Search Results

Search found 6185 results on 248 pages for 'searchadministration aspx'.

Page 126/248 | < Previous Page | 122 123 124 125 126 127 128 129 130 131 132 133  | Next Page >

  • Use user control in the same folder as the page.

    - by Alex
    I get this message at runtime of ASP.NET 2 page : The page 'MyFolder/blabla.aspx' cannot use the user control 'MyFolder/MyControl.ascx', because it is registered in web.config and lives in the same directory as the page. Of course I can separate them to 2 different folders and thus solve the problem, but the question is : WTF !?!?! Why I can't put them in the same folder ?! Why can't they all .. get along !?! :) Thanks

    Read the article

  • Can't get up with RIA demo

    - by Budda
    Based the article (http://blogs.msdn.com/brada/archive/2009/03/17/mix09-building-amazing-business-applications-with-silverlight-3.aspx) I've tried to start-up the RIA services. At the moment there are 2 blockers: 1. On the client side I don't have " Could anybody help to resolve problems? Thank you. P.S. I have VS2008, SP1, Silverlight, RIA Services installed.

    Read the article

  • LINQ display row numbers

    - by timvaines
    I simply want to include a row number against the returned results of my query. I found the following post that describes what I am trying to achieve but gives me an exception http://vaultofthoughts.net/LINQRowNumberColumn.aspx "An expression tree may not contain an assignment operator" In MS SQL I would just use the ROWNUMBER() function, I'm simply looking for the equivalent in LINQ.

    Read the article

  • how do I redirect from one page to another with mod_rewrite?

    - by Dan
    All the advice online says do: rewrite 301 URL-A URL-B But that won't work if I turn on mod_rewrite (it seems?) with RewriteEngine on So, I'm bad a regex, but shouldn't need it here. How do I do: RewriteCond %{HTTP_HOST} ^untamed-adventures.com/travel/How/tabid/58/Default.aspx [NC] RewriteRule ^(.*)$ http://untamed-adventures.com/ [R=301,L]

    Read the article

  • MVC can't find my Areas page

    - by Steven
    I created an Area in my application named Admin. It's pretty basic, looks like this: Areas Admin Controllers CompaniesController.cs Models Views Companies Index.aspx AdminAreaRegistration.cs When I try to view my Index page by going to /Admin/Companies, I get a "The resource cannot be found" message. I find it weird that I don't get any sort of error message. I'm not sure what's going on here, has anyone come across this?

    Read the article

  • IE 7 and Website Rendering Problems

    - by azamsharp
    I am not sure what is wrong with the following page and all the article pages on this website. The page is not even displayed completely. http://highoncoding.com/Articles/717_Populating_TreeView_with_Different_Sources.aspx On FireFox, Chrome and IE 8 it works fine. IE 7 has problems! Now what should I do??

    Read the article

  • Silverlight for Windows Embedded tutorial (step 4)

