Search Results

Search found 31491 results on 1260 pages for 'simple talk'.

Page 126/1260 | < Previous Page | 122 123 124 125 126 127 128 129 130 131 132 133  | Next Page >

  • The Running Cost of Azure - MSDN Offer

    - by RobbieT
    Richard recently blogged about getting the Red Gate Labs website onto Azure; it's been running awhile now and, as Richard makes sure the cogs are all turning, I've been trying to track the cost. We decided to launch on Windows Azure as both an exercise in using Azure and also getting to grips with hosting stuff in the cloud. If you have an MSDN subscription then you're eligible for an offer which looks pretty great: What the offer amounted to was a small compute instance, a bunch of storage...(read more)

    Read the article

  • SQL Monitor and "The Cloud"

    - by Richard Mitchell
    So, how can we demo this thing? In the beginning there was a product, and it was a good product for the testers had decreed it so, and nobody argues with a tester. But then comes the inevitable question of how can somebody test it out without risk. Red Gate prides itself on the tools being easy for people to trial before they buy, and no cut down trial for you sir, oh no, for you sir only the best will do - a fully functional trial - suits you sir. The problem The problem comes when you get a...(read more)

    Read the article

  • What if you could work on anything you wanted?

    - by red@work
    This week we've downed our tools and organised ourselves into small project teams or struck out alone. We're working on whatever we like, with whoever we like, wherever we like. We've called it Down Tools week and so far it's a blast. It all started a few months ago with an idea from Neil, our CEO. Neil wanted to capture the excitement, innovation, and productivity of Coding by the Sea and extend this to all Red Gaters working in Product Development. A brainstorm is always a good place to start for an "anything goes" project. Half of Red Gate piled into our largest meeting room (it's pretty big) armed with flip charts, post its and a heightened sense of possibility. An hour or so later our SQL Servery walls were covered in project ideas. So what would you do, if you could work on anything you wanted? Many projects are related to tools we already make, others are for internal product development use and some are, well, just something completely different. Someone suggested we point a web cam at the SQL Servery lunch queue so we can check it before heading to lunch. That one couldn't wait for Down Tools Week. It was up and running within a few days and even better, it captures the table tennis table too. Thursday is the Show and Tell - I am looking forward to seeing what everyone has come up with. Some of the projects will turn into new products or features so this probably isn't the time or place to go into detail of what is being worked on. Rest assured, you'll hear all about it! We're making a video as we go along too which will be up on our website as soon. In the meantime, all meetings are cancelled, we've got plenty of food in and people are being very creative with the £500 expenses budget (Richard, do you really need an iPad?). It's brilliant to see it all coming together from the idea stage to reality. Catch up with our progress by following #downtoolsweek on Twitter. Who knows, maybe a future Red Gate flagship tool is coming to life right now? By the way, it's business as usual for our customer facing and internal operations teams. Hmm, maybe we can all down tools for a week and ask Product Development to hold the fort? Post by: Alice Chapman

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 2

    - by Simon Cooper
    Before we look any further at the CLR metadata, we need a quick diversion to understand how the metadata is actually stored. Encoding table information As an example, we'll have a look at a row in the TypeDef table. According to the spec, each TypeDef consists of the following: Flags specifying various properties of the class, including visibility. The name of the type. The namespace of the type. What type this type extends. The field list of this type. The method list of this type. How is all this data actually represented? Offset & RID encoding Most assemblies don't need to use a 4 byte value to specify heap offsets and RIDs everywhere, however we can't hard-code every offset and RID to be 2 bytes long as there could conceivably be more than 65535 items in a heap or more than 65535 fields or types defined in an assembly. So heap offsets and RIDs are only represented in the full 4 bytes if it is required; in the header information at the top of the #~ stream are 3 bits indicating if the #Strings, #GUID, or #Blob heaps use 2 or 4 bytes (the #US stream is not accessed from metadata), and the rowcount of each table. If the rowcount for a particular table is greater than 65535 then all RIDs referencing that table throughout the metadata use 4 bytes, else only 2 bytes are used. Coded tokens Not every field in a table row references a single predefined table. For example, in the TypeDef extends field, a type can extend another TypeDef (a type in the same assembly), a TypeRef (a type in a different assembly), or a TypeSpec (an instantiation of a generic type). A token would have to be used to let us specify the table along with the RID. Tokens are always 4 bytes long; again, this is rather wasteful of space. Cutting the RID down to 2 bytes would make each token 3 bytes long, which isn't really an optimum size for computers to read from memory or disk. However, every use of a token in the metadata tables can only point to a limited subset of the metadata tables. For the extends field, we only need to be able to specify one of 3 tables, which we can do using 2 bits: 0x0: TypeDef 0x1: TypeRef 0x2: TypeSpec We could therefore compress the 4-byte token that would otherwise be needed into a coded token of type TypeDefOrRef. For each type of coded token, the least significant bits encode the table the token points to, and the rest of the bits encode the RID within that table. We can work out whether each type of coded token needs 2 or 4 bytes to represent it by working out whether the maximum RID of every table that the coded token type can point to will fit in the space available. The space available for the RID depends on the type of coded token; a TypeOrMethodDef coded token only needs 1 bit to specify the table, leaving 15 bits available for the RID before a 4-byte representation is needed, whereas a HasCustomAttribute coded token can point to one of 18 different tables, and so needs 5 bits to specify the table, only leaving 11 bits for the RID before 4 bytes are needed to represent that coded token type. For example, a 2-byte TypeDefOrRef coded token with the value 0x0321 has the following bit pattern: 0 3 2 1 0000 0011 0010 0001 The first two bits specify the table - TypeRef; the other bits specify the RID. Because we've used the first two bits, we've got to shift everything along two bits: 000000 1100 1000 This gives us a RID of 0xc8. If any one of the TypeDef, TypeRef or TypeSpec tables had more than 16383 rows (2^14 - 1), then 4 bytes would need to be used to represent all TypeDefOrRef coded tokens throughout the metadata tables. Lists The third representation we need to consider is 1-to-many references; each TypeDef refers to a list of FieldDef and MethodDef belonging to that type. If we were to specify every FieldDef and MethodDef individually then each TypeDef would be very large and a variable size, which isn't ideal. There is a way of specifying a list of references without explicitly specifying every item; if we order the MethodDef and FieldDef tables by the owning type, then the field list and method list in a TypeDef only have to be a single RID pointing at the first FieldDef or MethodDef belonging to that type; the end of the list can be inferred by the field list and method list RIDs of the next row in the TypeDef table. Going back to the TypeDef If we have a look back at the definition of a TypeDef, we end up with the following reprensentation for each row: Flags - always 4 bytes Name - a #Strings heap offset. Namespace - a #Strings heap offset. Extends - a TypeDefOrRef coded token. FieldList - a single RID to the FieldDef table. MethodList - a single RID to the MethodDef table. So, depending on the number of entries in the heaps and tables within the assembly, the rows in the TypeDef table can be as small as 14 bytes, or as large as 24 bytes. Now we've had a look at how information is encoded within the metadata tables, in the next post we can see how they are arranged on disk.

