Search Results

Search found 4533 results on 182 pages for 'castle proxy'.

Page 127/182 | < Previous Page | 123 124 125 126 127 128 129 130 131 132 133 134  | Next Page >

  • How can I write a unit test to determine whether an object can be garbage collected?

    - by driis
    In relation to my previous question, I need to check whether a component that will be instantiated by Castle Windsor, can be garbage collected after my code has finished using it. I have tried the suggestion in the answers from the previous question, but it does not seem to work as expected, at least for my code. So I would like to write a unit test that tests whether a specific object instance can be garbage collected after some of my code has run. Is that possible to do in a reliable way ? EDIT I currently have the following test based on Paul Stovell's answer, which succeeds: [TestMethod] public void ReleaseTest() { WindsorContainer container = new WindsorContainer(); container.Kernel.ReleasePolicy = new NoTrackingReleasePolicy(); container.AddComponentWithLifestyle<ReleaseTester>(LifestyleType.Transient); Assert.AreEqual(0, ReleaseTester.refCount); var weakRef = new WeakReference(container.Resolve<ReleaseTester>()); Assert.AreEqual(1, ReleaseTester.refCount); GC.Collect(); GC.WaitForPendingFinalizers(); Assert.AreEqual(0, ReleaseTester.refCount, "Component not released"); } private class ReleaseTester { public static int refCount = 0; public ReleaseTester() { refCount++; } ~ReleaseTester() { refCount--; } } Am I right assuming that, based on the test above, I can conclude that Windsor will not leak memory when using the NoTrackingReleasePolicy ?

    Read the article

  • DataSets to POCOs - an inquiry regarding DAL architecture

    - by alexsome
    Hello all, I have to develop a fairly large ASP.NET MVC project very quickly and I would like to get some opinions on my DAL design to make sure nothing will come back to bite me since the BL is likely to get pretty complex. A bit of background: I am working with an Oracle backend so the built-in LINQ to SQL is out; I also need to use production-level libraries so the Oracle EF provider project is out; finally, I am unable to use any GPL or LGPL code (Apache, MS-PL, BSD are okay) so NHibernate/Castle Project are out. I would prefer - if at all possible - to avoid dishing out money but I am more concerned about implementing the right solution. To summarize, there are my requirements: Oracle backend Rapid development (L)GPL-free Free I'm reasonably happy with DataSets but I would benefit from using POCOs as an intermediary between DataSets and views. Who knows, maybe at some point another DAL solution will show up and I will get the time to switch it out (yeah, right). So, while I could use LINQ to convert my DataSets to IQueryable, I would like to have a generic solution so I don't have to write a custom query for each class. I'm tinkering with reflection right now, but in the meantime I have two questions: Are there any problems I overlooked with this solution? Are there any other approaches you would recommend to convert DataSets to POCOs? Thanks in advance.

    Read the article

  • This is a great job opportunity!!! [closed]

    - by Stuart Gordon
    ASP.NET MVC Web Developer / London / £450pd / £25-£50,000pa / Interested contact [email protected] ! As a web developer within the engineering department, you will work with a team of enthusiastic developers building a new ASP.NET MVC platform for online products utilising exciting cutting edge technologies and methodologies (elements of Agile, Scrum, Lean, Kanban and XP) as well as developing new stand-alone web products that conform to W3C standards. Key Responsibilities and Objectives: Develop ASP.NET MVC websites utilising Frameworks and enterprise search technology. Develop and expand content management and delivery solutions. Help maintain and extend existing products. Formulate ideas and visions for new products and services. Be a proactive part of the development team and provide support and assistance to others when required. Qualification/Experience Required: The ideal candidate will have a web development background and be educated to degree level in a Computer Science/IT related course plus ASP.NET MVC experience. The successful candidate needs to be able to demonstrate commercial experience in all or most of the following skills: Essential: ASP.NET MVC with C# (Visual Studio), Castle, nHibernate, XHTML and JavaScript. Experience of Test Driven Development (TDD) using tools such as NUnit. Preferable: Experience of Continuous Integration (TeamCity and MSBuild), SQL Server (T-SQL), experience of source control such as Subversion (plus TortioseSVN), JQuery. Learn: Fluent NHibernate, S#arp Architecture, Spark (View engine), Behaviour Driven Design (BDD) using MSpec. Furthermore, you will possess good working knowledge of W3C web standards, web usability, web accessibility and understand the basics of search engine optimisation (SEO). You will also be a quick learner, have good communication skills and be a self-motivated and organised individual.

    Read the article

  • Unit testing an MVC action method with a Cache dependency?

    - by Steve
    I’m relatively new to testing and MVC and came across a sticking point today. I’m attempting to test an action method that has a dependency on HttpContext.Current.Cache and wanted to know the best practice for achieving the “low coupling” to allow for easy testing. Here's what I've got so far... public class CacheHandler : ICacheHandler { public IList<Section3ListItem> StateList { get { return (List<Section3ListItem>)HttpContext.Current.Cache["StateList"]; } set { HttpContext.Current.Cache["StateList"] = value; } } ... I then access it like such... I'm using Castle for my IoC. public class ProfileController : ControllerBase { private readonly ISection3Repository _repository; private readonly ICacheHandler _cache; public ProfileController(ISection3Repository repository, ICacheHandler cacheHandler) { _repository = repository; _cache = cacheHandler; } [UserIdFilter] public ActionResult PersonalInfo(Guid userId) { if (_cache.StateList == null) _cache.StateList = _repository.GetLookupValues((int)ELookupKey.States).ToList(); ... Then in my unit tests I am able to mock up ICacheHandler. Would this be considered a 'best practice' and does anyone have any suggestions for other approaches? Thanks in advance. Cheers

    Read the article

  • How do the major C# DI/IoC frameworks compare?

    - by Slomojo
    At the risk of stepping into holy war territory, What are the strengths and weaknesses of these popular DI/IoC frameworks, and could one easily be considered the best? ..: Ninject Unity Castle.Windsor Autofac StructureMap Are there any other DI/IoC Frameworks for C# that I haven't listed here? In context of my use case, I'm building a client WPF app, and a WCF/SQL services infrastructure, ease of use (especially in terms of clear and concise syntax), consistent documentation, good community support and performance are all important factors in my choice. Update: The resources and duplicate questions cited appear to be out of date, can someone with knowledge of all these frameworks come forward and provide some real insight? I realise that most opinion on this subject is likely to be biased, but I am hoping that someone has taken the time to study all these frameworks and have at least a generally objective comparison. I am quite willing to make my own investigations if this hasn't been done before, but I assumed this was something at least a few people had done already. Second Update: If you do have experience with more than one DI/IoC container, please rank and summarise the pros and cons of those, thank you. This isn't an exercise in discovering all the obscure little containers that people have made, I'm looking for comparisons between the popular (and active) frameworks.

    Read the article

  • Building an 'Activation Key' Generator in JAVA

    - by jax
    I want to develop a Key generator for my phone applications. Currently I am using an external service to do the job but I am a little concerned that the service might go offline one day hence I will be in a bit of a pickle. How authentication works now. Public key stored on the phone. When the user requests a key the 'phone ID' is sent to the "Key Generation Service" and the encrypted key key is returned and stored inside a license file. On the phone I can check if the key is for the current phone by using a method getPhoneId() which I can check with the the current phone and grant or not grant access to features. I like this and it works well, however, I want to create my own "Key Generation Service" from my own website. Requirements: Public and Private Key Encryption:(Bouncy Castle) Written in JAVA Must support getApplicationId() (so that many applications can use the same key generator) and getPhoneId() (to get the phone id out of the encrypted license file) I want to be able to send the ApplicationId and PhoneId to the service for license key generation. Can someone give me some pointers on how to accomplish this? I have dabbled around with some java encryption but am definitely no expert and can't find anything that will help me. A list of the Java classes I would need to instantiate would be helpful.

    Read the article

  • .NET Web Serivce hydrate custom class

    - by row1
    I am consuming an external C# Web Service method which returns a simple calculation result object like this: [Serializable] public class CalculationResult { public string Name { get; set; } public string Unit { get; set; } public decimal? Value { get; set; } } When I add a Web Reference to this service in my ASP .NET project Visual Studio is kind enough to generate a matching class so I can easily consume and work with it. I am using Castle Windsor and I may want to plug in other method of getting a calculation result object, so I want a common class CalculationResult (or ICalculationResult) in my solution which all my objects can work with, this will always match the object returned from the external Web Service 1:1. Is there anyway I can tell my Web Service client to hydrate a particular class instead of its generated one? I would rather not do it manually: foreach(var fromService in calcuationResultsFromService) { ICalculationResult calculationResult = new CalculationResult() { Name = fromService.Name }; yield return calculationResult; } Edit: I am happy to use a Service Reference type instead of the older Web Reference.

    Read the article

  • NHibernate lazy properties behavior?

    - by GeReV
    I've been trying to get NHibernate into development for a project I'm working on at my workplace. Since I have to put a strong emphasis on performance, I've been running a proof-of-concept stress test on an existing project's table with thousands of records, all of which contain a large text column. However, when selecting a collection of these records, the select statement takes a relatively long time to execute; apparently due to the aforementioned column. The first solution that comes to mind is setting this property as lazy: <property name="Content" lazy="true"/> But there seems to be no difference in the SQL generated by NHibernate. My question is, how do lazy properties behave in NHibernate? Is there some kind of type limitations I could be missing? Should I take a different approach altogether? Using HQL's new Class(column1, column2) approach works, but lazy properties sounds like a simpler solution. It's perhaps worth mentioning I'm using NHibernate 2.1.2GA with the Castle DynamicProxy. Thanks!