    - by Valter Minute
    I’m back with my Silverlight for Windows Embedded tutorial. Sorry for the long delay between step 3 and step 4, the MVP summit and some work related issue prevented me from working on the tutorial during the last weeks. In our first,  second and third tutorial steps we implemented some very simple applications, just to understand the basic structure of a Silverlight for Windows Embedded application, learn how to handle events and how to operate on images. In this third step our sample application will be slightly more complicated, to introduce two new topics: list boxes and custom control. We will also learn how to create controls at runtime. I choose to explain those topics together and provide a sample a bit more complicated than usual just to start to give the feeling of how a “real” Silverlight for Windows Embedded application is organized. As usual we can start using Expression Blend to define our main page. In this case we will have a listbox and a textblock. Here’s the XAML code: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" x:Class="ListDemo.Page" Width="640" Height="480" x:Name="ListPage" xmlns:ListDemo="clr-namespace:ListDemo">   <Grid x:Name="LayoutRoot" Background="White"> <ListBox Margin="19,57,19,66" x:Name="FileList" SelectionChanged="Filelist_SelectionChanged"/> <TextBlock Height="35" Margin="19,8,19,0" VerticalAlignment="Top" TextWrapping="Wrap" x:Name="CurrentDir" Text="TextBlock" FontSize="20"/> </Grid> </UserControl> In our listbox we will load a list of directories, starting from the filesystem root (there are no drives in Windows CE, the filesystem has a single root named “\”). When the user clicks on an item inside the list, the corresponding directory path will be displayed in the TextBlock object and the subdirectories of the selected branch will be shown inside the list. As you can see we declared an event handler for the SelectionChanged event of our listbox. We also used a different font size for the TextBlock, to make it more readable. XAML and Expression Blend allow you to customize your UI pretty heavily, experiment with the tools and discover how you can completely change the aspect of your application without changing a single line of code! Inside our ListBox we want to insert the directory presenting a nice icon and their name, just like you are used to see them inside Windows 7 file explorer, for example. To get this we will define a user control. This is a custom object that will behave like “regular” Silverlight for Windows Embedded objects inside our application. First of all we have to define the look of our custom control, named DirectoryItem, using XAML: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" x:Class="ListDemo.DirectoryItem" Width="500" Height="80">   <StackPanel x:Name="LayoutRoot" Orientation="Horizontal"> <Canvas Width="31.6667" Height="45.9583" Margin="10,10,10,10" RenderTransformOrigin="0.5,0.5"> <Canvas.RenderTransform> <TransformGroup> <ScaleTransform/> <SkewTransform/> <RotateTransform Angle="-31.27"/> <TranslateTransform/> </TransformGroup> </Canvas.RenderTransform> <Rectangle Width="31.6667" Height="45.8414" Canvas.Left="0" Canvas.Top="0.116943" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.569519" Canvas.Top="1.05249" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142632,0.753441" EndPoint="1.01886,0.753441"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142632" CenterY="0.753441" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142632" CenterY="0.753441" Angle="-35.3437"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="2.28036" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="29.8441" Height="43.1517" Canvas.Left="0.455627" Canvas.Top="1.34485" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3128" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FFCDCDCD" Offset="0.0833333"/> <GradientStop Color="#FFFFFFFF" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="26.4269" Height="45.8414" Canvas.Left="0.227798" Canvas.Top="0" Stretch="Fill"> <Rectangle.Fill> <LinearGradientBrush StartPoint="0.142631,0.75344" EndPoint="1.01886,0.75344"> <LinearGradientBrush.RelativeTransform> <TransformGroup> <SkewTransform CenterX="0.142631" CenterY="0.75344" AngleX="19.3127" AngleY="0"/> <RotateTransform CenterX="0.142631" CenterY="0.75344" Angle="-35.3436"/> </TransformGroup> </LinearGradientBrush.RelativeTransform> <LinearGradientBrush.GradientStops> <GradientStop Color="#FF7B6802" Offset="0"/> <GradientStop Color="#FFF3D42C" Offset="1"/> </LinearGradientBrush.GradientStops> </LinearGradientBrush> </Rectangle.Fill> </Rectangle> <Rectangle Width="1.25301" Height="45.8414" Canvas.Left="1.70862" Canvas.Top="0.116943" Stretch="Fill" Fill="#FFEBFF07"/> </Canvas> <TextBlock Height="80" x:Name="Name" Width="448" TextWrapping="Wrap" VerticalAlignment="Center" FontSize="24" Text="Directory"/> </StackPanel> </UserControl> As you can see, this XAML contains many graphic elements. Those elements are used to design the folder icon. The original drawing has been designed in Expression Design and then exported as XAML. In Silverlight for Windows Embedded you can use vector images. This means that your images will look good even when scaled or rotated. In our DirectoryItem custom control we have a TextBlock named Name, that will be used to display….(suspense)…. the directory name (I’m too lazy to invent fancy names for controls, and using “boring” intuitive names will make code more readable, I hope!). Now that we have some XAML code, we may execute XAML2CPP to generate part of the aplication code for us. We should then add references to our XAML2CPP generated resource file and include in our code and add a reference to the XAML runtime library to our sources file (you can follow the instruction of the first tutorial step to do that), To generate the code used in this tutorial you need XAML2CPP ver 1.0.1.0, that is downloadable here: http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2010/03/08/xaml2cpp-1.0.1.0.aspx We can now create our usual simple Win32 application inside Platform Builder, using the same step described in the first chapter of this tutorial (http://geekswithblogs.net/WindowsEmbeddedCookbook/archive/2009/10/01/silverlight-for-embedded-tutorial.aspx). We can declare a class for our main page, deriving it from the template that XAML2CPP generated for us: class ListPage : public TListPage<ListPage> { ... } We will see the ListPage class code in a short time, but before we will see the code of our DirectoryItem user control. This object will be used to populate our list, one item for each directory. To declare a user control things are a bit more complicated (but also in this case XAML2CPP will write most of the “boilerplate” code for use. To interact with a user control you should declare an interface. An interface defines the functions of a user control that can be called inside the application code. Our custom control is currently quite simple and we just need some member functions to store and retrieve a full pathname inside our control. The control will display just the last part of the path inside the control. An interface is declared as a C++ class that has only abstract virtual members. It should also have an UUID associated with it. UUID means Universal Unique IDentifier and it’s a 128 bit number that will identify our interface without the need of specifying its fully qualified name. UUIDs are used to identify COM interfaces and, as we discovered in chapter one, Silverlight for Windows Embedded is based on COM or, at least, provides a COM-like Application Programming Interface (API). Here’s the declaration of the DirectoryItem interface: class __declspec(novtable,uuid("{D38C66E5-2725-4111-B422-D75B32AA8702}")) IDirectoryItem : public IXRCustomUserControl { public:   virtual HRESULT SetFullPath(BSTR fullpath) = 0; virtual HRESULT GetFullPath(BSTR* retval) = 0; }; The interface is derived from IXRCustomControl, this will allow us to add our object to a XAML tree. It declares the two functions needed to set and get the full path, but don’t implement them. Implementation will be done inside the control class. The interface only defines the functions of our control class that are accessible from the outside. It’s a sort of “contract” between our control and the applications that will use it. We must support what’s inside the contract and the application code should know nothing else about our own control. To reference our interface we will use the UUID, to make code more readable we can declare a #define in this way: #define IID_IDirectoryItem __uuidof(IDirectoryItem) Silverlight for Windows Embedded objects (like COM objects) use a reference counting mechanism to handle object destruction. Every time you store a pointer to an object you should call its AddRef function and every time you no longer need that pointer you should call Release. The object keeps an internal counter, incremented for each AddRef and decremented on Release. When the counter reaches 0, the object is destroyed. Managing reference counting in our code can be quite complicated and, since we are lazy (I am, at least!), we will use a great feature of Silverlight for Windows Embedded: smart pointers.A smart pointer can be connected to a Silverlight for Windows Embedded object and manages its reference counting. To declare a smart pointer we must use the XRPtr template: typedef XRPtr<IDirectoryItem> IDirectoryItemPtr; Now that we have defined our interface, it’s time to implement our user control class. XAML2CPP has implemented a class for us, and we have only to derive our class from it, defining the main class and interface of our new custom control: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { ... } XAML2CPP has generated some code for us to support the user control, we don’t have to mind too much about that code, since it will be generated (or written by hand, if you like) always in the same way, for every user control. But knowing how does this works “under the hood” is still useful to understand the architecture of Silverlight for Windows Embedded. Our base class declaration is a bit more complex than the one we used for a simple page in the previous chapters: template <class A,class B> class DirectoryItemUserControlRegister : public XRCustomUserControlImpl<A,B>,public TDirectoryItem<A,XAML2CPPUserControl> { ... } This class derives from the XAML2CPP generated template class, like the ListPage class, but it uses XAML2CPPUserControl for the implementation of some features. This class shares the same ancestor of XAML2CPPPage (base class for “regular” XAML pages), XAML2CPPBase, implements binding of member variables and event handlers but, instead of loading and creating its own XAML tree, it attaches to an existing one. The XAML tree (and UI) of our custom control is created and loaded by the XRCustomUserControlImpl class. This class is part of the Silverlight for Windows Embedded framework and implements most of the functions needed to build-up a custom control in Silverlight (the guys that developed Silverlight for Windows Embedded seem to care about lazy programmers!). We have just to initialize it, providing our class (DirectoryItem) and interface (IDirectoryItem). Our user control class has also a static member: protected:   static HINSTANCE hInstance; This is used to store the HINSTANCE of the modules that contain our user control class. I don’t like this implementation, but I can’t find a better one, so if somebody has good ideas about how to handle the HINSTANCE object, I’ll be happy to hear suggestions! It also implements two static members required by XRCustomUserControlImpl. The first one is used to load the XAML UI of our custom control: static HRESULT GetXamlSource(XRXamlSource* pXamlSource) { pXamlSource->SetResource(hInstance,TEXT("XAML"),IDR_XAML_DirectoryItem); return S_OK; }   It initializes a XRXamlSource object, connecting it to the XAML resource that XAML2CPP has included in our resource script. The other method is used to register our custom control, allowing Silverlight for Windows Embedded to create it when it load some XAML or when an application creates a new control at runtime (more about this later): static HRESULT Register() { return XRCustomUserControlImpl<A,B>::Register(__uuidof(B), L"DirectoryItem", L"clr-namespace:DirectoryItemNamespace"); } To register our control we should provide its interface UUID, the name of the corresponding element in the XAML tree and its current namespace (namespaces compatible with Silverlight must use the “clr-namespace” prefix. We may also register additional properties for our objects, allowing them to be loaded and saved inside XAML. In this case we have no permanent properties and the Register method will just register our control. An additional static method is implemented to allow easy registration of our custom control inside our application WinMain function: static HRESULT RegisterUserControl(HINSTANCE hInstance) { DirectoryItemUserControlRegister::hInstance=hInstance; return DirectoryItemUserControlRegister<A,B>::Register(); } Now our control is registered and we will be able to create it using the Silverlight for Windows Embedded runtime functions. But we need to bind our members and event handlers to have them available like we are used to do for other XAML2CPP generated objects. To bind events and members we need to implement the On_Loaded function: virtual HRESULT OnLoaded(__in IXRDependencyObject* pRoot) { HRESULT retcode; IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; return ((A*)this)->Init(pRoot,hInstance,app); } This function will call the XAML2CPPUserControl::Init member that will connect the “root” member with the XAML sub tree that has been created for our control and then calls BindObjects and BindEvents to bind members and events to our code. Now we can go back to our application code (the code that you’ll have to actually write) to see the contents of our DirectoryItem class: class DirectoryItem : public DirectoryItemUserControlRegister<DirectoryItem,IDirectoryItem> { protected:   WCHAR fullpath[_MAX_PATH+1];   public:   DirectoryItem() { *fullpath=0; }   virtual HRESULT SetFullPath(BSTR fullpath) { wcscpy_s(this->fullpath,fullpath);   WCHAR* p=fullpath;   for(WCHAR*q=wcsstr(p,L"\\");q;p=q+1,q=wcsstr(p,L"\\")) ;   Name->SetText(p); return S_OK; }   virtual HRESULT GetFullPath(BSTR* retval) { *retval=SysAllocString(fullpath); return S_OK; } }; It’s pretty easy and contains a fullpath member (used to store that path of the directory connected with the user control) and the implementation of the two interface members that can be used to set and retrieve the path. The SetFullPath member parses the full path and displays just the last branch directory name inside the “Name” TextBlock object. As you can see, implementing a user control in Silverlight for Windows Embedded is not too complex and using XAML also for the UI of the control allows us to re-use the same mechanisms that we learnt and used in the previous steps of our tutorial. Now let’s see how the main page is managed by the ListPage class. class ListPage : public TListPage<ListPage> { protected:   // current path TCHAR curpath[_MAX_PATH+1]; It has a member named “curpath” that is used to store the current directory. It’s initialized inside the constructor: ListPage() { *curpath=0; } And it’s value is displayed inside the “CurrentDir” TextBlock inside the initialization function: virtual HRESULT Init(HINSTANCE hInstance,IXRApplication* app) { HRESULT retcode;   if (FAILED(retcode=TListPage<ListPage>::Init(hInstance,app))) return retcode;   CurrentDir->SetText(L"\\"); return S_OK; } The FillFileList function is used to enumerate subdirectories of the current dir and add entries for each one inside the list box that fills most of the client area of our main page: HRESULT FillFileList() { HRESULT retcode; IXRItemCollectionPtr items; IXRApplicationPtr app;   if (FAILED(retcode=GetXRApplicationInstance(&app))) return retcode; // retrieves the items contained in the listbox if (FAILED(retcode=FileList->GetItems(&items))) return retcode;   // clears the list if (FAILED(retcode=items->Clear())) return retcode;   // enumerates files and directory in the current path WCHAR filemask[_MAX_PATH+1];   wcscpy_s(filemask,curpath); wcscat_s(filemask,L"\\*.*");   WIN32_FIND_DATA finddata; HANDLE findhandle;   findhandle=FindFirstFile(filemask,&finddata);   // the directory is empty? if (findhandle==INVALID_HANDLE_VALUE) return S_OK;   do { if (finddata.dwFileAttributes&=FILE_ATTRIBUTE_DIRECTORY) { IXRListBoxItemPtr listboxitem;   // add a new item to the listbox if (FAILED(retcode=app->CreateObject(IID_IXRListBoxItem,&listboxitem))) { FindClose(findhandle); return retcode; }   if (FAILED(retcode=items->Add(listboxitem,NULL))) { FindClose(findhandle); return retcode; }   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=app->CreateObject(IID_IDirectoryItem,&directoryitem))) { FindClose(findhandle); return retcode; }   WCHAR fullpath[_MAX_PATH+1];   wcscpy_s(fullpath,curpath); wcscat_s(fullpath,L"\\"); wcscat_s(fullpath,finddata.cFileName);   if (FAILED(retcode=directoryitem->SetFullPath(fullpath))) { FindClose(findhandle); return retcode; }   XAML2CPPXRValue value((IXRDependencyObject*)directoryitem);   if (FAILED(retcode=listboxitem->SetContent(&value))) { FindClose(findhandle); return retcode; } } } while (FindNextFile(findhandle,&finddata));   FindClose(findhandle); return S_OK; } This functions retrieve a pointer to the collection of the items contained in the directory listbox. The IXRItemCollection interface is used by listboxes and comboboxes and allow you to clear the list (using Clear(), as our function does at the beginning) and change its contents by adding and removing elements. This function uses the FindFirstFile/FindNextFile functions to enumerate all the objects inside our current directory and for each subdirectory creates a IXRListBoxItem object. You can insert any kind of control inside a list box, you don’t need a IXRListBoxItem, but using it will allow you to handle the selected state of an item, highlighting it inside the list. The function creates a list box item using the CreateObject function of XRApplication. The same function is then used to create an instance of our custom control. The function returns a pointer to the control IDirectoryItem interface and we can use it to store the directory full path inside the object and add it as content of the IXRListBox item object, adding it to the listbox contents. The listbox generates an event (SelectionChanged) each time the user clicks on one of the items contained in the listbox. We implement an event handler for that event and use it to change our current directory and repopulate the listbox. The current directory full path will be displayed in the TextBlock: HRESULT Filelist_SelectionChanged(IXRDependencyObject* source,XRSelectionChangedEventArgs* args) { HRESULT retcode;   IXRListBoxItemPtr listboxitem;   if (!args->pAddedItem) return S_OK;   if (FAILED(retcode=args->pAddedItem->QueryInterface(IID_IXRListBoxItem,(void**)&listboxitem))) return retcode;   XRValue content; if (FAILED(retcode=listboxitem->GetContent(&content))) return retcode;   if (content.vType!=VTYPE_OBJECT) return E_FAIL;   IDirectoryItemPtr directoryitem;   if (FAILED(retcode=content.pObjectVal->QueryInterface(IID_IDirectoryItem,(void**)&directoryitem))) return retcode;   content.pObjectVal->Release(); content.pObjectVal=NULL;   BSTR fullpath=NULL;   if (FAILED(retcode=directoryitem->GetFullPath(&fullpath))) return retcode;   CurrentDir->SetText(fullpath);   wcscpy_s(curpath,fullpath); FillFileList(); SysFreeString(fullpath);     return S_OK; } }; The function uses the pAddedItem member of the XRSelectionChangedEventArgs object to retrieve the currently selected item, converts it to a IXRListBoxItem interface using QueryInterface, and then retrives its contents (IDirectoryItem object). Using the GetFullPath method we can get the full path of our selected directory and assing it to the curdir member. A call to FillFileList will update the listbox contents, displaying the list of subdirectories of the selected folder. To build our sample we just need to add code to our WinMain function: int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance, LPTSTR lpCmdLine, int nCmdShow) { if (!XamlRuntimeInitialize()) return -1;   HRESULT retcode;   IXRApplicationPtr app; if (FAILED(retcode=GetXRApplicationInstance(&app))) return -1;   if (FAILED(retcode=DirectoryItem::RegisterUserControl(hInstance))) return retcode;   ListPage page;   if (FAILED(page.Init(hInstance,app))) return -1;   page.FillFileList();   UINT exitcode;   if (FAILED(page.GetVisualHost()->StartDialog(&exitcode))) return -1;   return 0; } This code is very similar to the one of the WinMains of our previous samples. The main differences are that we register our custom control (you should do that as soon as you have initialized the XAML runtime) and call FillFileList after the initialization of our ListPage object to load the contents of the root folder of our device inside the listbox. As usual you can download the full sample source code from here: http://cid-9b7b0aefe3514dc5.skydrive.live.com/self.aspx/.Public/ListBoxTest.zip

    Read the article

  • SharePoint Upgrade Global Nav Quirks?