    Read the article

  • What Counts For a DBA: Replaceable

    - by Louis Davidson
    Replaceable is what every employee in every company instinctively strives not to be. Yet, if you’re an irreplaceable DBA, meaning that the company couldn’t find someone else who could do what you do, then you’re not doing a great job. A good DBA is replaceable. I imagine some of you are already reaching for the lighter fluid, about to set the comments section ablaze, but before you destroy a perfectly good Commodore 64, read on… Everyone is replaceable, ultimately. Anyone, anywhere, in any job, could be sitting at their desk reading this, blissfully unaware that this is to be their last day at work. Morbidly, you could be about to take your terminal breath. Ideally, it will be because another company suddenly offered you a truck full of money to take a new job, forcing you to bid a regretful farewell to your current employer (with barely a “so long suckers!” left wafting in the air as you zip out of the office like the Wile E Coyote wearing two pairs of rocket skates). I’ve often wondered what it would be like to be present at the meeting where your former work colleagues discuss your potential replacement. It is perhaps only at this point, as they struggle with the question “What kind of person do we need to replace old Wile?” that you would know your true worth in their eyes. Of course, this presupposes you need replacing. I’ve known one or two people whose absence we adequately compensated with a small rock, to keep their old chair from rolling down a slight incline in the floor. On another occasion, we bought a noise-making machine that frequently attracted attention its way, with unpleasant sounds, but never contributed anything worthwhile. These things never actually happened, of course, but you take my point: don’t confuse replaceable with expendable. Likewise, if the term “trained seal” comes up, someone they can teach to follow basic instructions and push buttons in the right order, then the replacement discussion is going to be over quickly. What, however, if your colleagues decide they’ll need a super-specialist to replace you. That’s a good thing, right? Well, usually, in my experience, no it is not. It often indicates that no one really knows what you do, or how. A typical example is the “senior” DBA who built a system just before 16-bit computing became all the rage and then settled into a long career managing it. Such systems are often central to the company’s operations and the DBA very skilled at what they do, but almost impossible to replace, because the system hasn’t evolved, and runs on processes and routines that others no longer understand or recognize. The only thing you really want to hear, at your replacement discussion, is that they need someone skilled at the fundamentals and adaptable. This means that the person they need understands that their goal is to be an excellent DBA, not a specialist in whatever the-heck the company does. Someone who understands the new versions of SQL Server and can adapt the company’s systems to the way things work today, who uses industry standard methods that any other qualified DBA/programmer can understand. More importantly, this person rarely wants to get “pigeon-holed” and so documents and shares the specialized knowledge and responsibilities with their teammates. Being replaceable doesn’t mean being “dime a dozen”. The company might need four people to take your place due to the depth of your skills, but still, they could find those replacements and those replacements could step right in using techniques that any decent DBA should know. It is a tough question to contemplate, but take some time to think about the sort of person that your colleagues would seek to replace you. If you think they would go looking for a “super-specialist” then consider urgently how you can diversify and share your knowledge, and start documenting all the processes you know as if today were your last day, because who knows, it just might be.

    Read the article

  • ReSharper C# Live Template for Dependency Property and Property Change Routed Event Boilerplate Code

    - by Bart Read
    I don't know about you but it took me about 5 seconds to get royally fed up of typing the boilerplate code necessary for creating WPF (and Silverlight) dependency properties and, if you want them, their associated property change routed events. Being a ReSharper user, I wondered if there was any live template for doing this. It turns out there's nothing built in, but there are many examples of templates for creating dependency properties out there on the web, such as this excellent one from Roy...(read more)

    Read the article

  • ANTS Profiler Saves Me From A Sordid Fate

    A bit of string concatenation never hurt anybody, right? Think again. Carl Niedner has been designing software since 1983, and was shocked to find his latest and greatest creation suddenly plagued with long loading times. After trying ANTS Profiler, he discovered one tiny line of forgotten concept code was causing his pain.

