble interface for your foot, and recompile the Foot class. The interface lets the bullet call the doDamage method on the Foot, so the Foot can damage itself in the most effective way. Now you run the program, and call the doShoot method on the instance of the Gun class. First the Gun creates an instance of Bullet, which calls the doFire method on the Gun. The Gun calls the hit(Bullet) method on the Foot, and the instance of Bullet is passed to the Foot. But this causes an IllegalHitByBullet exception to be thrown, and you die.   Unix You shoot yourself in the foot or % ls foot.c foot.h foot.o toe.c toe.o % rm * .o rm: .o: No such file or directory % ls %   370 JCL (alternative) You shoot yourself in the head just thinking about it.   DOS JCL You first find the building you're in in the phone book, then find your office number in the corporate phone book. Then you have to write this down, then describe, in cubits, your exact location, in relation to the door (right hand side thereof). Then you need to write down the location of the gun (loading it is a proprietary utility), then you load it, and the COBOL program, and run them, and, with luck, it may be run tonight.   VMS   $ MOUNT/DENSITY=.45/LABEL=BULLET/MESSAGE="BYE" BULLET::BULLET$GUN SYS$BULLET $ SET GUN/LOAD/SAFETY=OFF/SIGHT=NONE/HAND=LEFT/CHAMBER=1/ACTION=AUTOMATIC/ LOG/ALL/FULL SYS$GUN_3$DUA3:[000000]GUN.GNU $ SHOOT/LOG/AUTO SYS$GUN SYS$SYSTEM:[FOOT]FOOT.FOOT   %DCL-W-ACTIMAGE, error activating image GUN -CLI-E-IMGNAME, image file $3$DUA240:[GUN]GUN.EXE;1 -IMGACT-F-NOTNATIVE, image is not an OpenVMS Alpha AXP image or %SYS-F-FTSHT, foot shot (fifty lines of traceback omitted) sh,csh, etc You can't remember the syntax for anything, so you spend five hours reading manual pages, then your foot falls asleep. You shoot the computer and switch to C.   Apple System 7 Double click the gun icon and a window giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small bomb appears with note "Error of Type 1 has occurred."   Windows 3.1 Double click the gun icon and wait. Eventually a window opens giving a selection for guns, target areas, plus balloon help with medical remedies, and assorted sound effects. Click "shoot" button and a small box appears with note "Unable to open Shoot.dll, check that path is correct."   Windows 95 Your gun is not compatible with this OS and you must buy an upgrade and install it before you can continue. Then you will be informed that you don't have enough memory.   CP/M I remember when shooting yourself in the foot with a BB gun was a big deal.   DOS You finally found the gun, but can't locate the file with the foot for the life of you.   MSDOS You shoot yourself in the foot, but can unshoot yourself with add-on software.   Access You try to point the gun at your foot, but it shoots holes in all your Borland distribution diskettes instead.   Paradox Not only can you shoot yourself in the foot, your users can too.   dBase You squeeze the trigger, but the bullet moves so slowly that by the time your foot feels the pain, you've forgotten why you shot yourself anyway. or You buy a gun. Bullets are only available from another company and are promised to work so you buy them. Then you find out that the next version of the gun is the one scheduled to actually shoot bullets.   DBase IV, V1.0 You pull the trigger, but it turns out that the gun was a poorly designed hand grenade and the whole building blows up.   SQL You cut your foot off, send it out to a service bureau and when it returns, it has a hole in it but will no longer fit the attachment at the end of your leg. or Insert into Foot Select Bullet >From Gun.Hand Where Chamber = 'LOADED' And Trigger = 'PULLED'   Clipper You grab a bullet, get ready to insert it in the gun so that you can shoot yourself in the foot and discover that the gun that the bullets fits has not yet been built, but should be arriving in the mail _REAL_SOON_NOW_. Oracle The menus for coding foot_shooting have not been implemented yet and you can't do foot shooting in SQL.   English You put your foot in your mouth, then bite it off. (For those who don't know, English is a McDonnell Douglas/PICK query language which allegedly requires 110% of system resources to run happily.) Revelation [an implementation of the PICK Operating System] You'll be able to shoot yourself in the foot just as soon as you figure out what all these bullets are for.   FlagShip Starting at the top of your head, you aim the gun at yourself repeatedly until, half an hour later, the gun is finally pointing at your foot and you pull the trigger. A new foot with a hole in it appears but you can't work out how to get rid of the old one and your gun doesn't work anymore.   FidoNet You put your foot in your mouth, then echo it internationally.   PicoSpan [a UNIX-based computer conferencing system] You can't shoot yourself in the foot because you're not a host. or (host variation) Whenever you shoot yourself in the foot, someone opens a topic in policy about it.   Internet You put your foot in your mouth, shoot it, then spam the bullet so that everybody gets shot in the foot.   troff rmtroff -ms -Hdrwp | lpr -Pwp2 & .*place bullet in footer .B .NR FT +3i .in 4 .bu Shoot! .br .sp .in -4 .br .bp NR HD -2i .*   Genetic Algorithms You create 10,000 strings describing the best way to shoot yourself in the foot. By the time the program produces the optimal solution, humans have evolved wings and the problem is moot.   CSP (Communicating Sequential Processes) You only fail to shoot everything that isn't your foot.   MS-SQL Server MS-SQL Server’s gun comes pre-loaded with an unlimited supply of Teflon coated bullets, and it only has two discernible features: the muzzle and the trigger. If that wasn't enough, MS-SQL Server also puts the gun in your hand, applies local anesthetic to the skin of your forefinger and stitches it to the gun's trigger. Meanwhile, another process has set up a spinal block to numb your lower body. It will then proceeded to surgically remove your foot, cryogenically freeze it for preservation, and attach it to the muzzle of the gun so that no matter where you aim, you will shoot your foot. In order to avoid shooting yourself in the foot, you need to unstitch your trigger finger, remove your foot from the muzzle of the gun, and have it surgically reattached. Then you probably want to get some crutches and go out to buy a book on SQL Server Performance Tuning.   Sybase Sybase's gun requires assembly, and you need to go out and purchase your own clip and bullets to load the gun. Assembly is complicated by the fact that Sybase has hidden the gun behind a big stack of reference manuals, but it hasn't told you where that stack is. While you were off finding the gun, assembling it, buying bullets, etc., Sybase was also busy surgically removing your foot and cryogenically freezing it for preservation. Instead of attaching it to the muzzle of the gun, though, it packed your foot on dry ice and sent it UPS-Ground to an unnamed hookah bar somewhere in the middle east. In order to shoot your foot, you must modify your gun with a GPS system for targeting and hire some guy named "Indy" to find the hookah bar and wire the coordinates back to you. By this time, you've probably become so daunted at the tasks stand between you and shooting your foot that you hire a guy who's read all the books on Sybase to help you shoot your foot. If you're lucky, he'll be smart enough both to find your foot and to stop you from shooting it.   Magic software You spend 1 week looking up the correct syntax for GUN. When you find it, you realise that GUN will not let you shoot in your own foot. It will allow you to shoot almost anything but your foot. You then decide to build your own gun. You can't use the standard barrel since this will only allow for standard bullets, which will not fire if the barrel is pointed at your foot. After four weeks, you have created your own custom gun. It blows up in your hand without warning, because you failed to initialise the safety catch and it doesn't know whether the initial state is "0", 0, NULL, "ZERO", 0.0, 0,0, "0.0", or "0,00". You fix the problem with your remaining hand by nesting 12 safety catches, and then decide to build the gun without safety catch. You then shoot the management and retire to a happy life where you code in languages that will allow you to shoot your foot in under 10 days.FirefoxLets you shoot yourself in as many feet as you'd like, while using multiple great addons! IEA moving target in terms of standard ammunition size and doesn't always work properly with non-Microsoft ammunition, so sometimes you shoot something other than your foot. However, it's the corporate world's standard foot-shooting apparatus. Hackers seem to enjoy rigging websites up to trigger cascading foot-shooting failures. Windows 98 About the same as Windows 95 in terms of overall bullet capacity and triggering mechanisms. Includes updated DirectShot API. A new version was released later on to support USB guns, Windows 98 SE.WPF:You get your baseball glove and a ball and you head out to your backyard, where you throw balls to your pitchback. Then your unkempt-haired-cargo-shorts-and-sandals-with-white-socks-wearing neighbor uses XAML to sculpt your arm into a gun, the ball into a bullet and the pitchback into your foot. By now, however, only the neighbor can get it to work and he's only around from 6:30 PM - 3:30 AM. LOGO: You very carefully lay out the trajectory of the bullet. Then you start the gun, which fires very slowly. You walk precisely to the point where the bullet will travel and wait, but just before it gets to you, your class time is up and one of the other kids has already used the system to hack into Sony's PS3 network. Flash: Someone has designed a beautiful-looking gun that anyone can shoot their feet with for free. It weighs six hundred pounds. All kinds of people are shooting themselves in the feet, and sending the link to everyone else so that they can too. That is, except for the criminals, who are all stealing iOS devices that the gun won't work with.APL: Its (mostly) all greek to me. Lisp: Place ((gun in ((hand sight (foot then shoot))))) (Lots of Insipid Stupid Parentheses)Apple OS/X and iOS Once a year, Steve Jobs returns from sick leave to tell millions of unwavering fans how they will be able to shoot themselves in the foot differently this year. They retweet and blog about it ad nauseam, and wait in line to be the first to experience "shoot different".Windows ME Usually fails, even at shooting you in the foot. Yo dawg, I heard you like shooting yourself in the foot. So I put a gun in your gun, so you can shoot yourself in the foot while you shoot yourself in the foot. (Okay, I'm not especially proud of this joke.) Windows 2000 Now you really do have to log in, before you are allowed to shoot yourself in the foot.Windows XPYou thought you learned your lesson: Don't use Windows ME. Then, along came this new creature, built on top of Windows NT! So you spend the next couple days installing antivirus software, patches and service packs, just so you can get that driver to install, and then proceed to shoot yourself in the foot. Windows Vista Newer! Glossier! Shootier! Windows 7 The bullets come out a lot smoother. Active Directory Each bullet now has an attached Bullet Identifier, and can be uniquely identified. Policies can be applied to dictate fragmentation, and the gun will occasionally have a confusing delay after the trigger has been pulled. PythonYou try to use import foot; foot.shoot() only to realize that's only available in 3.0, to which you can't yet upgrade from 2.7 because of all those extension libs lacking support. Solaris Shoots best when used on SPARC hardware, but still runs the trigger GUI under Java. After weeks of learning the appropriate STOP command to prevent the trigger from automatically being pressed on boot, you think you've got it under control. Then the one time you ever use dtrace, it hits a bug that fires the gun. MySQL The feature that allows you to shoot yourself in the foot has been in development for about 6 years, and they are adding it into the next version, which is coming out REAL SOON NOW, promise! But you can always check it out of source control and try it yourself (just not in any environment where data integrity is important because it will probably explode.) PostgreSQLAllows you to have a smug look on your face while you shoot yourself in the foot, because those MySQL guys STILL don't have that feature. NoSQL Barrel? Who needs a barrel? Just put the bullet on your foot, and strike it with a hammer. See? It's so much simpler and more efficient that way. You can even strike multiple bullets in one swing if you swing with a good enough arc, because hammers are easy to use. Getting them to synchronize is a little difficult, though.Eclipse There are about a dozen different packages for shooting yourself in the foot, with weird interdependencies on outdated components. Once you finally navigate the morass and get one installed, you then have something to look at while you shoot yourself in the foot with that package: You can watch the screen redraw.Outlook Makes it really easy to let everyone know you shot yourself in the foot!Shooting yourself in the foot using delegates.You really need to shoot yourself in the foot but you hate firearms (you don't want any dependency on the specifics of shooting) so you delegate it to somebody else. You don't care how it is done as long is shooting your foot. You can do it asynchronously in case you know you may faint so you are called back/slapped in the face by your shooter/friend (or background worker) when everything is done.C#You prepare the gun and the bullet, carefully modeling all of the physics of a bullet traveling through a foot. Just before you're about to pull the trigger, you stumble on System.Windows.BodyParts.Foot.ShootAt(System.Windows.Firearms.IGun gun) in the extended framework, realize you just wasted the entire afternoon, and shoot yourself in the head.PHP<?phprequire("foot_safety_check.php");?><!DOCTYPE HTML><html><head> <!--Lower!--><title>Shooting me in the foot</title></head> <body> <!--LOWER!!!--><leg> <!--OK, I made this one up...--><footer><?php echo (dungSift($_SERVER['HTTP_USER_AGENT'], "ie"))?("Your foot is safe, but you might want to wear a hard hat!"):("<div class=\"shot\">BANG!</div>"); ?></footer></leg> </body> </html>