    - by elorg
    We're working on a parallel install/upgrade of SharePoint. The client has WSS 2003 on some old hardware. We've installed MOSS 2007 in a medium farm environment. They want to use this as an opportunity to not just upgrade and use the new features, but to also better organize their content and categorize between different site collections. To accommodate, we've created a few site collections per their specifications in the new environment, and when we ran an upgrade test run we ran into a few .. quirks. We made a backup of the old content database, copied it over to the new environment and restored it as a new database. Created a new web app and attached the migrated data to do an in-place upgrade in this new "test" area. This seems pretty standard - no issues. We have to do a little bit of cleanup (e.g. reset pages to site definition, reset themes, and inherit the global nav / top link bar, etc.). Once that's done, we're using stsadm export/import to copy the individual sites over to their ultimate destinations in the various different site collections. So far so good. But then we ran into one particular site that has a link to an .aspx page in the top link bar in WSS 2003 that's not behaving properly after the upgrade. It's just a link to a "dashboard" .aspx page in a doc library - nothing special. It doesn't seem to matter what we do, or what order we do it (in the "test" web app, in the destination web app, or both). In the end, this ONE site will not allow us to create a link/tab in the global nav. It can inherit the global nav just fine. We can break the inheritance just fine. But if we want to manually add a link in the top link bar - we go through the steps that I've done 1,000x before and click OK - and the tab never appears. It doesn't matter if it's to a page within the site itself, or to Google. We can migrate over other sites into the same site collection and add a tab without issue. If we migrate this quirky site over to another site collection we run into the same issue. Yet, in the "test" web app that we're using to upgrade the data we can add a tab? If we add the tab before we export/import to the final destination, the tab is lost during the process? Has anyone run into anything like this? Any ideas? I've tried every combination of everything that I can think of and nothing works. Unless we can figure out how to get this to work, we're going to just add this tab to the global nav for the entire site collection and inherit it for this site (but that adds the link to all of the site that will inherit, which is both a pro & con for them).

    Read the article

  • SQL Server Log File Won't Shrink due cause "log are pending replication" on non replicated DB?

    - by user796466
    I have a non Mission Critial DB 9am-5pm SQL Server database that I have set up to do nightly full backups and log backups every 30 minutes during business hours. The database is in full recovery and normally I have no reason to truncate/shrink logs unless I do some heavy maintenance. Log backups manage the size with no issue. However I have not been at this client for several weeks and upon inspection I noticed that the log had grown to about 10 times the size of the .mdf file. I poked around backups had been running and I had not gotten any severity error alerts (SQL mail). I attempted to put DB in simple recovery and shrink the log, this was no good. I precede to try a log backup and I got: The log was not truncated because records at the beginning of the log are pending replication or Change Data Capture. Ensure the Log Reader Agent or capture job is running or use sp_repldone to mark transactions as distributed or captured. Restart SQL Server rinse repeat same thing ... I said ??? Replication is not nor ever has been set up on this DB or database /server ??? So the log backups have not been flushing the .ldf. So I did a couple hours of research and I found: http://www.sqlmonster.com/Uwe/Forum.aspx/sql-server/5445/Log-file-is-not-truncated-inspite-of-regular-log-backup http://www.eggheadcafe.com/software/aspnet/30708322/the-log-was-not-truncated-because-records-at-the-beginning-of-the-log-are-pending-replication.aspx seems to be some kind of poorly documented bug ?? The solution seems to have been to run exec sp_repldone, more precisley EXEC sp_repldone @xactid = NULL, @xact_segno = NULL, @numtrans = 0, @time= 0, @reset = 1 This procedure can be used in emergency situations to allow truncation of the transaction log when transactions pending replication are present. Using this procedure prevents Microsoft SQL Server 2000 from replicating the database until the database is unpublished and republished. ~ MSDN When I do that I get the following Msg 18757, Level 16, State 1, Procedure sp_repldone, Line 1 Unable to execute procedure. The database is not published. Execute the procedure in a database that is published for replication. Which makes sense Because the DB has never been published for replication. I have several questions: A) First and foremost is, WTF is going on ? What is causeing this, I am interested in knowing the why here ? Is this genuinley a bug or is there some aspect of the backup that is not functioning properly that cause's the DB to mimick a replicated state ? Someone please edify me on this. B) Second ... Do I really have to publish / replicate this DB to exec this SP to fix this ??? Sounds crazy or is there some T-SQL that I can put it in a published state exec the proc and be on my way ... C) Third, if I do indeed have to publish this database to exec the SP to release this unneeded mis replicated/intended log , to get my .ldf file and backup back on track. How do I publish the database without an online host that it is asking for ??? I don't generally do this kind of database administration and need some guidance. Sorry if this is too verbose but just voicing the question helps me clarify it ... Thank you in advance for your help

    Read the article

  • This task is currently locked by a running workflow and cannot be edited. Limitation to both Nintex and SPD workflow

    - by ybbest
    Note, this post is from Nintex Forum here. These limitations apply to both SharePoint designer Workflow and Nintex Workflow as Nintex using the SharePoint workflow engine. The common cause that I experience is that ‘parent’ workflow is generating more than one task at once. This is common as you can have multiple approvers for certain approval process. You could also have workflow running when the task is created, one of the common scenario is you would like to set a custom column value in your approval task. For me this is huge limitation, as Nintex lover I really hope Nintex could solve this problem with Microsoft going forward. Introduction “This task is currently locked by a running workflow and cannot be edited” is a common message that is seen when an error occurs while the SharePoint workflow engine is processing a task item associated with a workflow. When a workflow processes a task normally, the following sequence of events is expected to occur: 1.       The process begins. 2.       The workflow places a ‘lock’ on the task so nothing else can change the values while the workflow is processing. 3.       The workflow processes the task. 4.       The lock is released when the task processing is finished. When the message is encountered, it usually indicates that an error occurred between step 2 and 4. As a result, the lock is never released. Therefore, the ‘task locked’ message is not an error itself, rather a symptom of another error – the ‘task locked’ message does not indicate what went wrong. In most cases, once this message is encountered, the workflow cannot be made to continue and must be terminated and started again. The following is a guide that can help troubleshoot the cause of these messages.  Some initial observations to narrow down the potential causes are: Is the error consistent or intermittent? When the error is consistent, it will happen every time the workflow is run. When it is intermittent, it may happen regularly, but not every time. Does the error occur the first time the user tries to respond to a task, or do they respond and notice the workflow does not continue, and when they respond again the error occurs? If the message is present when the user first responds to the task, the issue would have occurred when the task was created. Otherwise, it would have occurred when the user attempted to respond to the task. Causes Modifying the task list A cause of this error appearing consistently the first time a user tries to respond to a task is a modification to the default task list schema. For example, changing the ‘Assigned to’ field in a task list to be a multiple selection will cause the behaviour. Deleting the workflow task then restoring it from the Recycle bin If you start a workflow, delete the workflow task then restore it from the Recycle Bin in SharePoint, the workflow will fail with the ‘task locked’ error.  This is confirmed behaviour whether using a SharePoint Designer or a Nintex workflow.  You will need to terminate the workflow and start it again. Parallel simultaneous responses A cause of this error appearing inconsistently is multiple users responding to tasks in parallel at the same time. In this scenario, one task will complete correctly and the other will not process. When the user tries again, the ‘task locked’ message will display. Nintex included a workaround for this issue in build 11000. In build 11000 and later, one of the users will receive a message on the task form when they attempt to respond, stating that they need to try again in a few moments. Additional processing on the task A cause of this error appearing consistently and inconsistently is having an additional system running on the items in the task list. Some examples include: a workflow running on the task list, an event receiver running on the task list or another automated process querying and updating workflow tasks. Note: This Microsoft help article (http://office.microsoft.com/en-us/sharepointdesigner/HA102376561033.aspx#5) explains creating a workflow that runs on the task list to update a field on the task. Our experience shows that this causes the ‘Task Locked’ issues when the ‘parent’ workflow is generating more than one task at once. Isolated system error If the error is a rare event, or a ‘one off’ event, then an isolated system error may have occurred. For example, if there is a database connectivity issue while the workflow is processing the task response, the task will lock. In this case, the user will respond to a task but the workflow will not continue. When they respond again, the ‘task locked’ message will display. In this case, there will be an error in the SharePoint ULS Logs at the time that the user originally responded. Temporary delay while workflow processes If the workflow is taking a long time to process after a user submits a task, they may notice and try to respond to the task again. They will see the task locked error, but after a number of attempts (or after waiting some time) the task response page eventually indicates the task has been responded to. In this case, nothing actually went wrong, and the error message gives an accurate indication of what is happening – the workflow temporarily locked the task while it was processing. This scenario may occur in a very large workflow, or after the SharePoint application pool has just started. Modifying the task via a web service with an invalid url If the Nintex Workflow web service is used to respond to or delegate a task, the site context part of the url must be a valid alternative access mapping url. For example, if you access the web service via the IP address of the SharePoint server, and the IP address is not a valid AAM, the task can become locked. The workflow has become stuck without any apparent errors This behaviour can occur as a result of a bug in the SharePoint 2010 workflow engine.  If you do not have the August 2010 Cumulative Update (or later) for SharePoint, and your workflow uses delays, “Flexi-task”, State machine”, “Task Reminder” actions or variables, you could be affected. Check the SharePoint 2010 Updates site here: http://technet.microsoft.com/en-us/sharepoint/ff800847.  The October CU is recommended http://support.microsoft.com/kb/2553031.   The fix is described as “Consider the following scenario. You add a Delay activity to a workflow. Then, you set the duration for the Delay activity. You deploy the workflow in SharePoint Foundation 2010. In this scenario, the workflow is not resumed after the duration of the Delay activity”. If you find this is occurring in your environment, install the October CU, terminate all the running workflows affected and run them afresh. Investigative steps The first step to isolate the issue is to create a new task list on the site and configure the workflow to use it.  Any customizations that were made to the original task list should not be made to the new task list. If the new task list eliminates the issue, then the cause can be attributed to the original task list or a change that was made to it. To change the task list that the workflow uses: In Workflow Designer select Settings -> Startup Options Then configure the task list as required If any of the scenarios above do not help, check the SharePoint logs for any messages with a category of ‘Workflow Infrastructure’. Conclusion The information in this article has been gathered from observations and investigations by Nintex. The sources of these issues are the underlying SharePoint workflow engine. This article will be updated if further causes are discovered. From <http://connect.nintex.com/forums/thread/6503.aspx>