    Read the article

  • Subterranean IL: Generics and array covariance

    - by Simon Cooper
    Arrays in .NET are curious beasts. They are the only built-in collection types in the CLR, and SZ-arrays (single dimension, zero-indexed) have their own commands and IL syntax. One of their stranger properties is they have a kind of built-in covariance long before generic variance was added in .NET 4. However, this causes a subtle but important problem with generics. First of all, we need to briefly recap on array covariance. SZ-array covariance To demonstrate, I'll tweak the classes I introduced in my previous posts: public class IncrementableClass { public int Value; public virtual void Increment(int incrementBy) { Value += incrementBy; } } public class IncrementableClassx2 : IncrementableClass { public override void Increment(int incrementBy) { base.Increment(incrementBy); base.Increment(incrementBy); } } In the CLR, SZ-arrays of reference types are implicitly convertible to arrays of the element's supertypes, all the way up to object (note that this does not apply to value types). That is, an instance of IncrementableClassx2[] can be used wherever a IncrementableClass[] or object[] is required. When an SZ-array could be used in this fashion, a run-time type check is performed when you try to insert an object into the array to make sure you're not trying to insert an instance of IncrementableClass into an IncrementableClassx2[]. This check means that the following code will compile fine but will fail at run-time: IncrementableClass[] array = new IncrementableClassx2[1]; array[0] = new IncrementableClass(); // throws ArrayTypeMismatchException These checks are enforced by the various stelem* and ldelem* il instructions in such a way as to ensure you can't insert a IncrementableClass into a IncrementableClassx2[]. For the rest of this post, however, I'm going to concentrate on the ldelema instruction. ldelema This instruction pops the array index (int32) and array reference (O) off the stack, and pushes a pointer (&) to the corresponding array element. However, unlike the ldelem instruction, the instruction's type argument must match the run-time array type exactly. This is because, once you've got a managed pointer, you can use that pointer to both load and store values in that array element using the ldind* and stind* (load/store indirect) instructions. As the same pointer can be used for both input and output to the array, the type argument to ldelema must be invariant. At the time, this was a perfectly reasonable restriction, and maintained array type-safety within managed code. However, along came generics, and with it the constrained callvirt instruction. So, what happens when we combine array covariance and constrained callvirt? .method public static void CallIncrementArrayValue() { // IncrementableClassx2[] arr = new IncrementableClassx2[1] ldc.i4.1 newarr IncrementableClassx2 // arr[0] = new IncrementableClassx2(); dup newobj instance void IncrementableClassx2::.ctor() ldc.i4.0 stelem.ref // IncrementArrayValue<IncrementableClass>(arr, 0) // here, we're treating an IncrementableClassx2[] as IncrementableClass[] dup ldc.i4.0 call void IncrementArrayValue<class IncrementableClass>(!!0[],int32) // ... ret } .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } And the result: Unhandled Exception: System.ArrayTypeMismatchException: Attempted to access an element as a type incompatible with the array. at IncrementArrayValue[T](T[] arr, Int32 index) at CallIncrementArrayValue() Hmm. We're instantiating the generic method as IncrementArrayValue<IncrementableClass>, but passing in an IncrementableClassx2[], hence the ldelema instruction is failing as it's expecting an IncrementableClass[]. On features and feature conflicts What we've got here is a conflict between existing behaviour (ldelema ensuring type safety on covariant arrays) and new behaviour (managed pointers to object references used for every constrained callvirt on generic type instances). And, although this is an edge case, there is no general workaround. The generic method could be hidden behind several layers of assemblies, wrappers and interfaces that make it a requirement to use array covariance when calling the generic method. Furthermore, this will only fail at runtime, whereas compile-time safety is what generics were designed for! The solution is the readonly. prefix instruction. This modifies the ldelema instruction to ignore the exact type check for arrays of reference types, and so it lets us take the address of array elements using a covariant type to the actual run-time type of the array: .method public static void IncrementArrayValue<(IncrementableClass) T>( !!T[] arr, int32 index) { // arr[index].Increment(1) ldarg.0 ldarg.1 readonly. ldelema !!T ldc.i4.1 constrained. !!T callvirt instance void IIncrementable::Increment(int32) ret } But what about type safety? In return for ignoring the type check, the resulting controlled mutability pointer can only be used in the following situations: As the object parameter to ldfld, ldflda, stfld, call and constrained callvirt instructions As the pointer parameter to ldobj or ldind* As the source parameter to cpobj In other words, the only operations allowed are those that read from the pointer; stind* and similar that alter the pointer itself are banned. This ensures that the array element we're pointing to won't be changed to anything untoward, and so type safety within the array is maintained. This is a typical example of the maxim that whenever you add a feature to a program, you have to consider how that feature interacts with every single one of the existing features. Although an edge case, the readonly. prefix instruction ensures that generics and array covariance work together and that compile-time type safety is maintained. Tune in next time for a look at the .ctor generic type constraint, and what it means.