    Read the article

  • WinInet Apps failing when Internet Explorer is set to Offline Mode

    - by Rick Strahl
    Ran into a nasty issue last week when all of a sudden many of my old applications that are using WinInet for HTTP access started failing. Specifically, the WinInet HttpSendRequest() call started failing with an error of 2, which when retrieving the error boils down to: WinInet Error 2: The system cannot find the file specified Now this error can pop up in many legitimate scenarios with WinInet such as when no Internet connection is available or the HTTP configuration (usually configured in Internet Explorer’s options) is misconfigured. The error typically means that the server in question cannot be found or more specifically an Internet connection can’t be established. In this case the problem started suddenly and was causing some of my own applications (old Visual FoxPro apps using my own wwHttp library) and all Adobe Air applications (which apparently uses WinInet for its basic HTTP stack) along with a few more oddball applications to fail instantly when trying to connect via HTTP. Most other applications – all of my installed browsers, email clients, various social network updaters all worked just fine. It seems it was only WinInet apps that were failing. Yet oddly Internet Explorer appeared to be working. So the problem seemed to be isolated to those ‘classic’ applications using WinInet. WinInet’s base configuration uses the Internet Explorer options dialog. To check this out I typically go to the Internet Explorer options and find the Connection tab, and check out the LAN Setup. Make sure there are no rogue proxy settings or configuration scripts that are invalid. Trying with Auto-configuration on and off also can often fix ‘real’ configuration errors. This time however this wasn’t a problem – nothing in the LAN configuration was set (all default). I also played with the Automatic detection of settings which also had no effect. I also tried to use Fiddler to see if that would tell me something. Fiddler has a few additional WinInet configuration options in its configuration. Running Fiddler and hitting an HTTP request using WinInet would never actually hit Fiddler – the failure would occur before WinInet ever fired up the HTTP connection to go through the Fiddler HTTP proxy. And the Culprit is: Internet Explorer’s Work Offline Option The culprit in this situation was Internet Explorer which at some point, unknown to me switched into Offline Mode and was then shut down: When this Offline mode is checked when IE is running *or* if IE gets shut down with this flag set, all applications using WinInet by default assume that it’s running in offline mode. Depending on your caching HTTP headers and whether the page was cached previously you may or may not get a response or an error. For an independent non-browser application this will be highly unpredictable and likely result in failures getting online – especially if the application forces requests to always reload by disabling HTTP caching (as I do on most of my dynamic HTTP clients). What makes this especially tricky is that even when IE is in offline mode in the browser, you can still browse around the Web *if* you have a connection. IE will try to load anything it has cached from the local cache, but as soon as you hit a URL that isn’t cached it will automatically try to access that URL and uncheck the Work Offline option. Conversely if you get knocked off the Internet and browse in IE 9, IE will automatically go into offline mode. I never explicitly set offline mode – it just automatically sets itself on and off depending on the connection. Problem is if you’re not using IE all the time (as I do – rarely and just for testing so usually a few commonly used URLs) and you left it in offline mode when you exit, offline mode stays set which results in the above head scratcher. Ack. This isn’t new behavior in IE 9 BTW – this behavior has always been there, but I think what’s different is that IE now automatically switches between online and offline modes without notifying you at all, so it’s hard to tell when you are offline. Fixing the Issue in your Code If you have an application that is using WinInet, there’s a WinInet option called INTERNET_OPTION_IGNORE_OFFLINE. I just checked this out in my own applications and Internet Explorer 9 and it works, but apparently it’s been broken for some older releases (I can’t confirm how far back though) – lots of posts seem to suggest the flag doesn’t work. However, in IE 9 at least it does seem to work if you call InternetSetOption before you call HttpOpenRequest with the Http Session handle. In FoxPro code I use: DECLARE INTEGER InternetSetOption ;    IN WININET.DLL ;    INTEGER HINTERNET,;    INTEGER dwFlags,;    INTEGER @dwValue,;    INTEGER cbSize lnOptionValue = 1   && BOOL TRUE pass by reference   *** Set needed SSL flags lnResult=InternetSetOption(this.hHttpSession,;    INTERNET_OPTION_IGNORE_OFFLINE ,;  && 77    @lnOptionValue ,4)   DECLARE INTEGER HttpOpenRequest ;    IN WININET.DLL ;    INTEGER hHTTPHandle,;    STRING lpzReqMethod,;    STRING lpzPage,;    STRING lpzVersion,;    STRING lpzReferer,;    STRING lpzAcceptTypes,;    INTEGER dwFlags,;    INTEGER dwContextw     hHTTPResult=HttpOpenRequest(THIS.hHttpsession,;    lcVerb,;    tcPage,;    NULL,NULL,NULL,;    INTERNET_FLAG_RELOAD + ;    IIF(THIS.lsecurelink,INTERNET_FLAG_SECURE,0) + ;    this.nHTTPServiceFlags,0) …  And this fixes the issue at least for IE 9… In my FoxPro wwHttp class I now call this by default to never get bitten by this again… This solves the problem permanently for my HTTP client. I never want to see offline operation in an HTTP client API – it’s just too unpredictable in handling errors and the last thing you want is getting unpredictably stale data. Problem solved but this behavior is – well ugly. But then that’s to be expected from an API that’s based on Internet Explorer, eh?© Rick Strahl, West Wind Technologies, 2005-2011Posted in HTTP  Windows  

    Read the article

  • GZip/Deflate Compression in ASP.NET MVC

    - by Rick Strahl
    A long while back I wrote about GZip compression in ASP.NET. In that article I describe two generic helper methods that I've used in all sorts of ASP.NET application from WebForms apps to HttpModules and HttpHandlers that require gzip or deflate compression. The same static methods also work in ASP.NET MVC. Here are the two routines:/// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } The first method checks whether the client sending the request includes the accept-encoding for either gzip or deflate, and if if it does it returns true. The second function uses IsGzipSupported() to decide whether it should encode content and uses an Response Filter to do its job. Basically response filters look at the Response output stream as it's written and convert the data flowing through it. Filters are a bit tricky to work with but the two .NET filter streams for GZip and Deflate Compression make this a snap to implement. In my old code and even now in MVC I can always do:public ActionResult List(string keyword=null, int category=0) { WebUtils.GZipEncodePage(); …} to encode my content. And that works just fine. The proper way: Create an ActionFilterAttribute However in MVC this sort of thing is typically better handled by an ActionFilter which can be applied with an attribute. So to be all prim and proper I created an CompressContentAttribute ActionFilter that incorporates those two helper methods and which looks like this:/// <summary> /// Attribute that can be added to controller methods to force content /// to be GZip encoded if the client supports it /// </summary> public class CompressContentAttribute : ActionFilterAttribute { /// <summary> /// Override to compress the content that is generated by /// an action method. /// </summary> /// <param name="filterContext"></param> public override void OnActionExecuting(ActionExecutingContext filterContext) { GZipEncodePage(); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } } It's basically the same code wrapped into an ActionFilter attribute, which intercepts requests MVC requests to Controller methods and lets you hook up logic before and after the methods have executed. Here I want to override OnActionExecuting() which fires before the Controller action is fired. With the CompressContentAttribute created, it can now be applied to either the controller as a whole:[CompressContent] public class ClassifiedsController : ClassifiedsBaseController { … } or to one of the Action methods:[CompressContent] public ActionResult List(string keyword=null, int category=0) { … } The former applies compression to every action method, while the latter is selective and only applies it to the individual action method. Is the attribute better than the static utility function? Not really, but it is the standard MVC way to hook up 'filter' content and that's where others are likely to expect to set options like this. In fact,  you have a bit more control with the utility function because you can conditionally apply it in code, but this is actually much less likely in MVC applications than old WebForms apps since controller methods tend to be more focused. Compression Caveats Http compression is very cool and pretty easy to implement in ASP.NET but you have to be careful with it - especially if your content might get transformed or redirected inside of ASP.NET. A good example, is if an error occurs and a compression filter is applied. ASP.NET errors don't clear the filter, but clear the Response headers which results in some nasty garbage because the compressed content now no longer matches the headers. Another issue is Caching, which has to account for all possible ways of compression and non-compression that the content is served. Basically compressed content and caching don't mix well. I wrote about several of these issues in an old blog post and I recommend you take a quick peek before diving into making every bit of output Gzip encoded. None of these are show stoppers, but you have to be aware of the issues. Related Posts GZip Compression with ASP.NET Content ASP.NET GZip Encoding Caveats© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • OS Analytics - Deep Dive Into Your OS

    - by Eran_Steiner
    Enterprise Manager Ops Center provides a feature called "OS Analytics". This feature allows you to get a better understanding of how the Operating System is being utilized. You can research the historical usage as well as real time data. This post will show how you can benefit from OS Analytics and how it works behind the scenes. We will have a call to discuss this blog - please join us!Date: Thursday, November 1, 2012Time: 11:00 am, Eastern Daylight Time (New York, GMT-04:00)1. Go to https://oracleconferencing.webex.com/oracleconferencing/j.php?ED=209833067&UID=1512092402&PW=NY2JhMmFjMmFh&RT=MiMxMQ%3D%3D2. If requested, enter your name and email address.3. If a password is required, enter the meeting password: oracle1234. Click "Join". To join the teleconference:Call-in toll-free number:       1-866-682-4770  (US/Canada)      Other countries:                https://oracle.intercallonline.com/portlets/scheduling/viewNumbers/viewNumber.do?ownerNumber=5931260&audioType=RP&viewGa=true&ga=ONConference Code:       7629343#Security code:            7777# Here is quick summary of what you can do with OS Analytics in Ops Center: View historical charts and real time value of CPU, memory, network and disk utilization Find the top CPU and Memory processes in real time or at a certain historical day Determine proper monitoring thresholds based on historical data View Solaris services status details Drill down into a process details View the busiest zones if applicable Where to start To start with OS Analytics, choose the OS asset in the tree and click the Analytics tab. You can see the CPU utilization, Memory utilization and Network utilization, along with the current real time top 5 processes in each category (click the image to see a larger version):  In the above screen, you can click each of the top 5 processes to see a more detailed view of that process. Here is an example of one of the processes: One of the cool things is that you can see the process tree for this process along with some port binding and open file descriptors. On Solaris machines with zones, you get an extra level of tabs, allowing you to get more information on the different zones: This is a good way to see the busiest zones. For example, one zone may not take a lot of CPU but it can consume a lot of memory, or perhaps network bandwidth. To see the detailed Analytics for each of the zones, simply click each of the zones in the tree and go to its Analytics tab. Next, click the "Processes" tab to see real time information of all the processes on the machine: An interesting column is the "Target" column. If you configured Ops Center to work with Enterprise Manager Cloud Control, then the two products will talk to each other and Ops Center will display the correlated target from Cloud Control in this table. If you are only using Ops Center - this column will remain empty. Next, if you view a Solaris machine, you will have a "Services" tab: By default, all services will be displayed, but you can choose to display only certain states, for example, those in maintenance or the degraded ones. You can highlight a service and choose to view the details, where you can see the Dependencies, Dependents and also the location of the service log file (not shown in the picture as you need to scroll down to see the log file). The "Threshold" tab is particularly helpful - you can view historical trends of different monitored values and based on the graph - determine what the monitoring values should be: You can ask Ops Center to suggest monitoring levels based on the historical values or you can set your own. The different colors in the graph represent the current set levels: Red for critical, Yellow for warning and Blue for Information, allowing you to quickly see how they're positioned against real data. It's important to note that when looking at longer periods, Ops Center smooths out the data and uses averages. So when looking at values such as CPU Usage, try shorter time frames which are more detailed, such as one hour or one day. Applying new monitoring values When first applying new values to monitored attributes - a popup will come up asking if it's OK to get you out of the current Monitoring Policy. This is OK if you want to either have custom monitoring for a specific machine, or if you want to use this current machine as a "Gold image" and extract a Monitoring Policy from it. You can later apply the new Monitoring Policy to other machines and also set it as a default Monitoring Profile. Once you're done with applying the different monitoring values, you can review and change them in the "Monitoring" tab. You can also click the "Extract a Monitoring Policy" in the actions pane on the right to save all the new values to a new Monitoring Policy, which can then be found under "Plan Management" -> "Monitoring Policies". Visiting the past Under the "History" tab you can "go back in time". This is very helpful when you know that a machine was busy a few hours ago (perhaps in the middle of the night?), but you were not around to take a look at it in real time. Here's a view into yesterday's data on one of the machines: You can see an interesting CPU spike happening at around 3:30 am along with some memory use. In the bottom table you can see the top 5 CPU and Memory consumers at the requested time. Very quickly you can see that this spike is related to the Solaris 11 IPS repository synchronization process using the "pkgrecv" command. The "time machine" doesn't stop here - you can also view historical data to determine which of the zones was the busiest at a given time: Under the hood The data collected is stored on each of the agents under /var/opt/sun/xvm/analytics/historical/ An "os.zip" file exists for the main OS. Inside you will find many small text files, named after the Epoch time stamp in which they were taken If you have any zones, there will be a file called "guests.zip" containing the same small files for all the zones, as well as a folder with the name of the zone along with "os.zip" in it If this is the Enterprise Controller or the Proxy Controller, you will have folders called "proxy" and "sat" in which you will find the "os.zip" for that controller The actual script collecting the data can be viewed for debugging purposes as well: On Linux, the location is: /opt/sun/xvmoc/private/os_analytics/collect On Solaris, the location is /opt/SUNWxvmoc/private/os_analytics/collect If you would like to redirect all the standard error into a file for debugging, touch the following file and the output will go into it: # touch /tmp/.collect.stderr   The temporary data is collected under /var/opt/sun/xvm/analytics/.collectdb until it is zipped. If you would like to review the properties for the Analytics, you can view those per each agent in /opt/sun/n1gc/lib/XVM.properties. Find the section "Analytics configurable properties for OS and VSC" to view the Analytics specific values. I hope you find this helpful! Please post questions in the comments below. Eran Steiner