    Read the article

  • Ubuntu missing from the Grub menu

    - by varevarao
    Recently I've had some audio issues with Ubuntu (using precise), and in the process of trying to resolve that I ran a dist-upgrade. Everything went just fine, and the sound seemed good, until I rebooted my machine for the first time since the dist-upgrade. All I see now in the Grub menu at startup is memtest86+, another memtest variant, and Windows 7. It's not showing any of the linux kernels that Ubuntu is running on. I am attaching my bootinfoscript: Boot Info Script 0.61.full + Boot-Repair extra info [Boot-Info November 20th 2012] ============================= Boot Info Summary: =============================== => Grub2 (v1.99) is installed in the MBR of /dev/sda and looks at sector 1 of the same hard drive for core.img. core.img is at this location and looks for (,msdos6)/boot/grub on this drive. sda1: __________________________________________________________________________ File system: vfat Boot sector type: Dell Utility: FAT16 Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda2: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Boot files: sda3: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: No errors found in the Boot Parameter Block. Operating System: Windows 7 Boot files: sda4: __________________________________________________________________________ File system: Extended Partition Boot sector type: Unknown Boot sector info: sda5: __________________________________________________________________________ File system: ntfs Boot sector type: Windows Vista/7: NTFS Boot sector info: According to the info in the boot sector, sda5 starts at sector 2048. Operating System: Boot files: sda6: __________________________________________________________________________ File system: ext4 Boot sector type: Grub2 (v1.99-2.00) Boot sector info: Grub2 (v1.99) is installed in the boot sector of sda6 and looks at sector 220046240 of the same hard drive for core.img. core.img is at this location and looks for (,msdos6)/boot/grub on this drive. Operating System: Ubuntu 12.04.1 LTS Boot files: /boot/grub/grub.cfg /etc/fstab /boot/grub/core.img sda7: __________________________________________________________________________ File system: swap Boot sector type: - Boot sector info: ============================ Drive/Partition Info: ============================= Drive: sda _____________________________________________________________________ Disk /dev/sda: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes Partition Boot Start Sector End Sector # of Sectors Id System /dev/sda1 63 273,104 273,042 de Dell Utility /dev/sda2 * 274,432 19,406,847 19,132,416 7 NTFS / exFAT / HPFS /dev/sda3 19,406,848 218,274,364 198,867,517 7 NTFS / exFAT / HPFS /dev/sda4 218,275,838 625,139,711 406,863,874 f W95 Extended (LBA) /dev/sda5 328,630,272 625,139,711 296,509,440 7 NTFS / exFAT / HPFS /dev/sda6 218,275,840 324,030,463 105,754,624 83 Linux /dev/sda7 324,032,512 328,626,175 4,593,664 82 Linux swap / Solaris "blkid" output: ________________________________________________________________ Device UUID TYPE LABEL /dev/loop0 squashfs /dev/sda1 07DA-0512 vfat DellUtility /dev/sda2 8834146034145392 ntfs RECOVERY /dev/sda3 48E2189DE21890F4 ntfs OS /dev/sda5 BC2A44C02A447982 ntfs Varshneya /dev/sda6 34731459-4b0f-46ac-a9bf-cb360a2c947c ext4 /dev/sda7 dcb9ce9b-799a-4c65-b008-887b01775670 swap /dev/sr0 iso9660 Ubuntu 12.04.1 LTS i386 ================================ Mount points: ================================= Device Mount_Point Type Options /dev/loop0 /rofs squashfs (ro,noatime) /dev/sda6 /mnt ext4 (rw) /dev/sr0 /cdrom iso9660 (ro,noatime) =========================== sda6/boot/grub/grub.cfg: =========================== -------------------------------------------------------------------------------- # # DO NOT EDIT THIS FILE # # It is automatically generated by grub-mkconfig using templates # from /etc/grub.d and settings from /etc/default/grub # ### BEGIN /etc/grub.d/00_header ### if [ -s $prefix/grubenv ]; then set have_grubenv=true load_env fi set default="0" if [ "${prev_saved_entry}" ]; then set saved_entry="${prev_saved_entry}" save_env saved_entry set prev_saved_entry= save_env prev_saved_entry set boot_once=true fi function savedefault { if [ -z "${boot_once}" ]; then saved_entry="${chosen}" save_env saved_entry fi } function recordfail { set recordfail=1 if [ -n "${have_grubenv}" ]; then if [ -z "${boot_once}" ]; then save_env recordfail; fi; fi } function load_video { insmod vbe insmod vga insmod video_bochs insmod video_cirrus } insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c if loadfont /boot/grub/unicode.pf2 ; then set gfxmode=auto load_video insmod gfxterm insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c set locale_dir=($root)/boot/grub/locale set lang=en_US insmod gettext fi terminal_output gfxterm if [ "${recordfail}" = 1 ]; then set timeout=-1 else set timeout=10 fi ### END /etc/grub.d/00_header ### ### BEGIN /etc/grub.d/05_debian_theme ### set menu_color_normal=white/black set menu_color_highlight=black/light-gray ### END /etc/grub.d/05_debian_theme ### ### BEGIN /etc/grub.d/10_linux ### function gfxmode { set gfxpayload="${1}" if [ "${1}" = "keep" ]; then set vt_handoff=vt.handoff=7 else set vt_handoff= fi } if [ "${recordfail}" != 1 ]; then if [ -e ${prefix}/gfxblacklist.txt ]; then if hwmatch ${prefix}/gfxblacklist.txt 3; then if [ ${match} = 0 ]; then set linux_gfx_mode=keep else set linux_gfx_mode=text fi else set linux_gfx_mode=text fi else set linux_gfx_mode=keep fi else set linux_gfx_mode=text fi export linux_gfx_mode if [ "${linux_gfx_mode}" != "text" ]; then load_video; fi ### END /etc/grub.d/10_linux ### ### BEGIN /etc/grub.d/20_linux_xen ### ### END /etc/grub.d/20_linux_xen ### ### BEGIN /etc/grub.d/20_memtest86+ ### menuentry "Memory test (memtest86+)" { insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c linux16 /boot/memtest86+.bin } menuentry "Memory test (memtest86+, serial console 115200)" { insmod part_msdos insmod ext2 set root='(hd0,msdos6)' search --no-floppy --fs-uuid --set=root 34731459-4b0f-46ac-a9bf-cb360a2c947c linux16 /boot/memtest86+.bin console=ttyS0,115200n8 } ### END /etc/grub.d/20_memtest86+ ### ### BEGIN /etc/grub.d/30_os-prober ### menuentry "Windows 7 (loader) (on /dev/sda2)" --class windows --class os { insmod part_msdos insmod ntfs set root='(hd0,msdos2)' search --no-floppy --fs-uuid --set=root 8834146034145392 chainloader +1 } ### END /etc/grub.d/30_os-prober ### ### BEGIN /etc/grub.d/40_custom ### # This file provides an easy way to add custom menu entries. Simply type the # menu entries you want to add after this comment. Be careful not to change # the 'exec tail' line above. ### END /etc/grub.d/40_custom ### ### BEGIN /etc/grub.d/41_custom ### if [ -f $prefix/custom.cfg ]; then source $prefix/custom.cfg; fi ### END /etc/grub.d/41_custom ### -------------------------------------------------------------------------------- =============================== sda6/etc/fstab: ================================ -------------------------------------------------------------------------------- # /etc/fstab: static file system information. # # Use 'blkid -o value -s UUID' to print the universally unique identifier # for a device; this may be used with UUID= as a more robust way to name # devices that works even if disks are added and removed. See fstab(5). # # <file system> <mount point> <type> <options> <dump> <pass> proc /proc proc nodev,noexec,nosuid 0 0 # / was on /dev/sda6 during installation UUID=34731459-4b0f-46ac-a9bf-cb360a2c947c / ext4 errors=remount-ro,user_xattr 0 1 # swap was on /dev/sda7 during installation UUID=dcb9ce9b-799a-4c65-b008-887b01775670 none swap sw 0 0 -------------------------------------------------------------------------------- =================== sda6: Location of files loaded by Grub: ==================== GiB - GB File Fragment(s) 104.851909637 = 112.583880704 boot/grub/core.img 1 121.191410065 = 130.128285696 boot/grub/grub.cfg 1 ======================== Unknown MBRs/Boot Sectors/etc: ======================== Unknown BootLoader on sda4 00000000 eb 0f 2a 5d f4 b7 75 f2 e9 56 12 b8 50 b4 79 ec |..*]..u..V..P.y.| 00000010 89 91 ca c3 16 40 31 d0 ae c4 53 3d c7 dd d7 98 |[email protected]=....| 00000020 bd a4 f2 a4 e8 ab fc ea 36 30 1b 34 cf 8a 28 30 |........60.4..(0| 00000030 43 95 6c 31 3e 76 93 58 84 37 99 c3 ae 3a 88 a3 |C.l1>v.X.7...:..| 00000040 c2 a6 36 2a f8 e0 e1 03 91 8d a1 50 cd ad b0 b5 |..6*.......P....| 00000050 ad 69 3a 49 63 1f 4a 33 97 6e 0c 71 bf 7d bd 35 |.i:Ic.J3.n.q.}.5| 00000060 86 c5 17 93 b4 9f e5 af e0 c4 6f f4 6f f9 4b dd |..........o.o.K.| 00000070 14 39 e2 9e b9 36 ca b1 56 5b d9 b1 66 2c 05 b2 |.9...6..V[..f,..| 00000080 5d 5b 99 c0 db e6 81 27 ab c2 e1 55 00 ac 0b 2c |][.....'...U...,| 00000090 24 d3 8e 54 b0 3d ab 58 e4 23 fc 3a 79 93 fb 5e |$..T.=.X.#.:y..^| 000000a0 94 5a 3a c2 16 4e 56 cb 1b 7f 7e b3 4c 38 ca 5b |.Z:..NV...~.L8.[| 000000b0 ca ab c1 2c 2a 64 e7 77 fe 2a ba ee 08 33 b5 9b |...,*d.w.*...3..| 000000c0 d0 c2 b4 a8 fc 73 4f 01 fd 03 61 75 eb 6d 1a 74 |.....sO...au.m.t| 000000d0 5f 79 31 7f ed e6 f5 99 21 36 16 ed 25 d9 6d 2b |_y1.....!6..%.m+| 000000e0 5f f4 42 b8 9d 01 89 10 fe df a4 98 e7 ab ab ea |_.B.............| 000000f0 1d 1c 44 e1 49 d9 19 c9 ab f5 41 eb 4a 32 c2 39 |..D.I.....A.J2.9| 00000100 87 57 f6 f6 f3 b5 4d 17 72 f2 b1 16 19 aa ec 24 |.W....M.r......$| 00000110 39 bd e3 b1 68 b3 b0 7f fa 2a 3a 2e 99 ed db 8a |9...h....*:.....| 00000120 f8 61 b4 ef 9d 7d 85 95 ed ad eb 9e 71 f4 27 d3 |.a...}......q.'.| 00000130 f3 04 8b 8a 69 98 02 72 df e1 f9 83 27 5b 01 4c |....i..r....'[.L| 00000140 d4 9a b9 3b db ca 1e 40 35 db 6f c1 52 c0 7f 27 |...;[email protected]..'| 00000150 8a 1d bc 34 89 24 b6 e3 fd ec a1 2a e5 9e d1 8f |...4.$.....*....| 00000160 77 e0 d5 52 c0 4c c4 38 38 3c 28 19 bf 20 f0 03 |w..R.L.88<(.. ..| 00000170 38 a4 b1 b5 ed 6a b8 f7 a9 7b 65 b1 7b 64 4a 33 |8....j...{e.{dJ3| 00000180 66 1a 60 29 38 1d 5b 52 40 31 de a5 0c 0f cc 6f |f.`)8.[[email protected]| 00000190 dd 31 6d 3d f0 2a 32 85 67 66 ca 4f 02 aa 0d 30 |.1m=.*2.gf.O...0| 000001a0 66 c9 b2 33 c2 4b 8a fa 3c 7b 52 02 00 88 8e cf |f..3.K..<{R.....| 000001b0 67 1e d4 20 49 1d 1a b8 71 ad c2 d4 37 9d 00 fe |g.. I...q...7...| 000001c0 ff ff 07 fe ff ff 02 e0 93 06 00 60 ac 11 00 fe |...........`....| 000001d0 ff ff 05 fe ff ff 01 00 00 00 01 b0 4d 06 00 00 |............M...| 000001e0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 |................| 000001f0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 55 aa |..............U.| 00000200 ADDITIONAL INFORMATION : =================== log of boot-repair 2012-11-24__09h45 =================== boot-repair version : 3.195~ppa2~precise boot-sav version : 3.195~ppa2~precise glade2script version : 3.2.2~ppa45~precise boot-sav-extra version : 3.195~ppa2~precise boot-repair is executed in live-session (Ubuntu 12.04.1 LTS, precise, Ubuntu, i686) CPU op-mode(s): 32-bit, 64-bit file=/cdrom/preseed/ubuntu.seed boot=casper initrd=/casper/initrd.lz quiet splash -- =================== os-prober: /dev/sda2:Windows 7 (loader):Windows:chain /dev/sda6:Ubuntu 12.04.1 LTS (12.04):Ubuntu:linux =================== blkid: /dev/sda1: SEC_TYPE="msdos" LABEL="DellUtility" UUID="07DA-0512" TYPE="vfat" /dev/sda2: LABEL="RECOVERY" UUID="8834146034145392" TYPE="ntfs" /dev/sda3: LABEL="OS" UUID="48E2189DE21890F4" TYPE="ntfs" /dev/sda5: LABEL="Varshneya" UUID="BC2A44C02A447982" TYPE="ntfs" /dev/loop0: TYPE="squashfs" /dev/sda6: UUID="34731459-4b0f-46ac-a9bf-cb360a2c947c" TYPE="ext4" /dev/sda7: UUID="dcb9ce9b-799a-4c65-b008-887b01775670" TYPE="swap" /dev/sr0: LABEL="Ubuntu 12.04.1 LTS i386" TYPE="iso9660" 1 disks with OS, 2 OS : 1 Linux, 0 MacOS, 1 Windows, 0 unknown type OS. Windows not detected by os-prober on sda3. Warning: extended partition does not start at a cylinder boundary. DOS and Linux will interpret the contents differently. =================== /mnt/etc/default/grub : # If you change this file, run 'update-grub' afterwards to update # /boot/grub/grub.cfg. # For full documentation of the options in this file, see: # info -f grub -n 'Simple configuration' GRUB_DEFAULT=0 GRUB_HIDDEN_TIMEOUT=0 GRUB_HIDDEN_TIMEOUT_QUIET=true GRUB_TIMEOUT=10 GRUB_DISTRIBUTOR=`lsb_release -i -s 2> /dev/null || echo Debian` GRUB_CMDLINE_LINUX_DEFAULT="quiet splash" GRUB_CMDLINE_LINUX="" # Uncomment to enable BadRAM filtering, modify to suit your needs # This works with Linux (no patch required) and with any kernel that obtains # the memory map information from GRUB (GNU Mach, kernel of FreeBSD ...) #GRUB_BADRAM="0x01234567,0xfefefefe,0x89abcdef,0xefefefef" # Uncomment to disable graphical terminal (grub-pc only) #GRUB_TERMINAL=console # The resolution used on graphical terminal # note that you can use only modes which your graphic card supports via VBE # you can see them in real GRUB with the command `vbeinfo' #GRUB_GFXMODE=640x480 # Uncomment if you don't want GRUB to pass "root=UUID=xxx" parameter to Linux #GRUB_DISABLE_LINUX_UUID=true # Uncomment to disable generation of recovery mode menu entries #GRUB_DISABLE_RECOVERY="true" # Uncomment to get a beep at grub start #GRUB_INIT_TUNE="480 440 1" =================== /mnt/etc/grub.d/ : drwxr-xr-x 2 root root 4096 Nov 22 16:15 grub.d total 56 -rwxr-xr-x 1 root root 6743 Sep 12 20:19 00_header -rwxr-xr-x 1 root root 5522 Sep 12 20:05 05_debian_theme -rwxr-xr-x 1 root root 7407 Sep 12 20:19 10_linux -rwxr-xr-x 1 root root 6335 Sep 12 20:19 20_linux_xen -rwxr-xr-x 1 root root 1588 Sep 24 2010 20_memtest86+ -rwxr-xr-x 1 root root 7603 Sep 12 20:19 30_os-prober -rwxr-xr-x 1 root root 214 Sep 12 20:19 40_custom -rwxr-xr-x 1 root root 95 Sep 12 20:19 41_custom -rw-r--r-- 1 root root 483 Sep 12 20:19 README =================== No kernel in /mnt/boot: grub memtest86+.bin memtest86+_multiboot.bin =================== UEFI/Legacy mode: This live-session is not EFI-compatible. SecureBoot maybe enabled. =================== PARTITIONS & DISKS: sda1 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda1. sda2 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, bootmgr, is-winboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, not-far, /mnt/boot-sav/sda2. sda3 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, is-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, haswinload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda3. sda5 : sda, not-sepboot, no-grubenv nogrub, no-docgrub, no-update-grub, 32, no-boot, no-os, not--efi--part, part-has-no-fstab, part-has-no-fstab, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, nopakmgr, nogrubinstall, no---usr, part-has-no-fstab, not-sep-usr, standard, farbios, /mnt/boot-sav/sda5. sda6 : sda, not-sepboot, grubenv-ok grub2, grub-pc, update-grub, 64, no-kernel, is-os, not--efi--part, fstab-without-boot, fstab-without-efi, no-nt, no-winload, no-recov-nor-hid, no-bmgr, notwinboot, apt-get, grub-install, with--usr, fstab-without-usr, not-sep-usr, standard, farbios, /mnt. sda : not-GPT, BIOSboot-not-needed, has-no-EFIpart, not-usb, has-os, 63 sectors * 512 bytes =================== parted -l: Model: ATA ST9320423AS (scsi) Disk /dev/sda: 320GB Sector size (logical/physical): 512B/512B Partition Table: msdos Number Start End Size Type File system Flags 1 32.3kB 140MB 140MB primary fat16 diag 2 141MB 9936MB 9796MB primary ntfs boot 3 9936MB 112GB 102GB primary ntfs 4 112GB 320GB 208GB extended lba 6 112GB 166GB 54.1GB logical ext4 7 166GB 168GB 2352MB logical linux-swap(v1) 5 168GB 320GB 152GB logical ntfs Model: HL-DT-ST DVD+-RW GA31N (scsi) Disk /dev/sr0: 4700MB Sector size (logical/physical): 2048B/2048B Partition Table: msdos Number Start End Size Type File system Flags 1 131kB 2916MB 2916MB primary boot, hidden =================== parted -lm: BYT; /dev/sda:320GB:scsi:512:512:msdos:ATA ST9320423AS; 1:32.3kB:140MB:140MB:fat16::diag; 2:141MB:9936MB:9796MB:ntfs::boot; 3:9936MB:112GB:102GB:ntfs::; 4:112GB:320GB:208GB:::lba; 6:112GB:166GB:54.1GB:ext4::; 7:166GB:168GB:2352MB:linux-swap(v1)::; 5:168GB:320GB:152GB:ntfs::; BYT; /dev/sr0:4700MB:scsi:2048:2048:msdos:HL-DT-ST DVD+-RW GA31N; 1:131kB:2916MB:2916MB:::boot, hidden; =================== mount: /cow on / type overlayfs (rw) proc on /proc type proc (rw,noexec,nosuid,nodev) sysfs on /sys type sysfs (rw,noexec,nosuid,nodev) udev on /dev type devtmpfs (rw,mode=0755) devpts on /dev/pts type devpts (rw,noexec,nosuid,gid=5,mode=0620) tmpfs on /run type tmpfs (rw,noexec,nosuid,size=10%,mode=0755) /dev/sr0 on /cdrom type iso9660 (ro,noatime) /dev/loop0 on /rofs type squashfs (ro,noatime) none on /sys/fs/fuse/connections type fusectl (rw) none on /sys/kernel/debug type debugfs (rw) none on /sys/kernel/security type securityfs (rw) tmpfs on /tmp type tmpfs (rw,nosuid,nodev) none on /run/lock type tmpfs (rw,noexec,nosuid,nodev,size=5242880) none on /run/shm type tmpfs (rw,nosuid,nodev) gvfs-fuse-daemon on /home/ubuntu/.gvfs type fuse.gvfs-fuse-daemon (rw,nosuid,nodev,user=ubuntu) /dev/sda6 on /mnt type ext4 (rw) /dev on /mnt/dev type none (rw,bind) /proc on /mnt/proc type none (rw,bind) /sys on /mnt/sys type none (rw,bind) /usr on /mnt/usr type none (rw,bind) /dev/sda1 on /mnt/boot-sav/sda1 type vfat (rw) /dev/sda2 on /mnt/boot-sav/sda2 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda3 on /mnt/boot-sav/sda3 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) /dev/sda5 on /mnt/boot-sav/sda5 type fuseblk (rw,nosuid,nodev,allow_other,blksize=4096) =================== ls: /sys/block/sda (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro sda1 sda2 sda3 sda4 sda5 sda6 sda7 size slaves stat subsystem trace uevent /sys/block/sr0 (filtered): alignment_offset bdi capability dev device discard_alignment events events_async events_poll_msecs ext_range holders inflight power queue range removable ro size slaves stat subsystem trace uevent /dev (filtered): autofs block bsg btrfs-control bus cdrom cdrw char console core cpu cpu_dma_latency disk dri dvd dvdrw ecryptfs fb0 fd full fuse fw0 hidraw0 hpet input kmsg log mapper mcelog mei mem net network_latency network_throughput null oldmem port ppp psaux ptmx pts random rfkill rtc rtc0 sda sda1 sda2 sda3 sda4 sda5 sda6 sda7 sg0 sg1 shm snapshot snd sr0 stderr stdin stdout uinput urandom usbmon0 usbmon1 usbmon2 v4l vga_arbiter video0 zero ls /dev/mapper: control =================== df -Th: Filesystem Type Size Used Avail Use% Mounted on /cow overlayfs 1.9G 113M 1.8G 6% / udev devtmpfs 1.9G 12K 1.9G 1% /dev tmpfs tmpfs 777M 872K 776M 1% /run /dev/sr0 iso9660 696M 696M 0 100% /cdrom /dev/loop0 squashfs 667M 667M 0 100% /rofs tmpfs tmpfs 1.9G 20K 1.9G 1% /tmp none tmpfs 5.0M 0 5.0M 0% /run/lock none tmpfs 1.9G 176K 1.9G 1% /run/shm /dev/sda6 ext4 51G 27G 22G 56% /mnt /dev/sda1 vfat 134M 9.1M 125M 7% /mnt/boot-sav/sda1 /dev/sda2 fuseblk 9.2G 5.6G 3.6G 61% /mnt/boot-sav/sda2 /dev/sda3 fuseblk 95G 80G 16G 84% /mnt/boot-sav/sda3 /dev/sda5 fuseblk 142G 130G 12G 92% /mnt/boot-sav/sda5 =================== fdisk -l: Disk /dev/sda: 320.1 GB, 320072933376 bytes 255 heads, 63 sectors/track, 38913 cylinders, total 625142448 sectors Units = sectors of 1 * 512 = 512 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xb8000000 Device Boot Start End Blocks Id System /dev/sda1 63 273104 136521 de Dell Utility /dev/sda2 * 274432 19406847 9566208 7 HPFS/NTFS/exFAT /dev/sda3 19406848 218274364 99433758+ 7 HPFS/NTFS/exFAT /dev/sda4 218275838 625139711 203431937 f W95 Ext'd (LBA) /dev/sda5 328630272 625139711 148254720 7 HPFS/NTFS/exFAT /dev/sda6 218275840 324030463 52877312 83 Linux /dev/sda7 324032512 328626175 2296832 82 Linux swap / Solaris Partition table entries are not in disk order =================== Repair blockers 64bits detected. Please use this software in a 64bits session. (Please use Ubuntu-Secure-Remix-64bits (www.sourceforge.net/p/ubuntu-secured) which contains a 64bits-compatible version of this software.) This will enable this feature. =================== Final advice in case of recommended repair The boot files of [Ubuntu 12.04.1 LTS] are far from the start of the disk. Your BIOS may not detect them. You may want to retry after creating a /boot partition (EXT4, >200MB, start of the disk). This can be performed via tools such as gParted. Then select this partition via the [Separate /boot partition:] option of [Boot Repair]. (https://help.ubuntu.com/community/BootPartition) =================== Default settings Recommended-Repair This setting would reinstall the grub2 of sda6 into the MBR of sda, using the following options: kernel-purge Additional repair would be performed: unhide-bootmenu-10s fix-windows-boot =================== Settings chosen by the user Boot-Info This setting will not act on the MBR. No change has been performed on your computer. See you soon! pastebinit packages needed dpkg-preconfigure: unable to re-open stdin: No such file or directory pastebin.com ko (), using paste.ubuntu Please report this message to [email protected] Any help would be great, I'm really missing Ubuntu (hate being stuck in the Windows world).

