Search Results

Search found 90197 results on 3608 pages for 'data type conversion'.

Page 128/3608 | < Previous Page | 124 125 126 127 128 129 130 131 132 133 134 135  | Next Page >

  • Problem with Informix JDBC, MONEY and decimal separator in string literals

    - by Michal Niklas
    I have problem with JDBC application that uses MONEY data type. When I insert into MONEY column: insert into _money_test (amt) values ('123.45') I got exception: Character to numeric conversion error The same SQL works from native Windows application using ODBC driver. I live in Poland and have Polish locale and in my country comma separates decimal part of number, so I tried: insert into _money_test (amt) values ('123,45') And it worked. I checked that in PreparedStatement I must use dot separator: 123.45. And of course I can use: insert into _money_test (amt) values (123.45) But some code is "general", it imports data from csv file and it was safe to put number into string literal. How to force JDBC to use DBMONEY (or simply dot) in literals? My workstation is WinXP. I have ODBC and JDBC Informix client in version 3.50 TC5/JC5. I have set DBMONEY to just dot: DBMONEY=. EDIT: Test code in Jython: import sys import traceback from java.sql import DriverManager from java.lang import Class Class.forName("com.informix.jdbc.IfxDriver") QUERY = "insert into _money_test (amt) values ('123.45')" def test_money(driver, db_url, usr, passwd): try: print("\n\n%s\n--------------" % (driver)) db = DriverManager.getConnection(db_url, usr, passwd) c = db.createStatement() c.execute("delete from _money_test") c.execute(QUERY) rs = c.executeQuery("select amt from _money_test") while (rs.next()): print('[%s]' % (rs.getString(1))) rs.close() c.close() db.close() except: print("there were errors!") s = traceback.format_exc() sys.stderr.write("%s\n" % (s)) print(QUERY) test_money("com.informix.jdbc.IfxDriver", 'jdbc:informix-sqli://169.0.1.225:9088/test:informixserver=ol_225;DB_LOCALE=pl_PL.CP1250;CLIENT_LOCALE=pl_PL.CP1250;charSet=CP1250', 'informix', 'passwd') test_money("sun.jdbc.odbc.JdbcOdbcDriver", 'jdbc:odbc:test', 'informix', 'passwd') Results when I run money literal with dot and comma: C:\db_examples>jython ifx_jdbc_money.py insert into _money_test (amt) values ('123,45') com.informix.jdbc.IfxDriver -------------- [123.45] sun.jdbc.odbc.JdbcOdbcDriver -------------- there were errors! Traceback (most recent call last): File "ifx_jdbc_money.py", line 16, in test_money c.execute(QUERY) SQLException: java.sql.SQLException: [Informix][Informix ODBC Driver][Informix]Character to numeric conversion error C:\db_examples>jython ifx_jdbc_money.py insert into _money_test (amt) values ('123.45') com.informix.jdbc.IfxDriver -------------- there were errors! Traceback (most recent call last): File "ifx_jdbc_money.py", line 16, in test_money c.execute(QUERY) SQLException: java.sql.SQLException: Character to numeric conversion error sun.jdbc.odbc.JdbcOdbcDriver -------------- [123.45]

    Read the article

  • Explicit casting doesn't work in default model binding

    - by Felix
    I am using ASP.NET MVC2 and Entity Framework. I am going to simplify the situation a little; hopefully it will make it clearer, not more confusing! I have a controller action to create address, and the country is a lookup table (in other words, there is a one-to-many relationship between Country and Address classes). Let's say for clarity that the field in the Address class is called Address.Land. And, for the purposes of the dropdown list, I am getting Country.CountryID and Country.Name. I am aware of Model vs. Input validation. So, if I call the dropdown field formLand - I can make it work. But if I call the field Land (that is, matching the variable in Address class) - I am getting the following error: "The parameter conversion from type 'System.String' to type 'App.Country' failed because no type converter can convert between these types." OK, this makes sense. A string (CountryID) comes from the form and the binder doesn't know how to convert it to Country type. So, I wrote the converter: namespace App { public partial class Country { public static explicit operator Country(string countryID) { AppEntities context = new AppEntities(); Country country = (Country) context.GetObjectByKey( new EntityKey("AppEntities.Countries", "CountryID", countryID)); return country; } } } FWIW, I tried both explicit and implicit. I tested it from the controller - Country c = (Country)"fr" - and it works fine. However, it never got invoked when the View is posted. I am getting the same "no type converter" error in the model. Any ideas how to hint to the model binder that there is a type converter? Thanks

    Read the article

  • Data recovery; nearly 1 tb of movies on a WD 3.5 tb personal cloud drive disappears with scanty traces