    Read the article

  • Java Cloud Service Integration using Web Service Data Control

    - by Jani Rautiainen
    Java Cloud Service (JCS) provides a platform to develop and deploy business applications in the cloud. In Fusion Applications Cloud deployments customers do not have the option to deploy custom applications developed with JDeveloper to ensure the integrity and supportability of the hosted application service. Instead the custom applications can be deployed to the JCS and integrated to the Fusion Application Cloud instance.This series of articles will go through the features of JCS, provide end-to-end examples on how to develop and deploy applications on JCS and how to integrate them with the Fusion Applications instance.In this article a custom application integrating with Fusion Application using Web Service Data Control will be implemented. v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} Pre-requisites Access to Cloud instance In order to deploy the application access to a JCS instance is needed, a free trial JCS instance can be obtained from Oracle Cloud site. To register you will need a credit card even if the credit card will not be charged. To register simply click "Try it" and choose the "Java" option. The confirmation email will contain the connection details. See this video for example of the registration. Once the request is processed you will be assigned 2 service instances; Java and Database. Applications deployed to the JCS must use Oracle Database Cloud Service as their underlying database. So when JCS instance is created a database instance is associated with it using a JDBC data source. The cloud services can be monitored and managed through the web UI. For details refer to Getting Started with Oracle Cloud. JDeveloper JDeveloper contains Cloud specific features related to e.g. connection and deployment. To use these features download the JDeveloper from JDeveloper download site by clicking the “Download JDeveloper 11.1.1.7.1 for ADF deployment on Oracle Cloud” link, this version of JDeveloper will have the JCS integration features that will be used in this article. For versions that do not include the Cloud integration features the Oracle Java Cloud Service SDK or the JCS Java Console can be used for deployment. For details on installing and configuring the JDeveloper refer to the installation guide. For details on SDK refer to Using the Command-Line Interface to Monitor Oracle Java Cloud Service and Using the Command-Line Interface to Manage Oracle Java Cloud Service. Create Application In this example the “JcsWsDemo” application created in the “Java Cloud Service Integration using Web Service Proxy” article is used as the base. Create Web Service Data Control In this example we will use a Web Service Data Control to integrate with Credit Rule Service in Fusion Applications. The data control will be used to query data from Fusion Applications using a web service call and present the data in a table. To generate the data control choose the “Model” project and navigate to "New -> All Technologies -> Business Tier -> Data Controls -> Web Service Data Control" and enter following: Name: CreditRuleServiceDC URL: https://ic-[POD].oracleoutsourcing.com/icCnSetupCreditRulesPublicService/CreditRuleService?WSDL Service: {{http://xmlns.oracle.com/apps/incentiveCompensation/cn/creditSetup/creditRule/creditRuleService/}CreditRuleService On step 2 select the “findRule” operation: Skip step 3 and on step 4 define the credentials to access the service. Do note that in this example these credentials are only used if testing locally, for JCS deployment credentials need to be manually updated on the EAR file: Click “Finish” and the proxy generation is done. Creating UI In order to use the data control we will need to populate complex objects FindCriteria and FindControl. For simplicity in this example we will create logic in a managed bean that populates the objects. Open “JcsWsDemoBean.java” and add the following logic: Map findCriteria; Map findControl; public void setFindCriteria(Map findCriteria) { this.findCriteria = findCriteria; } public Map getFindCriteria() { findCriteria = new HashMap(); findCriteria.put("fetchSize",10); findCriteria.put("fetchStart",0); return findCriteria; } public void setFindControl(Map findControl) { this.findControl = findControl; } public Map getFindControl() { findControl = new HashMap(); return findControl; } Open “JcsWsDemo.jspx”, navigate to “Data Controls -> CreditRuleServiceDC -> findRule(Object, Object) -> result” and drag and drop the “result” node into the “af:form” element in the page: On the “Edit Table Columns” remove all columns except “RuleId” and “Name”: On the “Edit Action Binding” window displayed enter reference to the java class created above by selecting “#{JcsWsDemoBean.findCriteria}”: Also define the value for the “findControl” by selecting “#{JcsWsDemoBean.findControl}”. Deploy to JCS For WS DC the authentication details need to be updated on the connection details before deploying. Open “connections.xml” by navigating “Application Resources -> Descriptors -> ADF META-INF -> connections.xml”: Change the user name and password entry from: <soap username="transportUserName" password="transportPassword" To match the access details for the target environment. Follow the same steps as documented in previous article ”Java Cloud Service ADF Web Application”. Once deployed the application can be accessed with URL: https://java-[identity domain].java.[data center].oraclecloudapps.com/JcsWsDemo-ViewController-context-root/faces/JcsWsDemo.jspx When accessed the first 10 rules in the system are displayed: Summary In this article we learned how to integrate with Fusion Applications using a Web Service Data Control in JCS. In future articles various other integration techniques will be covered. Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}

    Read the article

  • ANTS Memory Profiler 7.0

    - by James Michael Hare
    I had always been a fan of ANTS products (Reflector is absolutely invaluable, and their performance profiler is great as well – very easy to use!), so I was curious to see what the ANTS Memory Profiler could show me. Background While a performance profiler will track how much time is typically spent in each unit of code, a memory profiler gives you much more detail on how and where your memory is being consumed and released in a program. As an example, I’d been working on a data access layer at work to call a market data web service.  This web service would take a list of symbols to quote and would return back the quote data.  To help consolidate the thousands of web requests per second we get and reduce load on the web services, we implemented a 5-second cache of quote data.  Not quite long enough to where customers will typically notice a quote go “stale”, but just long enough to be able to collapse multiple quote requests for the same symbol in a short period of time. A 5-second cache may not sound like much, but it actually pays off by saving us roughly 42% of our web service calls, while still providing relatively up-to-date information.  The question is whether or not the extra memory involved in maintaining the cache was worth it, so I decided to fire up the ANTS Memory Profiler and take a look at memory usage. First Impressions The main thing I’ve always loved about the ANTS tools is their ease of use.  Pretty much everything is right there in front of you in a way that makes it easy for you to find what you need with little digging required.  I’ve worked with other, older profilers before (that shall remain nameless other than to hint it was created by a very large chip maker) where it was a mind boggling experience to figure out how to do simple tasks. Not so with AMP.  The opening dialog is very straightforward.  You can choose from here whether to debug an executable, a web application (either in IIS or from VS’s web development server), windows services, etc. So I chose a .NET Executable and navigated to the build location of my test harness.  Then began profiling. At this point while the application is running, you can see a chart of the memory as it ebbs and wanes with allocations and collections.  At any given point in time, you can take snapshots (to compare states) zoom in, or choose to stop at any time.  Snapshots Taking a snapshot also gives you a breakdown of the managed memory heaps for each generation so you get an idea how many objects are staying around for extended periods of time (as an object lives and survives collections, it gets promoted into higher generations where collection becomes less frequent). Generating a snapshot brings up an analysis view with very handy graphs that show your generation sizes.  Almost all my memory is in Generation 1 in the managed memory component of the first graph, which is good news to me, because Gen 2 collections are much rarer.  I once3 made the mistake once of caching data for 30 minutes and found it didn’t get collected very quick after I released my reference because it had been promoted to Gen 2 – doh! Analysis It looks like (from the second pie chart) that the majority of the allocations were in the string class.  This also is expected for me because the majority of the memory allocated is in the web service responses, so it doesn’t seem the entities I’m adapting to (to prevent being too tightly coupled to the web service proxy classes, which can change easily out from under me) aren’t taking a significant portion of memory. I also appreciate that they have clear summary text in key places such as “No issues with large object heap fragmentation were detected”.  For novice users, this type of summary information can be critical to getting them to use a tool and develop a good working knowledge of it. There is also a handy link at the bottom for “What to look for on the summary” which loads a web page of help on key points to look for. Clicking over to the session overview, it’s easy to compare the samples at each snapshot to see how your memory is growing, shrinking, or staying relatively the same.  Looking at my snapshots, I’m pretty happy with the fact that memory allocation and heap size seems to be fairly stable and in control: Once again, you can check on the large object heap, generation one heap, and generation two heap across each snapshot to spot trends. Back on the analysis tab, we can go to the [Class List] button to get an idea what classes are making up the majority of our memory usage.  As was little surprise to me, System.String was the clear majority of my allocations, though I found it surprising that the System.Reflection.RuntimeMehtodInfo came in second.  I was curious about this, so I selected it and went into the [Instance Categorizer].  This view let me see where these instances to RuntimeMehtodInfo were coming from. So I scrolled back through the graph, and discovered that these were being held by the System.ServiceModel.ChannelFactoryRefCache and I was satisfied this was just an artifact of my WCF proxy. I also like that down at the bottom of the Instance Categorizer it gives you a series of filters and offers to guide you on which filter to use based on the problem you are trying to find.  For example, if I suspected a memory leak, I might try to filter for survivors in growing classes.  This means that for instances of a class that are growing in memory (more are being created than cleaned up), which ones are survivors (not collected) from garbage collection.  This might allow me to drill down and find places where I’m holding onto references by mistake and not freeing them! Finally, if you want to really see all your instances and who is holding onto them (preventing collection), you can go to the “Instance Retention Graph” which creates a graph showing what references are being held in memory and who is holding onto them. Visual Studio Integration Of course, VS has its own profiler built in – and for a free bundled profiler it is quite capable – but AMP gives a much cleaner and easier-to-use experience, and when you install it you also get the option of letting it integrate directly into VS. So once you go back into VS after installation, you’ll notice an ANTS menu which lets you launch the ANTS profiler directly from Visual Studio.   Clicking on one of these options fires up the project in the profiler immediately, allowing you to get right in.  It doesn’t integrate with the Visual Studio windows themselves (like the VS profiler does), but still the plethora of information it provides and the clear and concise manner in which it presents it makes it well worth it. Summary If you like the ANTS series of tools, you shouldn’t be disappointed with the ANTS Memory Profiler.  It was so easy to use that I was able to jump in with very little product knowledge and get the information I was looking it for. I’ve used other profilers before that came with 3-inch thick tomes that you had to read in order to get anywhere with the tool, and this one is not like that at all.  It’s built for your everyday developer to get in and find their problems quickly, and I like that! Tweet Technorati Tags: Influencers,ANTS,Memory,Profiler