    Read the article

  • Web.NET: A Brief Retrospective

    - by Chris Massey
    It’s been several weeks since I had the pleasure of visiting Milan, and joining 150 enthusiastic web developers for a day of server-side frameworks and JavaScript. Lucky for me, I keep good notes. Overall the day went smoothly, with some solid logistics and very attentiveorganizerss, and an impressively diverse audience drawn by the fact that the event was ambitiously run in English. This was great in that it drew a truly pan-European audience (11 countries were represented on the day, and at least 1 visa had to be procured to get someone there!) It was trouble because, in some cases, it pushed speakers outside their comfort zone. Thankfully, despite a slightly rocky start, every session I attended was very well presented, and the consensus on the day was that the speakers were excellent. While I felt that a lot of the speakers had more that they wanted to cover, the topics were well-chosen, every room constantly had a stack of people in it, and all the sessions were pleasingly focused on code & demos. For all that the language barriers occasionally made networking a little challenging,organizerss Simone & Ugo nailed the logistics. Registration was slick, lunch was plentiful, and session management was great. The very generous Rui was kind enough to showcase a short video about Glimpse in his session, which seemed to go down well (Although the audio in the rooms was a little under-powered). Because I think you might need a mid-week chuckle, here are some out-takes.: And lets not forget the Hackathon. The idea was what having just learned about a stack of interesting technologies, attendees could spend an evening (fuelled by pizza and some good Github beer) hacking something together using them. Unfortunately, after a (great)10-hour day, and in many cases facing international travel in the morning, many of the attendees headed straight for their hotel rooms. This idea could work so beautifully, and I’m excited to see how it pans out in 2013. On top of the slick sessions, getting to finally meet Ugo and Simone in the flesh as a pleasure, as was the serendipitous introduction to the most excellent Rui. They’re all fantastic guys who are passionate about the web, and I’m looking forward to finding opportunities to work with them. Simone & Ugo put on a great event, and I’m excited to see what they do next year.

    Read the article

  • Database Owner Conundrum

    - by Johnm
    Have you ever restored a database from a production environment on Server A into a development environment on Server B and had some items, such as Service Broker, mysteriously cease functioning? You might want to consider reviewing the database owner property of the database. The Scenario Recently, I was developing some messaging functionality that utilized the Service Broker feature of SQL Server in a development environment. Within the instance of the development environment resided two databases: One was a restored version of a production database that we will call "RestoreDB". The second database was a brand new database that has yet to exist in the production environment that we will call "DevDB". The goal is to setup a communication path between RestoreDB and DevDB that will later be implemented into the production database. After implementing all of the Service Broker objects that are required to communicate within a database as well as between two databases on the same instance I found myself a bit confounded. My testing was showing that the communication was successful when it was occurring internally within DevDB; but the communication between RestoreDB and DevDB did not appear to be working. Profiler to the rescue After carefully reviewing my code for any misspellings, missing commas or any other minor items that might be a syntactical cause of failure, I decided to launch Profiler to aid in the troubleshooting. After simulating the cross database messaging, I noticed the following error appearing in Profiler: An exception occurred while enqueueing a message in the target queue. Error: 33009, State: 2. The database owner SID recorded in the master database differs from the database owner SID recorded in database '[Database Name Here]'. You should correct this situation by resetting the owner of database '[Database Name Here]' using the ALTER AUTHORIZATION statement. Now, this error message is a helpful one. Not only does it identify the issue in plain language, it also provides a potential solution. An execution of the following query that utilizes the catalog view sys.transmission_queue revealed the same error message for each communication attempt: SELECT     * FROM        sys.transmission_queue; Seeing the situation as a learning opportunity I dove a bit deeper. Reviewing the database properties  The owner of a specific database can be easily viewed by right-clicking the database in SQL Server Management Studio and selecting the "properties" option. The owner is listed on the "General" page of the properties screen. In my scenario, the database in the production server was created by Frank the DBA; therefore his server login appeared as the owner: "ServerName\Frank". While this is interesting information, it certainly doesn't tell me much in regard to the SID (security identifier) and its existence, or lack thereof, in the master database as the error suggested. I pulled together the following query to gather more interesting information: SELECT     a.name     , a.owner_sid     , b.sid     , b.name     , b.type_desc FROM        master.sys.databases a     LEFT OUTER JOIN master.sys.server_principals b         ON a.owner_sid = b.sid WHERE     a.name not in ('master','tempdb','model','msdb'); This query also helped identify how many other user databases in the instance were experiencing the same issue. In this scenario, I saw that there were no matching SIDs in server_principals to the owner SID for my database. What login should be used as the database owner instead of Frank's? The system stored procedure sp_helplogins will provide a list of the valid logins that can be used. Here is an example of its use, revealing all available logins: EXEC sp_helplogins;  Fixing a hole The error message stated that the recommended solution was to execute the ALTER AUTHORIZATION statement. The full statement for this scenario would appear as follows: ALTER AUTHORIZATION ON DATABASE:: [Database Name Here] TO [Login Name]; Another option is to execute the following statement using the sp_changedbowner system stored procedure; but please keep in mind that this stored procedure has been deprecated and will likely disappear in future versions of SQL Server: EXEC dbo.sp_changedbowner @loginname = [Login Name]; .And They Lived Happily Ever After Upon changing the database owner to an existing login and simulating the inner and cross database messaging the errors have ceased. More importantly, all messages sent through this feature now successfully complete their journey. I have added the ownership change to my restoration script for the development environment.