    - by Effector Dhanushanth
    I have a great collection of movies that I had stored in a logical mesh of folder on my 3.5 tb WD personal cloud drive. I woke up 1 morning and found that everything was fine with my data on this drive, except for my movie collection: There were two great folders, one "2sort" nd the other "segregated". out of all the segregated sub folders, only letter C D and 2 or 3 others remain. and the 2 sort folder, which has umpteen subfolders, amounting to more than 0.5 tb. is.. it's just gone!! this is a great downfall.. now this is a personal cloud drive and has no usb port etc. unfortunately to hardwire and recover files.. now I'm sure there are softwares out there that can help me recover my beloved movies from such an interestingly "hard-to-reach" (should I say?) device? what may that software be compadre, my happiness lies within your answer.. thank you.. remember, recovery software or (WD) personal cloud. :) these ovies were All, "hand-picked", over the course of ten years.. I just never catalogued my collection.. if I could just get the "list" of my lost collection, that'd be enough.. recovering em would be a bonus.. but they out to be damaged if I were to somehow recover you know? still, I'm certain they're all intact.. I guess the file index just got corrupted.. There surely is a veil of some sort that need to be thrown or pushed aside to reveal my movies.. what software can do/does that? thanks immensely!

    Read the article

  • csv to hash data structure conversion using perl

    - by Kavya S
    1. Convert a .csv file to perlhash data structure Format of a .csv file: sw,s1,s2,s3,s4 ver,v1,v2,v3,v4 msword,v2,v3,v1,v1 paint,v4,v2,v3,v3 outlook,v1,v1,v3,v2 my perl script: #!/usr/local/bin/perl use strict; use warnings; use Data::Dumper; my %hash; open my $fh, '<', 'some_file.csv' or die "Cannot open: $!"; while (my $line = <$fh>) { $line =~ s/,,/-/; chomp ($line); my @array = split /,/, $line; my $key = shift @array; $hash{$key} = $line; $hash{$key} = \@array; } print Dumper(\%hash); close $fh; perl hash i.e output should look like: $sw_ver_db = { s1 => { msword => {ver => v2}, paint => {ver => v4}, outlook => {ver => v1}, }, s2 => { msword => {ver => v3}, paint => {ver => v2}, outlook => {ver => v1}, }, s3 => { msword => {ver =>v1}, paint => {ver =>v3}, outlook => {ver =>v3}, }, s4 => { msword => {ver =>v1}, paint => {ver =>v3}, outlook => {ver =>v2}, }, };

    Read the article

  • Wouldn't it be nice to have a type variable referring to the class's instance.

    - by user93197
    I often have a pattern like this: class VectorBase<SubClass, Element> where SubClass : VectorBase<SubClass, Element>, new() where Element : Addable<Element> { Element[] data; public VectorBase(Element[] data) { this.data = data; } public SubClass add(SubClass second) { Element[] newData = new Element[data.Length]; for (int i = 0; i < newData.Length; i++) { newData[i] = data[i].add(second.data[i]); } SubClass result = new SubClass(); result.data = newData; return result; } } class VectorInt : VectorBase<VectorInt, Int32> { } class MyInt : Addable<MyInt> { int data; public MyInt(int data) { this.data = data; } public MyInt add(MyInt t) { return new MyInt(data + t.data); } } interface Addable<T> { T add(T t); } But I would rather just have: class VectorBase2<Element> where Element : Addable<Element> { Element[] data; public VectorBase(Element[] data) { this.data = data; } public SubClass add(SubClass second) { Element[] newData = new Element[data.Length]; for (int i = 0; i < newData.Length; i++) { newData[i] = data[i].add(second.data[i]); } SubClass result = new SubClass(data); return result; } } class VectorInt2 : VectorBase2<Int32> { } Why not make the subclass type available to all classes? Is this technically impossible?

    Read the article

  • Using the Script Component as a Conditional Split

    This is a quick walk through on how you can use the Script Component to perform Conditional Split like behaviour, splitting your data across multiple outputs. We will use C# code to decide what does flows to which output, rather than the expression syntax of the Conditional Split transformation. Start by setting up the source. For my example the source is a list of SQL objects from sys.objects, just a quick way to get some data: SELECT type, name FROM sys.objects type name S syssoftobjrefs F FK_Message_Page U Conference IT queue_messages_23007163 Shown above is a small sample of the data you could expect to see. Once you have setup your source, add the Script Component, selecting Transformation when prompted for the type, and connect it up to the source. Now open the component, but don’t dive into the script just yet. First we need to select some columns. Select the Input Columns page and then select the columns we want to uses as part of our filter logic. You don’t need to choose columns that you may want later, this is just the columns used in the script itself. Next we need to add our outputs. Select the Inputs and Outputs page.You get one by default, but we need to add some more, it wouldn’t be much of a split otherwise. For this example we’ll add just one more. Click the Add Output button, and you’ll see a new output is added. Now we need to set some properties, so make sure our new Output 1 is selected. In the properties grid change the SynchronousInputID property to be our input Input 0, and  change the ExclusionGroup property to 1. Now select Ouput 0 and change the ExclusionGroup property to 2. This value itself isn’t important, provided each output has a different value other than zero. By setting this property on both outputs it allows us to split the data down one or the other, making each exclusive. If we left it to 0, that output would get all the rows. It can be a useful feature allowing you to copy selected rows to one output whilst retraining the full set of data in the other. Now we can go back to the Script page and start writing some code. For the example we will do a very simple test, if the value of the type column is U, for user table, then it goes down the first output, otherwise it ends up in the other. This mimics the exclusive behaviour of the conditional split transformation. public override void Input0_ProcessInputRow(Input0Buffer Row) { // Filter all user tables to the first output, // the remaining objects down the other if (Row.type.Trim() == "U") { Row.DirectRowToOutput0(); } else { Row.DirectRowToOutput1(); } } The code itself is very simple, a basic if clause that determines which of the DirectRowToOutput methods we call, there is one for each output. Of course you could write a lot more code to implement some very complex logic, but the final direction is still just a method call. If we now close the script component, we can hook up the outputs and test the package. Your numbers will vary depending on the sample database but as you can see we have clearly split out input data into two outputs. As a final tip, when adding the outputs I would normally rename them, changing the Name in the Properties grid. This means the generated methods follow the pattern as do the path label shown on the design surface, making everything that much easier to recognise.