    Read the article

  • Set Context User Principal for Customized Authentication in SignalR

    - by Shaun
    Originally posted on: http://geekswithblogs.net/shaunxu/archive/2014/05/27/set-context-user-principal-for-customized-authentication-in-signalr.aspxCurrently I'm working on a single page application project which is built on AngularJS and ASP.NET WebAPI. When I need to implement some features that needs real-time communication and push notifications from server side I decided to use SignalR. SignalR is a project currently developed by Microsoft to build web-based, read-time communication application. You can find it here. With a lot of introductions and guides it's not a difficult task to use SignalR with ASP.NET WebAPI and AngularJS. I followed this and this even though it's based on SignalR 1. But when I tried to implement the authentication for my SignalR I was struggled 2 days and finally I got a solution by myself. This might not be the best one but it actually solved all my problem.   In many articles it's said that you don't need to worry about the authentication of SignalR since it uses the web application authentication. For example if your web application utilizes form authentication, SignalR will use the user principal your web application authentication module resolved, check if the principal exist and authenticated. But in my solution my ASP.NET WebAPI, which is hosting SignalR as well, utilizes OAuth Bearer authentication. So when the SignalR connection was established the context user principal was empty. So I need to authentication and pass the principal by myself.   Firstly I need to create a class which delivered from "AuthorizeAttribute", that will takes the responsible for authenticate when SignalR connection established and any method was invoked. 1: public class QueryStringBearerAuthorizeAttribute : AuthorizeAttribute 2: { 3: public override bool AuthorizeHubConnection(HubDescriptor hubDescriptor, IRequest request) 4: { 5: } 6:  7: public override bool AuthorizeHubMethodInvocation(IHubIncomingInvokerContext hubIncomingInvokerContext, bool appliesToMethod) 8: { 9: } 10: } The method "AuthorizeHubConnection" will be invoked when any SignalR connection was established. And here I'm going to retrieve the Bearer token from query string, try to decrypt and recover the login user's claims. 1: public override bool AuthorizeHubConnection(HubDescriptor hubDescriptor, IRequest request) 2: { 3: var dataProtectionProvider = new DpapiDataProtectionProvider(); 4: var secureDataFormat = new TicketDataFormat(dataProtectionProvider.Create()); 5: // authenticate by using bearer token in query string 6: var token = request.QueryString.Get(WebApiConfig.AuthenticationType); 7: var ticket = secureDataFormat.Unprotect(token); 8: if (ticket != null && ticket.Identity != null && ticket.Identity.IsAuthenticated) 9: { 10: // set the authenticated user principal into environment so that it can be used in the future 11: request.Environment["server.User"] = new ClaimsPrincipal(ticket.Identity); 12: return true; 13: } 14: else 15: { 16: return false; 17: } 18: } In the code above I created "TicketDataFormat" instance, which must be same as the one I used to generate the Bearer token when user logged in. Then I retrieve the token from request query string and unprotect it. If I got a valid ticket with identity and it's authenticated this means it's a valid token. Then I pass the user principal into request's environment property which can be used in nearly future. Since my website was built in AngularJS so the SignalR client was in pure JavaScript, and it's not support to set customized HTTP headers in SignalR JavaScript client, I have to pass the Bearer token through request query string. This is not a restriction of SignalR, but a restriction of WebSocket. For security reason WebSocket doesn't allow client to set customized HTTP headers from browser. Next, I need to implement the authentication logic in method "AuthorizeHubMethodInvocation" which will be invoked when any SignalR method was invoked. 1: public override bool AuthorizeHubMethodInvocation(IHubIncomingInvokerContext hubIncomingInvokerContext, bool appliesToMethod) 2: { 3: var connectionId = hubIncomingInvokerContext.Hub.Context.ConnectionId; 4: // check the authenticated user principal from environment 5: var environment = hubIncomingInvokerContext.Hub.Context.Request.Environment; 6: var principal = environment["server.User"] as ClaimsPrincipal; 7: if (principal != null && principal.Identity != null && principal.Identity.IsAuthenticated) 8: { 9: // create a new HubCallerContext instance with the principal generated from token 10: // and replace the current context so that in hubs we can retrieve current user identity 11: hubIncomingInvokerContext.Hub.Context = new HubCallerContext(new ServerRequest(environment), connectionId); 12: return true; 13: } 14: else 15: { 16: return false; 17: } 18: } Since I had passed the user principal into request environment in previous method, I can simply check if it exists and valid. If so, what I need is to pass the principal into context so that SignalR hub can use. Since the "User" property is all read-only in "hubIncomingInvokerContext", I have to create a new "ServerRequest" instance with principal assigned, and set to "hubIncomingInvokerContext.Hub.Context". After that, we can retrieve the principal in my Hubs through "Context.User" as below. 1: public class DefaultHub : Hub 2: { 3: public object Initialize(string host, string service, JObject payload) 4: { 5: var connectionId = Context.ConnectionId; 6: ... ... 7: var domain = string.Empty; 8: var identity = Context.User.Identity as ClaimsIdentity; 9: if (identity != null) 10: { 11: var claim = identity.FindFirst("Domain"); 12: if (claim != null) 13: { 14: domain = claim.Value; 15: } 16: } 17: ... ... 18: } 19: } Finally I just need to add my "QueryStringBearerAuthorizeAttribute" into the SignalR pipeline. 1: app.Map("/signalr", map => 2: { 3: // Setup the CORS middleware to run before SignalR. 4: // By default this will allow all origins. You can 5: // configure the set of origins and/or http verbs by 6: // providing a cors options with a different policy. 7: map.UseCors(CorsOptions.AllowAll); 8: var hubConfiguration = new HubConfiguration 9: { 10: // You can enable JSONP by uncommenting line below. 11: // JSONP requests are insecure but some older browsers (and some 12: // versions of IE) require JSONP to work cross domain 13: // EnableJSONP = true 14: EnableJavaScriptProxies = false 15: }; 16: // Require authentication for all hubs 17: var authorizer = new QueryStringBearerAuthorizeAttribute(); 18: var module = new AuthorizeModule(authorizer, authorizer); 19: GlobalHost.HubPipeline.AddModule(module); 20: // Run the SignalR pipeline. We're not using MapSignalR 21: // since this branch already runs under the "/signalr" path. 22: map.RunSignalR(hubConfiguration); 23: }); On the client side should pass the Bearer token through query string before I started the connection as below. 1: self.connection = $.hubConnection(signalrEndpoint); 2: self.proxy = self.connection.createHubProxy(hubName); 3: self.proxy.on(notifyEventName, function (event, payload) { 4: options.handler(event, payload); 5: }); 6: // add the authentication token to query string 7: // we cannot use http headers since web socket protocol doesn't support 8: self.connection.qs = { Bearer: AuthService.getToken() }; 9: // connection to hub 10: self.connection.start(); Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