    Read the article

  • ASP.NET. MVC2. Entity Framework. Cannot pass primary key value back from view to [HttpPost]

    - by Paul Connolly
    I pass a ViewModel (which contains a "Person" object) from the "EditPerson" controller action into the view. When posted back from the view, the ActionResult receives all of the Person properties except the ID (which it says is zero instead of say its real integer) Can anyone tell me why? The controllers look like this: public ActionResult EditPerson(int personID) { var personToEdit = repository.GetPerson(personID); FormationViewModel vm = new FormationViewModel(); vm.Person = personToEdit; return View(vm); } [HttpPost] public ActionResult EditPerson(FormationViewModel model) <<Passes in all properties except ID { // Persistence code } The View looks like this: <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage<Afp.Models.Formation.FormationViewModel>" %> <% using (Html.BeginForm()) {% <%= Html.ValidationSummary(true) % <fieldset> <legend>Fields</legend> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Title) %> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Title) %> <%= Html.ValidationMessageFor(model => model.Person.Title) %> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Forename)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Forename)%> <%= Html.ValidationMessageFor(model => model.Person.Forename)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Surname)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Surname)%> <%= Html.ValidationMessageFor(model => model.Person.Surname)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.DOB) %> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.DOB, String.Format("{0:g}", Model.DOB)) <%= Html.ValidationMessageFor(model => model.DOB) %> </div>--%> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Nationality)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Nationality)%> <%= Html.ValidationMessageFor(model => model.Person.Nationality)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Occupation)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Occupation)%> <%= Html.ValidationMessageFor(model => model.Person.Occupation)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.CountryOfResidence)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.CountryOfResidence)%> <%= Html.ValidationMessageFor(model => model.Person.CountryOfResidence)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.PreviousNameForename)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.PreviousNameForename)%> <%= Html.ValidationMessageFor(model => model.Person.PreviousNameForename)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.PreviousSurname)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.PreviousSurname)%> <%= Html.ValidationMessageFor(model => model.Person.PreviousSurname)%> </div> <div class="editor-label"> <%= Html.LabelFor(model => model.Person.Email)%> </div> <div class="editor-field"> <%= Html.TextBoxFor(model => model.Person.Email)%> <%= Html.ValidationMessageFor(model => model.Person.Email)%> </div> <p> <input type="submit" value="Save" /> </p> </fieldset> <% } % And the Person class looks like: [MetadataType(typeof(Person_Validation))] public partial class Person { public Person() { } } [Bind(Exclude = "ID")] public class Person_Validation { public int ID { get; private set; } public string Title { get; set; } public string Forename { get; set; } public string Surname { get; set; } public System.DateTime DOB { get; set; } public string Nationality { get; set; } public string Occupation { get; set; } public string CountryOfResidence { get; set; } public string PreviousNameForename { get; set; } public string PreviousSurname { get; set; } public string Email { get; set; } } And ViewModel: public class FormationViewModel { public Company Company { get; set; } public Address RegisteredAddress { get; set; } public Person Person { get; set; } public PersonType PersonType { get; set; } public int CurrentStep { get; set; } } }

    Read the article

  • Benchmark Linq2SQL, Subsonic2, Subsonic3 - Any other ideas to make them faster ?

    - by Aristos
    I am working with Subsonic 2 more than 3 years now... After Linq appears and then Subsonic 3, I start thinking about moving to the new Linq futures that are connected to sql. I must say that I start move and port my subsonic 2 with SubSonic 3, and very soon I discover that the speed was so slow thats I didn't believe it - and starts all that tests. Then I test Linq2Sql and see also a delay - compare it with Subsonic 2. My question here is, especial for the linq2sql, and the up-coming dotnet version 4, what else can I do to speed it up ? What else on linq2sql settings, or classes, not on this code that I have used for my messures I place here the project that I make the tests, also the screen shots of the results. How I make the tests - and the accurate of my measures. I use only for my question Google chrome, because its difficult for me to show here a lot of other measures that I have done with more complex programs. This is the most simple one, I just measure the Data Read. How can I prove that. I make a simple Thread.Sleep(10 seconds) and see if I see that 10 seconds on Google Chrome Measure, and yes I see it. here are more test with this Sleep thead to see whats actually Chrome gives. 10 seconds delay 100 ms delay Zero delay There is only a small 15ms thats get on messure, is so small compare it with the rest of my tests that I do not care about. So what I measure I measure just the data read via each method - did not count the data or database delay, or any disk read or anything like that. Later on the image with the result I show that no disk activity exist on the measures See this image to see what really I measure and if this is correct Why I chose this kind of test Its simple, it's real, and it's near my real problem that I found the delay of subsonic 3 in real program with real data. Now lets tests the dals Start by see this image I have 4-5 calls on every method, the one after the other. The results are. For a loop of 100 times, ask for 5 Rows, one not exist, approximatively.. Simple adonet:81ms SubSonic 2 :210ms linq2sql :1.70sec linq2sql using CompiledQuery.Compile :239ms Subsonic 3 :15.00sec (wow - extreme slow) The project http://www.planethost.gr/DalSpeedTests.rar Can any one confirm this benchmark, or make any optimizations to help me out ? Other tests Some one publish here this link http://ormbattle.net/ (and then remove it - don not know why) In this page you can find a really useful advanced tests for all, except subsonic 2 and subsonic 3 that I have here ! Optimizing What I really ask here is if some one can now any trick how to optimize the DALs, not by changing the test code, but by changing the code and the settings on each dal. For example... Optimizing Linq2SQL I start search how to optimize Linq2sql and found this article, and maybe more exist. Finally I make the tricks from that page to run, and optimize the code using them all. The speed was near 1.50sec from 1.70.... big improvement, but still slow. Then I found a different way - same idea article, and wow ! the speed is blow up. Using this trick with CompiledQuery.Compile, the time from 1.5sec is now 239ms. Here is the code for the precompiled... Func<DataClassesDataContext, int, IQueryable<Product>> compiledQuery = CompiledQuery.Compile((DataClassesDataContext meta, int IdToFind) => (from myData in meta.Products where myData.ProductID.Equals(IdToFind) select myData)); StringBuilder Test = new StringBuilder(); int[] MiaSeira = { 5, 6, 10, 100, 7 }; using (DataClassesDataContext context = new DataClassesDataContext()) { context.ObjectTrackingEnabled = false; for (int i = 0; i < 100; i++) { foreach (int EnaID in MiaSeira) { var oFindThat2P = compiledQuery(context, EnaID); foreach (Product One in oFindThat2P) { Test.Append("<br />"); Test.Append(One.ProductName); } } } } Optimizing SubSonic 3 and problems I make many performance profiling, and start change the one after the other and the speed is better but still too slow. I post them on subsonic group but they ignore the problem, they say that everything is fast... Here is some capture of my profiling and delay points inside subsonic source code I have end up that subsonic3 make more call on the structure of the database rather than on data itself. Needs to reconsider the hole way of asking for data, and follow the subsonic2 idea if this is possible. Try to make precompile to subsonic 3 like I did in linq2Sql but fail for the moment... Optimizing SubSonic 2 After I discover that subsonic 3 is extreme slow, I start my checks on subsonic 2 - that I have never done before believing that is fast. (and it is) So its come up with some points that can be faster. For example there are many loops like this ones that actually is slow because of string manipulation and compares inside the loop. I must say to you that this code called million of times ! on a period of few minutes ! of data asking from the program. On small amount of tables and small fields maybe this is not a big think for some people, but on large amount of tables, the delay is even more. So I decide and optimize the subsonic 2 by my self, by replacing the string compares, with number compares! Simple. I do that almost on every point that profiler say that is slow. I change also all small points that can be even a little faster, and disable some not so used thinks. The results, 5% faster on NorthWind database, near 20% faster on my database with 250 tables. That is count with 500ms less in 10 seconds process on northwind, 100ms faster on my database on 500ms process time. I do not have captures to show you for that because I have made them with different code, different time, and track them down on paper. Anyway this is my story and my question on all that, what else do you know to make them even faster... For this measures I have use Subsonic 2.2 optimized by me, Subsonic 3.0.0.3 a little optimized by me, and Dot.Net 3.5

    Read the article

  • ConfigurationManager.AppSettings is empty?

    - by Mattousai
    Hello All, I have a VS2008 ASP.NET Web Service Application running on the local IIS of my XP machine. A separate project in the same solution uses test methods to invoke the WS calls, and run their processes. When I added a web reference to the WS App, VS2008 created a Settings.settings file in the Properties folder to store the address of the web reference. This process also created a new section in the Web.config file called applicationSettings to store the values from Settings.settings When my application attempts to retrieve configuration values from the appSettings section of the Web.config file, via ConfigurationManager.AppSettings[key], all values are null and AppSettings.AllKeys.Length is always zero. I even reverted the Web.config file to before the web reference was added, and made sure it was exactly the same as a system-generated web.config file for a new project that works fine. After comparing the reverted Web.config and a new Web.config, I addded one simple value in the appSettings section, and still no luck with ConfigurationManager.AppSettings[key]. Here is the reverted Web.config that cannot be read from <?xml version="1.0"?> <configuration> <configSections> <sectionGroup name="system.web.extensions" type="System.Web.Configuration.SystemWebExtensionsSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <sectionGroup name="scripting" type="System.Web.Configuration.ScriptingSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="scriptResourceHandler" type="System.Web.Configuration.ScriptingScriptResourceHandlerSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication"/> <sectionGroup name="webServices" type="System.Web.Configuration.ScriptingWebServicesSectionGroup, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"> <section name="jsonSerialization" type="System.Web.Configuration.ScriptingJsonSerializationSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="Everywhere" /> <section name="profileService" type="System.Web.Configuration.ScriptingProfileServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="authenticationService" type="System.Web.Configuration.ScriptingAuthenticationServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> <section name="roleService" type="System.Web.Configuration.ScriptingRoleServiceSection, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" requirePermission="false" allowDefinition="MachineToApplication" /> </sectionGroup> </sectionGroup> </sectionGroup> </configSections> <appSettings> <add key="testkey" value="testvalue"/> </appSettings> <connectionStrings/> <system.web> <!-- Set compilation debug="true" to insert debugging symbols into the compiled page. Because this affects performance, set this value to true only during development. --> <compilation debug="false"> <assemblies> <add assembly="System.Core, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Data.DataSetExtensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> <add assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add assembly="System.Xml.Linq, Version=3.5.0.0, Culture=neutral, PublicKeyToken=B77A5C561934E089"/> </assemblies> </compilation> <!-- The <authentication> section enables configuration of the security authentication mode used by ASP.NET to identify an incoming user. --> <authentication mode="Windows" /> <!-- The <customErrors> section enables configuration of what to do if/when an unhandled error occurs during the execution of a request. Specifically, it enables developers to configure html error pages to be displayed in place of a error stack trace. <customErrors mode="RemoteOnly" defaultRedirect="GenericErrorPage.htm"> <error statusCode="403" redirect="NoAccess.htm" /> <error statusCode="404" redirect="FileNotFound.htm" /> </customErrors> --> <pages> <controls> <add tagPrefix="asp" namespace="System.Web.UI" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add tagPrefix="asp" namespace="System.Web.UI.WebControls" assembly="System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </controls> </pages> <httpHandlers> <remove verb="*" path="*.asmx"/> <add verb="*" path="*.asmx" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="*" path="*_AppService.axd" validate="false" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validate="false"/> </httpHandlers> <httpModules> <add name="ScriptModule" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </httpModules> </system.web> <system.codedom> <compilers> <compiler language="c#;cs;csharp" extension=".cs" warningLevel="4" type="Microsoft.CSharp.CSharpCodeProvider, System, Version=2.0.0.0, Culture=neutral, PublicKeyToken=b77a5c561934e089"> <providerOption name="CompilerVersion" value="v3.5"/> <providerOption name="WarnAsError" value="false"/> </compiler> </compilers> </system.codedom> <!-- The system.webServer section is required for running ASP.NET AJAX under Internet Information Services 7.0. It is not necessary for previous version of IIS. --> <system.webServer> <validation validateIntegratedModeConfiguration="false"/> <modules> <remove name="ScriptModule" /> <add name="ScriptModule" preCondition="managedHandler" type="System.Web.Handlers.ScriptModule, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> </modules> <handlers> <remove name="WebServiceHandlerFactory-Integrated"/> <remove name="ScriptHandlerFactory" /> <remove name="ScriptHandlerFactoryAppServices" /> <remove name="ScriptResource" /> <add name="ScriptHandlerFactory" verb="*" path="*.asmx" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptHandlerFactoryAppServices" verb="*" path="*_AppService.axd" preCondition="integratedMode" type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35"/> <add name="ScriptResource" preCondition="integratedMode" verb="GET,HEAD" path="ScriptResource.axd" type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=3.5.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" /> </handlers> </system.webServer> <runtime> <assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1"> <dependentAssembly> <assemblyIdentity name="System.Web.Extensions" publicKeyToken="31bf3856ad364e35"/> <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0"/> </dependentAssembly> <dependentAssembly> <assemblyIdentity name="System.Web.Extensions.Design" publicKeyToken="31bf3856ad364e35"/> <bindingRedirect oldVersion="1.0.0.0-1.1.0.0" newVersion="3.5.0.0"/> </dependentAssembly> </assemblyBinding> </runtime> </configuration> Has anyone experienced this, or know how to solve the problem? TIA -Matt

    Read the article

  • Why does fprintf start printing out of order or not at all?