    Read the article

  • In SSIS Convert European Currency Format to United States Currency Format

    - by Rob
    I have an interesting problem. I have an SSIS package that processes account data. We are now processing files from Europe. These files are in a CSV format using text qualifiers. For an example of the problem: In the United States the currency format is 123456.99 (We purposely leave the thousands separator out). The files sent from Europe are coming in with two formats. One is 123456,99 and the other is 123.456,00. SSIS is attempting to parse the text file and place it into a NUMERIC(20,2) field. This causes a parsing error in SSIS even with the text qualifiers. If I change the field to CURRENCY it sends a conversion error. I would like for SSIS to deal with this directly without requiring the data to be in the United States format. Has anyone had this problem? Any help will be greatly appreciated. Rob

    Read the article

  • How to convert series of MP3 to a M4B in a batch

    - by Artem Tikhomirov
    Hello. I have a batch of MP3 based books. Some of them divide into files according to book's own structure: chapters and so on. Some of them was just divided into equally lengthened parts. So. I've bought an iPhone, and I want to convert them all to M4B format. How could I convert them in a batch? I mean how cold I set up a process once, for each book, and then, after couple of weeks, receive totally converted library. The only able program for such conversion I've found was Audiobook Builder for a Mac. But it is pretty slow and do not support batching in principle. Solutions for any platform, please.

    Read the article

  • .vob to h.264 MP4 Files - Worth The Effort?

    - by harper89
    When I was doing the converting to digital format a while back I chose .VOB due to no quality loss. However recently I have been informed of this h.264 compression method. Time is not an issue here, I don't mind waiting for conversions etc. I also understand that any sort of compression will reduce quality. To test I converted a 4GB .VOB to a .mp4 using h264 in handbrake and the quality loss was very very very hard to notice. From what I have understood through research Space = .mp4(h.264) Quality = .Vob Playback = Both equally supported? But these concerns have yet to be answered: My comparison was done on a computer monitor, would the quality loss be substantially noticable if I purchased a 50 inch TV in the future? Is this type of file highly supported? (I don't want to experience incompatible players) What other issues could a conversion of files such as this cause in the future?

    Read the article

  • How to convert series of MP3 to a M4B in a batch

    - by Artem Tikhomirov
    I have a batch of MP3 based books. Some of them divide into files according to book's own structure: chapters and so on. Some of them was just divided into equally lengthened parts. So. I've bought an iPhone, and I want to convert them all to M4B format. How could I convert them in a batch? I mean how cold I set up a process once, for each book, and then, after couple of weeks, receive totally converted library. The only able program for such conversion I've found was Audiobook Builder for a Mac. But it is pretty slow and do not support batching in principle. Solutions for any platform, please.

    Read the article

  • How do I convert an animated GIF to a YouTube friendly video format?

    - by Dave Webb
    My son has made some animations with Pivot Stickfigure Animator which we'd like to upload to YouTube. The problem is Pivot saves as animated GIFs which I can't upload to YouTube. The Wikipedia article recommends using Windows Movie Maker to convert GIF to WMV, but unfortunatley I'm using Window 7 for which you can get the new Windows Live Movie Maker which doesn't seem to support GIFs. I Googled and found an article which said to use Beneton Movie GIF to convert animated GIF to AVI, but this seemed to rely on a 3rd Party application which wasn't installed and so failed. Installing the missing application - pjBmp2Avi - by hand and adding it to the path still didn't allow Beneton to do the conversion. I hoped FFmpeg might do the trick but this only outputs to animated GIFs, it won't read from then. Further Googling found lots of applications with 30 day trials and so on but I was hoping for something free. So any suggestions on how I can convert an animated GIF to a movie file on Windows using free (as in beer) software?