  • IIS 7.0 informational HTTP status codes

    - by Samir R. Bhogayta
    1xx - Informational These HTTP status codes indicate a provisional response. The client computer receives one or more 1xx responses before the client computer receives a regular response. IIS 7.0 uses the following informational HTTP status codes: 100 - Continue. 101 - Switching protocols. 2xx - Success These HTTP status codes indicate that the server successfully accepted the request. IIS 7.0 uses the following success HTTP status codes: 200 - OK. The client request has succeeded. 201 - Created. 202 - Accepted. 203 - Nonauthoritative information. 204 - No content. 205 - Reset content. 206 - Partial content. 3xx - Redirection These HTTP status codes indicate that the client browser must take more action to fulfill the request. For example, the client browser may have to request a different page on the server. Or, the client browser may have to repeat the request by using a proxy server. IIS 7.0 uses the following redirection HTTP status codes: 301 - Moved permanently. 302 - Object moved. 304 - Not modified. 307 - Temporary redirect. 4xx - Client error These HTTP status codes indicate that an error occurred and that the client browser appears to be at fault. For example, the client browser may have requested a page that does not exist. Or, the client browser may not have provided valid authentication information. IIS 7.0 uses the following client error HTTP status codes: 400 - Bad request. The request could not be understood by the server due to malformed syntax. The client should not repeat the request without modifications. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 400 error: 400.1 - Invalid Destination Header. 400.2 - Invalid Depth Header. 400.3 - Invalid If Header. 400.4 - Invalid Overwrite Header. 400.5 - Invalid Translate Header. 400.6 - Invalid Request Body. 400.7 - Invalid Content Length. 400.8 - Invalid Timeout. 400.9 - Invalid Lock Token. 401 - Access denied. IIS 7.0 defines several HTTP status codes that indicate a more specific cause of a 401 error. The following specific HTTP status codes are displayed in the client browser but are not displayed in the IIS log: 401.1 - Logon failed. 401.2 - Logon failed due to server configuration. 401.3 - Unauthorized due to ACL on resource. 401.4 - Authorization failed by filter. 401.5 - Authorization failed by ISAPI/CGI application. 403 - Forbidden. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 403 error: 403.1 - Execute access forbidden. 403.2 - Read access forbidden. 403.3 - Write access forbidden. 403.4 - SSL required. 403.5 - SSL 128 required. 403.6 - IP address rejected. 403.7 - Client certificate required. 403.8 - Site access denied. 403.9 - Forbidden: Too many clients are trying to connect to the Web server. 403.10 - Forbidden: Web server is configured to deny Execute access. 403.11 - Forbidden: Password has been changed. 403.12 - Mapper denied access. 403.13 - Client certificate revoked. 403.14 - Directory listing denied. 403.15 - Forbidden: Client access licenses have exceeded limits on the Web server. 403.16 - Client certificate is untrusted or invalid. 403.17 - Client certificate has expired or is not yet valid. 403.18 - Cannot execute requested URL in the current application pool. 403.19 - Cannot execute CGI applications for the client in this application pool. 403.20 - Forbidden: Passport logon failed. 403.21 - Forbidden: Source access denied. 403.22 - Forbidden: Infinite depth is denied. 404 - Not found. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 404 error: 404.0 - Not found. 404.1 - Site Not Found. 404.2 - ISAPI or CGI restriction. 404.3 - MIME type restriction. 404.4 - No handler configured. 404.5 - Denied by request filtering configuration. 404.6 - Verb denied. 404.7 - File extension denied. 404.8 - Hidden namespace. 404.9 - File attribute hidden. 404.10 - Request header too long. 404.11 - Request contains double escape sequence. 404.12 - Request contains high-bit characters. 404.13 - Content length too large. 404.14 - Request URL too long. 404.15 - Query string too long. 404.16 - DAV request sent to the static file handler. 404.17 - Dynamic content mapped to the static file handler via a wildcard MIME mapping. 404.18 - Querystring sequence denied. 404.19 - Denied by filtering rule. 405 - Method Not Allowed. 406 - Client browser does not accept the MIME type of the requested page. 408 - Request timed out. 412 - Precondition failed. 5xx - Server error These HTTP status codes indicate that the server cannot complete the request because the server encounters an error. IIS 7.0 uses the following server error HTTP status codes: 500 - Internal server error. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 500 error: 500.0 - Module or ISAPI error occurred. 500.11 - Application is shutting down on the Web server. 500.12 - Application is busy restarting on the Web server. 500.13 - Web server is too busy. 500.15 - Direct requests for Global.asax are not allowed. 500.19 - Configuration data is invalid. 500.21 - Module not recognized. 500.22 - An ASP.NET httpModules configuration does not apply in Managed Pipeline mode. 500.23 - An ASP.NET httpHandlers configuration does not apply in Managed Pipeline mode. 500.24 - An ASP.NET impersonation configuration does not apply in Managed Pipeline mode. 500.50 - A rewrite error occurred during RQ_BEGIN_REQUEST notification handling. A configuration or inbound rule execution error occurred. Note Here is where the distributed rules configuration is read for both inbound and outbound rules. 500.51 - A rewrite error occurred during GL_PRE_BEGIN_REQUEST notification handling. A global configuration or global rule execution error occurred. Note Here is where the global rules configuration is read. 500.52 - A rewrite error occurred during RQ_SEND_RESPONSE notification handling. An outbound rule execution occurred. 500.53 - A rewrite error occurred during RQ_RELEASE_REQUEST_STATE notification handling. An outbound rule execution error occurred. The rule is configured to be executed before the output user cache gets updated. 500.100 - Internal ASP error. 501 - Header values specify a configuration that is not implemented. 502 - Web server received an invalid response while acting as a gateway or proxy. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 502 error: 502.1 - CGI application timeout. 502.2 - Bad gateway. 503 - Service unavailable. IIS 7.0 defines the following HTTP status codes that indicate a more specific cause of a 503 error: 503.0 - Application pool unavailable. 503.2 - Concurrent request limit exceeded.

    Read the article

  • Combining Shared Secret and Username Token – Azure Service Bus

    - by Michael Stephenson
    As discussed in the introduction article this walkthrough will explain how you can implement WCF security with the Windows Azure Service Bus to ensure that you can protect your endpoint in the cloud with a shared secret but also flow through a username token so that in your listening WCF service you will be able to identify who sent the message. This could either be in the form of an application or a user depending on how you want to use your token. Prerequisites Before going into the walk through I want to explain a few assumptions about the scenario we are implementing but to keep the article shorter I am not going to walk through all of the steps in how to setup some of this. In the solution we have a simple console application which will represent the client application. There is also the services WCF application which contains the WCF service we will expose via the Windows Azure Service Bus. The WCF Service application in this example was hosted in IIS 7 on Windows 2008 R2 with AppFabric Server installed and configured to auto-start the WCF listening services. I am not going to go through significant detail around the IIS setup because it should not matter in relation to this article however if you want to understand more about how to configure WCF and IIS for such a scenario please refer to the following paper which goes into a lot of detail about how to configure this. The link is: http://tinyurl.com/8s5nwrz   The Service Component To begin with let's look at the service component and how it can be configured to listen to the service bus using a shared secret but to also accept a username token from the client. In the sample the service component is called Acme.Azure.ServiceBus.Poc.UN.Services. It has a single service which is the Visual Studio template for a WCF service when you add a new WCF Service Application so we have a service called Service1 with its Echo method. Nothing special so far!.... The next step is to look at the web.config file to see how we have configured the WCF service. In the services section of the WCF configuration you can see I have created my service and I have created a local endpoint which I simply used to do a little bit of diagnostics and to check it was working, but more importantly there is the Windows Azure endpoint which is using the ws2007HttpRelayBinding (note that this should also work just the same if your using netTcpRelayBinding). The key points to note on the above picture are the service behavior called MyServiceBehaviour and the service bus endpoints behavior called MyEndpointBehaviour. We will go into these in more detail later.   The Relay Binding The relay binding for the service has been configured to use the TransportWithMessageCredential security mode. This is the important bit where the transport security really relates to the interaction between the service and listening to the Azure Service Bus and the message credential is where we will use our username token like we have specified in the message/clientCrentialType attribute. Note also that we have left the relayClientAuthenticationType set to RelayAccessToken. This means that authentication will be made against ACS for accessing the service bus and messages will not be accepted from any sender who has not been authenticated by ACS.   The Endpoint Behaviour In the below picture you can see the endpoint behavior which is configured to use the shared secret client credential for accessing the service bus and also for diagnostic purposes I have included the service registry element. Hopefully if you are familiar with using Windows Azure Service Bus relay feature the above is very familiar to you and this is a very common setup for this section. There is nothing specific to the username token implementation here. The Service Behaviour Now we come to the bit with most of the username token bits in it. When you configure the service behavior I have included the serviceCredentials element and then setup to use userNameAuthentication and you can see that I have created my own custom username token validator.   This setup means that WCF will hand off to my class for validating the username token details. I have also added the serviceSecurityAudit element to give me a simple auditing of access capability. My UsernamePassword Validator The below picture shows you the details of the username password validator class I have implemented. WCF will hand off to this class when validating the token and give me a nice way to check the token credentials against an on-premise store. You have all of the validation features with a non-service bus WCF implementation available such as validating the username password against active directory or ASP.net membership features or as in my case above something much simpler.   The Client Now let's take a look at the client side of this solution and how we can configure the client to authenticate against ACS but also send a username token over to the service component so it can implement additional security checks on-premise. I have a console application and in the program class I want to use the proxy generated with Add Service Reference to send a message via the Azure Service Bus. You can see in my WCF client configuration below I have setup my details for the azure service bus url and am using the ws2007HttpRelayBinding. Next is my configuration for the relay binding. You can see below I have configured security to use TransportWithMessageCredential so we will flow the username token with the message and also the RelayAccessToken relayClientAuthenticationType which means the component will validate against ACS before being allowed to access the relay endpoint to send a message.     After the binding we need to configure the endpoint behavior like in the below picture. This is the normal configuration to use a shared secret for accessing a Service Bus endpoint.   Finally below we have the code of the client in the console application which will call the service bus. You can see that we have created our proxy and then made a normal call to a WCF service but this time we have also set the ClientCredentials to use the appropriate username and password which will be flown through the service bus and to our service which will validate them.     Conclusion As you can see from the above walkthrough it is not too difficult to configure a service to use both a shared secret and username token at the same time. This gives you the power and protection offered by the access control service in the cloud but also the ability to flow additional tokens to the on-premise component for additional security features to be implemented. Sample The sample used in this post is available at the following location: https://s3.amazonaws.com/CSCBlogSamples/Acme.Azure.ServiceBus.Poc.UN.zip

