Search Results

Search found 8557 results on 343 pages for 'attribute exchange'.

Page 129/343 | < Previous Page | 125 126 127 128 129 130 131 132 133 134 135 136  | Next Page >

  • ClassFormatError when using javaee:javaee-api

    - by Digambar Daund
    This is my pom.xml <?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <parent> <groupId>dd</groupId> <artifactId>jee6</artifactId> <version>0.0.1-SNAPSHOT</version> </parent> <groupId>dd</groupId> <artifactId>business-tier-impl</artifactId> <name>business-tier-impl</name> <version>0.0.1-SNAPSHOT</version> <packaging>ejb</packaging> <description>business-tier-impl</description> <dependencies> <dependency> <groupId>javax</groupId> <artifactId>javaee-api</artifactId> <version>6.0</version> <scope>provided</scope> </dependency> <dependency> <groupId>org.testng</groupId> <artifactId>testng</artifactId> <version>5.11</version> <scope>test</scope> <classifier>jdk15</classifier> </dependency> <dependency> <groupId>org.apache.openejb</groupId> <artifactId>openejb-core</artifactId> <version>3.1.2</version> <scope>test</scope> </dependency> </dependencies> <build> <plugins> <plugin> <artifactId>maven-compiler-plugin</artifactId> <configuration> <source>1.6</source> <target>1.6</target> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-ejb-plugin</artifactId> <configuration> <ejbVersion>3.1.2</ejbVersion> </configuration> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> </plugin> </plugins> </build> </project> Below is the testcase setup methhod: @BeforeClass public void bootContainer() throws Exception { Properties props = new Properties(); props.setProperty(Context.INITIAL_CONTEXT_FACTORY, LocalInitialContextFactory.class.getName()); Context context = new InitialContext(props); service = (HelloService) context.lookup("HelloServiceLocal"); } I get error at line where InitialContext() is created... Apache OpenEJB 3.1 build: 20081009-03:31 http://openejb.apache.org/ INFO - openejb.home = C:\DD\WORKSPACES\jee6\business-tier-impl INFO - openejb.base = C:\DD\WORKSPACES\jee6\business-tier-impl FATAL - OpenEJB has encountered a fatal error and cannot be started: OpenEJB encountered an unexpected error while attempting to instantiate the assembler. java.lang.ClassFormatError: Absent Code attribute in method that is not native or abstract in class file javax/resource/spi/ResourceAdapterInternalException . . . FAILED CONFIGURATION: @BeforeClass bootContainer javax.naming.NamingException: Attempted to load OpenEJB. OpenEJB has encountered a fatal error and cannot be started: OpenEJB encountered an unexpected error while attempting to instantiate the assembler.: Absent Code attribute in method that is not native or abstract in class file javax/resource/spi/ResourceAdapterInternalException [Root exception is org.apache.openejb.OpenEJBException: OpenEJB has encountered a fatal error and cannot be started: OpenEJB encountered an unexpected error while attempting to instantiate the assembler.: Absent Code attribute in method that is not native or abstract in class file javax/resource/spi/ResourceAdapterInternalException] at org.apache.openejb.client.LocalInitialContextFactory.init(LocalInitialContextFactory.java:54) at org.apache.openejb.client.LocalInitialContextFactory.getInitialContext(LocalInitialContextFactory.java:41) at javax.naming.spi.NamingManager.getInitialContext(NamingManager.java:667) at javax.naming.InitialContext.getDefaultInitCtx(InitialContext.java:288) at javax.naming.InitialContext.init(InitialContext.java:223) at javax.naming.InitialContext.<init>(InitialContext.java:197) at dd.jee6.app.HelloServiceTest.bootContainer(HelloServiceTest.java:26) Caused by: org.apache.openejb.OpenEJBException: OpenEJB has encountered a fatal error and cannot be started: OpenEJB encountered an unexpected error while attempting to instantiate the assembler.: Absent Code attribute in method that is not native or abstract in class file javax/resource/spi/ResourceAdapterInternalException at org.apache.openejb.OpenEJB$Instance.<init>(OpenEJB.java:133) at org.apache.openejb.OpenEJB.init(OpenEJB.java:299) at org.apache.openejb.OpenEJB.init(OpenEJB.java:278) at org.apache.openejb.loader.OpenEJBInstance.init(OpenEJBInstance.java:36) at org.apache.openejb.client.LocalInitialContextFactory.init(LocalInitialContextFactory.java:69) at org.apache.openejb.client.LocalInitialContextFactory.init(LocalInitialContextFactory.java:52) ... 28 more Caused by: java.lang.ClassFormatError: Absent Code attribute in method that is not native or abstract in class file javax/resource/spi/ResourceAdapterInternalException at java.lang.ClassLoader.defineClass1(Native Method)