    - by Steve Melvin
    This code should take an integer, create pipes, spawn two children, wait until they are dead, and start all over again. However, around the third time around the loop I lose my prompt to enter a number and it no longer prints the number I've entered. Any ideas? #include <stdio.h> #include <stdlib.h> #include <unistd.h> #include <errno.h> #define WRITE 1 #define READ 0 int main (int argc, const char * argv[]) { //Pipe file-descriptor array unsigned int isChildA = 0; int pipeA[2]; int pipeB[2]; int num = 0; while(1){ fprintf(stderr,"Enter an integer: "); scanf("%i", &num); if(num == 0){ fprintf(stderr,"You entered zero, exiting...\n"); exit(0); } //Open Pipes if(pipe(pipeA) < 0){ fprintf(stderr,"Could not create pipe A.\n"); exit(1); } if(pipe(pipeB) < 0){ fprintf(stderr,"Could not create pipe B.\n"); exit(1); } fprintf(stderr,"Value read: %i \n", num); fprintf(stderr,"Parent PID: %i\n", getpid()); pid_t procID = fork(); switch (procID) { case -1: fprintf(stderr,"Fork error, quitting...\n"); exit(1); break; case 0: isChildA = 1; break; default: procID = fork(); if (procID<0) { fprintf(stderr,"Fork error, quitting...\n"); exit(1); } else if(procID == 0){ isChildA = 0; } else { write(pipeA[WRITE], &num, sizeof(int)); close(pipeA[WRITE]); close(pipeA[READ]); close(pipeB[WRITE]); close(pipeB[READ]); pid_t pid; while (pid = waitpid(-1, NULL, 0)) { if (errno == ECHILD) { break; } } } break; } if (procID == 0) { //We're a child, do kid-stuff. ssize_t bytesRead = 0; int response; while (1) { while (bytesRead == 0) { bytesRead = read((isChildA?pipeA[READ]:pipeB[READ]), &response, sizeof(int)); } if (response < 2) { //Kill other child and self fprintf(stderr, "Terminating PROCID: %i\n", getpid()); write((isChildA?pipeB[WRITE]:pipeA[WRITE]), &response, sizeof(int)); close(pipeA[WRITE]); close(pipeA[READ]); close(pipeB[WRITE]); close(pipeB[READ]); return 0; } else if(!(response%2)){ //Even response/=2; fprintf(stderr,"PROCID: %i, VALUE: %i\n", getpid(), response); write((isChildA?pipeB[WRITE]:pipeA[WRITE]), &response, sizeof(int)); bytesRead = 0; } else { //Odd response*=3; response++; fprintf(stderr,"PROCID: %i, VALUE: %i\n", getpid(), response); write((isChildA?pipeB[WRITE]:pipeA[WRITE]), &response, sizeof(int)); bytesRead = 0; } } } } return 0; } This is the output I am getting... bash-3.00$ ./proj2 Enter an integer: 101 Value read: 101 Parent PID: 9379 PROCID: 9380, VALUE: 304 PROCID: 9381, VALUE: 152 PROCID: 9380, VALUE: 76 PROCID: 9381, VALUE: 38 PROCID: 9380, VALUE: 19 PROCID: 9381, VALUE: 58 PROCID: 9380, VALUE: 29 PROCID: 9381, VALUE: 88 PROCID: 9380, VALUE: 44 PROCID: 9381, VALUE: 22 PROCID: 9380, VALUE: 11 PROCID: 9381, VALUE: 34 PROCID: 9380, VALUE: 17 PROCID: 9381, VALUE: 52 PROCID: 9380, VALUE: 26 PROCID: 9381, VALUE: 13 PROCID: 9380, VALUE: 40 PROCID: 9381, VALUE: 20 PROCID: 9380, VALUE: 10 PROCID: 9381, VALUE: 5 PROCID: 9380, VALUE: 16 PROCID: 9381, VALUE: 8 PROCID: 9380, VALUE: 4 PROCID: 9381, VALUE: 2 PROCID: 9380, VALUE: 1 Terminating PROCID: 9381 Terminating PROCID: 9380 Enter an integer: 102 Value read: 102 Parent PID: 9379 PROCID: 9386, VALUE: 51 PROCID: 9387, VALUE: 154 PROCID: 9386, VALUE: 77 PROCID: 9387, VALUE: 232 PROCID: 9386, VALUE: 116 PROCID: 9387, VALUE: 58 PROCID: 9386, VALUE: 29 PROCID: 9387, VALUE: 88 PROCID: 9386, VALUE: 44 PROCID: 9387, VALUE: 22 PROCID: 9386, VALUE: 11 PROCID: 9387, VALUE: 34 PROCID: 9386, VALUE: 17 PROCID: 9387, VALUE: 52 PROCID: 9386, VALUE: 26 PROCID: 9387, VALUE: 13 PROCID: 9386, VALUE: 40 PROCID: 9387, VALUE: 20 PROCID: 9386, VALUE: 10 PROCID: 9387, VALUE: 5 PROCID: 9386, VALUE: 16 PROCID: 9387, VALUE: 8 PROCID: 9386, VALUE: 4 PROCID: 9387, VALUE: 2 PROCID: 9386, VALUE: 1 Terminating PROCID: 9387 Terminating PROCID: 9386 Enter an integer: 104 Value read: 104 Parent PID: 9379 Enter an integer: PROCID: 9388, VALUE: 52 PROCID: 9389, VALUE: 26 PROCID: 9388, VALUE: 13 PROCID: 9389, VALUE: 40 PROCID: 9388, VALUE: 20 PROCID: 9389, VALUE: 10 PROCID: 9388, VALUE: 5 PROCID: 9389, VALUE: 16 PROCID: 9388, VALUE: 8 PROCID: 9389, VALUE: 4 PROCID: 9388, VALUE: 2 PROCID: 9389, VALUE: 1 Terminating PROCID: 9388 Terminating PROCID: 9389 105 Value read: 105 Parent PID: 9379 Enter an integer: PROCID: 9395, VALUE: 316 PROCID: 9396, VALUE: 158 PROCID: 9395, VALUE: 79 PROCID: 9396, VALUE: 238 PROCID: 9395, VALUE: 119 PROCID: 9396, VALUE: 358 PROCID: 9395, VALUE: 179 PROCID: 9396, VALUE: 538 PROCID: 9395, VALUE: 269 PROCID: 9396, VALUE: 808 PROCID: 9395, VALUE: 404 PROCID: 9396, VALUE: 202 PROCID: 9395, VALUE: 101 PROCID: 9396, VALUE: 304 PROCID: 9395, VALUE: 152 PROCID: 9396, VALUE: 76 PROCID: 9395, VALUE: 38 PROCID: 9396, VALUE: 19 PROCID: 9395, VALUE: 58 PROCID: 9396, VALUE: 29 PROCID: 9395, VALUE: 88 PROCID: 9396, VALUE: 44 PROCID: 9395, VALUE: 22 PROCID: 9396, VALUE: 11 PROCID: 9395, VALUE: 34 PROCID: 9396, VALUE: 17 PROCID: 9395, VALUE: 52 PROCID: 9396, VALUE: 26 PROCID: 9395, VALUE: 13 PROCID: 9396, VALUE: 40 PROCID: 9395, VALUE: 20 PROCID: 9396, VALUE: 10 PROCID: 9395, VALUE: 5 PROCID: 9396, VALUE: 16 PROCID: 9395, VALUE: 8 PROCID: 9396, VALUE: 4 PROCID: 9395, VALUE: 2 PROCID: 9396, VALUE: 1 Terminating PROCID: 9395 Terminating PROCID: 9396 105 Value read: 105 Parent PID: 9379 Enter an integer: PROCID: 9397, VALUE: 316 PROCID: 9398, VALUE: 158 PROCID: 9397, VALUE: 79 PROCID: 9398, VALUE: 238 PROCID: 9397, VALUE: 119 PROCID: 9398, VALUE: 358 PROCID: 9397, VALUE: 179 PROCID: 9398, VALUE: 538 PROCID: 9397, VALUE: 269 PROCID: 9398, VALUE: 808 PROCID: 9397, VALUE: 404 PROCID: 9398, VALUE: 202 PROCID: 9397, VALUE: 101 PROCID: 9398, VALUE: 304 PROCID: 9397, VALUE: 152 PROCID: 9398, VALUE: 76 PROCID: 9397, VALUE: 38 PROCID: 9398, VALUE: 19 PROCID: 9397, VALUE: 58 PROCID: 9398, VALUE: 29 PROCID: 9397, VALUE: 88 PROCID: 9398, VALUE: 44 PROCID: 9397, VALUE: 22 PROCID: 9398, VALUE: 11 PROCID: 9397, VALUE: 34 PROCID: 9398, VALUE: 17 PROCID: 9397, VALUE: 52 PROCID: 9398, VALUE: 26 PROCID: 9397, VALUE: 13 PROCID: 9398, VALUE: 40 PROCID: 9397, VALUE: 20 PROCID: 9398, VALUE: 10 PROCID: 9397, VALUE: 5 PROCID: 9398, VALUE: 16 PROCID: 9397, VALUE: 8 PROCID: 9398, VALUE: 4 PROCID: 9397, VALUE: 2 PROCID: 9398, VALUE: 1 Terminating PROCID: 9397 Terminating PROCID: 9398 106 Value read: 106 Parent PID: 9379 Enter an integer: PROCID: 9399, VALUE: 53 PROCID: 9400, VALUE: 160 PROCID: 9399, VALUE: 80 PROCID: 9400, VALUE: 40 PROCID: 9399, VALUE: 20 PROCID: 9400, VALUE: 10 PROCID: 9399, VALUE: 5 PROCID: 9400, VALUE: 16 PROCID: 9399, VALUE: 8 PROCID: 9400, VALUE: 4 PROCID: 9399, VALUE: 2 PROCID: 9400, VALUE: 1 Terminating PROCID: 9399 Terminating PROCID: 9400 ^C Another thing that's strange, when ran from within XCode it behaves normally. However, when ran from bash on Solaris or OSX it acts up.

    Read the article

  • Inverse Kinematics with OpenGL/Eigen3 : unstable jacobian pseudoinverse

    - by SigTerm
    I'm trying to implement simple inverse kinematics test using OpenGL, Eigen3 and "jacobian pseudoinverse" method. The system works fine using "jacobian transpose" algorithm, however, as soon as I attempt to use "pseudoinverse", joints become unstable and start jerking around (eventually they freeze completely - unless I use "jacobian transpose" fallback computation). I've investigated the issue and turns out that in some cases jacobian.inverse()*jacobian has zero determinant and cannot be inverted. However, I've seen other demos on the internet (youtube) that claim to use same method and they do not seem to have this problem. So I'm uncertain where is the cause of the issue. Code is attached below: *.h: struct Ik{ float targetAngle; float ikLength; VectorXf angles; Vector3f root, target; Vector3f jointPos(int ikIndex); size_t size() const; Vector3f getEndPos(int index, const VectorXf& vec); void resize(size_t size); void update(float t); void render(); Ik(): targetAngle(0), ikLength(10){ } }; *.cpp: size_t Ik::size() const{ return angles.rows(); } Vector3f Ik::getEndPos(int index, const VectorXf& vec){ Vector3f pos(0, 0, 0); while(true){ Eigen::Affine3f t; float radAngle = pi*vec[index]/180.0f; t = Eigen::AngleAxisf(radAngle, Vector3f(-1, 0, 0)) * Eigen::Translation3f(Vector3f(0, 0, ikLength)); pos = t * pos; if (index == 0) break; index--; } return pos; } void Ik::resize(size_t size){ angles.resize(size); angles.setZero(); } void drawMarker(Vector3f p){ glBegin(GL_LINES); glVertex3f(p[0]-1, p[1], p[2]); glVertex3f(p[0]+1, p[1], p[2]); glVertex3f(p[0], p[1]-1, p[2]); glVertex3f(p[0], p[1]+1, p[2]); glVertex3f(p[0], p[1], p[2]-1); glVertex3f(p[0], p[1], p[2]+1); glEnd(); } void drawIkArm(float length){ glBegin(GL_LINES); float f = 0.25f; glVertex3f(0, 0, length); glVertex3f(-f, -f, 0); glVertex3f(0, 0, length); glVertex3f(f, -f, 0); glVertex3f(0, 0, length); glVertex3f(f, f, 0); glVertex3f(0, 0, length); glVertex3f(-f, f, 0); glEnd(); glBegin(GL_LINE_LOOP); glVertex3f(f, f, 0); glVertex3f(-f, f, 0); glVertex3f(-f, -f, 0); glVertex3f(f, -f, 0); glEnd(); } void Ik::update(float t){ targetAngle += t * pi*2.0f/10.0f; while (t > pi*2.0f) t -= pi*2.0f; target << 0, 8 + 3*sinf(targetAngle), cosf(targetAngle)*4.0f+5.0f; Vector3f tmpTarget = target; Vector3f targetDiff = tmpTarget - root; float l = targetDiff.norm(); float maxLen = ikLength*(float)angles.size() - 0.01f; if (l > maxLen){ targetDiff *= maxLen/l; l = targetDiff.norm(); tmpTarget = root + targetDiff; } Vector3f endPos = getEndPos(size()-1, angles); Vector3f diff = tmpTarget - endPos; float maxAngle = 360.0f/(float)angles.size(); for(int loop = 0; loop < 1; loop++){ MatrixXf jacobian(diff.rows(), angles.rows()); jacobian.setZero(); float step = 1.0f; for (int i = 0; i < angles.size(); i++){ Vector3f curRoot = root; if (i) curRoot = getEndPos(i-1, angles); Vector3f axis(1, 0, 0); Vector3f n = endPos - curRoot; float l = n.norm(); if (l) n /= l; n = n.cross(axis); if (l) n *= l*step*pi/180.0f; //std::cout << n << "\n"; for (int j = 0; j < 3; j++) jacobian(j, i) = n[j]; } std::cout << jacobian << std::endl; MatrixXf jjt = jacobian.transpose()*jacobian; //std::cout << jjt << std::endl; float d = jjt.determinant(); MatrixXf invJ; float scale = 0.1f; if (!d /*|| true*/){ invJ = jacobian.transpose(); scale = 5.0f; std::cout << "fallback to jacobian transpose!\n"; } else{ invJ = jjt.inverse()*jacobian.transpose(); std::cout << "jacobian pseudo-inverse!\n"; } //std::cout << invJ << std::endl; VectorXf add = invJ*diff*step*scale; //std::cout << add << std::endl; float maxSpeed = 15.0f; for (int i = 0; i < add.size(); i++){ float& cur = add[i]; cur = std::max(-maxSpeed, std::min(maxSpeed, cur)); } angles += add; for (int i = 0; i < angles.size(); i++){ float& cur = angles[i]; if (i) cur = std::max(-maxAngle, std::min(maxAngle, cur)); } } } void Ik::render(){ glPushMatrix(); glTranslatef(root[0], root[1], root[2]); for (int i = 0; i < angles.size(); i++){ glRotatef(angles[i], -1, 0, 0); drawIkArm(ikLength); glTranslatef(0, 0, ikLength); } glPopMatrix(); drawMarker(target); for (int i = 0; i < angles.size(); i++) drawMarker(getEndPos(i, angles)); } Any help will be appreciated.