    Read the article

  • Hosting and consuming WCF services without configuration files

    - by martinsj
    In this post, I'll demonstrate how to configure both the host and the client in code without the need for configuring services i the <system.serviceModel> section of the config-file. In fact, you don't need a  <system.serviceModel> section at all. What you'll do need (and want) sometimes, is the Uri of the service in the configuration file. Configuring the Uri of the the service is actually only needed for the client or when self-hosting, not when hosting in IIS. So, exactly What do we need to configure? The binding type and the binding constraints The metadata behavior Debug behavior You can of course configure even more, and even more if you want to, WCF is after all the king of configuration… As an example I'll be hosting and consuming a service that removes most of the default constraints for WCF-services, using a BasicHttpBinding. Of course, in regards to security, it is probably better to have some constraints on the server, but this is only a demonstration. The ServerConfig class in the code beneath is a static helper class that will be used in the examples. In this post, I’ll be using this helper-class for all configuration, for both the server and the client. In WCF, the  client and the server have both their own WCF-configuration. With this piece of code, they will be sharing the same configuration. 1: public static class ServiceConfig 2: { 3: public static Binding DefaultBinding 4: { 5: get 6: { 7: var binding = new BasicHttpBinding(); 8: Configure(binding); 9: return binding; 10: } 11: } 12:  13: public static void Configure(HttpBindingBase binding) 14: { 15: if (binding == null) 16: { 17: throw new ArgumentException("Argument 'binding' cannot be null. Cannot configure binding."); 18: } 19:  20: binding.SendTimeout = new TimeSpan(0, 0, 30, 0); // 30 minute timeout 21: binding.MaxBufferSize = Int32.MaxValue; 22: binding.MaxBufferPoolSize = 2147483647; 23: binding.MaxReceivedMessageSize = Int32.MaxValue; 24: binding.ReaderQuotas.MaxArrayLength = Int32.MaxValue; 25: binding.ReaderQuotas.MaxBytesPerRead = Int32.MaxValue; 26: binding.ReaderQuotas.MaxDepth = Int32.MaxValue; 27: binding.ReaderQuotas.MaxNameTableCharCount = Int32.MaxValue; 28: binding.ReaderQuotas.MaxStringContentLength = Int32.MaxValue; 29: } 30:  31: public static ServiceMetadataBehavior ServiceMetadataBehavior 32: { 33: get 34: { 35: return new ServiceMetadataBehavior 36: { 37: HttpGetEnabled = true, 38: MetadataExporter = {PolicyVersion = PolicyVersion.Policy15} 39: }; 40: } 41: } 42:  43: public static ServiceDebugBehavior ServiceDebugBehavior 44: { 45: get 46: { 47: var smb = new ServiceDebugBehavior(); 48: Configure(smb); 49: return smb; 50: } 51: } 52:  53:  54: public static void Configure(ServiceDebugBehavior behavior) 55: { 56: if (behavior == null) 57: { 58: throw new ArgumentException("Argument 'behavior' cannot be null. Cannot configure debug behavior."); 59: } 60: 61: behavior.IncludeExceptionDetailInFaults = true; 62: } 63: } Configuring the server There are basically two ways to host a WCF service, in IIS and self-hosting. When hosting a WCF service in a production environment using SOA architecture, you'll be most likely hosting it in IIS. When testing the service in integration tests, it's very handy to be able to self-host services in the unit-tests. In fact, you can share the the WCF configuration for self-hosted services and services hosted in IIS. And that is exactly what you want to do, testing the same configurations for test and production environments.   Configuring when Self-hosting When self-hosting, in order to start the service, you'll have to instantiate the ServiceHost class, configure the  service and open it. 1: // Create the service-host. 2: var host = new ServiceHost(typeof(MyService), endpoint); 3:  4: // Configure the binding 5: host.AddServiceEndpoint(typeof(IMyService), ServiceConfig.DefaultBinding, endpoint); 6:  7: // Configure metadata behavior 8: host.Description.Behaviors.Add(ServiceConfig.ServiceMetadataBehavior); 9:  10: // Configure debgug behavior 11: ServiceConfig.Configure((ServiceDebugBehavior)host.Description.Behaviors[typeof(ServiceDebugBehavior)]); 12: 13: // Start listening to the service 14: host.Open(); 15:  Configuring when hosting in IIS When you create a WCF service application with the wizard in Visual Studio, you'll end up with bits and pieces of code in order to get the service running: Svc-file with codebehind. A interface to the service Web.config In order to get rid of the configuration in the <system.serviceModel> section, which the wizard has generated for us, we must tell the service that we have a factory that will create the service for us. We do this by changing the markup for the svc-file: 1: <%@ ServiceHost Language="C#" Debug="true" Service="Namespace.MyService" Factory="Namespace.ServiceHostFactory" %> The markup tells IIS that we have a factory called ServiceHostFactory for this service. The service factory has a method we can override which will be called when someone asks IIS for the service. There are overloads we can override: 1: System.ServiceModel.ServiceHostBase CreateServiceHost(string constructorString, Uri[] baseAddresses) 2: System.ServiceModel.ServiceHost CreateServiceHost(Type serviceType, Uri[] baseAddresses) 3:  In this example, we'll be using the last one, so our implementation looks like this: 1: public class ServiceHostFactory : System.ServiceModel.Activation.ServiceHostFactory 2: { 3:  4: protected override System.ServiceModel.ServiceHost CreateServiceHost(Type serviceType, Uri[] baseAddresses) 5: { 6: var host = base.CreateServiceHost(serviceType, baseAddresses); 7: host.Description.Behaviors.Add(ServiceConfig.ServiceMetadataBehavior); 8: ServiceConfig.Configure((ServiceDebugBehavior)host.Description.Behaviors[typeof(ServiceDebugBehavior)]); 9: return host; 10: } 11: } 12:  1: public class ServiceHostFactory : System.ServiceModel.Activation.ServiceHostFactory 2: { 3: 4: protected override System.ServiceModel.ServiceHost CreateServiceHost(Type serviceType, Uri[] baseAddresses) 5: { 6: var host = base.CreateServiceHost(serviceType, baseAddresses); 7: host.Description.Behaviors.Add(ServiceConfig.ServiceMetadataBehavior); 8: ServiceConfig.Configure((ServiceDebugBehavior)host.Description.Behaviors[typeof(ServiceDebugBehavior)]); 9: return host; 10: } 11: } 12: As you can see, we are using the same configuration helper we used when self-hosting. Now, when you have a factory, the <system.serviceModel> section of the configuration can be removed, because the section will be ignored when the service has a custom factory. If you want to configure something else in the config-file, one could configure in some other section.   Configuring the client Microsoft has helpfully created a ChannelFactory class in order to create a proxy client. When using this approach, you don't have generate those awfull proxy classes for the client. If you share the contracts with the server in it's own assembly like in the layer diagram under, you can share the same piece of code. The contracts in WCF are the interface to the service and if any, the datacontracts (custom types) the service depends on. Using the ChannelFactory with our configuration helper-class is very simple: 1: var identity = EndpointIdentity.CreateDnsIdentity("localhost"); 2: var endpointAddress = new EndpointAddress(endPoint, identity); 3: var factory = new ChannelFactory<IMyService>(DeployServiceConfig.DefaultBinding, endpointAddress); 4: using (var myService = new factory.CreateChannel()) 5: { 6: myService.Hello(); 7: } 8: factory.Close();   Happy configuration!

    Read the article

  • Combining Shared Secret and Certificates

    - by Michael Stephenson
    As discussed in the introduction article this walkthrough will explain how you can implement WCF security with the Windows Azure Service Bus to ensure that you can protect your endpoint in the cloud with a shared secret but also combine this with certificates so that you can identify the sender of the message.   Prerequisites As in the previous article before going into the walk through I want to explain a few assumptions about the scenario we are implementing but to keep the article shorter I am not going to walk through all of the steps in how to setup some of this. In the solution we have a simple console application which will represent the client application. There is also the services WCF application which contains the WCF service we will expose via the Windows Azure Service Bus. The WCF Service application in this example was hosted in IIS 7 on Windows 2008 R2 with AppFabric Server installed and configured to auto-start the WCF listening services. I am not going to go through significant detail around the IIS setup because it should not matter in relation to this article however if you want to understand more about how to configure WCF and IIS for such a scenario please refer to the following paper which goes into a lot of detail about how to configure this. The link is: http://tinyurl.com/8s5nwrz   Setting up the Certificates To keep the post and sample simple I am going to use the local computer store for all certificates but this bit is really just the same as setting up certificates for an example where you are using WCF without using Windows Azure Service Bus. In the sample I have included two batch files which you can use to create the sample certificates or remove them. Basically you will end up with: A certificate called PocServerCert in the personal store for the local computer which will be used by the WCF Service component A certificate called PocClientCert in the personal store for the local computer which will be used by the client application A root certificate in the Root store called PocRootCA with its associated revocation list which is the root from which the client and server certificates were created   For the sample Im just using development certificates like you would normally, and you can see exactly how these are configured and placed in the stores from the batch files in the solution using makecert and certmgr.   The Service Component To begin with let's look at the service component and how it can be configured to listen to the service bus using a shared secret but to also accept a username token from the client. In the sample the service component is called Acme.Azure.ServiceBus.Poc.Cert.Services. It has a single service which is the Visual Studio template for a WCF service when you add a new WCF Service Application so we have a service called Service1 with its Echo method. Nothing special so far!.... The next step is to look at the web.config file to see how we have configured the WCF service. In the services section of the WCF configuration you can see I have created my service and I have created a local endpoint which I simply used to do a little bit of diagnostics and to check it was working, but more importantly there is the Windows Azure endpoint which is using the ws2007HttpRelayBinding (note that this should also work just the same if your using netTcpRelayBinding). The key points to note on the above picture are the service behavior called MyServiceBehaviour and the service bus endpoints behavior called MyEndpointBehaviour. We will go into these in more detail later.   The Relay Binding The relay binding for the service has been configured to use the TransportWithMessageCredential security mode. This is the important bit where the transport security really relates to the interaction between the service and listening to the Azure Service Bus and the message credential is where we will use our certificate like we have specified in the message/clientCrentialType attribute. Note also that we have left the relayClientAuthenticationType set to RelayAccessToken. This means that authentication will be made against ACS for accessing the service bus and messages will not be accepted from any sender who has not been authenticated by ACS.   The Endpoint Behaviour In the below picture you can see the endpoint behavior which is configured to use the shared secret client credential for accessing the service bus and also for diagnostic purposes I have included the service registry element.     Hopefully if you are familiar with using Windows Azure Service Bus relay feature the above is very familiar to you and this is a very common setup for this section. There is nothing specific to the username token implementation here. The Service Behaviour Now we come to the bit with most of the certificate stuff in it. When you configure the service behavior I have included the serviceCredentials element and then setup to use the clientCertificate check and also specifying the serviceCertificate with information on how to find the servers certificate in the store.     I have also added a serviceAuthorization section where I will implement my own authorization component to perform additional security checks after the service has validated that the message was signed with a good certificate. I also have the same serviceSecurityAudit configuration to log access to my service. My Authorization Manager The below picture shows you implementation of my authorization manager. WCF will eventually hand off the message to my authorization component before it calls the service code. This is where I can perform some logic to check if the identity is allowed to access resources. In this case I am simple rejecting messages from anyone except the PocClientCertificate.     The Client Now let's take a look at the client side of this solution and how we can configure the client to authenticate against ACS but also send a certificate over to the service component so it can implement additional security checks on-premise. I have a console application and in the program class I want to use the proxy generated with Add Service Reference to send a message via the Azure Service Bus. You can see in my WCF client configuration below I have setup my details for the azure service bus url and am using the ws2007HttpRelayBinding.   Next is my configuration for the relay binding. You can see below I have configured security to use TransportWithMessageCredential so we will flow the token from a certificate with the message and also the RelayAccessToken relayClientAuthenticationType which means the component will validate against ACS before being allowed to access the relay endpoint to send a message.     After the binding we need to configure the endpoint behavior like in the below picture. This contains the normal transportClientEndpointBehaviour to setup the ACS shared secret configuration but we have also configured the clientCertificate to look for the PocClientCert.     Finally below we have the code of the client in the console application which will call the service bus. You can see that we have created our proxy and then made a normal call to a WCF in exactly the normal way but the configuration will jump in and ensure that a token is passed representing the client certificate.     Conclusion As you can see from the above walkthrough it is not too difficult to configure a service to use both a shared secret and certificate based token at the same time. This gives you the power and protection offered by the access control service in the cloud but also the ability to flow additional tokens to the on-premise component for additional security features to be implemented. Sample The sample used in this post is available at the following location: https://s3.amazonaws.com/CSCBlogSamples/Acme.Azure.ServiceBus.Poc.Cert.zip