    Read the article

  • Using Unity – Part 1

    - by nmarun
    I have been going through implementing some IoC pattern using Unity and so I decided to share my learnings (I know that’s not an English word, but you get the point). Ok, so I have an ASP.net project named ProductWeb and a class library called ProductModel. In the model library, I have a class called Product: 1: public class Product 2: { 3: public string Name { get; set; } 4: public string Description { get; set; } 5:  6: public Product() 7: { 8: Name = "iPad"; 9: Description = "Not just a reader!"; 10: } 11:  12: public string WriteProductDetails() 13: { 14: return string.Format("Name: {0} Description: {1}", Name, Description); 15: } 16: } In the Page_Load event of the default.aspx, I’ll need something like: 1: Product product = new Product(); 2: productDetailsLabel.Text = product.WriteProductDetails(); Now, let’s go ‘Unity’fy this application. I assume you have all the bits for the pattern. If not, get it from here. I found this schematic representation of Unity pattern from the above link. This image might not make much sense to you now, but as we proceed, things will get better. The first step to implement the Inversion of Control pattern is to create interfaces that your types will implement. An IProduct interface is added to the ProductModel project. 1: public interface IProduct 2: { 3: string WriteProductDetails(); 4: } Let’s make our Product class to implement the IProduct interface. The application will compile and run as before despite the changes made. Add the following references to your web project: Microsoft.Practices.Unity Microsoft.Practices.Unity.Configuration Microsoft.Practices.Unity.StaticFactory Microsoft.Practices.ObjectBuilder2 We need to add a few lines to the web.config file. The line below tells what version of Unity pattern we’ll be using. 1: <configSections> 2: <section name="unity" type="Microsoft.Practices.Unity.Configuration.UnityConfigurationSection, Microsoft.Practices.Unity.Configuration, Version=1.2.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35"/> 3: </configSections> Add another block with the same name as the section name declared above – ‘unity’. 1: <unity> 2: <typeAliases> 3: <!--Custom object types--> 4: <typeAlias alias="IProduct" type="ProductModel.IProduct, ProductModel"/> 5: <typeAlias alias="Product" type="ProductModel.Product, ProductModel"/> 6: </typeAliases> 7: <containers> 8: <container name="unityContainer"> 9: <types> 10: <type type="IProduct" mapTo="Product"/> 11: </types> 12: </container> 13: </containers> 14: </unity> From the Unity Configuration schematic shown above, you see that the ‘unity’ block has a ‘typeAliases’ and a ‘containers’ segment. The typeAlias element gives a ‘short-name’ for a type. This ‘short-name’ can be used to point to this type any where in the configuration file (web.config in our case, but all this information could be coming from an external xml file as well). The container element holds all the mapping information. This container is referenced through its name attribute in the code and you can have multiple of these container elements in the containers segment. The ‘type’ element in line 10 basically says: ‘When Unity requests to resolve the alias IProduct, return an instance of whatever the short-name of Product points to’. This is the most basic piece of Unity pattern and all of this is accomplished purely through configuration. So, in future you have a change in your model, all you need to do is - implement IProduct on the new model class and - either add a typeAlias for the new type and point the mapTo attribute to the new alias declared - or modify the mapTo attribute of the type element to point to the new alias (as the case may be). Now for the calling code. It’s a good idea to store your unity container details in the Application cache, as this is rarely bound to change and also adds for better performance. The Global.asax.cs file comes for our rescue: 1: protected void Application_Start(object sender, EventArgs e) 2: { 3: // create and populate a new Unity container from configuration 4: IUnityContainer unityContainer = new UnityContainer(); 5: UnityConfigurationSection section = (UnityConfigurationSection)ConfigurationManager.GetSection("unity"); 6: section.Containers["unityContainer"].Configure(unityContainer); 7: Application["UnityContainer"] = unityContainer; 8: } 9:  10: protected void Application_End(object sender, EventArgs e) 11: { 12: Application["UnityContainer"] = null; 13: } All this says is: create an instance of UnityContainer() and read the ‘unity’ section from the configSections segment of the web.config file. Then get the container named ‘unityContainer’ and store it in the Application cache. In my code-behind file, I’ll make use of this UnityContainer to create an instance of the Product type. 1: public partial class _Default : Page 2: { 3: private IUnityContainer unityContainer; 4: protected void Page_Load(object sender, EventArgs e) 5: { 6: unityContainer = Application["UnityContainer"] as IUnityContainer; 7: if (unityContainer == null) 8: { 9: productDetailsLabel.Text = "ERROR: Unity Container not populated in Global.asax.<p />"; 10: } 11: else 12: { 13: IProduct productInstance = unityContainer.Resolve<IProduct>(); 14: productDetailsLabel.Text = productInstance.WriteProductDetails(); 15: } 16: } 17: } Looking the ‘else’ block, I’m asking the unityContainer object to resolve the IProduct type. All this does, is to look at the matching type in the container, read its mapTo attribute value, get the full name from the alias and create an instance of the Product class. Fabulous!! I’ll go more in detail in the next blog. The code for this blog can be found here.