    Read the article

  • How do I convert an animated GIF to a YouTube friendly video format?

    - by Dave Webb
    My son has made some animations with Pivot Stickfigure Animator which we'd like to upload to YouTube. The problem is Pivot saves as animated GIFs which I can't upload to YouTube. The Wikipedia article recommends using Windows Movie Maker to convert GIF to WMV, but unfortunately I'm using Windows 7 for which you can get the new Windows Live Movie Maker which doesn't seem to support GIFs. I Googled and found an article which said to use Beneton Movie GIF to convert animated GIF to AVI, but this seemed to rely on a 3rd Party application which wasn't installed and so failed. Installing the missing application - pjBmp2Avi - by hand and adding it to the path still didn't allow Beneton to do the conversion. I hoped FFmpeg might do the trick but this only outputs to animated GIFs, it won't read from then. Further Googling found lots of applications with 30 day trials and so on but I was hoping for something free. So any suggestions on how I can convert an animated GIF to a movie file on Windows using free (as in beer) software?

    Read the article

  • Video converters don't work anymore after reinstalling Windows

    - by tassiekev
    A few days ago, I decided to reinstall Windows 7 as my HD partition seemed to be nearly full and things were slowing down. I'd been using Handbrake almost exclusively to convert TV recordings and used Freemake on occasion. Following the reinstall, I can't get either to work: Handbrake says it's encoding for about 2 seconds and then says it's finished, but there are no converted files of any size. Freemake just says 'Conversion Error' and won't go any further. As an experiment I tried two programs that I don't normally use, VideoReDo & Any Video Converter. Both worked fine. Anyone got any clues?

    Read the article

  • PDF to HTML - batch converter - most reliable and accurate free AND paid for software?

    - by Rob
    I'm look for either a free or paid-for (about 50$/40pounds) BATCH PDF to HTML converter to convert several PDF files at once. Needs to be able to handle vectored and bitmap images within the file, outputting both as jpegs referenced by the html pages. I've tried iorigsoft paid-for PDF to HTML - problems it seems to hang or just go idle, and the stuff it actually converts have broken links - the wrong name is used for constituent chapters as html. Also tried application from intrapdf.com but this crashes near the beginning of the conversion, consitently. Looked at opensource tools but they look equally flakey or use old PDF versions. Need it on Windows 7 32bit home. Thoughts?

    Read the article

  • Convert FAT32 to NTFS, risk/time?

    - by Rakward
    After a quick search I found that through a command prompt I can convert a drive from FAT32 to NTFS without losing data(see here). What I want to ask here is, how safe is this method on a 1.5 TB drive with 500 GB of data? What are the chances of this freezing up(or is there really nothin to worry about) and what is the probable time, a couple of minutes or a whole hour? Sorry if this seems like a stupid question, just want to play on the safe side here ...

    Read the article

  • How to play a embedded code in lightbox type popup

    - by Fero
    Hi all How to play a embedded code in lightbox type pop up? Here is the whole code <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en"> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" /> <meta http-equiv="imagetoolbar" content="no" /> <title>FancyBox 1.3.1 | Demonstration</title> <script type="text/javascript" src="http://code.jquery.com/jquery-1.4.2.min.js"></script> <script type="text/javascript" src="./fancybox/jquery.mousewheel-3.0.2.pack.js"></script> <script type="text/javascript" src="./fancybox/jquery.fancybox-1.3.1.js"></script> <link rel="stylesheet" type="text/css" href="./fancybox/jquery.fancybox-1.3.1.css" media="screen" /> <link rel="stylesheet" href="style.css" /> <script type="text/javascript"> $(document).ready(function() { /* * Examples - images */ $("a#example1").fancybox({ 'titleShow' : false }); $("a#example2").fancybox({ 'titleShow' : false, 'transitionIn' : 'elastic', 'transitionOut' : 'elastic' }); $("a#example3").fancybox({ 'titleShow' : false, 'transitionIn' : 'none', 'transitionOut' : 'none' }); $("a#example4").fancybox(); $("a#example5").fancybox({ 'titlePosition' : 'inside' }); $("a#example6").fancybox({ 'titlePosition' : 'over' }); $("a[rel=example_group]").fancybox({ 'transitionIn' : 'none', 'transitionOut' : 'none', 'titlePosition' : 'over', 'titleFormat' : function(title, currentArray, currentIndex, currentOpts) { return '<span id="fancybox-title-over">Image ' + (currentIndex + 1) + ' / ' + currentArray.length + (title.length ? ' &nbsp; ' + title : '') + '</span>'; } }); /* * Examples - various */ $("#various1").fancybox({ 'titlePosition' : 'inside', 'transitionIn' : 'none', 'transitionOut' : 'none' }); $("#various2").fancybox(); $("#various3").fancybox({ 'width' : '75%', 'height' : '75%', 'autoScale' : false, 'transitionIn' : 'none', 'transitionOut' : 'none', 'type' : 'iframe' }); $("#various4").fancybox({ 'padding' : 0, 'autoScale' : false, 'transitionIn' : 'none', 'transitionOut' : 'none' }); }); </script> </head> <body> <div id="content"> <p> <a id="example1" href="./example/1_b.jpg"><img alt="example1" src="./example/1_s.jpg" /></a> <a id="example2" href="./example/2_b.jpg"><img alt="example2" src="./example/2_s.jpg" /></a> <a id="example3" href="./example/3_b.jpg"><img alt="example3" src="./example/3_s.jpg" /></a> </p> </div> <div><p>&nbsp;</p></div> </body> </html> This above code working for image perfectly. But how shall i play the embedded code instead of image. Here is the sample embedded code. <object width="480" height="385"><param name="movie" value="http://www.youtube.com/v/WUW5g-sL8pU&hl=en_US&fs=1&"></param><param name="allowFullScreen" value="true"></param><param name="allowscriptaccess" value="always"></param><embed src="http://www.youtube.com/v/WUW5g-sL8pU&hl=en_US&fs=1&" type="application/x-shockwave-flash" allowscriptaccess="always" allowfullscreen="true" width="480" height="385"></embed></object> thanks in advance...