    Read the article

  • Cannot Create New Team Project TFS2010 TF249063 TF218017

    - by Kodicus
    Server: Windows 2008 R2 Standard Team Foundation Server 2010 WSS 3.0 TFS Configuration: Single Server instalation (including SharePoint) The following error occurs when trying to create a new team project from my local machine. The ://sourcecontrol site and ://sourcecontrol/sites/DefaultCollection/ site appears to be functioning fine and my user is a Site collection administrator on both. I can navigate both sites through a browser on my local machine. Thanks for your help! 2010-04-23T10:01:42 | Module: Internal | Team Foundation Server proxy retrieved | Completion time: 0 seconds 2010-04-23T10:01:42 | Module: Wizard | Retrieved IAuthorizationService proxy | Completion time: 0 seconds 2010-04-23T10:01:42 | Module: Wizard | TF30227: Project creation permissions retrieved | Completion time: 0.109382 seconds 2010-04-23T10:01:42 | Module: Internal | The template information for Team Foundation Server "sourcecontrol\DefaultCollection" was retrieved from the Team Foundation Server. | Completion time: 0.15626 seconds ---begin Exception entry--- Time: 2010-04-23T10:03:24 Module: Wizard Exception Message: TF218017: A SharePoint site could not be created for use as the team project portal. The following error occurred: TF249063: The following Web service is not available: ://sourcecontrol/_vti_bin/TeamFoundationIntegrationService.asmx. This Web service is used for the Team Foundation Server Extensions for SharePoint Products. The underlying error is: The underlying connection was closed: A connection that was expected to be kept alive was closed by the server.. Verify that the following URL points to a valid SharePoint Web application and that the application is available: ://sourcecontrol. If the URL is correct and the Web application is operating normally, verify that a firewall is not blocking access to the Web application. (type TeamFoundationServerException) Exception Stack Trace: at Microsoft.VisualStudio.TeamFoundation.WssSiteCreator.CheckCreateSite(TfsTeamProjectCollection tfsServer, Uri adminUri, Uri siteUri) at Microsoft.VisualStudio.TeamFoundation.WssSiteCreator.ValidateSettings(ProjectCreationContext context) at Microsoft.VisualStudio.TeamFoundation.PortfolioProjectForm.OnFinish() Inner Exception Details: Exception Message: TF249063: The following Web service is not available: ://sourcecontrol/_vti_bin/TeamFoundationIntegrationService.asmx. This Web service is used for the Team Foundation Server Extensions for SharePoint Products. The underlying error is: The underlying connection was closed: A connection that was expected to be kept alive was closed by the server.. Verify that the following URL points to a valid SharePoint Web application and that the application is available: ://sourcecontrol. If the URL is correct and the Web application is operating normally, verify that a firewall is not blocking access to the Web application. (type TeamFoundationServiceUnavailableException) Exception Stack Trace: at Microsoft.TeamFoundation.Client.SharePoint.SharePointTeamFoundationIntegrationService.HandleException(Exception e) at Microsoft.TeamFoundation.Client.SharePoint.SharePointTeamFoundationIntegrationService.CheckUrl(String absolutePath, CheckUrlOptions options, Guid configurationServerId, Guid projectCollectionId) at Microsoft.TeamFoundation.Client.SharePoint.WssUtilities.CheckUrl(ICredentials credentials, Uri adminUrl, Uri siteUrl, CheckUrlOptions options, Guid configurationServerId, Guid projectCollectionId) at Microsoft.TeamFoundation.Client.SharePoint.WssUtilities.CheckCreateSite(TfsConnection tfs, Uri adminUrl, Uri siteUrl) at Microsoft.VisualStudio.TeamFoundation.WssSiteCreator.CheckCreateSite(TfsTeamProjectCollection tfsServer, Uri adminUri, Uri siteUri) Inner Exception Details: Exception Message: The underlying connection was closed: A connection that was expected to be kept alive was closed by the server. (type WebException) Exception Stack Trace: at System.Net.WebRequest.GetResponse() at Microsoft.TeamFoundation.Client.TeamFoundationClientProxyBase.AsyncWebRequest.ExecRequest(Object obj) Inner Exception Details: Exception Message: Unable to read data from the transport connection: An existing connection was forcibly closed by the remote host. (type IOException) Exception Stack Trace: at System.Net.Sockets.NetworkStream.Read(Byte[] buffer, Int32 offset, Int32 size) at System.Net.PooledStream.Read(Byte[] buffer, Int32 offset, Int32 size) at System.Net.Connection.SyncRead(WebRequest request, Boolean userRetrievedStream, Boolean probeRead) Inner Exception Details: Exception Message: An existing connection was forcibly closed by the remote host (type SocketException) Exception Stack Trace: at System.Net.Sockets.Socket.Receive(Byte[] buffer, Int32 offset, Int32 size, SocketFlags socketFlags) at System.Net.Sockets.NetworkStream.Read(Byte[] buffer, Int32 offset, Int32 size) --- end Exception entry ---

    Read the article

  • Unable to import Maven project into IntelliJ IDEA

    - by del
    I'm having problems importing any Maven projects into IntelliJ IDEA. I create an empty Maven project like this: $ mvn archetype:generate -DgroupId=com.mycompany.app -DartifactId=my-app -DarchetypeArtifactId=maven-archetype-quickstart -DinteractiveMode=false Then I try to open the project in IDEA (File Open Project, then choose the pom.xml). A progress box saying "Reading pom.xml" displays for a few minutes, and then just disappears without opening the project. Looking in the IDEA log, I see some connection timeout exceptions like this: 2012-10-03 11:55:55,483 [ 16981] INFO - ution.rmi.RemoteProcessSupport - Port/ID: 18011/Maven2ServerImpl9407569f 2012-10-03 11:56:58,898 [ 80396] WARN - ution.rmi.RemoteProcessSupport - The cook failed to start due to java.net.ConnectException: Connection timed out 2012-10-03 11:57:55,483 [ 136981] WARN - ution.rmi.RemoteProcessSupport - java.rmi.NotBoundException: _DEAD_HAND_ 2012-10-03 11:57:55,484 [ 136982] WARN - ution.rmi.RemoteProcessSupport - at sun.rmi.registry.RegistryImpl.lookup(RegistryImpl.java:106) 2012-10-03 11:57:55,484 [ 136982] WARN - ution.rmi.RemoteProcessSupport - at com.intellij.execution.rmi.RemoteServer.start(RemoteServer.java:73) 2012-10-03 11:57:55,484 [ 136982] WARN - ution.rmi.RemoteProcessSupport - at org.jetbrains.idea.maven.server.RemoteMavenServer.main(RemoteMavenServer.java:22) 2012-10-03 11:58:01,749 [ 143247] ERROR - com.intellij.ide.IdeEventQueue - Error during dispatching of java.awt.event.MouseEvent[MOUSE_RELEASED,(65,116),absolute(64,140),button=1,modifiers=Button1,clickCount=1] on frame0 java.lang.RuntimeException: Cannot reconnect. at org.jetbrains.idea.maven.server.RemoteObjectWrapper.perform(RemoteObjectWrapper.java:82) at org.jetbrains.idea.maven.server.MavenServerManager.applyProfiles(MavenServerManager.java:311) at org.jetbrains.idea.maven.project.MavenProjectReader.applyProfiles(MavenProjectReader.java:369) at org.jetbrains.idea.maven.project.MavenProjectReader.doReadProjectModel(MavenProjectReader.java:98) at org.jetbrains.idea.maven.project.MavenProjectReader.readProject(MavenProjectReader.java:52) at org.jetbrains.idea.maven.project.MavenProject.read(MavenProject.java:405) at org.jetbrains.idea.maven.project.MavenProjectsTree.doUpdate(MavenProjectsTree.java:534) at org.jetbrains.idea.maven.project.MavenProjectsTree.doAdd(MavenProjectsTree.java:481) at org.jetbrains.idea.maven.project.MavenProjectsTree.update(MavenProjectsTree.java:442) at org.jetbrains.idea.maven.project.MavenProjectsTree.updateAll(MavenProjectsTree.java:413) at org.jetbrains.idea.maven.wizards.MavenProjectBuilder.readMavenProjectTree(MavenProjectBuilder.java:198) at org.jetbrains.idea.maven.wizards.MavenProjectBuilder.access$800(MavenProjectBuilder.java:44) at org.jetbrains.idea.maven.wizards.MavenProjectBuilder$3.run(MavenProjectBuilder.java:179) at org.jetbrains.idea.maven.utils.MavenUtil$8.run(MavenUtil.java:388) at com.intellij.openapi.progress.impl.ProgressManagerImpl$TaskRunnable.run(ProgressManagerImpl.java:469) at com.intellij.openapi.progress.impl.ProgressManagerImpl$6.run(ProgressManagerImpl.java:288) at com.intellij.openapi.progress.impl.ProgressManagerImpl$2.run(ProgressManagerImpl.java:178) at com.intellij.openapi.progress.impl.ProgressManagerImpl.executeProcessUnderProgress(ProgressManagerImpl.java:218) at com.intellij.openapi.progress.impl.ProgressManagerImpl.runProcess(ProgressManagerImpl.java:169) at com.intellij.openapi.application.impl.ApplicationImpl$8$1.run(ApplicationImpl.java:641) at com.intellij.openapi.application.impl.ApplicationImpl$6.run(ApplicationImpl.java:434) at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:441) at java.util.concurrent.FutureTask$Sync.innerRun(FutureTask.java:303) at java.util.concurrent.FutureTask.run(FutureTask.java:138) at java.util.concurrent.ThreadPoolExecutor$Worker.runTask(ThreadPoolExecutor.java:886) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:908) at java.lang.Thread.run(Thread.java:662) at com.intellij.openapi.application.impl.ApplicationImpl$1$1.run(ApplicationImpl.java:145) Caused by: java.rmi.RemoteException: Cannot start maven service; nested exception is: java.rmi.ConnectException: Connection refused to host: localhost; nested exception is: java.net.ConnectException: Connection timed out at org.jetbrains.idea.maven.server.MavenServerManager.create(MavenServerManager.java:120) at org.jetbrains.idea.maven.server.MavenServerManager.create(MavenServerManager.java:71) at org.jetbrains.idea.maven.server.RemoteObjectWrapper.getOrCreateWrappee(RemoteObjectWrapper.java:41) at org.jetbrains.idea.maven.server.MavenServerManager$8.execute(MavenServerManager.java:314) at org.jetbrains.idea.maven.server.MavenServerManager$8.execute(MavenServerManager.java:311) at org.jetbrains.idea.maven.server.RemoteObjectWrapper.perform(RemoteObjectWrapper.java:76) ... 27 more Caused by: java.rmi.ConnectException: Connection refused to host: localhost; nested exception is: java.net.ConnectException: Connection timed out at sun.rmi.transport.tcp.TCPEndpoint.newSocket(TCPEndpoint.java:601) at sun.rmi.transport.tcp.TCPChannel.createConnection(TCPChannel.java:198) at sun.rmi.transport.tcp.TCPChannel.newConnection(TCPChannel.java:184) at sun.rmi.server.UnicastRef.newCall(UnicastRef.java:322) at sun.rmi.registry.RegistryImpl_Stub.lookup(Unknown Source) at com.intellij.execution.rmi.RemoteProcessSupport$2.compute(RemoteProcessSupport.java:215) at com.intellij.execution.rmi.RemoteUtil.executeWithClassLoader(RemoteUtil.java:122) at com.intellij.execution.rmi.RemoteProcessSupport.acquire(RemoteProcessSupport.java:212) at com.intellij.execution.rmi.RemoteProcessSupport.acquire(RemoteProcessSupport.java:133) at org.jetbrains.idea.maven.server.MavenServerManager.create(MavenServerManager.java:117) ... 32 more Caused by: java.net.ConnectException: Connection timed out at java.net.PlainSocketImpl.socketConnect(Native Method) at java.net.PlainSocketImpl.doConnect(PlainSocketImpl.java:351) at java.net.PlainSocketImpl.connectToAddress(PlainSocketImpl.java:213) at java.net.PlainSocketImpl.connect(PlainSocketImpl.java:200) at java.net.SocksSocketImpl.connect(SocksSocketImpl.java:366) at java.net.Socket.connect(Socket.java:529) at java.net.Socket.connect(Socket.java:478) at java.net.Socket.(Socket.java:375) at java.net.Socket.(Socket.java:189) at sun.rmi.transport.proxy.RMIDirectSocketFactory.createSocket(RMIDirectSocketFactory.java:22) at sun.rmi.transport.proxy.RMIMasterSocketFactory.createSocket(RMIMasterSocketFactory.java:128) at sun.rmi.transport.tcp.TCPEndpoint.newSocket(TCPEndpoint.java:595) ... 41 more I'm using the latest versions of IDEA (11.1.3) and Maven (3.0.4). Any ideas what I am doing wrong?