    Read the article

  • Scala parser combinator runs out of memory

    - by user3217013
    I wrote the following parser in Scala using the parser combinators: import scala.util.parsing.combinator._ import scala.collection.Map import scala.io.StdIn object Keywords { val Define = "define" val True = "true" val False = "false" val If = "if" val Then = "then" val Else = "else" val Return = "return" val Pass = "pass" val Conj = ";" val OpenParen = "(" val CloseParen = ")" val OpenBrack = "{" val CloseBrack = "}" val Comma = "," val Plus = "+" val Minus = "-" val Times = "*" val Divide = "/" val Pow = "**" val And = "&&" val Or = "||" val Xor = "^^" val Not = "!" val Equals = "==" val NotEquals = "!=" val Assignment = "=" } //--------------------------------------------------------------------------------- sealed abstract class Op case object Plus extends Op case object Minus extends Op case object Times extends Op case object Divide extends Op case object Pow extends Op case object And extends Op case object Or extends Op case object Xor extends Op case object Not extends Op case object Equals extends Op case object NotEquals extends Op case object Assignment extends Op //--------------------------------------------------------------------------------- sealed abstract class Term case object TrueTerm extends Term case object FalseTerm extends Term case class FloatTerm(value : Float) extends Term case class StringTerm(value : String) extends Term case class Identifier(name : String) extends Term //--------------------------------------------------------------------------------- sealed abstract class Expression case class TermExp(term : Term) extends Expression case class UnaryOp(op : Op, exp : Expression) extends Expression case class BinaryOp(op : Op, left : Expression, right : Expression) extends Expression case class FuncApp(funcName : Term, args : List[Expression]) extends Expression //--------------------------------------------------------------------------------- sealed abstract class Statement case class ExpressionStatement(exp : Expression) extends Statement case class Pass() extends Statement case class Return(value : Expression) extends Statement case class AssignmentVar(variable : Term, exp : Expression) extends Statement case class IfThenElse(testBody : Expression, thenBody : Statement, elseBody : Statement) extends Statement case class Conjunction(left : Statement, right : Statement) extends Statement case class AssignmentFunc(functionName : Term, args : List[Term], body : Statement) extends Statement //--------------------------------------------------------------------------------- class myParser extends JavaTokenParsers { val keywordMap : Map[String, Op] = Map( Keywords.Plus -> Plus, Keywords.Minus -> Minus, Keywords.Times -> Times, Keywords.Divide -> Divide, Keywords.Pow -> Pow, Keywords.And -> And, Keywords.Or -> Or, Keywords.Xor -> Xor, Keywords.Not -> Not, Keywords.Equals -> Equals, Keywords.NotEquals -> NotEquals, Keywords.Assignment -> Assignment ) def floatTerm : Parser[Term] = decimalNumber ^^ { case x => FloatTerm( x.toFloat ) } def stringTerm : Parser[Term] = stringLiteral ^^ { case str => StringTerm(str) } def identifier : Parser[Term] = ident ^^ { case value => Identifier(value) } def boolTerm : Parser[Term] = (Keywords.True | Keywords.False) ^^ { case Keywords.True => TrueTerm case Keywords.False => FalseTerm } def simpleTerm : Parser[Expression] = (boolTerm | floatTerm | stringTerm) ^^ { case term => TermExp(term) } def argument = expression def arguments_aux : Parser[List[Expression]] = (argument <~ Keywords.Comma) ~ arguments ^^ { case arg ~ argList => arg :: argList } def arguments = arguments_aux | { argument ^^ { case arg => List(arg) } } def funcAppArgs : Parser[List[Expression]] = funcEmptyArgs | ( Keywords.OpenParen ~> arguments <~ Keywords.CloseParen ^^ { case args => args.foldRight(List[Expression]()) ( (a,b) => a :: b ) } ) def funcApp = identifier ~ funcAppArgs ^^ { case funcName ~ argList => FuncApp(funcName, argList) } def variableTerm : Parser[Expression] = identifier ^^ { case name => TermExp(name) } def atomic_expression = simpleTerm | funcApp | variableTerm def paren_expression : Parser[Expression] = Keywords.OpenParen ~> expression <~ Keywords.CloseParen def unary_operation : Parser[String] = Keywords.Not def unary_expression : Parser[Expression] = operation(0) ~ expression(0) ^^ { case op ~ exp => UnaryOp(keywordMap(op), exp) } def operation(precedence : Int) : Parser[String] = precedence match { case 0 => Keywords.Not case 1 => Keywords.Pow case 2 => Keywords.Times | Keywords.Divide | Keywords.And case 3 => Keywords.Plus | Keywords.Minus | Keywords.Or | Keywords.Xor case 4 => Keywords.Equals | Keywords.NotEquals case _ => throw new Exception("No operations with this precedence.") } def binary_expression(precedence : Int) : Parser[Expression] = precedence match { case 0 => throw new Exception("No operation with zero precedence.") case n => (expression (n-1)) ~ operation(n) ~ (expression (n)) ^^ { case left ~ op ~ right => BinaryOp(keywordMap(op), left, right) } } def expression(precedence : Int) : Parser[Expression] = precedence match { case 0 => unary_expression | paren_expression | atomic_expression case n => binary_expression(n) | expression(n-1) } def expression : Parser[Expression] = expression(4) def expressionStmt : Parser[Statement] = expression ^^ { case exp => ExpressionStatement(exp) } def assignment : Parser[Statement] = (identifier <~ Keywords.Assignment) ~ expression ^^ { case varName ~ exp => AssignmentVar(varName, exp) } def ifthen : Parser[Statement] = ((Keywords.If ~ Keywords.OpenParen) ~> expression <~ Keywords.CloseParen) ~ ((Keywords.Then ~ Keywords.OpenBrack) ~> statements <~ Keywords.CloseBrack) ^^ { case ifBody ~ thenBody => IfThenElse(ifBody, thenBody, Pass()) } def ifthenelse : Parser[Statement] = ((Keywords.If ~ Keywords.OpenParen) ~> expression <~ Keywords.CloseParen) ~ ((Keywords.Then ~ Keywords.OpenBrack) ~> statements <~ Keywords.CloseBrack) ~ ((Keywords.Else ~ Keywords.OpenBrack) ~> statements <~ Keywords.CloseBrack) ^^ { case ifBody ~ thenBody ~ elseBody => IfThenElse(ifBody, thenBody, elseBody) } def pass : Parser[Statement] = Keywords.Pass ^^^ { Pass() } def returnStmt : Parser[Statement] = Keywords.Return ~> expression ^^ { case exp => Return(exp) } def statement : Parser[Statement] = ((pass | returnStmt | assignment | expressionStmt) <~ Keywords.Conj) | ifthenelse | ifthen def statements_aux : Parser[Statement] = statement ~ statements ^^ { case st ~ sts => Conjunction(st, sts) } def statements : Parser[Statement] = statements_aux | statement def funcDefBody : Parser[Statement] = Keywords.OpenBrack ~> statements <~ Keywords.CloseBrack def funcEmptyArgs = Keywords.OpenParen ~ Keywords.CloseParen ^^^ { List() } def funcDefArgs : Parser[List[Term]] = funcEmptyArgs | Keywords.OpenParen ~> repsep(identifier, Keywords.Comma) <~ Keywords.CloseParen ^^ { case args => args.foldRight(List[Term]()) ( (a,b) => a :: b ) } def funcDef : Parser[Statement] = (Keywords.Define ~> identifier) ~ funcDefArgs ~ funcDefBody ^^ { case funcName ~ funcArgs ~ body => AssignmentFunc(funcName, funcArgs, body) } def funcDefAndStatement : Parser[Statement] = funcDef | statement def funcDefAndStatements_aux : Parser[Statement] = funcDefAndStatement ~ funcDefAndStatements ^^ { case stmt ~ stmts => Conjunction(stmt, stmts) } def funcDefAndStatements : Parser[Statement] = funcDefAndStatements_aux | funcDefAndStatement def parseProgram : Parser[Statement] = funcDefAndStatements def eval(input : String) = { parseAll(parseProgram, input) match { case Success(result, _) => result case Failure(m, _) => println(m) case _ => println("") } } } object Parser { def main(args : Array[String]) { val x : myParser = new myParser() println(args(0)) val lines = scala.io.Source.fromFile(args(0)).mkString println(x.eval(lines)) } } The problem is, when I run the parser on the following example it works fine: define foo(a) { if (!h(IM) && a) then { return 0; } if (a() && !h()) then { return 0; } } But when I add threes characters in the first if statement, it runs out of memory. This is absolutely blowing my mind. Can anyone help? (I suspect it has to do with repsep, but I am not sure.) define foo(a) { if (!h(IM) && a(1)) then { return 0; } if (a() && !h()) then { return 0; } } EDIT: Any constructive comments about my Scala style is also appreciated.

    Read the article

  • PE Header Requirements

    - by Pindatjuh
    What are the requirements of a PE file (PE/COFF)? What fields should be set, which value, at a bare minimum for enabling it to "run" on Windows (i.e. executing "ret" instruction and then close, without error). The library I am building first is the linker: Now, the problem I have is the PE file (PE/COFF). I don't know what is "required" for a PE file before it can actually execute on my platform. My testing platform is Vista. I get an error message, saying "This is not a valid Win32 executable." when I execute it by double-clicking, and I get an "Access Denied." when executing it with CLI cmd. I have two sections, .text and .data. I've implemented the PE headers as provided by several online documents, i.e. MSDN and some other thirdparty documentation. If I use a hex-editor, it looks almost like a regular PE file. I don't use any imports, nor IAT, nor any directories in the PE header. Edit: I've added an import table, still not a valid .exe-file, says my Windows. I've tried to use values which are also mentioned at the smallest PE-file guide. No luck. Really the only thing I can't seem to figure out is what is required and what isn't. Some guides tell me everything is required, whilst others say about deprications: and it can be zero. I hope this is enough information. Thank you, in advance. Raw data (as requested) of current PE header: 4D 5A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 00 50 45 00 00 4C 01 02 00 C8 7A 55 4B 00 00 00 00 00 00 00 00 E0 00 82 01 0B 01 0D 25 00 10 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00 10 00 00 00 20 00 00 00 00 40 00 00 10 00 00 00 02 00 00 01 00 0B 00 00 00 00 00 03 00 0A 00 00 00 00 00 00 22 00 00 38 01 00 00 00 00 00 00 03 00 00 00 00 40 00 00 00 40 00 00 00 40 00 00 00 40 00 00 00 00 00 00 0E 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2E 74 65 78 74 00 00 00 00 00 00 00 00 10 00 00 00 02 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 60 2E 69 64 61 74 61 00 00 00 00 00 00 00 20 00 00 00 02 00 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3C 20 00 00 00 00 00 00 00 00 00 00 24 20 00 00 34 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4B 45 52 4E 45 4C 33 32 2E 64 6C 6C 00 00 00 00 01 00 00 80 00 00 00 00 01 00 00 80 00 00 00 00

    Read the article

  • Autocorrelation returns random results with mic input (using a high pass filter)

    - by Niall
    Hello, Sorry to ask a similar question to the one i asked before (FFT Problem (Returns random results)), but i've looked up pitch detection and autocorrelation and have found some code for pitch detection using autocorrelation. Im trying to do pitch detection of a users singing. Problem is, it keeps returning random results. I've got some code from http://code.google.com/p/yaalp/ which i've converted to C++ and modified (below). My sample rate is 2048, and data size is 1024. I'm detecting pitch of both a sine wave and mic input. The frequency of the sine wave is 726.0, and its detecting it to be 722.950820 (which im ok with), but its detecting the pitch of the mic as a random number from around 100 to around 1050. I'm now using a High pass filter to remove the DC offset, but it's not working. Am i doing it right, and if so, what else can i do to fix it? Any help would be greatly appreciated! double* doHighPassFilter(short *buffer) { // Do FFT: int bufferLength = 1024; float *real = malloc(bufferLength*sizeof(float)); float *real2 = malloc(bufferLength*sizeof(float)); for(int x=0;x<bufferLength;x++) { real[x] = buffer[x]; } fft(real, bufferLength); for(int x=0;x<bufferLength;x+=2) { real2[x] = real[x]; } for (int i=0; i < 30; i++) //Set freqs lower than 30hz to zero to attenuate the low frequencies real2[i] = 0; // Do inverse FFT: inversefft(real2,bufferLength); double* real3 = (double*)real2; return real3; } double DetectPitch(short* data) { int sampleRate = 2048; //Create sine wave double *buffer = malloc(1024*sizeof(short)); double amplitude = 0.25 * 32768; //0.25 * max length of short double frequency = 726.0; for (int n = 0; n < 1024; n++) { buffer[n] = (short)(amplitude * sin((2 * 3.14159265 * n * frequency) / sampleRate)); } doHighPassFilter(data); printf("Pitch from sine wave: %f\n",detectPitchCalculation(buffer, 50.0, 1000.0, 1, 1)); printf("Pitch from mic: %f\n",detectPitchCalculation(data, 50.0, 1000.0, 1, 1)); return 0; } // These work by shifting the signal until it seems to correlate with itself. // In other words if the signal looks very similar to (signal shifted 200 data) than the fundamental period is probably 200 data // Note that the algorithm only works well when there's only one prominent fundamental. // This could be optimized by looking at the rate of change to determine a maximum without testing all periods. double detectPitchCalculation(double* data, double minHz, double maxHz, int nCandidates, int nResolution) { //-------------------------1-------------------------// // note that higher frequency means lower period int nLowPeriodInSamples = hzToPeriodInSamples(maxHz, 2048); int nHiPeriodInSamples = hzToPeriodInSamples(minHz, 2048); if (nHiPeriodInSamples <= nLowPeriodInSamples) printf("Bad range for pitch detection."); if (1024 < nHiPeriodInSamples) printf("Not enough data."); double *results = new double[nHiPeriodInSamples - nLowPeriodInSamples]; //-------------------------2-------------------------// for (int period = nLowPeriodInSamples; period < nHiPeriodInSamples; period += nResolution) { double sum = 0; // for each sample, find correlation. (If they are far apart, small) for (int i = 0; i < 1024 - period; i++) sum += data[i] * data[i + period]; double mean = sum / 1024.0; results[period - nLowPeriodInSamples] = mean; } //-------------------------3-------------------------// // find the best indices int *bestIndices = findBestCandidates(nCandidates, results, nHiPeriodInSamples - nLowPeriodInSamples - 1); //note findBestCandidates modifies parameter // convert back to Hz double *res = new double[nCandidates]; for (int i=0; i < nCandidates;i++) res[i] = periodInSamplesToHz(bestIndices[i]+nLowPeriodInSamples, 2048); double pitch2 = res[0]; free(res); free(results); return pitch2; } /// Finds n "best" values from an array. Returns the indices of the best parts. /// (One way to do this would be to sort the array, but that could take too long. /// Warning: Changes the contents of the array!!! Do not use result array afterwards. int* findBestCandidates(int n, double* inputs,int length) { //int length = inputs.Length; if (length < n) printf("Length of inputs is not long enough."); int *res = new int[n]; double minValue = 0; for (int c = 0; c < n; c++) { // find the highest. double fBestValue = minValue; int nBestIndex = -1; for (int i = 0; i < length; i++) { if (inputs[i] > fBestValue) { nBestIndex = i; fBestValue = inputs[i]; } } // record this highest value res[c] = nBestIndex; // now blank out that index. if(nBestIndex!=-1) inputs[nBestIndex] = minValue; } return res; } int hzToPeriodInSamples(double hz, int sampleRate) { return (int)(1 / (hz / (double)sampleRate)); } double periodInSamplesToHz(int period, int sampleRate) { return 1 / (period / (double)sampleRate); } Thanks, Niall. Edit: Changed the code to implement a high pass filter with a cutoff of 30hz (from What Are High-Pass and Low-Pass Filters?, can anyone tell me how to convert the low-pass filter using convolution to a high-pass one?) but it's still returning random results. Plugging it into a VST host and using VST plugins to compare spectrums isn't an option to me unfortunately.