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Any advantage to the script version of Google Adwords' conversion tracking code?

    - by ripper234
    Google Adword has an HTML snippet to track conversions: <script type="text/javascript"> /* <![CDATA[ */ var google_conversion_id = 12345; var google_conversion_language = "en"; var google_conversion_format = "3"; var google_conversion_color = "ffffff"; var google_conversion_label = "someopaqueid"; var google_conversion_value = 0; /* ]]> */ </script> <script type="text/javascript" src="http://www.googleadservices.com/pagead/conversion.js"> </script> <noscript> <div style="display:inline;"> <img height="1" width="1" style="border-style:none;" alt="" src="http://www.googleadservices.com/pagead/conversion/12345/?label=opaque&amp;guid=ON&amp;script=0"/> </div> </noscript> It is composed of two parts: For clients supporting javascript, an inline script that sets variables, plus loading a reporting script. For other clients, an image tag. As far as I can see, the image tag has some advantages: It works on all browsers. It is asynchronous. It's shorter to have only this version, compared to both this and the js version. Any reason not to drop the <noscript> tag and just use the image conversion snippet directly?

    Read the article

  • org.hibernate.MappingException: No Dialect mapping for JDBC type: 2002

    - by Moli
    Hi at all, I'm having a issue trying to get working a JPA nativeQuery. I'm having a org.hibernate.MappingException: No Dialect mapping for JDBC type: 2002 when a try to do a nativeQuery and get a geometry field type. I use oracle and org.hibernatespatial.oracle.OracleSpatial10gDialect. The geom fields is mapped as: @Column(name="geometry") @Type(type = "org.hibernatespatial.GeometryUserType") private Geometry geometry; List<Object> listFeatures= new LinkedList<Object>(); Query query= entityManager.createNativeQuery( "SELECT "+ slots +" , geometry FROM edtem_features feature, edtem_dades dada WHERE" + " feature."+ tematic.getIdGeomField() +" = dada."+ tematic.getIdDataField()+ " AND dada.capesid= "+ tematic.getCapa().getId() + " AND feature.geometriesid= "+ tematic.getGeometria().getId()); listFeatures.addAll( query.getResultList()); Anybody knows a solution? or how to force the type of the geometry to get wroking this... MANY Thanks in advance. Moli

    Read the article

  • Entity Framework conversion from v1 to v4 problem

    - by Max
    After converting my data access layer project from EntityFramework v1 to v4 a got a bunch of errors for each of the entity classes: Error 10016: Error resolving item 'EntityTypeShape'. The exception message is: 'Unresolved reference 'NS.EntityName1'.'. DataAccessLayer\Model.edmx and Error 10016: Error resolving item 'AssociationConnector'. The exception message is: 'NS.EntityName1'.'. DataAccessLayer\Model.edmx Does anybody know what is this and how to fix it?