    Read the article

  • AJI Report #20 | Devin Rader On Usability and REST

    - by Jeff Julian
    Devin is one of our great friends from days of ole'. Devin was a great community leader in St. Louis .NET space. The then moved to New Jersey to work at Infragistics where he was a huge asset for the .NET and Usability communities. He is now at Twilio as an evangelist and you will see him pretty much at every cool conference promoting Twilio and educating the masses. In this show, we talk about what Usability is and how developers can understanding what the how to solve problems with usability and some of the patterns we can use. Devin really wants to bring the focus back to the beginning of knowing who your users are and we talk about how to produce personas of the users of our products. We dive into REST for the second piece of this podcast. Devin helps us understand more about REST and what goes into a RESTful application or service. Listen to the Show Twilio Site: http://www.twilio.com Twitter: @DevinRader LinkedIn: Profile Link

    Read the article

  • Opportunity Nokia's

    - by Andrew Clarke
    Nokia’s alliance with Microsoft is likely to be good news for anyone using Microsoft technologies, and particularly for .NET developers. Before the announcement, the future wasn’t looking so bright for the ‘mobile’ version of Windows, Windows Phone. Microsoft currently has only 3.1% of the Smartphone market, even though it has been involved in it for longer than its main rivals. Windows Phone has now got the basics right, but that is hardly sufficient by itself to change its predicament significantly. With Nokia's help, it is possible. Despite the promise of multi-tasking for third party apps, integration with Microsoft platforms such as Xbox and Office, direct integration of Twitter support, and the introduction of IE 9 “later this year”, there have been frustratingly few signs of urgency on Microsoft’s part in improving the Windows Phone  product. Until this happens, there seems little prospect of reward for third-party developers brave enough to support the platform with applications. This is puzzling when one sees how well SQL Server and Microsoft’s other server technologies have thrived in recent years, under good leadership from a management that understands the technology. The same just hasn’t been true for some of the consumer products. In consequence, iPads and Android tablets have already exposed diehard Windows users, for the first time, to an alternative GUI for consumer Tablet PCs, and the comparisons aren’t always in Windows’ favour. Nokia’s problem is obvious: Android’s meteoric rise. Android now has 33% of the worldwide market for smartphones, while the market share of Nokia’s Symbian has dropped from 44% to 31%. As details of the agreement emerge, it would seem that Nokia will bring a great deal of expertise, such as imaging and Nokia Maps, to Windows Phone that should make it more competitive. It is wrong to assume that Nokia’s decline will continue: the shock of Android’s sudden rise could be enough to sting them back to their previous form, and they have Microsoft’s huge resources and marketing clout to help them. For the sake of the whole Windows stack, I really hope the alliance succeeds.

    Read the article

  • Profiling SharePoint with ANTS Performance Profiler 5.2

    Using ANTS Performance Profiler with SharePoint has, previously, been possible, but not easy. Version 5.2 of ANTS Performance Profiler changes all that, and Chris Allen has put together a straight-forward guide to profiling SharePoint, demonstrating just how much easier it has become.

    Read the article

  • ASP.NET 4.0 Features

    ASP.NET v4 is released with Visual studio 2010. Web developers are presented with a bewildering range of new features and so Ludmal De Silva has described what he considers to be the most important new features in ASP.NET V4

    Read the article

  • No Rest for the Virtuous

    - by Chris Massey
    It has been an impressively brutal month in terms of security breaches, and across a whole range of fronts. The "Cablegate" leaks, courtesy of Wikileaks, appear to be in a league of their own. The "Operation Payback" DDoS attacks against PayPal, MasterCard and Visa (not to mention the less successful attack against Amazon) are equally impressive. Even more recently, the Gawker Media Network was subjected to a relatively sophisticated hack attack by Gnosis, with the hackers gaining access to some...(read more)

    Read the article

  • Developing Schema Compare for Oracle (Part 1)