    Read the article

  • Metro: Introduction to the WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to provide a quick introduction to the ListView control – just the bare minimum that you need to know to start using the control. When building Metro style applications using JavaScript, the ListView control is the primary control that you use for displaying lists of items. For example, if you are building a product catalog app, then you can use the ListView control to display the list of products. The ListView control supports several advanced features that I plan to discuss in future blog entries. For example, you can group the items in a ListView, you can create master/details views with a ListView, and you can efficiently work with large sets of items with a ListView. In this blog entry, we’ll keep things simple and focus on displaying a list of products. There are three things that you need to do in order to display a list of items with a ListView: Create a data source Create an Item Template Declare the ListView Creating the ListView Data Source The first step is to create (or retrieve) the data that you want to display with the ListView. In most scenarios, you will want to bind a ListView to a WinJS.Binding.List object. The nice thing about the WinJS.Binding.List object is that it enables you to take a standard JavaScript array and convert the array into something that can be bound to the ListView. It doesn’t matter where the JavaScript array comes from. It could be a static array that you declare or you could retrieve the array as the result of an Ajax call to a remote server. The following JavaScript file – named products.js – contains a list of products which can be bound to a ListView. (function () { "use strict"; var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44 }, { name: "Oranges", price: 1.99 }, { name: "Wine", price: 8.55 }, { name: "Apples", price: 2.44 }, { name: "Steak", price: 1.99 }, { name: "Eggs", price: 2.44 }, { name: "Mushrooms", price: 1.99 }, { name: "Yogurt", price: 2.44 }, { name: "Soup", price: 1.99 }, { name: "Cereal", price: 2.44 }, { name: "Pepsi", price: 1.99 } ]); WinJS.Namespace.define("ListViewDemos", { products: products }); })(); The products variable represents a WinJS.Binding.List object. This object is initialized with a plain-old JavaScript array which represents an array of products. To avoid polluting the global namespace, the code above uses the module pattern and exposes the products using a namespace. The list of products is exposed to the world as ListViewDemos.products. To learn more about the module pattern and namespaces in WinJS, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/22/metro-namespaces-and-modules.aspx Creating the ListView Item Template The ListView control does not know how to render anything. It doesn’t know how you want each list item to appear. To get the ListView control to render something useful, you must create an Item Template. Here’s what our template for rendering an individual product looks like: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> This template displays the product name and price from the data source. Normally, you will declare your template in the same file as you declare the ListView control. In our case, both the template and ListView are declared in the default.html file. To learn more about templates, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/27/metro-using-templates.aspx Declaring the ListView The final step is to declare the ListView control in a page. Here’s the markup for declaring a ListView: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> You declare a ListView by adding the data-win-control to an HTML DIV tag. The data-win-options attribute is used to set two properties of the ListView. The ListView is associated with its data source with the itemDataSource property. Notice that the data source is ListViewDemos.products.dataSource and not just ListViewDemos.products. You need to associate the ListView with the dataSoure property. The ListView is associated with its item template with the help of the itemTemplate property. The ID of the item template — #productTemplate – is used to select the template from the page. Here’s what the complete version of the default.html page looks like: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> </body> </html> Notice that the page above includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The page above also contains a Template control which contains the ListView item template. Finally, the page includes the declaration of the ListView control. Summary The goal of this blog entry was to describe the minimal set of steps which you must complete to use the WinJS ListView control to display a simple list of items. You learned how to create a data source, declare an item template, and declare a ListView control.

    Read the article

  • Creating an AJAX Accordion Menu

    - by jaullo
    Introduction Ajax is a powerful addition to asp.net that provides new functionality in a simple and agile  way This post is dedicated to creating a menu with ajax accordion type. About the Control The basic idea of this control, is to provide a serie of panels and show and hide information inside these panels. The use is very simple, we have to set each panel inside accordion control and give to each panel a Header and of course, we have to set the content of each panel.  To use accordion control, u need the ajax control toolkit. know the basic propertyes of accordion control:  Before start developing an accordion control, we have to know the basic properties for this control Other accordion propertyes  FramesPerSecond - Number of frames per second used in the transition animations RequireOpenedPane - Prevent closing the currently opened pane when its header is clicked (which ensures one pane is always open). The default value is true. SuppressHeaderPostbacks - Prevent the client-side click handlers of elements inside a header from firing (this is especially useful when you want to include hyperlinks in your headers for accessibility) DataSource - The data source to use. DataBind() must be called. DataSourceID - The ID of the data source to use. DataMember - The member to bind to when using a DataSourceID  AJAX Accordion Control Extender DataSource  The Accordion Control extender of AJAX Control toolkit can also be used as DataBound control. You can bind the data retrieved from the database to the Accordion control. Accordion Control consists of properties such as DataSource and DataSourceID (we can se it above) that can be used to bind the data. HeaderTemplate can used to display the header or title for the pane generated by the Accordion control, a click on which will open or close the ContentTemplate generated by binding the data with Accordion extender. When DataSource is passed to the Accordion control, also use the DataBind method to bind the data. The Accordion control bound with data auto generates the expand/collapse panes along with their headers.  This code represents the basic steps to bind the Accordion to a Datasource Collapse Public Sub getCategories() Dim sqlConn As New SqlConnection(conString) sqlConn.Open() Dim sqlSelect As New SqlCommand("SELECT * FROM Categories", sqlConn) sqlSelect.CommandType = System.Data.CommandType.Text Dim sqlAdapter As New SqlDataAdapter(sqlSelect) Dim myDataset As New DataSet() sqlAdapter.Fill(myDataset) sqlConn.Close() Accordion1.DataSource = myDataset.Tables(0).DefaultView Accordion1.DataBind()End Sub Protected Sub Accordion1_ItemDataBound(sender As Object, _ e As AjaxControlToolkit.AccordionItemEventArgs) If e.ItemType = AjaxControlToolkit.AccordionItemType.Content Then Dim sqlConn As New SqlConnection(conString) sqlConn.Open() Dim sqlSelect As New SqlCommand("SELECT productName " & _ "FROM Products where categoryID = '" + _ DirectCast(e.AccordionItem.FindControl("txt_categoryID"),_ HiddenField).Value + "'", sqlConn) sqlSelect.CommandType = System.Data.CommandType.Text Dim sqlAdapter As New SqlDataAdapter(sqlSelect) Dim myDataset As New DataSet() sqlAdapter.Fill(myDataset) sqlConn.Close() Dim grd As New GridView() grd = DirectCast(e.AccordionItem.FindControl("GridView1"), GridView) grd.DataSource = myDataset grd.DataBind() End If End Sub In the above code, we made two things, first, we made a sql select to database to retrieve all data from categories table, this data will be used to set the header and columns of the accordion.  Collapse <asp:ScriptManager ID="ScriptManager1" runat="server"> </asp:ScriptManager> <ajaxToolkit:Accordion ID="Accordion1" runat="server" TransitionDuration="100" FramesPerSecond="200" FadeTransitions="true" RequireOpenedPane="false" OnItemDataBound="Accordion1_ItemDataBound" ContentCssClass="acc-content" HeaderCssClass="acc-header" HeaderSelectedCssClass="acc-selected"> <HeaderTemplate> <%#DataBinder.Eval(Container.DataItem,"categoryName") %> </HeaderTemplate> <ContentTemplate> <asp:HiddenField ID="txt_categoryID" runat="server" Value='<%#DataBinder.Eval(Container.DataItem,"categoryID") %>' /> <asp:GridView ID="GridView1" runat="server" RowStyle-BackColor="#ededed" RowStyle-HorizontalAlign="Left" AutoGenerateColumns="false" GridLines="None" CellPadding="2" CellSpacing="2" Width="300px"> <Columns> <asp:TemplateField HeaderStyle-HorizontalAlign="Left" HeaderText="Product Name" HeaderStyle-BackColor="#d1d1d1" HeaderStyle-ForeColor="#777777"> <ItemTemplate> <%#DataBinder.Eval(Container.DataItem,"productName") %> </ItemTemplate> </asp:TemplateField> </Columns> </asp:GridView> </ContentTemplate> </ajaxToolkit:Accordion>  Here, we use <%#DataBinder.Eval(Container.DataItem,"categoryName") %> to bind accordion header with categoryName, so we made on header for each element found on database.    Creating a basic accordion control As we know, to use any of the ajax components, there must be a registered ScriptManager on our site, which will be responsible for managing our controls. So the first thing we will do is create our script manager.     Collapse <asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager> Then we define our accordion  element and establish some basic properties:    Collapse <cc1:Accordion ID="AccordionCtrl" runat="server" SelectedIndex="0" HeaderCssClass="accordionHeader" ContentCssClass="accordionContent" AutoSize="None" FadeTransitions="true" TransitionDuration="250" FramesPerSecond="40" For our work we must declare PANES accordion inside it, these breads will be responsible for contain information, links or information that we want to show.  Collapse <Panes> <cc1:AccordionPane ID="AccordionPane0" runat="server"> <Header>Matenimiento</Header> <Content> <li><a href="mypagina.aspx">My página de prueba</a></li> </Content> </cc1:AccordionPane> To end this work, we have to close all panels and our accordion Collapse </Panes> </cc1:Accordion> Finally complete our example should look like:  Collapse <asp:ScriptManager ID="ScriptManager1" runat="server"></asp:ScriptManager> <cc1:Accordion ID="AccordionCtrl" runat="server" SelectedIndex="0" HeaderCssClass="accordionHeader" ContentCssClass="accordionContent" AutoSize="None" FadeTransitions="true" TransitionDuration="250" FramesPerSecond="40"> <Panes> <cc1:AccordionPane ID="AccordionPane0" runat="server"> <Header>Matenimiento</Header> <Content> <li><a href="mypagina.aspx">My página de prueba</a></li> </Content> </cc1:AccordionPane> </Panes> </cc1:Accordion>

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Understanding 400 Bad Request Exception

    - by imran_ku07
        Introduction:          Why I am getting this exception? What is the cause of this error. Developers are always curious to know the root cause of an exception, even though they found the solution from elsewhere. So what is the reason of this exception (400 Bad Request).The answer is security. Security is an important feature for any application. ASP.NET try to his best to give you more secure application environment as possible. One important security feature is related to URLs. Because there are various ways a hacker can try to access server resource. Therefore it is important to make your application as secure as possible. Fortunately, ASP.NET provides this security by throwing an exception of Bad Request whenever he feels. In this Article I am try to present when ASP.NET feels to throw this exception. You will also see some new ASP.NET 4 features which gives developers some control on this situation.   Description:   http.sys Restrictions:           It is interesting to note that after deploying your application on windows server that runs IIS 6 or higher, the first receptionist of HTTP request is the kernel mode HTTP driver: http.sys. Therefore for completing your request successfully you need to present your validity to http.sys and must pass the http.sys restriction.           Every http request URL must not contain any character from ASCII range of 0x00 to 0x1F, because they are not printable. These characters are invalid because these are invalid URL characters as defined in RFC 2396 of the IETF. But a question may arise that how it is possible to send unprintable character. The answer is that when you send your request from your application in binary format.           Another restriction is on the size of the request. A request containg protocal, server name, headers, query string information and individual headers sent along with the request must not exceed 16KB. Also individual header should not exceed 16KB.           Any individual path segment (the portion of the URL that does not include protocol, server name, and query string, for example, http://a/b/c?d=e,  here the b and c are individual path) must not contain more than 260 characters. Also http.sys disallows URLs that have more than 255 path segments.           If any of the above rules are not follow then you will get 400 Bad Request Exception. The reason for this restriction is due to hack attacks against web servers involve encoding the URL with different character representations.           You can change the default behavior enforced by http.sys using some Registry switches present at HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\HTTP\Parameters    ASP.NET Restrictions:           After passing the restrictions enforced by the kernel mode http.sys then the request is handed off to IIS and then to ASP.NET engine and then again request has to pass some restriction from ASP.NET in order to complete it successfully.           ASP.NET only allows URL path lengths to 260 characters(only paths, for example http://a/b/c/d, here path is from a to d). This means that if you have long paths containing 261 characters then you will get the Bad Request exception. This is due to NTFS file-path limit.           Another restriction is that which characters can be used in URL path portion.You can use any characters except some characters because they are called invalid characters in path. Here are some of these invalid character in the path portion of a URL, <,>,*,%,&,:,\,?. For confirming this just right click on your Solution Explorer and Add New Folder and name this File to any of the above character, you will get the message. Files or folders cannot be empty strings nor they contain only '.' or have any of the following characters.....            For checking the above situation i have created a Web Application and put Default.aspx inside A%A folder (created from windows explorer), then navigate to, http://localhost:1234/A%25A/Default.aspx, what i get response from server is the Bad Request exception. The reason is that %25 is the % character which is invalid URL path character in ASP.NET. However you can use these characters in query string.           The reason for these restrictions are due to security, for example with the help of % you can double encode the URL path portion and : is used to get some specific resource from server.   New ASP.NET 4 Features:           It is worth to discuss the new ASP.NET 4 features that provides some control in the hand of developer. Previously we are restricted to 260 characters path length and restricted to not use some of characters, means these characters cannot become the part of the URL path segment.           You can configure maxRequestPathLength and maxQueryStringLength to allow longer or shorter paths and query strings. You can also customize set of invalid character using requestPathInvalidChars, under httpruntime element. This may be the good news for someone who needs to use some above character in their application which was invalid in previous versions. You can find further detail about new ASP.NET features about URL at here           Note that the above new ASP.NET settings will not effect http.sys. This means that you have pass the restriction of http.sys before ASP.NET ever come in to the action. Note also that previous restriction of http.sys is applied on individual path and maxRequestPathLength is applied on the complete path (the portion of the URL that does not include protocol, server name, and query string). For example, if URL is http://a/b/c/d?e=f, then maxRequestPathLength will takes, a/b/c/d, into account while http.sys will take a, b, c individually.   Summary:           Hopefully this will helps you to know how some of initial security features comes in to play, but i also recommend that you should read (at least first chapter called Initial Phases of a Web Request of) Professional ASP.NET 2.0 Security, Membership, and Role Management by Stefan Schackow. This is really a nice book.