    Read the article

  • rotating bitmaps. In code.

    - by Marco van de Voort
    Is there a faster way to rotate a large bitmap by 90 or 270 degrees than simply doing a nested loop with inverted coordinates? The bitmaps are 8bpp and typically 2048*2400*8bpp Currently I do this by simply copying with argument inversion, roughly (pseudo code: for x = 0 to 2048-1 for y = 0 to 2048-1 dest[x][y]=src[y][x]; (In reality I do it with pointers, for a bit more speed, but that is roughly the same magnitude) GDI is quite slow with large images, and GPU load/store times for textures (GF7 cards) are in the same magnitude as the current CPU time. Any tips, pointers? An in-place algorithm would even be better, but speed is more important than being in-place. Target is Delphi, but it is more an algorithmic question. SSE(2) vectorization no problem, it is a big enough problem for me to code it in assembler Duplicates How do you rotate a two dimensional array?. Follow up to Nils' answer Image 2048x2700 - 2700x2048 Compiler Turbo Explorer 2006 with optimization on. Windows: Power scheme set to "Always on". (important!!!!) Machine: Core2 6600 (2.4 GHz) time with old routine: 32ms (step 1) time with stepsize 8 : 12ms time with stepsize 16 : 10ms time with stepsize 32+ : 9ms Meanwhile I also tested on a Athlon 64 X2 (5200+ iirc), and the speed up there was slightly more than a factor four (80 to 19 ms). The speed up is well worth it, thanks. Maybe that during the summer months I'll torture myself with a SSE(2) version. However I already thought about how to tackle that, and I think I'll run out of SSE2 registers for an straight implementation: for n:=0 to 7 do begin load r0, <source+n*rowsize> shift byte from r0 into r1 shift byte from r0 into r2 .. shift byte from r0 into r8 end; store r1, <target> store r2, <target+1*<rowsize> .. store r8, <target+7*<rowsize> So 8x8 needs 9 registers, but 32-bits SSE only has 8. Anyway that is something for the summer months :-) Note that the pointer thing is something that I do out of instinct, but it could be there is actually something to it, if your dimensions are not hardcoded, the compiler can't turn the mul into a shift. While muls an sich are cheap nowadays, they also generate more register pressure afaik. The code (validated by subtracting result from the "naieve" rotate1 implementation): const stepsize = 32; procedure rotatealign(Source: tbw8image; Target:tbw8image); var stepsx,stepsy,restx,resty : Integer; RowPitchSource, RowPitchTarget : Integer; pSource, pTarget,ps1,ps2 : pchar; x,y,i,j: integer; rpstep : integer; begin RowPitchSource := source.RowPitch; // bytes to jump to next line. Can be negative (includes alignment) RowPitchTarget := target.RowPitch; rpstep:=RowPitchTarget*stepsize; stepsx:=source.ImageWidth div stepsize; stepsy:=source.ImageHeight div stepsize; // check if mod 16=0 here for both dimensions, if so -> SSE2. for y := 0 to stepsy - 1 do begin psource:=source.GetImagePointer(0,y*stepsize); // gets pointer to pixel x,y ptarget:=Target.GetImagePointer(target.imagewidth-(y+1)*stepsize,0); for x := 0 to stepsx - 1 do begin for i := 0 to stepsize - 1 do begin ps1:=@psource[rowpitchsource*i]; // ( 0,i) ps2:=@ptarget[stepsize-1-i]; // (maxx-i,0); for j := 0 to stepsize - 1 do begin ps2[0]:=ps1[j]; inc(ps2,RowPitchTarget); end; end; inc(psource,stepsize); inc(ptarget,rpstep); end; end; // 3 more areas to do, with dimensions // - stepsy*stepsize * restx // right most column of restx width // - stepsx*stepsize * resty // bottom row with resty height // - restx*resty // bottom-right rectangle. restx:=source.ImageWidth mod stepsize; // typically zero because width is // typically 1024 or 2048 resty:=source.Imageheight mod stepsize; if restx>0 then begin // one loop less, since we know this fits in one line of "blocks" psource:=source.GetImagePointer(source.ImageWidth-restx,0); // gets pointer to pixel x,y ptarget:=Target.GetImagePointer(Target.imagewidth-stepsize,Target.imageheight-restx); for y := 0 to stepsy - 1 do begin for i := 0 to stepsize - 1 do begin ps1:=@psource[rowpitchsource*i]; // ( 0,i) ps2:=@ptarget[stepsize-1-i]; // (maxx-i,0); for j := 0 to restx - 1 do begin ps2[0]:=ps1[j]; inc(ps2,RowPitchTarget); end; end; inc(psource,stepsize*RowPitchSource); dec(ptarget,stepsize); end; end; if resty>0 then begin // one loop less, since we know this fits in one line of "blocks" psource:=source.GetImagePointer(0,source.ImageHeight-resty); // gets pointer to pixel x,y ptarget:=Target.GetImagePointer(0,0); for x := 0 to stepsx - 1 do begin for i := 0 to resty- 1 do begin ps1:=@psource[rowpitchsource*i]; // ( 0,i) ps2:=@ptarget[resty-1-i]; // (maxx-i,0); for j := 0 to stepsize - 1 do begin ps2[0]:=ps1[j]; inc(ps2,RowPitchTarget); end; end; inc(psource,stepsize); inc(ptarget,rpstep); end; end; if (resty>0) and (restx>0) then begin // another loop less, since only one block psource:=source.GetImagePointer(source.ImageWidth-restx,source.ImageHeight-resty); // gets pointer to pixel x,y ptarget:=Target.GetImagePointer(0,target.ImageHeight-restx); for i := 0 to resty- 1 do begin ps1:=@psource[rowpitchsource*i]; // ( 0,i) ps2:=@ptarget[resty-1-i]; // (maxx-i,0); for j := 0 to restx - 1 do begin ps2[0]:=ps1[j]; inc(ps2,RowPitchTarget); end; end; end; end;

    Read the article

  • Font serialization in vb.net

    - by jovany
    Hello all, as the title says , I need to serialize my font. I have tried the following approach unfortunately to no avail. This is what I have and what happens; I have a drawing application and certain variables and properties need to be serialized. (So , Xml.Serialization has been used.) Now this has already been done in a huge portion and I've created some other attributes which needed to be serialized and it works. There is one base class and classes such as drawablestar, drawableeclipse ,etc. all inherit from this class. As does my drawabletextboxclass. The base class is Serializable as can be seen in the sample below. It looks like this... Imports System.Xml.Serialization <Serializable()> _ Public MustInherit Class Drawable ' Drawing characteristics. 'Font characteristics <XmlIgnore()> Public FontFamily As String <XmlIgnore()> Public FontSize As Integer <XmlIgnore()> Public FontType As Integer <XmlIgnore()> Public ForeColor As Color <XmlIgnore()> Public FillColor As Color <XmlAttributeAttribute()> Public LineWidth As Integer = 0 <XmlAttributeAttribute()> Public X1 As Integer <XmlAttributeAttribute()> Public Y1 As Integer <XmlAttributeAttribute()> Public X2 As Integer <XmlAttributeAttribute()> Public Y2 As Integer ' attributes for size textbox <XmlAttributeAttribute()> Public widthLabel As Integer <XmlAttributeAttribute()> Public heightLabel As Integer '<XmlTextAttribute()> Public FontFamily As String '<XmlAttributeAttribute()> Public FontSize As Integer 'this should actually not be here.. <XmlAttributeAttribute()> Public s_InsertLabel As String ' Indicates whether we should draw as selected. <XmlIgnore()> Public IsSelected As Boolean = False ' Constructors. Public Sub New() ForeColor = Color.Black FillColor = Color.White 'FontFamily = "Impact" 'FontSize = 12 End Sub Friend WriteOnly Property _Label() As String Set(ByVal Value As String) s_InsertLabel = Value End Set End Property Public Sub New(ByVal fore_color As Color, ByVal fill_color As Color, Optional ByVal line_width As Integer = 0) LineWidth = line_width ForeColor = fore_color FillColor = fill_color ' FontFamily = Font_Family ' FontSize = Font_Size End Sub ' Property procedures to serialize and ' deserialize ForeColor and FillColor. <XmlAttributeAttribute("ForeColor")> _ Public Property ForeColorArgb() As Integer Get Return ForeColor.ToArgb() End Get Set(ByVal Value As Integer) ForeColor = Color.FromArgb(Value) End Set End Property <XmlAttributeAttribute("BackColor")> _ Public Property FillColorArgb() As Integer Get Return FillColor.ToArgb() End Get Set(ByVal Value As Integer) FillColor = Color.FromArgb(Value) End Set End Property 'Property procedures to serialize and 'deserialize Font <XmlAttributeAttribute("InsertLabel")> _ Public Property InsertLabel_() As String Get Return s_InsertLabel End Get Set(ByVal value As String) s_InsertLabel = value End Set End Property <XmlAttributeAttribute("FontSize")> _ Public Property FontSizeGet() As Integer Get Return FontSize End Get Set(ByVal value As Integer) FontSize = value End Set End Property <XmlAttributeAttribute("FontFamily")> _ Public Property FontFamilyGet() As String Get Return FontFamily End Get Set(ByVal value As String) FontFamily = value End Set End Property <XmlAttributeAttribute("FontType")> _ Public Property FontType_() As Integer Get Return FontType End Get Set(ByVal value As Integer) FontType = value End Set End Property #Region "Methods to override" Public MustOverride Sub Draw(ByVal gr As Graphics) ' Return the object's bounding rectangle. Public MustOverride Function GetBounds() As Rectangle ...... ........ ..... End Class [/code] My textbox class which looks like this , is the one that needs to save it's font. Imports System.Math Imports System.Xml.Serialization Imports System.Windows.Forms <Serializable()> _ Public Class DrawableTextBox Inherits Drawable Private i_StringLength As Integer Private i_StringWidth As Integer Private drawFont As Font = New Font(FontFamily, 12, FontStyle.Regular) Private brsTextColor As Brush = Brushes.Black Private s_insertLabelTextbox As String = "label" ' Constructors. Public Sub New() End Sub Public Sub New(ByVal objCanvas As PictureBox, ByVal fore_color As Color, ByVal fill_color As Color, Optional ByVal line_width As Integer = 0, Optional ByVal new_x1 As Integer = 0, Optional ByVal new_y1 As Integer = 0, Optional ByVal new_x2 As Integer = 1, Optional ByVal new_y2 As Integer = 1) MyBase.New(fore_color, fill_color, line_width) Dim objGraphics As Graphics = objCanvas.CreateGraphics() X1 = new_x1 Y1 = new_y1 'Only rectangles ,circles and stars can resize for now b_Movement b_Movement = True Dim frm As New frmTextbox frm.MyFont = drawFont frm.ShowDialog() If frm.DialogResult = DialogResult.OK Then FontFamily = frm.MyFont.FontFamily.Name FontSize = frm.MyFont.Size FontType = frm.MyFont.Style 'drawFont = frm.MyFont drawFont = New Font(FontFamily, FontSize) drawFont = FontAttributes() brsTextColor = New SolidBrush(frm.txtLabel.ForeColor) s_InsertLabel = frm.txtLabel.Text i_StringLength = s_InsertLabel.Length 'gefixtf Dim objSizeF As SizeF = objGraphics.MeasureString(s_InsertLabel, drawFont, New PointF(X2 - X1, Y2 - Y1), New StringFormat(StringFormatFlags.NoClip)) Dim objPoint As Point = objCanvas.PointToClient(New Point(X1 + objSizeF.Width, Y1 + objSizeF.Height)) widthLabel = objSizeF.Width heightLabel = objSizeF.Height X2 = X1 + widthLabel Y2 = Y1 + heightLabel Else Throw New ApplicationException() End If End Sub ' Draw the object on this Graphics surface. Public Overrides Sub Draw(ByVal gr As System.Drawing.Graphics) ' Make a Rectangle representing this rectangle. Dim rectString As Rectangle rectString = New Rectangle(X1, Y1, widthLabel, heightLabel) rectString = GetBounds() ' See if we're selected. If IsSelected Then gr.DrawString(s_InsertLabel, drawFont, brsTextColor, X1, Y1) 'gr.DrawRectangle(Pens.Black, rect) ' Pens.Transparent gr.DrawRectangle(Pens.Black, rectString) ' Draw grab handles. DrawGrabHandle(gr, X1, Y1) DrawGrabHandle(gr, X1, Y2) DrawGrabHandle(gr, X2, Y2) DrawGrabHandle(gr, X2, Y1) Else gr.DrawString(s_InsertLabel, drawFont, brsTextColor, X1, Y1) 'gr.DrawRectangle(Pens.Black, rect) ' Pens.Transparent gr.DrawRectangle(Pens.Black, rectString) End If End Sub 'get fontattributes Public Function FontAttributes() As Font Return New Font(FontFamily, 12, FontStyle.Regular) End Function ' Return the object's bounding rectangle. Public Overrides Function GetBounds() As System.Drawing.Rectangle Return New Rectangle( _ Min(X1, X1), _ Min(Y1, Y1), _ Abs(widthLabel), _ Abs(heightLabel)) End Function ' Return True if this point is on the object. Public Overrides Function IsAt(ByVal x As Integer, ByVal y As Integer) As Boolean Return (x >= Min(X1, X2)) AndAlso _ (x <= Max(X1, X2)) AndAlso _ (y >= Min(Y1, Y2)) AndAlso _ (y <= Max(Y1, Y2)) End Function ' Move the second point. Public Overrides Sub NewPoint(ByVal x As Integer, ByVal y As Integer) X2 = x Y2 = y End Sub ' Return True if the object is empty (e.g. a zero-length line). Public Overrides Function IsEmpty() As Boolean Return (X1 = X2) AndAlso (Y1 = Y2) End Function End Class The coordinates ( X1 ,X2,Y1, Y2 ) are needed to draw a circle , rectangle etc. ( in the other classes ).This all works. If I load my saved file it shows me the correct location and correct size of drawn objects. If I open my xml file I can see all values are correctly saved ( including my FontFamily ). Also the color which can be adjusted is saved and then properly displayed when I load a previously saved drawing. Of course because the coordinates work, if I insert a textField ,the location where it is being displayed is correct. However here comes the problem , my fontSize and fontfamily don't work. As you can see I created them in the base class, However this does not work. Is my approach completely off? What can I do ? Before saving img14.imageshack.us/i/beforeos.jpg/ After loading the Font jumps back to Sans serif and size 12. I could really use some help here.. Edit: I've been using the sample from this website http://www.vb-helper.com/howto_net_drawing_framework.html

    Read the article

  • Non recursive way to position a genogram in 2D points for x axis. Descendant are below