    - by Simon Cooper
    SQL Compare is one of Red Gate's most successful SQL Server tools; it allows developers and DBAs to compare and synchronize the contents of their databases. Although similar tools exist for Oracle, they are quite noticeably lacking in the usability and stability that SQL Compare is known for in the SQL Server world. We could see a real need for a usable schema comparison tools for Oracle, and so the Schema Compare for Oracle project was born. Over the next few weeks, as we come up to release of v1, I'll be doing a series of posts on the development of Schema Compare for Oracle. For the first post, I thought I would start with the main pitfalls that we stumbled across when developing the product, especially from a SQL Server background. 1. Schemas and Databases The most obvious difference is that the concept of a 'database' is quite different between Oracle and SQL Server. On SQL Server, one server instance has multiple databases, each with separate schemas. There is typically little communication between separate databases, and most databases are no more than about 1000-2000 objects. This means SQL Compare can register an entire database in a reasonable amount of time, and cross-database dependencies probably won't be an issue. It is a quite different scene under Oracle, however. The terms 'database' and 'instance' are used interchangeably, (although technically 'database' refers to the datafiles on disk, and 'instance' the running Oracle process that reads & writes to the database), and a database is a single conceptual entity. This immediately presents problems, as it is infeasible to register an entire database as we do in SQL Compare; in my Oracle install, using the standard recommended options, there are 63975 system objects. If we tried to register all those, not only would it take hours, but the client would probably run out of memory before we finished. As a result, we had to allow people to specify what schemas they wanted to register. This decision had quite a few knock-on effects for the design, which I will cover in a future post. 2. Connecting to Oracle The next obvious difference is in actually connecting to Oracle – in SQL Server, you can specify a server and database, and off you go. On Oracle things are slightly more complicated. SIDs, Service Names, and TNS A database (the files on disk) must have a unique identifier for the databases on the system, called the SID. It also has a global database name, which consists of a name (which doesn't have to match the SID) and a domain. Alternatively, you can identify a database using a service name, which normally has a 1-to-1 relationship with instances, but may not if, for example, using RAC (Real Application Clusters) for redundancy and failover. You specify the computer and instance you want to connect to using TNS (Transparent Network Substrate). The user-visible parts are a config file (tnsnames.ora) on the client machine that specifies how to connect to an instance. For example, the entry for one of my test instances is: SC_11GDB1 = (DESCRIPTION = (ADDRESS_LIST = (ADDRESS = (PROTOCOL = TCP)(HOST = simonctest)(PORT = 1521)) ) (CONNECT_DATA = (SID = 11gR1db1) ) ) This gives the hostname, port, and SID of the instance I want to connect to, and associates it with a name (SC_11GDB1). The tnsnames syntax also allows you to specify failover, multiple descriptions and address lists, and client load balancing. You can then specify this TNS identifier as the data source in a connection string. Although using ODP.NET (the .NET dlls provided by Oracle) was fine for internal prototype builds, once we released the EAP we discovered that this simply wasn't an acceptable solution for installs on other people's machines. Due to .NET assembly strong naming, users had to have installed on their machines the exact same version of the ODP.NET dlls as we had on our build server. We couldn't ship the ODP.NET dlls with our installer as the Oracle license agreement prohibited this, and we didn't want to force users to install another Oracle client just so they can run our program. To be able to list the TNS entries in the connection dialog, we also had to locate and parse the tnsnames.ora file, which was complicated by users with several Oracle client installs and intricate TNS entries. After much swearing at our computers, we eventually decided to use a third party Oracle connection library from Devart that we could ship with our program; this could use whatever client version was installed, parse the TNS entries for us, and also had the nice feature of being able to connect to an Oracle server without having any client installed at all. Unfortunately, their current license agreement prevents us from shipping an Oracle SDK, but that's a bridge we'll cross when we get to it. 3. Running synchronization scripts The most important difference is that in Oracle, DDL is non-transactional; you cannot rollback DDL statements like you can on SQL Server. Although we considered various solutions to this, including using the flashback archive or recycle bin, or generating an undo script, no reliable method of completely undoing a half-executed sync script has yet been found; so in this case we simply have to trust that the DBA or developer will check and verify the script before running it. However, before we got to that stage, we had to get the scripts to run in the first place... To run a synchronization script from SQL Compare we essentially pass the script over to the SqlCommand.ExecuteNonQuery method. However, when we tried to do the same for an OracleConnection we got a very strange error – 'ORA-00911: invalid character', even when running the most basic CREATE TABLE command. After much hair-pulling and Googling, we discovered that Oracle has got some very strange behaviour with semicolons at the end of statements. To understand what's going on, we need to take a quick foray into SQL and PL/SQL. PL/SQL is not T-SQL In SQL Server, T-SQL is the language used to interface with the database. It has DDL, DML, control flow, and many other nice features (like Turing-completeness) that you can mix and match in the same script. In Oracle, DDL SQL and PL/SQL are two completely separate languages, with different syntax, different datatypes and different execution engines within the instance. Oracle SQL is much more like 'pure' ANSI SQL, with no state, no control flow, and only the basic DML commands. PL/SQL is the Turing-complete language, but can only do DML and DCL (i.e. BEGIN TRANSATION commands). Any DDL or SQL commands that aren't recognised by the PL/SQL engine have to be passed back to the SQL engine via an EXECUTE IMMEDIATE command. In PL/SQL, a semicolons is a valid token used to delimit the end of a statement. In SQL, a semicolon is not a valid token (even though the Oracle documentation gives them at the end of the syntax diagrams) . When you execute the command CREATE TABLE table1 (COL1 NUMBER); in SQL*Plus the semicolon on the end is a command to SQL*Plus to execute the preceding statement on the server; it strips off the semicolon before passing it on. SQL Developer does a similar thing. When executing a PL/SQL block, however, the syntax is like so: BEGIN INSERT INTO table1 VALUES (1); INSERT INTO table1 VALUES (2); END; / In this case, the semicolon is accepted by the PL/SQL engine as a statement delimiter, and instead the / is the command to SQL*Plus to execute the current block. This explains the ORA-00911 error we got when trying to run the CREATE TABLE command – the server is complaining about the semicolon on the end. This also means that there is no SQL syntax to execute more than one DDL command in the same OracleCommand. Therefore, we would have to do a round-trip to the server for every command we want to execute. Obviously, this would cause lots of network traffic and be very slow on slow or congested networks. Our first attempt at a solution was to wrap every SQL statement (without semicolon) inside an EXECUTE IMMEDIATE command in a PL/SQL block and pass that to the server to execute. One downside of this solution is that we get no feedback as to how the script execution is going; we're currently evaluating better solutions to this thorny issue. Next up: Dependencies; how we solved the problem of being unable to register the entire database, and the knock-on effects to the whole product.

    Read the article

  • A Deep Dive into Transport Queues (Part 2)

    Johan Veldhuis completes his 'Deep Dive' by plunging even deeper into the mysteries of MS Exchange's Transport queues that are used to temporarily store messages which are waiting until they are passed through to the next stage, and explains how to change the way they work via configuration settings.

    Read the article

  • Hello, can you just send me all your data please?

    - by fatherjack
    LiveJournal Tags: Security,SQL Server Our house phone rang on Saturday night and Mrs Fatherjack answered. I was in the other room but I heard her trying to explain to the caller that they were in some way mistaken. Eventually, as she got more irate with the caller, I went out and started to catch up with the events so far. The caller was trying to convince my wife that our computer was infected with a virus. She was confident that it wasn't. Her patience expired after almost 10 minutes...(read more)

    Read the article

  • How to Create Features for Windows SharePoint Services 3.0

    To customise a SharePoint (WSS 3.0) site, you'll need to understand 'Features'. The 'Feature' framework has become the most important method of customising a SharePoint site, because it is now defined by a list of Features, a layout page and a master page. One templated site can be turned into another by toggling Features and maybe switching the layout page or master page. Charles Lee explains.