    Read the article

  • Regression testing with Selenium GRID

    - by Ben Adderson
    A lot of software teams out there are tasked with supporting and maintaining systems that have grown organically over time, and the web team here at Red Gate is no exception. We're about to embark on our first significant refactoring endeavour for some time, and as such its clearly paramount that the code be tested thoroughly for regressions. Unfortunately we currently find ourselves with a codebase that isn't very testable - the three layers (database, business logic and UI) are currently tightly coupled. This leaves us with the unfortunate problem that, in order to confidently refactor the code, we need unit tests. But in order to write unit tests, we need to refactor the code :S To try and ease the initial pain of decoupling these layers, I've been looking into the idea of using UI automation to provide a sort of system-level regression test suite. The idea being that these tests can help us identify regressions whilst we work towards a more testable codebase, at which point the more traditional combination of unit and integration tests can take over. Ending up with a strong battery of UI tests is also a nice bonus :) Following on from my previous posts (here, here and here) I knew I wanted to use Selenium. I also figured that this would be a good excuse to put my xUnit [Browser] attribute to good use. Pretty quickly, I had a raft of tests that looked like the following (this particular example uses Reflector Pro). In a nut shell the test traverses our shopping cart and, for a particular combination of number of users and months of support, checks that the price calculations all come up with the correct values. [BrowserTheory] [Browser(Browsers.Firefox3_6, "http://www.red-gate.com")] public void Purchase1UserLicenceNoSupport(SeleniumProvider seleniumProvider) {     //Arrange     _browser = seleniumProvider.GetBrowser();     _browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                  //Act     _browser = ShoppingCartHelpers.TraverseShoppingCart(_browser, 1, 0, ".NET Reflector Pro");     //Assert     var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);         Assert.Equal(priceResult.Price, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.Equal(priceResult.Tax, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.Equal(priceResult.Total, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } These tests are pretty concise, with much of the common code in the TraverseShoppingCart() and GetNewPurchasePrice() methods. The (inevitable) problem arose when it came to execute these tests en masse. Selenium is a very slick tool, but it can't mask the fact that UI automation is very slow. To give you an idea, the set of cases that covers all of our products, for all combinations of users and support, came to 372 tests (for now only considering purchases in dollars). In the world of automated integration tests, that's a very manageable number. For unit tests, it's a trifle. However for UI automation, those 372 tests were taking just over two hours to run. Two hours may not sound like a lot, but those cases only cover one of the three currencies we deal with, and only one of the many different ways our systems can be asked to calculate a price. It was already pretty clear at this point that in order for this approach to be viable, I was going to have to find a way to speed things up. Up to this point I had been using Selenium Remote Control to automate Firefox, as this was the approach I had used previously and it had worked well. Fortunately,  the guys at SeleniumHQ also maintain a tool for executing multiple Selenium RC tests in parallel: Selenium Grid. Selenium Grid uses a central 'hub' to handle allocation of Selenium tests to individual RCs. The Remote Controls simply register themselves with the hub when they start, and then wait to be assigned work. The (for me) really clever part is that, as far as the client driver library is concerned, the grid hub looks exactly the same as a vanilla remote control. To create a new browser session against Selenium RC, the following C# code suffices: new DefaultSelenium("localhost", 4444, "*firefox", "http://www.red-gate.com"); This assumes that the RC is running on the local machine, and is listening on port 4444 (the default). Assuming the hub is running on your local machine, then to create a browser session in Selenium Grid, via the hub rather than directly against the control, the code is exactly the same! Behind the scenes, the hub will take this request and hand it off to one of the registered RCs that provides the "*firefox" execution environment. It will then pass all communications back and forth between the test runner and the remote control transparently. This makes running existing RC tests on a Selenium Grid a piece of cake, as the developers intended. For a more detailed description of exactly how Selenium Grid works, see this page. Once I had a test environment capable of running multiple tests in parallel, I needed a test runner capable of doing the same. Unfortunately, this does not currently exist for xUnit (boo!). MbUnit on the other hand, has the concept of concurrent execution baked right into the framework. So after swapping out my assembly references, and fixing up the resulting mismatches in assertions, my example test now looks like this: [Test] public void Purchase1UserLicenceNoSupport() {    //Arrange    ISelenium browser = BrowserHelpers.GetBrowser();    var db = DbHelpers.GetWebsiteDBDataContext();    browser.Start();    browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                 //Act     browser = ShoppingCartHelpers.TraverseShoppingCart(browser, 1, 0, ".NET Reflector Pro");    var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);    //Assert     Assert.AreEqual(priceResult.Price, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.AreEqual(priceResult.Tax, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.AreEqual(priceResult.Total, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } This is pretty much the same as the xUnit version. The exceptions are that the attributes have changed,  the //Arrange phase now has to handle setting up the ISelenium object, as the attribute that previously did this has gone away, and the test now sets up its own database connection. Previously I was using a shared database connection, but this approach becomes more complicated when tests are being executed concurrently. To avoid complexity each test has its own connection, which it is responsible for closing. For the sake of readability, I snipped out the code that closes the browser session and the db connection at the end of the test. With all that done, there was only one more step required before the tests would execute concurrently. It is necessary to tell the test runner which tests are eligible to run in parallel, via the [Parallelizable] attribute. This can be done at the test, fixture or assembly level. Since I wanted to run all tests concurrently, I marked mine at the assembly level in the AssemblyInfo.cs using the following: [assembly: DegreeOfParallelism(3)] [assembly: Parallelizable(TestScope.All)] The second attribute marks all tests in the assembly as [Parallelizable], whilst the first tells the test runner how many concurrent threads to use when executing the tests. I set mine to three since I was using 3 RCs in separate VMs. With everything now in place, I fired up the Icarus* test runner that comes with MbUnit. Executing my 372 tests three at a time instead of one at a time reduced the running time from 2 hours 10 minutes, to 55 minutes, that's an improvement of about 58%! I'd like to have seen an improvement of 66%, but I can understand that either inefficiencies in the hub code, my test environment or the test runner code (or some combination of all three most likely) contributes to a slightly diminished improvement. That said, I'd love to hear about any experience you have in upping this efficiency. Ultimately though, it was a saving that was most definitely worth having. It makes regression testing via UI automation a far more plausible prospect. The other obvious point to make is that this approach scales far better than executing tests serially. So if ever we need to improve performance, we just register additional RC's with the hub, and up the DegreeOfParallelism. *This was just my personal preference for a GUI runner. The MbUnit/Gallio installer also provides a command line runner, a TestDriven.net runner, and a Resharper 4.5 runner. For now at least, Resharper 5 isn't supported.