    Read the article

  • Conversion from YUV444 to RGB888

    - by Abhi
    I am new in this field and i desperately need some guidance from u all. I have to support yuv444 to rgb 888 in display driver module. There is one test which i have done for yv12 → rgb565 in wince 6.0 r3 which is mentioned below. //------------------------------------------------------------------------------ // // Function: PP_CSC_YV12_RGB565Test // // This function tests the Post-processor // // // // Parameters: // uiMsg // [in] Ignored. // // tpParam // [in] Ignored. // // lpFTE // [in] Ignored. // // Returns: // Specifies if the test passed (TPR_PASS), failed (TPR_FAIL), or was // skipped (TPR_SKIP). // // TESTPROCAPI PP_CSC_YV12_RGB565Test(UINT uMsg, TPPARAM tpParam, LPFUNCTION_TABLE_ENTRY lpFTE) { LogEntry(L"%d : In %s Function \r\n",++abhineet,__WFUNCTION__); UNREFERENCED_PARAMETER(tpParam); UNREFERENCED_PARAMETER(lpFTE); DWORD dwResult= TPR_SKIP; ppConfigData ppData; DWORD iInputBytesPerFrame, iOutputBytesPerFrame; UINT32 iInputStride, iOutputStride; UINT16 iOutputWidth, iOutputHeight, iOutputBPP; UINT16 iInputWidth, iInputHeight, iInputBPP; int iOption; PP_TEST_FUNCTION_ENTRY(); // Validate that the shell wants the test to run if (uMsg != TPM_EXECUTE) { return TPR_NOT_HANDLED; } PPTestInit(); iInputWidth = PP_TEST_FRAME_WIDTH; //116 iInputHeight = PP_TEST_FRAME_HEIGHT; //160 iInputBPP = PP_TEST_FRAME_BPP; //2 iInputStride = iInputWidth * 3/2; // YV12 is 12 bits per pixel iOutputWidth = PP_TEST_FRAME_WIDTH; iOutputHeight = PP_TEST_FRAME_HEIGHT; iOutputBPP = PP_TEST_FRAME_BPP; iOutputStride = iOutputWidth * iOutputBPP; // Allocate buffers for input and output frames iInputBytesPerFrame = iInputStride * iInputHeight; pInputFrameVirtAddr = (UINT32 *) AllocPhysMem(iInputBytesPerFrame, PAGE_EXECUTE_READWRITE, 0, 0, (ULONG *) &pInputFramePhysAddr); iOutputBytesPerFrame = iOutputStride * iOutputHeight; pOutputFrameVirtAddr = (UINT32 *) AllocPhysMem(iOutputBytesPerFrame, PAGE_EXECUTE_READWRITE, 0, 0, (ULONG *) &pOutputFramePhysAddr); if ((NULL == pInputFrameVirtAddr) || (NULL == pOutputFrameVirtAddr)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } //----------------------------- // Configure PP //----------------------------- // Set up post-processing configuration data memset(&ppData, 0 , sizeof(ppData)); // Set up input format and data width ppData.inputIDMAChannel.FrameFormat = icFormat_YUV420; ppData.inputIDMAChannel.DataWidth = icDataWidth_8BPP; // dummy value for YUV ppData.inputIDMAChannel.PixelFormat.component0_offset = 0; ppData.inputIDMAChannel.PixelFormat.component1_offset = 8; ppData.inputIDMAChannel.PixelFormat.component2_offset = 16; ppData.inputIDMAChannel.PixelFormat.component3_offset = 24; ppData.inputIDMAChannel.PixelFormat.component0_width = 8-1; ppData.inputIDMAChannel.PixelFormat.component1_width = 8-1; ppData.inputIDMAChannel.PixelFormat.component2_width = 8-1; ppData.inputIDMAChannel.PixelFormat.component3_width = 8-1; ppData.inputIDMAChannel.FrameSize.height = iInputHeight; ppData.inputIDMAChannel.FrameSize.width = iInputWidth; ppData.inputIDMAChannel.LineStride = iInputWidth; // Set up output format and data width ppData.outputIDMAChannel.FrameFormat = icFormat_RGB; ppData.outputIDMAChannel.DataWidth = icDataWidth_16BPP; ppData.outputIDMAChannel.PixelFormat.component0_offset = RGB_COMPONET0_OFFSET; ppData.outputIDMAChannel.PixelFormat.component1_offset = RGB_COMPONET1_OFFSET; ppData.outputIDMAChannel.PixelFormat.component2_offset = RGB_COMPONET2_OFFSET; ppData.outputIDMAChannel.PixelFormat.component3_offset = RGB_COMPONET3_OFFSET; ppData.outputIDMAChannel.PixelFormat.component0_width = RGB_COMPONET0_WIDTH -1; ppData.outputIDMAChannel.PixelFormat.component1_width = RGB_COMPONET1_WIDTH -1; ppData.outputIDMAChannel.PixelFormat.component2_width = RGB_COMPONET2_WIDTH -1; ppData.outputIDMAChannel.PixelFormat.component3_width = RGB_COMPONET3_WIDTH; ppData.outputIDMAChannel.FrameSize.height = iOutputHeight; ppData.outputIDMAChannel.FrameSize.width = iOutputWidth; ppData.outputIDMAChannel.LineStride = iOutputStride; // Set up post-processing channel CSC parameters // based on input and output ppData.CSCEquation = CSCY2R_A1; ppData.inputIDMAChannel.UBufOffset = iInputHeight * iInputWidth + (iInputHeight * iInputWidth)/4; ppData.inputIDMAChannel.VBufOffset = iInputHeight * iInputWidth; ppData.FlipRot.verticalFlip = FALSE; ppData.FlipRot.horizontalFlip = FALSE; ppData.FlipRot.rotate90 = FALSE; if (!PPConfigure(hPP, &ppData)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } //----------------------------- // Read first input buffer //----------------------------- // Read Input file for new frame if (!ReadImage(PP_TEST_YV12_FILENAME,pInputFrameVirtAddr,iInputBytesPerFrame,PP_TEST_FRAME_WIDTH,PP_TEST_FRAME_HEIGHT)) { g_pKato->Log(PP_ZONE_ERROR, (TEXT("fail to ReadImage()!