    Read the article

  • Developing Schema Compare for Oracle (Part 2): Dependencies

    - by Simon Cooper
    In developing Schema Compare for Oracle, one of the issues we came across was the size of the databases. As detailed in my last blog post, we had to allow schema pre-filtering due to the number of objects in a standard Oracle database. Unfortunately, this leads to some quite tricky situations regarding object dependencies. This post explains how we deal with these dependencies. 1. Cross-schema dependencies Say, in the following database, you're populating SchemaA, and synchronizing SchemaA.Table1: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(Col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1(Col1)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); We need to do a rebuild of SchemaA.Table1 to change Col1 from a VARCHAR2(100) to a NUMBER. This consists of: Creating a table with the new schema Inserting data from the old table to the new table, with appropriate conversion functions (in this case, TO_NUMBER) Dropping the old table Rename new table to same name as old table Unfortunately, in this situation, the rebuild will fail at step 1, as we're trying to create a NUMBER column with a foreign key reference to a VARCHAR2(100) column. As we're only populating SchemaA, the naive implementation of the object population prefiltering (sticking a WHERE owner = 'SCHEMAA' on all the data dictionary queries) will generate an incorrect sync script. What we actually have to do is: Drop foreign key constraint on SchemaA.Table1 Rebuild SchemaB.Table1 Rebuild SchemaA.Table1, adding the foreign key constraint to the new table This means that in order to generate a correct synchronization script for SchemaA.Table1 we have to know what SchemaB.Table1 is, and that it also needs to be rebuilt to successfully rebuild SchemaA.Table1. SchemaB isn't the schema that the user wants to synchronize, but we still have to load the table and column information for SchemaB.Table1 the same way as any table in SchemaA. Fortunately, Oracle provides (mostly) complete dependency information in the dictionary views. Before we actually read the information on all the tables and columns in the database, we can get dependency information on all the objects that are either pointed at by objects in the schemas we’re populating, or point to objects in the schemas we’re populating (think about what would happen if SchemaB was being explicitly populated instead), with a suitable query on all_constraints (for foreign key relationships) and all_dependencies (for most other types of dependencies eg a function using another function). The extra objects found can then be included in the actual object population, and the sync wizard then has enough information to figure out the right thing to do when we get to actually synchronize the objects. Unfortunately, this isn’t enough. 2. Dependency chains The solution above will only get the immediate dependencies of objects in populated schemas. What if there’s a chain of dependencies? A.tbl1 -> B.tbl1 -> C.tbl1 -> D.tbl1 If we’re only populating SchemaA, the implementation above will only include B.tbl1 in the dependent objects list, whereas we might need to know about C.tbl1 and D.tbl1 as well, in order to ensure a modification on A.tbl1 can succeed. What we actually need is a graph traversal on the dependency graph that all_dependencies represents. Fortunately, we don’t have to read all the database dependency information from the server and run the graph traversal on the client computer, as Oracle provides a method of doing this in SQL – CONNECT BY. So, we can put all the dependencies we want to include together in big bag with UNION ALL, then run a SELECT ... CONNECT BY on it, starting with objects in the schema we’re populating. We should end up with all the objects that might be affected by modifications in the initial schema we’re populating. Good solution? Well, no. For one thing, it’s sloooooow. all_dependencies, on my test databases, has got over 110,000 rows in it, and the entire query, for which Oracle was creating a temporary table to hold the big bag of graph edges, was often taking upwards of two minutes. This is too long, and would only get worse for large databases. But it had some more fundamental problems than just performance. 3. Comparison dependencies Consider the following schema: SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100)); What will happen if we used the dependency algorithm above on the source & target database? Well, SchemaA.Table1 has a foreign key reference to SchemaB.Table1, so that will be included in the source database population. On the target, SchemaA.Table1 has no such reference. Therefore SchemaB.Table1 will not be included in the target database population. In the resulting comparison of the two objects models, what you will end up with is: SOURCE  TARGET SchemaA.Table1 -> SchemaA.Table1 SchemaB.Table1 -> (no object exists) When this comparison is synchronized, we will see that SchemaB.Table1 does not exist, so we will try the following sequence of actions: Create SchemaB.Table1 Rebuild SchemaA.Table1, with foreign key to SchemaB.Table1 Oops. Because the dependencies are only followed within a single database, we’ve tried to create an object that already exists. To fix this we can include any objects found as dependencies in the source or target databases in the object population of both databases. SchemaB.Table1 will then be included in the target database population, and we won’t try and create objects that already exist. All good? Well, consider the following schema (again, only explicitly populating SchemaA, and synchronizing SchemaA.Table1): SOURCE   TARGET CREATE TABLE SchemaA.Table1 ( Col1 NUMBER REFERENCES SchemaB.Table1(col1));   CREATE TABLE SchemaA.Table1 ( Col1 VARCHAR2(100)); CREATE TABLE SchemaB.Table1 ( Col1 NUMBER PRIMARY KEY);   CREATE TABLE SchemaB.Table1 ( Col1 VARCHAR2(100) PRIMARY KEY); CREATE TABLE SchemaC.Table1 ( Col1 NUMBER);   CREATE TABLE SchemaC.Table1 ( Col1 VARCHAR2(100) REFERENCES SchemaB.Table1); Although we’re now including SchemaB.Table1 on both sides of the comparison, there’s a third table (SchemaC.Table1) that we don’t know about that will cause the rebuild of SchemaB.Table1 to fail if we try and synchronize SchemaA.Table1. That’s because we’re only running the dependency query on the schemas we’re explicitly populating; to solve this issue, we would have to run the dependency query again, but this time starting the graph traversal from the objects found in the other database. Furthermore, this dependency chain could be arbitrarily extended.This leads us to the following algorithm for finding all the dependencies of a comparison: Find initial dependencies of schemas the user has selected to compare on the source and target Include these objects in both the source and target object populations Run the dependency query on the source, starting with the objects found as dependents on the target, and vice versa Repeat 2 & 3 until no more objects are found For the schema above, this will result in the following sequence of actions: Find initial dependenciesSchemaA.Table1 -> SchemaB.Table1 found on sourceNo objects found on target Include objects in both source and targetSchemaB.Table1 included in source and target Run dependency query, starting with found objectsNo objects to start with on sourceSchemaB.Table1 -> SchemaC.Table1 found on target Include objects in both source and targetSchemaC.Table1 included in source and target Run dependency query on found objectsNo objects found in sourceNo objects to start with in target Stop This will ensure that we include all the necessary objects to make any synchronization work. However, there is still the issue of query performance; the CONNECT BY on the entire database dependency graph is still too slow. After much sitting down and drawing complicated diagrams, we decided to move the graph traversal algorithm from the server onto the client (which turned out to run much faster on the client than on the server); and to ensure we don’t read the entire dependency graph onto the client we also pull the graph across in bits – we start off with dependency edges involving schemas selected for explicit population, and whenever the graph traversal comes across a dependency reference to a schema we don’t yet know about a thunk is hit that pulls in the dependency information for that schema from the database. We continue passing more dependent objects back and forth between the source and target until no more dependency references are found. This gives us the list of all the extra objects to populate in the source and target, and object population can then proceed. 4. Object blacklists and fast dependencies When we tested this solution, we were puzzled in that in some of our databases most of the system schemas (WMSYS, ORDSYS, EXFSYS, XDB, etc) were being pulled in, and this was increasing the database registration and comparison time quite significantly. After debugging, we discovered that the culprits were database tables that used one of the Oracle PL/SQL types (eg the SDO_GEOMETRY spatial type). These were creating a dependency chain from the database tables we were populating to the system schemas, and hence pulling in most of the system objects in that schema. To solve this we introduced blacklists of objects we wouldn’t follow any dependency chain through. As well as the Oracle-supplied PL/SQL types (MDSYS.SDO_GEOMETRY, ORDSYS.SI_COLOR, among others) we also decided to blacklist the entire PUBLIC and SYS schemas, as any references to those would likely lead to a blow up in the dependency graph that would massively increase the database registration time, and could result in the client running out of memory. Even with these improvements, each dependency query was taking upwards of a minute. We discovered from Oracle execution plans that there were some columns, with dependency information we required, that were querying system tables with no indexes on them! To cut a long story short, running the following query: SELECT * FROM all_tab_cols WHERE data_type_owner = ‘XDB’; results in a full table scan of the SYS.COL$ system table! This single clause was responsible for over half the execution time of the dependency query. Hence, the ‘Ignore slow dependencies’ option was born – not querying this and a couple of similar clauses to drastically speed up the dependency query execution time, at the expense of producing incorrect sync scripts in rare edge cases. Needless to say, along with the sync script action ordering, the dependency code in the database registration is one of the most complicated and most rewritten parts of the Schema Compare for Oracle engine. The beta of Schema Compare for Oracle is out now; if you find a bug in it, please do tell us so we can get it fixed!