    Read the article

  • Integrating Flickr with ASP.Net application

    - by sreejukg
    Flickr is the popular photo management and sharing application offered by yahoo. The services from flicker allow you to store and share photos and videos online. Flicker offers strong API support for almost all services they provide. Using this API, developers can integrate photos to their public website. Since 2005, developers have collaborated on top of Flickr's APIs to build fun, creative, and gorgeous experiences around photos that extend beyond Flickr. In this article I am going to demonstrate how easily you can bring the photos stored on flicker to your website. Let me explain the scenario this article is trying to address. I have a flicker account where I upload photos and share in many ways offered by Flickr. Now I have a public website, instead of re-upload the photos again to public website, I want to show this from Flickr. Also I need complete control over what photo to display. So I went and referred the Flickr documentation and there is API support ready to address my scenario (and more… ). FlickerAPI for ASP.Net To Integrate Flicker with ASP.Net applications, there is a library available in CodePlex. You can find it here http://flickrnet.codeplex.com/ Visit the URL and download the latest version. The download includes a Zip file, when you unzip you will get a number of dlls. Since I am going to use ASP.Net application, I need FlickrNet.dll. See the screenshot of all the dlls, and there is a help file available in the download (.chm) for your reference. Once you have the dll, you need to use Flickr API from your website. I assume you have a flicker account and you are familiar with Flicker services. Arrange your photos using Sets in Flickr In flicker, you can define sets and add your uploaded photos to sets. You can compare set to photo album. A set is a logical collection of photos, which is an excellent option for you to categorize your photos. Typically you will have a number of sets each set having few photos. You can write application that brings photos from sets to your website. For the purpose of this article I already created a set Flickr and added some photos to it. Once you logged in to Flickr, you can see the Sets under the Menu. In the Sets page, you will see all the sets you have created. As you notice, you can see certain sample images I have uploaded just to test the functionality. Though I wish I couldn’t create good photos so please bear with me. I have created 2 photo sets named Blue Album and Red Album. Click on the image for the set, will take you to the corresponding set page. In the set “Red Album” there are 4 photos and the set has a unique ID (highlighted in the URL). You can simply retrieve the photos with the set id from your application. In this article I am going to retrieve the images from Red album in my ASP.Net page. For that First I need to setup FlickrAPI for my usage. Configure Flickr API Key As I mentioned, we are going to use Flickr API to retrieve the photos stored in Flickr. In order to get access to Flickr API, you need an API key. To create an API key, navigate to the URL http://www.flickr.com/services/apps/create/ Click on Request an API key link, now you need to tell Flickr whether your application in commercial or non-commercial. I have selected a non-commercial key. Now you need to enter certain information about your application. Once you enter the details, Click on the submit button. Now Flickr will create the API key for your application. Generating non-commercial API key is very easy, in couple of steps the key will be generated and you can use the key in your application immediately. ASP.Net application for retrieving photos Now we need write an ASP.Net application that display pictures from Flickr. Create an empty web application (I named this as FlickerIntegration) and add a reference to FlickerNet.dll. Add a web form page to the application where you will retrieve and display photos(I have named this as Gallery.aspx). After doing all these, the solution explorer will look similar to following. I have used the below code in the Gallery.aspx page. The output for the above code is as follows. I am going to explain the code line by line here. First it is adding a reference to the FlickrNet namespace. using FlickrNet; Then create a Flickr object by using your API key. Flickr f = new Flickr("<yourAPIKey>"); Now when you retrieve photos, you can decide what all fields you need to retrieve from Flickr. Every photo in Flickr contains lots of information. Retrieving all will affect the performance. For the demonstration purpose, I have retrieved all the available fields as follows. PhotoSearchExtras.All But if you want to specify the fields you can use logical OR operator(|). For e.g. the following statement will retrieve owner name and date taken. PhotoSearchExtras extraInfo = PhotoSearchExtras.OwnerName | PhotoSearchExtras.DateTaken; Then retrieve all the photos from a photo set using PhotoSetsGetPhotos method. I have passed the PhotoSearchExtras object created earlier. PhotosetPhotoCollection photos = f.PhotosetsGetPhotos("72157629872940852", extraInfo); The PhotoSetsGetPhotos method will return a collection of Photo objects. You can just navigate through the collection using a foreach statement. foreach (Photo p in photos) {     //access each photo properties } Photo class have lot of properties that map with the properties from Flickr. The chm documentation comes along with the CodePlex download is a great asset for you to understand the fields. In the above code I just used the following p.LargeUrl – retrieves the large image url for the photo. p.ThumbnailUrl – retrieves the thumbnail url for the photo p.Title – retrieves the Title of the photo p.DateUploaded – retrieves the date of upload Visual Studio intellisense will give you all properties, so it is easy, you can just try with Visual Studio intellisense to find the right properties you are looking for. Most of hem are self-explanatory. So you can try retrieving the required properties. In the above code, I just pushed the photos to the page. In real time you can use the retrieved photos along with JQuery libraries to create animated photo galleries, slideshows etc. Configuration and Troubleshooting If you get access denied error while executing the code, you need to disable the caching in Flickr API. FlickrNet cache the photos to your local disk when retrieved. You can specify a cache folder where the application need write permission. You can specify the Cache folder in the code as follows. Flickr.CacheLocation = Server.MapPath("./FlickerCache/"); If the application doesn’t have have write permission to the cache folder, the application will throw access denied error. If you cannot give write permission to the cache folder, then you must disable the caching. You can do this from code as follows. Flickr.CacheDisabled = true; Disabling cache will have an impact on the performance. Take care! Also you can define the Flickr settings in web.config file.You can find the documentation here. http://flickrnet.codeplex.com/wikipage?title=ExampleConfigFile&ProjectName=flickrnet Flickr is a great place for storing and sharing photos. The API access allows developers to do seamless integration with the photos uploaded on Flickr.

    Read the article

  • Using Radio Button in GridView with Validation

    - by Vincent Maverick Durano
    A developer is asking how to select one radio button at a time if the radio button is inside the GridView.  As you may know setting the group name attribute of radio button will not work if the radio button is located within a Data Representation control like GridView. This because the radio button inside the gridview bahaves differentely. Since a gridview is rendered as table element , at run time it will assign different "name" to each radio button. Hence you are able to select multiple rows. In this post I'm going to demonstrate how select one radio button at a time in gridview and add a simple validation on it. To get started let's go ahead and fire up visual studio and the create a new web application / website project. Add a WebForm and then add gridview. The mark up would look something like this: <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="false" > <Columns> <asp:TemplateField> <ItemTemplate> <asp:RadioButton ID="rb" runat="server" /> </ItemTemplate> </asp:TemplateField> <asp:BoundField DataField="RowNumber" HeaderText="Row Number" /> <asp:BoundField DataField="Col1" HeaderText="First Column" /> <asp:BoundField DataField="Col2" HeaderText="Second Column" /> </Columns> </asp:GridView> Noticed that I've added a templatefield column so that we can add the radio button there. Also I have set up some BoundField columns and set the DataFields as RowNumber, Col1 and Col2. These columns are just dummy columns and i used it for the simplicity of this example. Now where these columns came from? These columns are created by hand at the code behind file of the ASPX. Here's the code below: private DataTable FillData() { DataTable dt = new DataTable(); DataRow dr = null; //Create DataTable columns dt.Columns.Add(new DataColumn("RowNumber", typeof(string))); dt.Columns.Add(new DataColumn("Col1", typeof(string))); dt.Columns.Add(new DataColumn("Col2", typeof(string))); //Create Row for each columns dr = dt.NewRow(); dr["RowNumber"] = 1; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 2; dr["Col1"] = "AA"; dr["Col2"] = "BB"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 3; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 4; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); dr = dt.NewRow(); dr["RowNumber"] = 5; dr["Col1"] = "A"; dr["Col2"] = "B"; dt.Rows.Add(dr); return dt; } And here's the code for binding the GridView with the dummy data above. protected void Page_Load(object sender, EventArgs e) { if (!IsPostBack) { GridView1.DataSource = FillData(); GridView1.DataBind(); } } Okay we have now a GridView data with a radio button on each row. Now lets go ahead and switch back to ASPX mark up. In this example I'm going to use a JavaScript for validating the radio button to select one radio button at a time. Here's the javascript code below: function CheckOtherIsCheckedByGVID(rb) { var isChecked = rb.checked; var row = rb.parentNode.parentNode; if (isChecked) { row.style.backgroundColor = '#B6C4DE'; row.style.color = 'black'; } var currentRdbID = rb.id; parent = document.getElementById("<%= GridView1.ClientID %>"); var items = parent.getElementsByTagName('input'); for (i = 0; i < items.length; i++) { if (items[i].id != currentRdbID && items[i].type == "radio") { if (items[i].checked) { items[i].checked = false; items[i].parentNode.parentNode.style.backgroundColor = 'white'; items[i].parentNode.parentNode.style.color = '#696969'; } } } } The function above sets the row of the current selected radio button's style to determine that the row is selected and then loops through the radio buttons in the gridview and then de-select the previous selected radio button and set the row style back to its default. You can then call the javascript function above at onlick event of radio button like below: <asp:RadioButton ID="rb" runat="server" onclick="javascript:CheckOtherIsCheckedByGVID(this);" /> Here's the output below: On Load: After Selecting a Radio Button: As you have noticed, on initial load there's no default selected radio in the GridView. Now let's add a simple validation for that. We will basically display an error message if a user clicks a button that triggers a postback without selecting  a radio button in the GridView. Here's the javascript for the validation: function ValidateRadioButton(sender, args) { var gv = document.getElementById("<%= GridView1.ClientID %>"); var items = gv.getElementsByTagName('input'); for (var i = 0; i < items.length ; i++) { if (items[i].type == "radio") { if (items[i].checked) { args.IsValid = true; return; } else { args.IsValid = false; } } } } The function above loops through the rows in gridview and find all the radio buttons within it. It will then check each radio button checked property. If a radio is checked then set IsValid to true else set it to false.  The reason why I'm using IsValid is because I'm using the ASP validator control for validation. Now add the following mark up below under the GridView declaration: <br /> <asp:Label ID="lblMessage" runat="server" /> <br /> <asp:Button ID="btn" runat="server" Text="POST" onclick="btn_Click" ValidationGroup="GroupA" /> <asp:CustomValidator ID="CustomValidator1" runat="server" ErrorMessage="Please select row in the grid." ClientValidationFunction="ValidateRadioButton" ValidationGroup="GroupA" style="display:none"></asp:CustomValidator> <asp:ValidationSummary ID="ValidationSummary1" runat="server" ValidationGroup="GroupA" HeaderText="Error List:" DisplayMode="BulletList" ForeColor="Red" /> And then at Button Click event add this simple code below just to test if  the validation works: protected void btn_Click(object sender, EventArgs e) { lblMessage.Text = "Postback at: " + DateTime.Now.ToString("hh:mm:ss tt"); } Here's the output below that you can see in the browser:   That's it! I hope someone find this post useful! Technorati Tags: ASP.NET,JavaScript,GridView