\r\n"))); dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } //----------------------------- // Start PP //----------------------------- if (!PPStart(hPP)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } if (!PPInterruptEnable(hPP, FRAME_INTERRUPT)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } //----------------------------- // Queue Input/Output Buffers //----------------------------- UINT32 starttime = GetTickCount(); // Add input and output buffers to PP queues. if (!PPAddInputBuffer(hPP, (UINT32) pInputFramePhysAddr)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } if (!PPAddOutputBuffer(hPP,(UINT32) pOutputFramePhysAddr)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } if (!PPWaitForNotBusy(hPP, FRAME_INTERRUPT)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } RETAILMSG(1, (TEXT("===========FLIP TIME: %dms====== \r\n"), GetTickCount()-starttime)); //----------------------------- // Stop PP //----------------------------- if (!PPStop(hPP)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } if (!PPClearBuffers(hPP)) { dwResult = TPR_FAIL; goto PP_CSC_YV12_RGB565Test_clean_up; } ShowRGBContent((UINT8 *) pOutputFrameVirtAddr, PP_TEST_FRAME_WIDTH, PP_TEST_FRAME_HEIGHT); iOption = MessageBox( NULL,TEXT("After CSC(YV12->RGB565). Is it correct?"),TEXT("Test result"),MB_YESNO ); if ( IDNO == iOption ) { dwResult = TPR_FAIL; } else { dwResult = TPR_PASS; } PP_CSC_YV12_RGB565Test_clean_up: if(NULL != pInputFrameVirtAddr) { FreePhysMem( pInputFrameVirtAddr ); pInputFrameVirtAddr = NULL; } if(NULL != pOutputFrameVirtAddr) { FreePhysMem( pOutputFrameVirtAddr ); pOutputFrameVirtAddr = NULL; } PPTestDeInit(); LogEntry(L"%d :Out %s Function \r\n",++abhineet,__WFUNCTION__); return dwResult; } The below is the flow for this function. It tells the start and end of this test. *** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv *** TEST STARTING *** *** Test Name: PP CSC(YV12-RGB565) Test *** Test ID: 500 *** Library Path: pp_test.dll *** Command Line: *** Kernel Mode: Yes *** Random Seed: 24421 *** Thread Count: 0 *** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv *******Abhineet-PPTEST : 338 : In ShellProc Function *******Abhineet-PPTEST : 339 : In Debug Function PP_TEST: ShellProc(SPM_BEGIN_TEST, ...) called *******Abhineet-PPTEST : 340 :Out Debug Function BEGIN TEST: "PP CSC(YV12-RGB565) Test", Threads=0, Seed=24421 *******Abhineet-PPTEST : 341 :Out ShellProc Function *******Abhineet-PPTEST : 342 : In PP_CSC_YV12_RGB565Test Function PP_CSC_YV12_RGB565Test *******Abhineet-PPTEST : 343 : In PPTestInit Function *******Abhineet-PPTEST : 344 : In GetPanelDimensions Function *******Abhineet-PPTEST : 345 :Out GetPanelDimensions Function GetPanelDimensions: width=1024 height=768 bpp=16 *******Abhineet-PPTEST : 346 :Out PPTestInit Function *******Abhineet-PPTEST : 347 : In ReadImage Function RELFSD: Opening file flags_112x160.yv12 from desktop *******Abhineet-PPTEST : 348 :Out ReadImage Function ===========FLIP TIME: 1ms====== *******Abhineet-PPTEST : 349 : In ShowRGBContent Function *******Abhineet-PPTEST : 350 :Out ShowRGBContent Function *******Abhineet-PPTEST : 351 : In PPTestDeInit Function *******Abhineet-PPTEST : 352 :Out PPTestDeInit Function *******Abhineet-PPTEST : 353 :Out PP_CSC_YV12_RGB565Test Function *******Abhineet-PPTEST : 354 : In DllMain Function *******Abhineet-PPTEST : 355 :Out DllMain Function *******Abhineet-PPTEST : 356 : In ShellProc Function *******Abhineet-PPTEST : 357 : In Debug Function PP_TEST: ShellProc(SPM_END_TEST, ...) called *******Abhineet-PPTEST : 358 :Out Debug Function END TEST: "PP CSC(YV12-RGB565) Test", PASSED, Time=6.007 *******Abhineet-PPTEST : 359 :Out ShellProc Function *** ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ *** TEST COMPLETED *** *** Test Name: PP CSC(YV12-RGB565) Test *** Test ID: 500 *** Library Path: pp_test.dll *** Command Line: *** Kernel Mode: Yes *** Result: Passed *** Random Seed: 24421 *** Thread Count: 1 *** Execution Time: 0:00:06.007 *** ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ Please help me out to make changes to the above function for yuv444-rgb888.