    - by Nassign
    I currently was tasked to make a genogram for a family consisting of siblings, parents with aunts and uncles with grandparents and greatgrandparents for only blood relatives. My current algorithm is using recursion. but I am wondering how to do it in non recursive way to make it more efficient. it is programmed in c# using graphics to draw on a bitmap. Current algorithm for calculating x position, the y position is by getting the generation number. public void StartCalculatePosition() { // Search the start node (The only node with targetFlg set to true) Person start = null; foreach (Person p in PersonDic.Values) { if (start == null) start = p; if (p.Targetflg) { start = p; break; } } CalcPositionRecurse(start); // Normalize the position (shift all values to positive value) // Get the minimum value (must be negative) // Then offset the position of all marriage and person with that to make it start from zero float minPosition = float.MaxValue; foreach (Person p in PersonDic.Values) { if (minPosition > p.Position) { minPosition = p.Position; } } if (minPosition < 0) { foreach (Person p in PersonDic.Values) { p.Position -= minPosition; } foreach (Marriage m in MarriageList) { m.ParentsPosition -= minPosition; m.ChildrenPosition -= minPosition; } } } /// <summary> /// Calculate position of genogram using recursion /// </summary> /// <param name="psn"></param> private void CalcPositionRecurse(Person psn) { // End the recursion if (psn.BirthMarriage == null || psn.BirthMarriage.Parents.Count == 0) { psn.Position = 0.0f; if (psn.BirthMarriage != null) { psn.BirthMarriage.ParentsPosition = 0.0f; psn.BirthMarriage.ChildrenPosition = 0.0f; } CalculateSiblingPosition(psn); return; } // Left recurse if (psn.Father != null) { CalcPositionRecurse(psn.Father); } // Right recurse if (psn.Mother != null) { CalcPositionRecurse(psn.Mother); } // Merge Position if (psn.Father != null && psn.Mother != null) { AdjustConflict(psn.Father, psn.Mother); // Position person in center of parent psn.Position = (psn.Father.Position + psn.Mother.Position) / 2; psn.BirthMarriage.ParentsPosition = psn.Position; psn.BirthMarriage.ChildrenPosition = psn.Position; } else { // Single mom or single dad if (psn.Father != null) { psn.Position = psn.Father.Position; psn.BirthMarriage.ParentsPosition = psn.Position; psn.BirthMarriage.ChildrenPosition = psn.Position; } else if (psn.Mother != null) { psn.Position = psn.Mother.Position; psn.BirthMarriage.ParentsPosition = psn.Position; psn.BirthMarriage.ChildrenPosition = psn.Position; } else { // Should not happen, checking in start of function } } // Arrange the siblings base on my position (left younger, right older) CalculateSiblingPosition(psn); } private float GetRightBoundaryAncestor(Person psn) { float rPos = psn.Position; // Get the rightmost position among siblings foreach (Person sibling in psn.Siblings) { if (sibling.Position > rPos) { rPos = sibling.Position; } } if (psn.Father != null) { float rFatherPos = GetRightBoundaryAncestor(psn.Father); if (rFatherPos > rPos) { rPos = rFatherPos; } } if (psn.Mother != null) { float rMotherPos = GetRightBoundaryAncestor(psn.Mother); if (rMotherPos > rPos) { rPos = rMotherPos; } } return rPos; } private float GetLeftBoundaryAncestor(Person psn) { float rPos = psn.Position; // Get the rightmost position among siblings foreach (Person sibling in psn.Siblings) { if (sibling.Position < rPos) { rPos = sibling.Position; } } if (psn.Father != null) { float rFatherPos = GetLeftBoundaryAncestor(psn.Father); if (rFatherPos < rPos) { rPos = rFatherPos; } } if (psn.Mother != null) { float rMotherPos = GetLeftBoundaryAncestor(psn.Mother); if (rMotherPos < rPos) { rPos = rMotherPos; } } return rPos; } /// <summary> /// Check if two parent group has conflict and compensate on the conflict /// </summary> /// <param name="leftGroup"></param> /// <param name="rightGroup"></param> public void AdjustConflict(Person leftGroup, Person rightGroup) { float leftMax = GetRightBoundaryAncestor(leftGroup); leftMax += 0.5f; float rightMin = GetLeftBoundaryAncestor(rightGroup); rightMin -= 0.5f; float diff = leftMax - rightMin; if (diff > 0.0f) { float moveHalf = Math.Abs(diff) / 2; RecurseMoveAncestor(leftGroup, 0 - moveHalf); RecurseMoveAncestor(rightGroup, moveHalf); } } /// <summary> /// Recursively move a person and all his/her ancestor /// </summary> /// <param name="psn"></param> /// <param name="moveUnit"></param> public void RecurseMoveAncestor(Person psn, float moveUnit) { psn.Position += moveUnit; foreach (Person siblings in psn.Siblings) { if (siblings.Id != psn.Id) { siblings.Position += moveUnit; } } if (psn.BirthMarriage != null) { psn.BirthMarriage.ChildrenPosition += moveUnit; psn.BirthMarriage.ParentsPosition += moveUnit; } if (psn.Father != null) { RecurseMoveAncestor(psn.Father, moveUnit); } if (psn.Mother != null) { RecurseMoveAncestor(psn.Mother, moveUnit); } } /// <summary> /// Calculate the position of the siblings /// </summary> /// <param name="psn"></param> /// <param name="anchor"></param> public void CalculateSiblingPosition(Person psn) { if (psn.Siblings.Count == 0) { return; } List<Person> sibling = psn.Siblings; int argidx; for (argidx = 0; argidx < sibling.Count; argidx++) { if (sibling[argidx].Id == psn.Id) { break; } } // Compute position for each brother that is younger that person int idx; for (idx = argidx - 1; idx >= 0; idx--) { sibling[idx].Position = sibling[idx + 1].Position - 1; } for (idx = argidx + 1; idx < sibling.Count; idx++) { sibling[idx].Position = sibling[idx - 1].Position + 1; } }

    Read the article

  • g++ SSE intrinsics dilemma - value from intrinsic "saturates"

    - by Sriram
    Hi, I wrote a simple program to implement SSE intrinsics for computing the inner product of two large (100000 or more elements) vectors. The program compares the execution time for both, inner product computed the conventional way and using intrinsics. Everything works out fine, until I insert (just for the fun of it) an inner loop before the statement that computes the inner product. Before I go further, here is the code: //this is a sample Intrinsics program to compute inner product of two vectors and compare Intrinsics with traditional method of doing things. #include <iostream> #include <iomanip> #include <xmmintrin.h> #include <stdio.h> #include <time.h> #include <stdlib.h> using namespace std; typedef float v4sf __attribute__ ((vector_size(16))); double innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume len1 = len2. float result = 0.0; for(int i = 0; i < len1; i++) { for(int j = 0; j < len1; j++) { result += (arr1[i] * arr2[i]); } } //float y = 1.23e+09; //cout << "y = " << y << endl; return result; } double sse_v4sf_innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume that len1 = len2. if(len1 != len2) { cout << "Lengths not equal." << endl; exit(1); } /*steps: * 1. load a long-type (4 float) into a v4sf type data from both arrays. * 2. multiply the two. * 3. multiply the same and store result. * 4. add this to previous results. */ v4sf arr1Data, arr2Data, prevSums, multVal, xyz; //__builtin_ia32_xorps(prevSums, prevSums); //making it equal zero. //can explicitly load 0 into prevSums using loadps or storeps (Check). float temp[4] = {0.0, 0.0, 0.0, 0.0}; prevSums = __builtin_ia32_loadups(temp); float result = 0.0; for(int i = 0; i < (len1 - 3); i += 4) { for(int j = 0; j < len1; j++) { arr1Data = __builtin_ia32_loadups(&arr1[i]); arr2Data = __builtin_ia32_loadups(&arr2[i]); //store the contents of two arrays. multVal = __builtin_ia32_mulps(arr1Data, arr2Data); //multiply. xyz = __builtin_ia32_addps(multVal, prevSums); prevSums = xyz; } } //prevSums will hold the sums of 4 32-bit floating point values taken at a time. Individual entries in prevSums also need to be added. __builtin_ia32_storeups(temp, prevSums); //store prevSums into temp. cout << "Values of temp:" << endl; for(int i = 0; i < 4; i++) cout << temp[i] << endl; result += temp[0] + temp[1] + temp[2] + temp[3]; return result; } int main() { clock_t begin, end; int length = 100000; float *arr1, *arr2; double result_Conventional, result_Intrinsic; // printStats("Allocating memory."); arr1 = new float[length]; arr2 = new float[length]; // printStats("End allocation."); srand(time(NULL)); //init random seed. // printStats("Initializing array1 and array2"); begin = clock(); for(int i = 0; i < length; i++) { // for(int j = 0; j < length; j++) { // arr1[i] = rand() % 10 + 1; arr1[i] = 2.5; // arr2[i] = rand() % 10 - 1; arr2[i] = 2.5; // } } end = clock(); cout << "Time to initialize array1 and array2 = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("Finished initialization."); // printStats("Begin inner product conventionally."); begin = clock(); result_Conventional = innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product conventionally = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("End inner product conventionally."); // printStats("Begin inner product using Intrinsics."); begin = clock(); result_Intrinsic = sse_v4sf_innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product with intrinsics = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; //printStats("End inner product using Intrinsics."); cout << "Results: " << endl; cout << " result_Conventional = " << result_Conventional << endl; cout << " result_Intrinsics = " << result_Intrinsic << endl; return 0; } I use the following g++ invocation to build this: g++ -W -Wall -O2 -pedantic -march=i386 -msse intrinsics_SSE_innerProduct.C -o innerProduct Each of the loops above, in both the functions, runs a total of N^2 times. However, given that arr1 and arr2 (the two floating point vectors) are loaded with a value 2.5, the length of the array is 100,000, the result in both cases should be 6.25e+10. The results I get are: Results: result_Conventional = 6.25e+10 result_Intrinsics = 5.36871e+08 This is not all. It seems that the value returned from the function that uses intrinsics "saturates" at the value above. I tried putting other values for the elements of the array and different sizes too. But it seems that any value above 1.0 for the array contents and any size above 1000 meets with the same value we see above. Initially, I thought it might be because all operations within SSE are in floating point, but floating point should be able to store a number that is of the order of e+08. I am trying to see where I could be going wrong but cannot seem to figure it out. I am using g++ version: g++ (GCC) 4.4.1 20090725 (Red Hat 4.4.1-2). Any help on this is most welcome. Thanks, Sriram.

    Read the article

  • SQL error - Cannot convert nvarchar to decimal

    - by jakesankey
    I have a C# application that simply parses all of the txt documents within a given network directory and imports the data to a SQL server db. Everything was cruising along just fine until about the 1800th file when it happend to have a few blanks in columns that are called out as DBType.Decimal (and the value is usually zero in the files, not blank). So I got this error, "cannot convert nvarchar to decimal". I am wondering how I could tell the app to simply skip the lines that have this issue?? Perhaps I could even just change the column type to varchar even tho values are numbers (what problems could this create?) Thanks for any help! using System; using System.Data; using System.Data.SQLite; using System.IO; using System.Text.RegularExpressions; using System.Threading; using System.Collections.Generic; using System.Linq; using System.Data.SqlClient; namespace JohnDeereCMMDataParser { internal class Program { public static List<string> GetImportedFileList() { List<string> ImportedFiles = new List<string>(); using (SqlConnection connect = new SqlConnection(@"Server=FRXSQLDEV;Database=RX_CMMData;Integrated Security=YES")) { connect.Open(); using (SqlCommand fmd = connect.CreateCommand()) { fmd.CommandText = @"SELECT FileName FROM CMMData;"; fmd.CommandType = CommandType.Text; SqlDataReader r = fmd.ExecuteReader(); while (r.Read()) { ImportedFiles.Add(Convert.ToString(r["FileName"])); } } } return ImportedFiles; } private static void Main(string[] args) { Console.Title = "John Deere CMM Data Parser"; Console.WriteLine("Preparing CMM Data Parser... done"); Console.WriteLine("Scanning for new CMM data..."); Console.ForegroundColor = ConsoleColor.Gray; using (SqlConnection con = new SqlConnection(@"Server=FRXSQLDEV;Database=RX_CMMData;Integrated Security=YES")) { con.Open(); using (SqlCommand insertCommand = con.CreateCommand()) { Console.WriteLine("Connecting to SQL server..."); SqlCommand cmdd = con.CreateCommand(); string[] files = Directory.GetFiles(@"C:\Documents and Settings\js91162\Desktop\CMM WENZEL\", "*_*_*.txt", SearchOption.AllDirectories); List<string> ImportedFiles = GetImportedFileList(); insertCommand.Parameters.Add(new SqlParameter("@FeatType", DbType.String)); insertCommand.Parameters.Add(new SqlParameter("@FeatName", DbType.String)); insertCommand.Parameters.Add(new SqlParameter("@Axis", DbType.String)); insertCommand.Parameters.Add(new SqlParameter("@Actual", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@Nominal", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@Dev", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@TolMin", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@TolPlus", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@OutOfTol", DbType.Decimal)); foreach (string file in files.Except(ImportedFiles)) { var FileNameExt1 = Path.GetFileName(file); cmdd.Parameters.Clear(); cmdd.Parameters.Add(new SqlParameter("@FileExt", FileNameExt1)); cmdd.CommandText = @" IF (EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = 'RX_CMMData' AND TABLE_NAME = 'CMMData')) BEGIN SELECT COUNT(*) FROM CMMData WHERE FileName = @FileExt; END"; int count = Convert.ToInt32(cmdd.ExecuteScalar()); con.Close(); con.Open(); if (count == 0) { Console.WriteLine("Preparing to parse CMM data for SQL import..."); if (file.Count(c => c == '_') > 5) continue; insertCommand.CommandText = @" INSERT INTO CMMData (FeatType, FeatName, Axis, Actual, Nominal, Dev, TolMin, TolPlus, OutOfTol, PartNumber, CMMNumber, Date, FileName) VALUES (@FeatType, @FeatName, @Axis, @Actual, @Nominal, @Dev, @TolMin, @TolPlus, @OutOfTol, @PartNumber, @CMMNumber, @Date, @FileName);"; string FileNameExt = Path.GetFullPath(file); string RNumber = Path.GetFileNameWithoutExtension(file); int index2 = RNumber.IndexOf("~"); Match RNumberE = Regex.Match(RNumber, @"^(R|L)\d{6}(COMP|CRIT|TEST|SU[1-9])(?=_)", RegexOptions.IgnoreCase); Match RNumberD = Regex.Match(RNumber, @"(?<=_)\d{3}[A-Z]\d{4}|\d{3}[A-Z]\d\w\w\d(?=_)", RegexOptions.IgnoreCase); Match RNumberDate = Regex.Match(RNumber, @"(?<=_)\d{8}(?=_)", RegexOptions.IgnoreCase); string RNumE = Convert.ToString(RNumberE); string RNumD = Convert.ToString(RNumberD); if (RNumberD.Value == @"") continue; if (RNumberE.Value == @"") continue; if (RNumberDate.Value == @"") continue; if (index2 != -1) continue; DateTime dateTime = DateTime.ParseExact(RNumberDate.Value, "yyyyMMdd", Thread.CurrentThread.CurrentCulture); string cmmDate = dateTime.ToString("dd-MMM-yyyy"); string[] lines = File.ReadAllLines(file); bool parse = false; foreach (string tmpLine in lines) { string line = tmpLine.Trim(); if (!parse && line.StartsWith("Feat. Type,")) { parse = true; continue; } if (!parse || string.IsNullOrEmpty(line)) { continue; } Console.WriteLine(tmpLine); foreach (SqlParameter parameter in insertCommand.Parameters) { parameter.Value = null; } string[] values = line.Split(new[] { ',' }); for (int i = 0; i < values.Length - 1; i++) { if (i = "" || i = null) continue; SqlParameter param = insertCommand.Parameters[i]; if (param.DbType == DbType.Decimal) { decimal value; param.Value = decimal.TryParse(values[i], out value) ? value : 0; } else { param.Value = values[i]; } } insertCommand.Parameters.Add(new SqlParameter("@PartNumber", RNumE)); insertCommand.Parameters.Add(new SqlParameter("@CMMNumber", RNumD)); insertCommand.Parameters.Add(new SqlParameter("@Date", cmmDate)); insertCommand.Parameters.Add(new SqlParameter("@FileName", FileNameExt)); insertCommand.ExecuteNonQuery(); insertCommand.Parameters.RemoveAt("@PartNumber"); insertCommand.Parameters.RemoveAt("@CMMNumber"); insertCommand.Parameters.RemoveAt("@Date"); insertCommand.Parameters.RemoveAt("@FileName"); } } } Console.WriteLine("CMM data successfully imported to SQL database..."); } con.Close(); } } } }