    Read the article

  • Exporting PowerPoint Slides with Specific Heights and Widths

    - by Damon Armstrong
    I found myself in need of exporting PowerPoint slides from a presentation and was fairly excited when I found that you could save them off in standard image formats. The problem is that Microsoft conveniently exports all images with a resolution of 960 x 720 pixels, which is not the resolution I wanted.  You can, however, specify the resolution if you are willing to put a macro into your project: Sub ExportSlides()   For i = 1 To ActiveWindow.Selection.SlideRange.Count     Dim fileName As String     If (i < 10) Then       fileName = "C:\PowerPoint Export\Slide" & i & ".png"     Else       fileName = "C:\PowerPoint Export\Slide0" & i & ".png"     End If     ActiveWindow.Selection.SlideRange(i).Export fileName, "PNG", 1280, 720   Next End Sub When you call the Export method you can specify the file type as well as the dimensions to use when creating the image.  If the macro approach is not your thing, then you can also modify the default settings through the registry: http://support.microsoft.com/kb/827745

    Read the article

  • Basic Defensive Database Programming Techniques

    We can all recognise good-quality database code: It doesn't break with every change in the server's configuration, or on upgrade. It isn't affected by concurrent usage, or high workload. In an extract from his forthcoming book, Alex explains just how to go about producing resilient TSQL code that works, and carries on working.

    Read the article

  • Statistical Sampling for Verifying Database Backups

    A DBA's huge workload can start to threaten best practices for data backup and recovery, but ingenuity, and an eye for a good tactic, can usually find a way. For Tom, the revelation about a solution came from eating crabs. Statistical sampling can be brought to bear to minimise the risk of faliure of an emergency database restore.

    Read the article

< Previous Page | 122 123 124 125 126 127 128 129 130 131 132 133  | Next Page >