    Read the article

  • TFS 2010 SDK: Smart Merge - Programmatically Create your own Merge Tool

    - by Tarun Arora
    Technorati Tags: Team Foundation Server 2010,TFS SDK,TFS API,TFS Merge Programmatically,TFS Work Items Programmatically,TFS Administration Console,ALM   The information available in the Merge window in Team Foundation Server 2010 is very important in the decision making during the merging process. However, at present the merge window shows very limited information, more that often you are interested to know the work item, files modified, code reviewer notes, policies overridden, etc associated with the change set. Our friends at Microsoft are working hard to change the game again with vNext, but because at present the merge window is a model window you have to cancel the merge process and go back one after the other to check the additional information you need. If you can relate to what i am saying, you will enjoy this blog post! I will show you how to programmatically create your own merging window using the TFS 2010 API. A few screen shots of the WPF TFS 2010 API – Custom Merging Application that we will be creating programmatically, Excited??? Let’s start coding… 1. Get All Team Project Collections for the TFS Server You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetAllTeamProjectCollections() 2: { 3: TfsConfigurationServer configurationServer = 4: TfsConfigurationServerFactory. 5: GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 6: 7: CatalogNode catalogNode = configurationServer.CatalogNode; 8: return catalogNode.QueryChildren(new Guid[] 9: { CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: } 2. Get All Team Projects for the selected Team Project Collection You can read more on connecting to TFS programmatically on my blog post => How to connect to TFS Programmatically 1: public static ReadOnlyCollection<CatalogNode> GetTeamProjects(string instanceId) 2: { 3: ReadOnlyCollection<CatalogNode> teamProjects = null; 4: 5: TfsConfigurationServer configurationServer = 6: TfsConfigurationServerFactory.GetConfigurationServer(new Uri("http://xxx:8080/tfs/")); 7: 8: CatalogNode catalogNode = configurationServer.CatalogNode; 9: var teamProjectCollections = catalogNode.QueryChildren(new Guid[] {CatalogResourceTypes.ProjectCollection }, 10: false, CatalogQueryOptions.None); 11: 12: foreach (var teamProjectCollection in teamProjectCollections) 13: { 14: if (string.Compare(teamProjectCollection.Resource.Properties["InstanceId"], instanceId, true) == 0) 15: { 16: teamProjects = teamProjectCollection.QueryChildren(new Guid[] { CatalogResourceTypes.TeamProject }, false, 17: CatalogQueryOptions.None); 18: } 19: } 20: 21: return teamProjects; 22: } 3. Get All Branches with in a Team Project programmatically I will be passing the name of the Team Project for which i want to retrieve all the branches. When consuming the ‘Version Control Service’ you have the method QueryRootBranchObjects, you need to pass the recursion type => none, one, full. Full implies you are interested in all branches under that root branch. 1: public static List<BranchObject> GetParentBranch(string projectName) 2: { 3: var branches = new List<BranchObject>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<teamProjectName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var allBranches = versionControl.QueryRootBranchObjects(RecursionType.Full); 9: 10: foreach (var branchObject in allBranches) 11: { 12: if (branchObject.Properties.RootItem.Item.ToUpper().Contains(projectName.ToUpper())) 13: { 14: branches.Add(branchObject); 15: } 16: } 17: 18: return branches; 19: } 4. Get All Branches associated to the Parent Branch Programmatically Now that we have the parent branch, it is important to retrieve all child branches of that parent branch. Lets see how we can achieve this using the TFS API. 1: public static List<ItemIdentifier> GetChildBranch(string parentBranch) 2: { 3: var branches = new List<ItemIdentifier>(); 4: 5: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 6: var versionControl = tfs.GetService<VersionControlServer>(); 7: 8: var i = new ItemIdentifier(parentBranch); 9: var allBranches = 10: versionControl.QueryBranchObjects(i, RecursionType.None); 11: 12: foreach (var branchObject in allBranches) 13: { 14: foreach (var childBranche in branchObject.ChildBranches) 15: { 16: branches.Add(childBranche); 17: } 18: } 19: 20: return branches; 21: } 5. Get Merge candidates between two branches Programmatically Now that we have the parent and the child branch that we are interested to perform a merge between we will use the method ‘GetMergeCandidates’ in the namespace ‘Microsoft.TeamFoundation.VersionControl.Client’ => http://msdn.microsoft.com/en-us/library/bb138934(v=VS.100).aspx 1: public static MergeCandidate[] GetMergeCandidates(string fromBranch, string toBranch) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetMergeCandidates(fromBranch, toBranch, RecursionType.Full); 7: } 6. Get changeset details Programatically Now that we have the changeset id that we are interested in, we can get details of the changeset. The Changeset object contains the properties => http://msdn.microsoft.com/en-us/library/microsoft.teamfoundation.versioncontrol.client.changeset.aspx - Changes: Gets or sets an array of Change objects that comprise this changeset. - CheckinNote: Gets or sets the check-in note of the changeset. - Comment: Gets or sets the comment of the changeset. - PolicyOverride: Gets or sets the policy override information of this changeset. - WorkItems: Gets an array of work items that are associated with this changeset. 1: public static Changeset GetChangeSetDetails(int changeSetId) 2: { 3: var tfs = TfsTeamProjectCollectionFactory.GetTeamProjectCollection(new Uri("http://<ServerName>:8080/tfs/<CollectionName>")); 4: var versionControl = tfs.GetService<VersionControlServer>(); 5: 6: return versionControl.GetChangeset(changeSetId); 7: } 7. Possibilities In future posts i will try and extend this idea to explore further possibilities, but few features that i am sure will further help during the merge decision making process would be, - View changed files - Compare modified file with current/previous version - Merge Preview - Last Merge date Any other features that you can think of?

    Read the article

  • Metro: Introduction to the WinJS ListView Control

    - by Stephen.Walther
    The goal of this blog entry is to provide a quick introduction to the ListView control – just the bare minimum that you need to know to start using the control. When building Metro style applications using JavaScript, the ListView control is the primary control that you use for displaying lists of items. For example, if you are building a product catalog app, then you can use the ListView control to display the list of products. The ListView control supports several advanced features that I plan to discuss in future blog entries. For example, you can group the items in a ListView, you can create master/details views with a ListView, and you can efficiently work with large sets of items with a ListView. In this blog entry, we’ll keep things simple and focus on displaying a list of products. There are three things that you need to do in order to display a list of items with a ListView: Create a data source Create an Item Template Declare the ListView Creating the ListView Data Source The first step is to create (or retrieve) the data that you want to display with the ListView. In most scenarios, you will want to bind a ListView to a WinJS.Binding.List object. The nice thing about the WinJS.Binding.List object is that it enables you to take a standard JavaScript array and convert the array into something that can be bound to the ListView. It doesn’t matter where the JavaScript array comes from. It could be a static array that you declare or you could retrieve the array as the result of an Ajax call to a remote server. The following JavaScript file – named products.js – contains a list of products which can be bound to a ListView. (function () { "use strict"; var products = new WinJS.Binding.List([ { name: "Milk", price: 2.44 }, { name: "Oranges", price: 1.99 }, { name: "Wine", price: 8.55 }, { name: "Apples", price: 2.44 }, { name: "Steak", price: 1.99 }, { name: "Eggs", price: 2.44 }, { name: "Mushrooms", price: 1.99 }, { name: "Yogurt", price: 2.44 }, { name: "Soup", price: 1.99 }, { name: "Cereal", price: 2.44 }, { name: "Pepsi", price: 1.99 } ]); WinJS.Namespace.define("ListViewDemos", { products: products }); })(); The products variable represents a WinJS.Binding.List object. This object is initialized with a plain-old JavaScript array which represents an array of products. To avoid polluting the global namespace, the code above uses the module pattern and exposes the products using a namespace. The list of products is exposed to the world as ListViewDemos.products. To learn more about the module pattern and namespaces in WinJS, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/22/metro-namespaces-and-modules.aspx Creating the ListView Item Template The ListView control does not know how to render anything. It doesn’t know how you want each list item to appear. To get the ListView control to render something useful, you must create an Item Template. Here’s what our template for rendering an individual product looks like: <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> This template displays the product name and price from the data source. Normally, you will declare your template in the same file as you declare the ListView control. In our case, both the template and ListView are declared in the default.html file. To learn more about templates, see my earlier blog entry: http://stephenwalther.com/blog/archive/2012/02/27/metro-using-templates.aspx Declaring the ListView The final step is to declare the ListView control in a page. Here’s the markup for declaring a ListView: <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> You declare a ListView by adding the data-win-control to an HTML DIV tag. The data-win-options attribute is used to set two properties of the ListView. The ListView is associated with its data source with the itemDataSource property. Notice that the data source is ListViewDemos.products.dataSource and not just ListViewDemos.products. You need to associate the ListView with the dataSoure property. The ListView is associated with its item template with the help of the itemTemplate property. The ID of the item template — #productTemplate – is used to select the template from the page. Here’s what the complete version of the default.html page looks like: <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title>ListViewDemos</title> <!-- WinJS references --> <link href="//Microsoft.WinJS.0.6/css/ui-dark.css" rel="stylesheet"> <script src="//Microsoft.WinJS.0.6/js/base.js"></script> <script src="//Microsoft.WinJS.0.6/js/ui.js"></script> <!-- ListViewDemos references --> <link href="/css/default.css" rel="stylesheet"> <script src="/js/default.js"></script> <script src="/js/products.js" type="text/javascript"></script> <style type="text/css"> .product { width: 200px; height: 100px; border: white solid 1px; } </style> </head> <body> <div id="productTemplate" data-win-control="WinJS.Binding.Template"> <div class="product"> <span data-win-bind="innerText:name"></span> <span data-win-bind="innerText:price"></span> </div> </div> <div data-win-control="WinJS.UI.ListView" data-win-options="{ itemDataSource:ListViewDemos.products.dataSource, itemTemplate:select('#productTemplate') }"> </div> </body> </html> Notice that the page above includes a reference to the products.js file: <script src=”/js/products.js” type=”text/javascript”></script> The page above also contains a Template control which contains the ListView item template. Finally, the page includes the declaration of the ListView control. Summary The goal of this blog entry was to describe the minimal set of steps which you must complete to use the WinJS ListView control to display a simple list of items. You learned how to create a data source, declare an item template, and declare a ListView control.

    Read the article

  • June 2013 Release of the Ajax Control Toolkit

    - by Stephen.Walther
    I’m happy to announce the June 2013 release of the Ajax Control Toolkit. For this release, we enhanced the AjaxFileUpload control to support uploading files directly to Windows Azure. We also improved the SlideShow control by adding support for CSS3 animations. You can get the latest release of the Ajax Control Toolkit by visiting the project page at CodePlex (http://AjaxControlToolkit.CodePlex.com). Alternatively, you can execute the following NuGet command from the Visual Studio Library Package Manager window: Uploading Files to Azure The AjaxFileUpload control enables you to efficiently upload large files and display progress while uploading. With this release, we’ve added support for uploading large files directly to Windows Azure Blob Storage (You can continue to upload to your server hard drive if you prefer). Imagine, for example, that you have created an Azure Blob Storage container named pictures. In that case, you can use the following AjaxFileUpload control to upload to the container: <toolkit:ToolkitScriptManager runat="server" /> <toolkit:AjaxFileUpload ID="AjaxFileUpload1" StoreToAzure="true" AzureContainerName="pictures" runat="server" /> Notice that the AjaxFileUpload control is declared with two properties related to Azure. The StoreToAzure property causes the AjaxFileUpload control to upload a file to Azure instead of the local computer. The AzureContainerName property points to the blob container where the file is uploaded. .int3{position:absolute;clip:rect(487px,auto,auto,444px);}SMALL cash advance VERY CHEAP To use the AjaxFileUpload control, you need to modify your web.config file so it contains some additional settings. You need to configure the AjaxFileUpload handler and you need to point your Windows Azure connection string to your Blob Storage account. <configuration> <appSettings> <!--<add key="AjaxFileUploadAzureConnectionString" value="UseDevelopmentStorage=true"/>--> <add key="AjaxFileUploadAzureConnectionString" value="DefaultEndpointsProtocol=https;AccountName=testact;AccountKey=RvqL89Iw4npvPlAAtpOIPzrinHkhkb6rtRZmD0+ojZupUWuuAVJRyyF/LIVzzkoN38I4LSr8qvvl68sZtA152A=="/> </appSettings> <system.web> <compilation debug="true" targetFramework="4.5" /> <httpRuntime targetFramework="4.5" /> <httpHandlers> <add verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </httpHandlers> </system.web> <system.webServer> <validation validateIntegratedModeConfiguration="false" /> <handlers> <add name="AjaxFileUploadHandler" verb="*" path="AjaxFileUploadHandler.axd" type="AjaxControlToolkit.AjaxFileUploadHandler, AjaxControlToolkit"/> </handlers> <security> <requestFiltering> <requestLimits maxAllowedContentLength="4294967295"/> </requestFiltering> </security> </system.webServer> </configuration> You supply the connection string for your Azure Blob Storage account with the AjaxFileUploadAzureConnectionString property. If you set the value “UseDevelopmentStorage=true” then the AjaxFileUpload will upload to the simulated Blob Storage on your local machine. After you create the necessary configuration settings, you can use the AjaxFileUpload control to upload files directly to Azure (even very large files). Here’s a screen capture of how the AjaxFileUpload control appears in Google Chrome: After the files are uploaded, you can view the uploaded files in the Windows Azure Portal. You can see that all 5 files were uploaded successfully: New AjaxFileUpload Events In response to user feedback, we added two new events to the AjaxFileUpload control (on both the server and the client): · UploadStart – Raised on the server before any files have been uploaded. · UploadCompleteAll – Raised on the server when all files have been uploaded. · OnClientUploadStart – The name of a function on the client which is called before any files have been uploaded. · OnClientUploadCompleteAll – The name of a function on the client which is called after all files have been uploaded. These new events are most useful when uploading multiple files at a time. The updated AjaxFileUpload sample page demonstrates how to use these events to show the total amount of time required to upload multiple files (see the AjaxFileUpload.aspx file in the Ajax Control Toolkit sample site). SlideShow Animated Slide Transitions With this release of the Ajax Control Toolkit, we also added support for CSS3 animations to the SlideShow control. The animation is used when transitioning from one slide to another. Here’s the complete list of animations: · FadeInFadeOut · ScaleX · ScaleY · ZoomInOut · Rotate · SlideLeft · SlideDown You specify the animation which you want to use by setting the SlideShowAnimationType property. For example, here is how you would use the Rotate animation when displaying a set of slides: <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSlideShow.aspx.cs" Inherits="TestACTJune2013.ShowSlideShow" %> <%@ Register TagPrefix="toolkit" Namespace="AjaxControlToolkit" Assembly="AjaxControlToolkit" %> <script runat="Server" type="text/C#"> [System.Web.Services.WebMethod] [System.Web.Script.Services.ScriptMethod] public static AjaxControlToolkit.Slide[] GetSlides() { return new AjaxControlToolkit.Slide[] { new AjaxControlToolkit.Slide("slides/Blue hills.jpg", "Blue Hills", "Go Blue"), new AjaxControlToolkit.Slide("slides/Sunset.jpg", "Sunset", "Setting sun"), new AjaxControlToolkit.Slide("slides/Winter.jpg", "Winter", "Wintery..."), new AjaxControlToolkit.Slide("slides/Water lilies.jpg", "Water lillies", "Lillies in the water"), new AjaxControlToolkit.Slide("slides/VerticalPicture.jpg", "Sedona", "Portrait style picture") }; } </script> <!DOCTYPE html> <html > <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div> <toolkit:ToolkitScriptManager ID="ToolkitScriptManager1" runat="server" /> <asp:Image ID="Image1" Height="300" Runat="server" /> <toolkit:SlideShowExtender ID="SlideShowExtender1" TargetControlID="Image1" SlideShowServiceMethod="GetSlides" AutoPlay="true" Loop="true" SlideShowAnimationType="Rotate" runat="server" /> </div> </form> </body> </html> In the code above, the set of slides is exposed by a page method named GetSlides(). The SlideShowAnimationType property is set to the value Rotate. The following animated GIF gives you an idea of the resulting slideshow: If you want to use either the SlideDown or SlideRight animations, then you must supply both an explicit width and height for the Image control which is the target of the SlideShow extender. For example, here is how you would declare an Image and SlideShow control to use a SlideRight animation: <toolkit:ToolkitScriptManager ID="ToolkitScriptManager1" runat="server" /> <asp:Image ID="Image1" Height="300" Width="300" Runat="server" /> <toolkit:SlideShowExtender ID="SlideShowExtender1" TargetControlID="Image1" SlideShowServiceMethod="GetSlides" AutoPlay="true" Loop="true" SlideShowAnimationType="SlideRight" runat="server" /> Notice that the Image control includes both a Height and Width property. Here’s an approximation of this animation using an animated GIF: Summary The Superexpert team worked hard on this release. We hope you like the new improvements to both the AjaxFileUpload and the SlideShow controls. We’d love to hear your feedback in the comments. On to the next sprint!