    Read the article

  • segmentation fault using BaseCode encryption

    - by Natasha Thapa
    i took the code from the links below to encrypt and decrypt a text but i get segmentation fault when trying to run this any ideas?? http://etutorials.org/Programming/secure+programming/Chapter+4.+Symmetric+Cryptography+Fundamentals/4.5+Performing+Base64+Encoding/ http://etutorials.org/Programming/secure+programming/Chapter+4.+Symmetric+Cryptography+Fundamentals/4.6+Performing+Base64+Decoding/ #include <stdlib.h> #include <string.h> #include <stdio.h> static char b64revtb[256] = { -3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*0-15*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*16-31*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63, /*32-47*/ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1, /*48-63*/ -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /*64-79*/ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, /*80-95*/ -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, /*96-111*/ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, /*112-127*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*128-143*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*144-159*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*160-175*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*176-191*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*192-207*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*208-223*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*224-239*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 /*240-255*/ }; unsigned char *spc_base64_encode( unsigned char *input , size_t len , int wrap ) ; unsigned char *spc_base64_decode(unsigned char *buf, size_t *len, int strict, int *err); static unsigned int raw_base64_decode(unsigned char *in, unsigned char *out, int strict, int *err); unsigned char *tmbuf = NULL; static char tmpbuffer[] ={0}; int main(void) { memset( tmpbuffer, NULL, sizeof( tmpbuffer ) ); sprintf( tmpbuffer, "%s:%s" , "username", "password" ); tmbuf = spc_base64_encode( (unsigned char *)tmpbuffer , strlen( tmpbuffer ), 0 ); printf(" The text %s has been encrytped to %s \n", tmpbuffer, tmbuf ); unsigned char *decrypt = NULL; int strict; int *err; decrypt = spc_base64_decode( tmbuf , strlen( tmbuf ), 0, err ); printf(" The text %s has been decrytped to %s \n", tmbuf , decrypt); } static char b64table[64] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; /* Accepts a binary buffer with an associated size. * Returns a base64 encoded, NULL-terminated string. */ unsigned char *spc_base64_encode(unsigned char *input, size_t len, int wrap) { unsigned char *output, *p; size_t i = 0, mod = len % 3, toalloc; toalloc = (len / 3) * 4 + (3 - mod) % 3 + 1; if (wrap) { toalloc += len / 57; if (len % 57) toalloc++; } p = output = (unsigned char *)malloc(((len / 3) + (mod ? 1 : 0)) * 4 + 1); if (!p) return 0; while (i < len - mod) { *p++ = b64table[input[i++] >> 2]; *p++ = b64table[((input[i - 1] << 4) | (input[i] >> 4)) & 0x3f]; *p++ = b64table[((input[i] << 2) | (input[i + 1] >> 6)) & 0x3f]; *p++ = b64table[input[i + 1] & 0x3f]; i += 2; if (wrap && !(i % 57)) *p++ = '\n'; } if (!mod) { if (wrap && i % 57) *p++ = '\n'; *p = 0; return output; } else { *p++ = b64table[input[i++] >> 2]; *p++ = b64table[((input[i - 1] << 4) | (input[i] >> 4)) & 0x3f]; if (mod = = 1) { *p++ = '='; *p++ = '='; if (wrap) *p++ = '\n'; *p = 0; return output; } else { *p++ = b64table[(input[i] << 2) & 0x3f]; *p++ = '='; if (wrap) *p++ = '\n'; *p = 0; return output; } } } static unsigned int raw_base64_decode(unsigned char *in, unsigned char *out, int strict, int *err) { unsigned int result = 0, x; unsigned char buf[3], *p = in, pad = 0; *err = 0; while (!pad) { switch ((x = b64revtb[*p++])) { case -3: /* NULL TERMINATOR */ if (((p - 1) - in) % 4) *err = 1; return result; case -2: /* PADDING CHARACTER. INVALID HERE */ if (((p - 1) - in) % 4 < 2) { *err = 1; return result; } else if (((p - 1) - in) % 4 == 2) { /* Make sure there's appropriate padding */ if (*p != '=') { *err = 1; return result; } buf[2] = 0; pad = 2; result++; break; } else { pad = 1; result += 2; break; } case -1: if (strict) { *err = 2; return result; } break; default: switch (((p - 1) - in) % 4) { case 0: buf[0] = x << 2; break; case 1: buf[0] |= (x >> 4); buf[1] = x << 4; break; case 2: buf[1] |= (x >> 2); buf[2] = x << 6; break; case 3: buf[2] |= x; result += 3; for (x = 0; x < 3 - pad; x++) *out++ = buf[x]; break; } break; } } for (x = 0; x < 3 - pad; x++) *out++ = buf[x]; return result; } /* If err is non-zero on exit, then there was an incorrect padding error. We * allocate enough space for all circumstances, but when there is padding, or * there are characters outside the character set in the string (which we are * supposed to ignore), then we end up allocating too much space. You can * realloc() to the correct length if you wish. */ unsigned char *spc_base64_decode(unsigned char *buf, size_t *len, int strict, int *err) { unsigned char *outbuf; outbuf = (unsigned char *)malloc(3 * (strlen(buf) / 4 + 1)); if (!outbuf) { *err = -3; *len = 0; return 0; } *len = raw_base64_decode(buf, outbuf, strict, err); if (*err) { free(outbuf); *len = 0; outbuf = 0; } return outbuf; }

    Read the article

  • Flash AS3 Mysterious Blinking MovieClip

    - by Ben
    This is the strangest problem I've faced in flash so far. I have no idea what's causing it. I can provide a .swf if someone wants to actually see it, but I'll describe it as best I can. I'm creating bullets for a tank object to shoot. The tank is a child of the document class. The way I am creating the bullet is: var bullet:Bullet = new Bullet(); (parent as MovieClip).addChild(bullet); The bullet itself simply moves itself in a direction using code like this.x += 5; The problem is the bullets will trace for their creation and destruction at the correct times, however the bullet is sometimes not visible until half way across the screen, sometimes not at all, and sometimes for the whole traversal. Oddly removing the timer I have on bullet creation seems to solve this. The timer is implemented as such: if(shot_timer == 0) { shoot(); // This contains the aforementioned bullet creation method shot_timer = 10; My enter frame handler for the tank object controls the timer and decrements it every frame if it is greater than zero. Can anyone suggest why this could be happening? EDIT: As requested, full code: Bullet.as package { import flash.display.MovieClip; import flash.events.Event; public class Bullet extends MovieClip { public var facing:int; private var speed:int; public function Bullet():void { trace("created"); speed = 10; addEventListener(Event.ADDED_TO_STAGE,addedHandler); } private function addedHandler(e:Event):void { addEventListener(Event.ENTER_FRAME,enterFrameHandler); removeEventListener(Event.ADDED_TO_STAGE,addedHandler); } private function enterFrameHandler(e:Event):void { //0 - up, 1 - left, 2 - down, 3 - right if(this.x > 720 || this.x < 0 || this.y < 0 || this.y > 480) { removeEventListener(Event.ENTER_FRAME,enterFrameHandler); trace("destroyed"); (parent as MovieClip).removeChild(this); return; } switch(facing) { case 0: this.y -= speed; break; case 1: this.x -= speed; break; case 2: this.y += speed; break; case 3: this.x += speed; break; } } } } Tank.as: package { import flash.display.MovieClip; import flash.events.KeyboardEvent; import flash.events.Event; import flash.ui.Keyboard; public class Tank extends MovieClip { private var right:Boolean = false; private var left:Boolean = false; private var up:Boolean = false; private var down:Boolean = false; private var facing:int = 0; //0 - up, 1 - left, 2 - down, 3 - right private var horAllowed:Boolean = true; private var vertAllowed:Boolean = true; private const GRID_SIZE:int = 100; private var shooting:Boolean = false; private var shot_timer:int = 0; private var speed:int = 2; public function Tank():void { addEventListener(Event.ADDED_TO_STAGE,stageAddHandler); addEventListener(Event.ENTER_FRAME, enterFrameHandler); } private function stageAddHandler(e:Event):void { stage.addEventListener(KeyboardEvent.KEY_DOWN,checkKeys); stage.addEventListener(KeyboardEvent.KEY_UP,keyUps); removeEventListener(Event.ADDED_TO_STAGE,stageAddHandler); } public function checkKeys(event:KeyboardEvent):void { if(event.keyCode == 32) { //trace("Spacebar is down"); shooting = true; } if(event.keyCode == 39) { //trace("Right key is down"); right = true; } if(event.keyCode == 38) { //trace("Up key is down"); // lol up = true; } if(event.keyCode == 37) { //trace("Left key is down"); left = true; } if(event.keyCode == 40) { //trace("Down key is down"); down = true; } } public function keyUps(event:KeyboardEvent):void { if(event.keyCode == 32) { event.keyCode = 0; shooting = false; //trace("Spacebar is not down"); } if(event.keyCode == 39) { event.keyCode = 0; right = false; //trace("Right key is not down"); } if(event.keyCode == 38) { event.keyCode = 0; up = false; //trace("Up key is not down"); } if(event.keyCode == 37) { event.keyCode = 0; left = false; //trace("Left key is not down"); } if(event.keyCode == 40) { event.keyCode = 0; down = false; //trace("Down key is not down") // O.o } } public function checkDirectionPermissions(): void { if(this.y % GRID_SIZE < 5 || GRID_SIZE - this.y % GRID_SIZE < 5) { horAllowed = true; } else { horAllowed = false; } if(this.x % GRID_SIZE < 5 || GRID_SIZE - this.x % GRID_SIZE < 5) { vertAllowed = true; } else { vertAllowed = false; } if(!horAllowed && !vertAllowed) { realign(); } } public function realign():void { if(!horAllowed) { if(this.x % GRID_SIZE < GRID_SIZE / 2) { this.x -= this.x % GRID_SIZE; } else { this.x += (GRID_SIZE - this.x % GRID_SIZE); } } if(!vertAllowed) { if(this.y % GRID_SIZE < GRID_SIZE / 2) { this.y -= this.y % GRID_SIZE; } else { this.y += (GRID_SIZE - this.y % GRID_SIZE); } } } public function enterFrameHandler(Event):void { //trace(shot_timer); if(shot_timer > 0) { shot_timer--; } movement(); firing(); } public function firing():void { if(shooting) { if(shot_timer == 0) { shoot(); shot_timer = 10; } } } public function shoot():void { var bullet = new Bullet(); bullet.facing = facing; //0 - up, 1 - left, 2 - down, 3 - right switch(facing) { case 0: bullet.x = this.x; bullet.y = this.y - this.height / 2; break; case 1: bullet.x = this.x - this.width / 2; bullet.y = this.y; break; case 2: bullet.x = this.x; bullet.y = this.y + this.height / 2; break; case 3: bullet.x = this.x + this.width / 2; bullet.y = this.y; break; } (parent as MovieClip).addChild(bullet); } public function movement():void { //0 - up, 1 - left, 2 - down, 3 - right checkDirectionPermissions(); if(horAllowed) { if(right) { orient(3); realign(); this.x += speed; } if(left) { orient(1); realign(); this.x -= speed; } } if(vertAllowed) { if(up) { orient(0); realign(); this.y -= speed; } if(down) { orient(2); realign(); this.y += speed; } } } public function orient(dest:int):void { //trace("facing: " + facing); //trace("dest: " + dest); var angle = facing - dest; this.rotation += (90 * angle); facing = dest; } } }

    Read the article

  • File using .net sockets, transferring problem

    - by Sergei
    I have a client and server, client sending file to server. When i transfer files on my computer(in local) everything is ok(try to sen file over 700mb). When i try to sent file use Internet to my friend in the end of sending appears error on server "Input string is not in correct format".This error appears in this expression fSize = Convert::ToUInt64(tokenes[0]); - and i don't mind wht it's appear. File should be transfered and wait other transferring ps: sorry for too much code, but i want to find solution private: void CreateServer() { try{ IPAddress ^ipAddres = IPAddress::Parse(ipAdress); listener = gcnew System::Net::Sockets::TcpListener(ipAddres, port); listener->Start(); clientsocket =listener->AcceptSocket(); bool keepalive = true; array<wchar_t,1> ^split = gcnew array<wchar_t>(1){ '\0' }; array<wchar_t,1> ^split2 = gcnew array<wchar_t>(1){ '|' }; statusBar1->Text = "Connected" ; // while (keepalive) { array<Byte>^ size1 = gcnew array<Byte>(1024); clientsocket->Receive(size1); System::String ^notSplited = System::Text::Encoding::GetEncoding(1251)->GetString(size1); array<String^> ^ tokenes = notSplited->Split(split2); System::String ^fileName = tokenes[1]->ToString(); statusBar1->Text = "Receiving file" ; unsigned long fSize = 0; //IN THIS EXPRESSIN APPEARS ERROR fSize = Convert::ToUInt64(tokenes[0]); if (!Directory::Exists("Received")) Directory::CreateDirectory("Received"); System::String ^path = "Received\\"+ fileName; while (File::Exists(path)) { int dotPos = path->LastIndexOf('.'); if (dotPos == -1) { path += "[1]"; } else { path = path->Insert(dotPos, "[1]"); } } FileStream ^fs = gcnew FileStream(path, FileMode::CreateNew, FileAccess::Write); BinaryWriter ^f = gcnew BinaryWriter(fs); //bytes received unsigned long processed = 0; pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; // Set the initial value of the ProgressBar. pBarFilesTr->Value = 0; pBarFilesTr->Step = 1024; //loop for receive file array<Byte>^ buffer = gcnew array<Byte>(1024); while (processed < fSize) { if ((fSize - processed) < 1024) { int bytes ; array<Byte>^ buf = gcnew array<Byte>(1024); bytes = clientsocket->Receive(buf); if (bytes != 0) { f->Write(buf, 0, bytes); processed = processed + (unsigned long)bytes; pBarFilesTr->PerformStep(); } break; } else { int bytes = clientsocket->Receive(buffer); if (bytes != 0) { f->Write(buffer, 0, 1024); processed = processed + 1024; pBarFilesTr->PerformStep(); } else break; } } statusBar1->Text = "File was received" ; array<Byte>^ buf = gcnew array<Byte>(1); clientsocket->Send(buf,buf->Length,SocketFlags::None); f->Close(); fs->Close(); SystemSounds::Beep->Play(); } }catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } catch(System::Exception ^es) { MessageBox::Show(es->ToString()); } } private: void CreateClient() { clientsock = gcnew System::Net::Sockets::TcpClient(ipAdress, port); ns = clientsock->GetStream(); sr = gcnew StreamReader(ns); statusBar1->Text = "Connected" ; } private:void Send() { try{ OpenFileDialog ^openFileDialog1 = gcnew OpenFileDialog(); System::String ^filePath = ""; System::String ^fileName = ""; //file choose dialog if (openFileDialog1->ShowDialog() == System::Windows::Forms::DialogResult::OK) { filePath = openFileDialog1->FileName; fileName = openFileDialog1->SafeFileName; } else { MessageBox::Show("You must select a file", "Error", MessageBoxButtons::OK, MessageBoxIcon::Exclamation); return; } statusBar1->Text = "Sending file" ; NetworkStream ^writerStream = clientsock->GetStream(); System::Runtime::Serialization::Formatters::Binary::BinaryFormatter ^format = gcnew System::Runtime::Serialization::Formatters::Binary::BinaryFormatter(); array<Byte>^ buffer = gcnew array<Byte>(1024); FileStream ^fs = gcnew FileStream(filePath, FileMode::Open); BinaryReader ^br = gcnew BinaryReader(fs); //file size unsigned long fSize = (unsigned long)fs->Length; //transfer file size + name bFSize = Encoding::GetEncoding(1251)->GetBytes(Convert::ToString(fs->Length+"|"+fileName+"|")); writerStream->Write(bFSize, 0, bFSize->Length); //status bar pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; pBarFilesTr->Value = 0; // Set the initial value of the ProgressBar. pBarFilesTr->Step = 1024; //bytes transfered unsigned long processed = 0; int bytes = 1024; //loop for transfer while (processed < fSize) { if ((fSize - processed) < 1024) { bytes = (int)(fSize - processed); array<Byte>^ buf = gcnew array<Byte>(bytes); br->Read(buf, 0, bytes); writerStream->Write(buf, 0, buf->Length); pBarFilesTr->PerformStep(); processed = processed + (unsigned long)bytes; break; } else { br->Read(buffer, 0, 1024); writerStream->Write(buffer, 0, buffer->Length); pBarFilesTr->PerformStep(); processed = processed + 1024; } } array<Byte>^ bufsss = gcnew array<Byte>(100); writerStream->Read(bufsss,0,bufsss->Length); statusBar1->Text = "File was sent" ; btnSend->Enabled = true; fs->Close(); br->Close(); SystemSounds::Beep->Play(); newThread->Abort(); } catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } } UPDATE: ok, i can add checking if clientsocket->Receive(size1); equal zero, but why he begin receiving data again , in the ending of receiving. UPDATE:After adding this checking problem remains. AND WIN RAR SAY TO OPENING ARCHIVE - unexpected end of file! UPDATE:http://img153.imageshack.us/img153/3760/erorr.gif I think it continue receiving some bytes from client(that remains in the stream), but why existes cicle while (processed < fSize)

    Read the article

< Previous Page | 121 122 123 124 125 126 127  | Next Page >