    Read the article

  • WCF GZip Compression Request/Response Processing

    - by IanT8
    How do I get a WCF client to process server responses which have been GZipped or Deflated by IIS? On IIS, I've followed the instructions here on how to make IIS 6 gzip all responses (where the request contained "Accept-Encoding: gzip, deflate") emitted by .svc wcf services. On the client, I've followed the instructions here and here on how to inject this header into the web request: "Accept-Encoding: gzip, deflate". Fiddler2 shows the response is binary and not plain old Xml. The client crashes with an exception which basically says there's no Xml header, which ofcourse is true. In my IClientMessageInspector, the app crashes before AfterReceiveReply is called. Some further notes: (1) I can't change the WCF service or client as they are supplied by a 3rd party. I can however attach behaviors and/or message inspectors via configuration if this is the right direction to take. (2) I don't want to compress/uncompress just the soap body, but the entire message. Any ideas/solutions? * SOLVED * It was not possible to write a WCF extension to achieve these goals. Instead I followed this CodeProject article which advocate a helper class: public class CompressibleHttpRequestCreator : IWebRequestCreate { public CompressibleHttpRequestCreator() { } WebRequest IWebRequestCreate.Create(Uri uri) { HttpWebRequest httpWebRequest = Activator.CreateInstance(typeof(HttpWebRequest), BindingFlags.CreateInstance | BindingFlags.Public | BindingFlags.NonPublic | BindingFlags.Instance, null, new object[] { uri, null }, null) as HttpWebRequest; if (httpWebRequest == null) { return null; } httpWebRequest.AutomaticDecompression =DecompressionMethods.GZip | DecompressionMethods.Deflate; return httpWebRequest; } } and also, an addition to the application configuration file: <configuration> <system.net> <webRequestModules> <remove prefix="http:"/> <add prefix="http:" type="Pajocomo.Net.CompressibleHttpRequestCreator, Pajocomo" /> </webRequestModules> </system.net> </configuration> What seems to be happening is that WCF eventually asks some factory or other deep down in system.net to provide an HttpWebRequest instance, and we provide the helper that will be asked to create the required instance. In the WCF client configuration file, a simple basicHttpBinding is all that is required, without the need for any custom extensions. When the application runs, the client Http request contains the header "Accept-Encoding: gzip, deflate", the server returns a gzipped web response, and the client transparently decompresses the http response before handing it over to WCF. When I tried to apply this technique to Web Services I found that it did NOT work. Although the helper class was executed in the same was as when used by the WCF client, the http request did not contain the "Accept-Encoding: ..." header. To make this work for Web Services, I had to edit the Web Proxy class, and add this method: protected override System.Net.WebRequest GetWebRequest(Uri uri) { System.Net.HttpWebRequest rq = (System.Net.HttpWebRequest)base.GetWebRequest(uri); rq.AutomaticDecompression = DecompressionMethods.GZip | DecompressionMethods.Deflate; return rq; } Note that it did not matter whether the CompressibleHttpRequestCreator and block from the application config file were present or not. For web services, only overriding GetWebRequest in the Web Service Proxy worked.

    Read the article

  • Event 4098, 0x80070533 Logon failure: account currently disabled?

    - by Josh King
    Having started to upgrade our PCs to Windows 7 we have noticed that we are getting group policy warnings in Event Viewer such as: "The user 'Word.qat' preference item in the 'a_Office2007_Users {A084A37B-6D4C-41C0-8AF7-B891B87FC53B}' Group Policy object did not apply because it failed with error code '0x80070533 Logon failure: account currently disabled.' This error was suppressed." 15 of these warnings appear every two hours on every Windows 7 PC, most of which are to do with core office applications and two are for plug-ins to out document management system. These warnings aren't afecting the users, but it would be nice to track down the source of them before we rollout Win7 to the rest of the Organisation. Any ideas as to where the login issue could be comming from (All users are connecting to the domain and proxy, etc fine)?

    Read the article

  • HTTP response time profiling

    - by Sparsh Gupta
    Hello I have a nginx reverse proxy. The server is close to serving 600-700 requests per second. I have a Munin HTTP load time plugin which is outputting this: http://monitor.wingify.com/munin/visualwebsiteoptimizer.com/lb1.visualwebsiteoptimizer.com-http_loadtime.html Now, the problem is I am seeing some spikes in the graph. Expected response times should always be under 200ms. I am keeping an eye on syslog and messages but I am unable to figure out the actual cause of this. I was wondering if there is any good HTTP response time profiling system which I can install / embed with this nginx server and get a detailed reports / logs on the breakup of time taken by different things and what exactly is the cause of the spikes. The profiling system would also help me understand bottlenecks and how can I further optimize the latency. Most important right now is to investigate the cause of the spikes in the HTTP load time graphs (similar pattern is reported by external monitors - Pingdom) and to fix it to get consistent response times Thanks

    Read the article

  • Apache failover for JBoss

    - by DaveB
    I am running a JBoss web app (AS 6 Final) hosted on linux (Debian). I would like to implement a failover solution so that when JBoss is down, a static web page is served in its place. My current solution is to run Apache as a reverse proxy (described here), which allows me to serve .php files from apache and forward all other requests to JBoss. But I am not sure how make Apache step in when JBoss is down? Note. both apache and jboss will be running on the same box, this is (Application failover rather then server failover) to cover times when JBoss is re-deploying etc. So I am looking for the simplest solution really Many thanks

    Read the article

  • Nginx compiled --with-http_spdy_module yet raise errors complains ngx_http_spdy_module

    - by c19
    [emerg] 21101#0: the "spdy" parameter requires ngx_http_spdy_module in /etc/nginx/conf.d/cc.conf isn't it the same module? and it causes multi-redirection error too. I have no idea what is going on. Full configure arg: nginx version: nginx/1.4.2 built by gcc 4.4.6 20120305 (Red Hat 4.4.6-4) (GCC) TLS SNI support enabled configure arguments: --prefix=/etc/nginx --sbin-path=/usr/sbin/nginx --conf-path=/etc/nginx/nginx.conf --error-log-path=/var/log/nginx/error.log --http-log-path=/var/log/nginx/access.log --pid-path=/var/run/nginx.pid --lock-path=/var/run/nginx.lock --http-client-body-temp-path=/var/cache/nginx/client_temp --http-proxy-temp-path=/var/cache/nginx/proxy_temp --http-fastcgi-temp-path=/var/cache/nginx/fastcgi_temp --http-uwsgi-temp-path=/var/cache/nginx/uwsgi_temp --http-scgi-temp-path=/var/cache/nginx/scgi_temp --user=nginx --group=nginx --with-http_ssl_module --with-http_realip_module --with-http_addition_module --with-http_sub_module --with-http_dav_module --with-http_flv_module --with-http_mp4_module --with-http_gunzip_module --with-http_gzip_static_module --with-http_random_index_module --with-http_secure_link_module --with-http_stub_status_module --with-mail --with-mail_ssl_module --with-file-aio --with-ipv6 --with-cc-opt='-O2 -g -pipe -Wp,-D_FORTIFY_SOURCE=2 -fexceptions -fstack-protector --param=ssp-buffer-size=4 -m64 -mtune=generic' --with-pcre --with-http_ssl_module `--with-http_spdy_module` --with-http_gunzip_module --with-http_gzip_static_module --with-http_stub_status_module --with-openssl=/usr/local/src/openssl-1.0.1e

    Read the article

< Previous Page | 123 124 125 126 127 128 129 130 131 132 133 134  | Next Page >