    Read the article

  • CI Deployment Of Azure Web Roles Using TeamCity

    - by srkirkland
    After recently migrating an important new website to use Windows Azure “Web Roles” I wanted an easier way to deploy new versions to the Azure Staging environment as well as a reliable process to rollback deployments to a certain “known good” source control commit checkpoint.  By configuring our JetBrains’ TeamCity CI server to utilize Windows Azure PowerShell cmdlets to create new automated deployments, I’ll show you how to take control of your Azure publish process. Step 0: Configuring your Azure Project in Visual Studio Before we can start looking at automating the deployment, we should make sure manual deployments from Visual Studio are working properly.  Detailed information for setting up deployments can be found at http://msdn.microsoft.com/en-us/library/windowsazure/ff683672.aspx#PublishAzure or by doing some quick Googling, but the basics are as follows: Install the prerequisite Windows Azure SDK Create an Azure project by right-clicking on your web project and choosing “Add Windows Azure Cloud Service Project” (or by manually adding that project type) Configure your Role and Service Configuration/Definition as desired Right-click on your azure project and choose “Publish,” create a publish profile, and push to your web role You don’t actually have to do step #4 and create a publish profile, but it’s a good exercise to make sure everything is working properly.  Once your Windows Azure project is setup correctly, we are ready to move on to understanding the Azure Publish process. Understanding the Azure Publish Process The actual Windows Azure project is fairly simple at its core—it builds your dependent roles (in our case, a web role) against a specific service and build configuration, and outputs two files: ServiceConfiguration.Cloud.cscfg: This is just the file containing your package configuration info, for example Instance Count, OsFamily, ConnectionString and other Setting information. ProjectName.Azure.cspkg: This is the package file that contains the guts of your deployment, including all deployable files. When you package your Azure project, these two files will be created within the directory ./[ProjectName].Azure/bin/[ConfigName]/app.publish/.  If you want to build your Azure Project from the command line, it’s as simple as calling MSBuild on the “Publish” target: msbuild.exe /target:Publish Windows Azure PowerShell Cmdlets The last pieces of the puzzle that make CI automation possible are the Azure PowerShell Cmdlets (http://msdn.microsoft.com/en-us/library/windowsazure/jj156055.aspx).  These cmdlets are what will let us create deployments without Visual Studio or other user intervention. Preparing TeamCity for Azure Deployments Now we are ready to get our TeamCity server setup so it can build and deploy Windows Azure projects, which we now know requires the Azure SDK and the Windows Azure PowerShell Cmdlets. Installing the Azure SDK is easy enough, just go to https://www.windowsazure.com/en-us/develop/net/ and click “Install” Once this SDK is installed, I recommend running a test build to make sure your project is building correctly.  You’ll want to setup your build step using MSBuild with the “Publish” target against your solution file.  Mine looks like this: Assuming the build was successful, you will now have the two *.cspkg and *cscfg files within your build directory.  If the build was red (failed), take a look at the build logs and keep an eye out for “unsupported project type” or other build errors, which will need to be addressed before the CI deployment can be completed. With a successful build we are now ready to install and configure the Windows Azure PowerShell Cmdlets: Follow the instructions at http://msdn.microsoft.com/en-us/library/windowsazure/jj554332 to install the Cmdlets and configure PowerShell After installing the Cmdlets, you’ll need to get your Azure Subscription Info using the Get-AzurePublishSettingsFile command. Store the resulting *.publishsettings file somewhere you can get to easily, like C:\TeamCity, because you will need to reference it later from your deploy script. Scripting the CI Deploy Process Now that the cmdlets are installed on our TeamCity server, we are ready to script the actual deployment using a TeamCity “PowerShell” build runner.  Before we look at any code, here’s a breakdown of our deployment algorithm: Setup your variables, including the location of the *.cspkg and *cscfg files produced in the earlier MSBuild step (remember, the folder is something like [ProjectName].Azure/bin/[ConfigName]/app.publish/ Import the Windows Azure PowerShell Cmdlets Import and set your Azure Subscription information (this is basically your authentication/authorization step, so protect your settings file Now look for a current deployment, and if you find one Upgrade it, else Create a new deployment Pretty simple and straightforward.  Now let’s look at the code (also available as a gist here: https://gist.github.com/3694398): $subscription = "[Your Subscription Name]" $service = "[Your Azure Service Name]" $slot = "staging" #staging or production $package = "[ProjectName]\bin\[BuildConfigName]\app.publish\[ProjectName].cspkg" $configuration = "[ProjectName]\bin\[BuildConfigName]\app.publish\ServiceConfiguration.Cloud.cscfg" $timeStampFormat = "g" $deploymentLabel = "ContinuousDeploy to $service v%build.number%"   Write-Output "Running Azure Imports" Import-Module "C:\Program Files (x86)\Microsoft SDKs\Windows Azure\PowerShell\Azure\*.psd1" Import-AzurePublishSettingsFile "C:\TeamCity\[PSFileName].publishsettings" Set-AzureSubscription -CurrentStorageAccount $service -SubscriptionName $subscription   function Publish(){ $deployment = Get-AzureDeployment -ServiceName $service -Slot $slot -ErrorVariable a -ErrorAction silentlycontinue   if ($a[0] -ne $null) { Write-Output "$(Get-Date -f $timeStampFormat) - No deployment is detected. Creating a new deployment. " } if ($deployment.Name -ne $null) { #Update deployment inplace (usually faster, cheaper, won't destroy VIP) Write-Output "$(Get-Date -f $timeStampFormat) - Deployment exists in $servicename. Upgrading deployment." UpgradeDeployment } else { CreateNewDeployment } }   function CreateNewDeployment() { write-progress -id 3 -activity "Creating New Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: In progress"   $opstat = New-AzureDeployment -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Creating New Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Creating New Deployment: Complete, Deployment ID: $completeDeploymentID" }   function UpgradeDeployment() { write-progress -id 3 -activity "Upgrading Deployment" -Status "In progress" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: In progress"   # perform Update-Deployment $setdeployment = Set-AzureDeployment -Upgrade -Slot $slot -Package $package -Configuration $configuration -label $deploymentLabel -ServiceName $service -Force   $completeDeployment = Get-AzureDeployment -ServiceName $service -Slot $slot $completeDeploymentID = $completeDeployment.deploymentid   write-progress -id 3 -activity "Upgrading Deployment" -completed -Status "Complete" Write-Output "$(Get-Date -f $timeStampFormat) - Upgrading Deployment: Complete, Deployment ID: $completeDeploymentID" }   Write-Output "Create Azure Deployment" Publish   Creating the TeamCity Build Step The only thing left is to create a second build step, after your MSBuild “Publish” step, with the build runner type “PowerShell”.  Then set your script to “Source Code,” the script execution mode to “Put script into PowerShell stdin with “-Command” arguments” and then copy/paste in the above script (replacing the placeholder sections with your values).  This should look like the following:   Wrap Up After combining the MSBuild /target:Publish step (which creates the necessary Windows Azure *.cspkg and *.cscfg files) and a PowerShell script step which utilizes the Azure PowerShell Cmdlets, we have a fully deployable build configuration in TeamCity.  You can configure this step to run whenever you’d like using build triggers – for example, you could even deploy whenever a new master branch deploy comes in and passes all required tests. In the script I’ve hardcoded that every deployment goes to the Staging environment on Azure, but you could deploy straight to Production if you want to, or even setup a deployment configuration variable and set it as desired. After your TeamCity Build Configuration is complete, you’ll see something that looks like this: Whenever you click the “Run” button, all of your code will be compiled, published, and deployed to Windows Azure! One additional enormous benefit of automating the process this way is that you can easily deploy any specific source control changeset by clicking the little ellipsis button next to "Run.”  This will bring up a dialog like the one below, where you can select the last change to use for your deployment.  Since Azure Web Role deployments don’t have any rollback functionality, this is a critical feature.   Enjoy!

    Read the article

< Previous Page | 122 123 124 125 126 127 128 129 130 131 132 133  | Next Page >