    Read the article

  • [Principles] Concrete Type or Interface for method return type?

    - by SDReyes
    In general terms, whats the better election for a method's return type: a concrete type or an interface? In most cases, I tend to use concrete types as the return type for methods. because I believe that an concrete type is more flexible for further use and exposes more functionality. The dark side of this: Coupling. The angelic one: A concrete type contains per-se the interface you would going to return initially, and extra functionality. What's your thumb's rule? Is there any programming principle for this? BONUS: This is an example of what I mean http://stackoverflow.com/questions/491375/readonlycollection-or-ienumerable-for-exposing-member-collections

    Read the article

  • Higher-order type constructors and functors in Ocaml

    - by sdcvvc
    Can the following polymorphic functions let id x = x;; let compose f g x = f (g x);; let rec fix f = f (fix f);; (*laziness aside*) be written for types/type constructors or modules/functors? I tried type 'x id = Id of 'x;; type 'f 'g 'x compose = Compose of ('f ('g 'x));; type 'f fix = Fix of ('f (Fix 'f));; for types but it doesn't work. Here's a Haskell version for types: data Id x = Id x data Compose f g x = Compose (f (g x)) data Fix f = Fix (f (Fix f)) -- examples: l = Compose [Just 'a'] :: Compose [] Maybe Char type Natural = Fix Maybe -- natural numbers are fixpoint of Maybe n = Fix (Just (Fix (Just (Fix Nothing)))) :: Natural -- n is 2 -- up to isomorphism composition of identity and f is f: iso :: Compose Id f x -> f x iso (Compose (Id a)) = a

    Read the article

  • How do I use Sketchflow sample data for a ListBoxItem Template at design time?

    - by Boris Nikolaevich
    I am using Expression Blend 4 and Visual Studio 2010 to create a Sketchflow prototype. I have a Sample Data collection and a ListBox that is bound to it. This displays as I would expect both at design time and at run time. However, the ListBoxItem template it just complex enough that I wanted to pull it out into its own XAML file. Even though the items still render as expected in the main ListBox where the template is used, when I open the template itself, all of the databound controls are empty. If I add a DataContext to the template, I can see and work with the populated objects while in the template, but then that local DataContext overrides the DataContext set on the listbox. A bit of code will illustrate. Start by creating a Sketchflow project (I am using Silverlight, but it should work the same for WPF), then add a project data source called SampleDataSource. Add a collection called ListData, with a single String property called Title. Here is the (scaled down) code for the main Sketchflow screen, which we'll call Main.xaml: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:local="clr-namespace:DemoScreens" mc:Ignorable="d" x:Class="DemoScreens.Main" Width="800" Height="600"> <UserControl.Resources> <ResourceDictionary> <ResourceDictionary.MergedDictionaries> <ResourceDictionary Source="ProjectDataSources.xaml"/> </ResourceDictionary.MergedDictionaries> <DataTemplate x:Key="ListBoxItemTemplate"> <local:DemoListBoxItemTemplate d:IsPrototypingComposition="True" Margin="0,0,5,0" Width="748"/> </DataTemplate> </ResourceDictionary> </UserControl.Resources> <Grid x:Name="LayoutRoot" Background="#5c87b2" DataContext="{Binding Source={StaticResource SampleDataSource}}"> <ListBox Background="White" x:Name="DemoList" Style="{StaticResource ListBox-Sketch}" Margin="20,100,20,20" ItemTemplate="{StaticResource ListBoxItemTemplate}" ItemsSource="{Binding ListData}" ScrollViewer.HorizontalScrollBarVisibility="Disabled"/> </Grid> </UserControl> You can see that it references the DemoListBoxItemTemplate, which is defined in its own DemoListBoxItemTemplate.xaml: <UserControl xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" xmlns:local="clr-namespace:DemoScreens" mc:Ignorable="d" x:Class="DemoScreens.DemoListBoxItemTemplate"> <Grid x:Name="LayoutRoot"> <TextBlock Text="{Binding Title}" Style="{StaticResource BasicTextBlock-Sketch}" Width="150"/> </Grid> </UserControl> Obviously, this is way simpler than my actual listbox, but it should be enough to illustrate my problem. When you open Main.xaml in the Expression designer, the list box is populated with sample data. But when you open DemoListBoxItemTemplate.xaml, there is no data context and therefore no data to display—which makes it more difficult to identify controls visually. How can I have sample data displayed when I am working with the template, while still allowing the larger set of sample data to be used for the ListBox itself?

    Read the article

< Previous Page | 124 125 126 127 128 129 130 131 132 133 134 135  | Next Page >