    Read the article

  • GZip/Deflate Compression in ASP.NET MVC

    - by Rick Strahl
    A long while back I wrote about GZip compression in ASP.NET. In that article I describe two generic helper methods that I've used in all sorts of ASP.NET application from WebForms apps to HttpModules and HttpHandlers that require gzip or deflate compression. The same static methods also work in ASP.NET MVC. Here are the two routines:/// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } The first method checks whether the client sending the request includes the accept-encoding for either gzip or deflate, and if if it does it returns true. The second function uses IsGzipSupported() to decide whether it should encode content and uses an Response Filter to do its job. Basically response filters look at the Response output stream as it's written and convert the data flowing through it. Filters are a bit tricky to work with but the two .NET filter streams for GZip and Deflate Compression make this a snap to implement. In my old code and even now in MVC I can always do:public ActionResult List(string keyword=null, int category=0) { WebUtils.GZipEncodePage(); …} to encode my content. And that works just fine. The proper way: Create an ActionFilterAttribute However in MVC this sort of thing is typically better handled by an ActionFilter which can be applied with an attribute. So to be all prim and proper I created an CompressContentAttribute ActionFilter that incorporates those two helper methods and which looks like this:/// <summary> /// Attribute that can be added to controller methods to force content /// to be GZip encoded if the client supports it /// </summary> public class CompressContentAttribute : ActionFilterAttribute { /// <summary> /// Override to compress the content that is generated by /// an action method. /// </summary> /// <param name="filterContext"></param> public override void OnActionExecuting(ActionExecutingContext filterContext) { GZipEncodePage(); } /// <summary> /// Determines if GZip is supported /// </summary> /// <returns></returns> public static bool IsGZipSupported() { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (!string.IsNullOrEmpty(AcceptEncoding) && (AcceptEncoding.Contains("gzip") || AcceptEncoding.Contains("deflate"))) return true; return false; } /// <summary> /// Sets up the current page or handler to use GZip through a Response.Filter /// IMPORTANT: /// You have to call this method before any output is generated! /// </summary> public static void GZipEncodePage() { HttpResponse Response = HttpContext.Current.Response; if (IsGZipSupported()) { string AcceptEncoding = HttpContext.Current.Request.Headers["Accept-Encoding"]; if (AcceptEncoding.Contains("gzip")) { Response.Filter = new System.IO.Compression.GZipStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "gzip"); } else { Response.Filter = new System.IO.Compression.DeflateStream(Response.Filter, System.IO.Compression.CompressionMode.Compress); Response.Headers.Remove("Content-Encoding"); Response.AppendHeader("Content-Encoding", "deflate"); } } // Allow proxy servers to cache encoded and unencoded versions separately Response.AppendHeader("Vary", "Content-Encoding"); } } It's basically the same code wrapped into an ActionFilter attribute, which intercepts requests MVC requests to Controller methods and lets you hook up logic before and after the methods have executed. Here I want to override OnActionExecuting() which fires before the Controller action is fired. With the CompressContentAttribute created, it can now be applied to either the controller as a whole:[CompressContent] public class ClassifiedsController : ClassifiedsBaseController { … } or to one of the Action methods:[CompressContent] public ActionResult List(string keyword=null, int category=0) { … } The former applies compression to every action method, while the latter is selective and only applies it to the individual action method. Is the attribute better than the static utility function? Not really, but it is the standard MVC way to hook up 'filter' content and that's where others are likely to expect to set options like this. In fact,  you have a bit more control with the utility function because you can conditionally apply it in code, but this is actually much less likely in MVC applications than old WebForms apps since controller methods tend to be more focused. Compression Caveats Http compression is very cool and pretty easy to implement in ASP.NET but you have to be careful with it - especially if your content might get transformed or redirected inside of ASP.NET. A good example, is if an error occurs and a compression filter is applied. ASP.NET errors don't clear the filter, but clear the Response headers which results in some nasty garbage because the compressed content now no longer matches the headers. Another issue is Caching, which has to account for all possible ways of compression and non-compression that the content is served. Basically compressed content and caching don't mix well. I wrote about several of these issues in an old blog post and I recommend you take a quick peek before diving into making every bit of output Gzip encoded. None of these are show stoppers, but you have to be aware of the issues. Related Posts GZip Compression with ASP.NET Content ASP.NET GZip Encoding Caveats© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  MVC   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Securing an ASP.NET MVC 2 Application

    - by rajbk
    This post attempts to look at some of the methods that can be used to secure an ASP.NET MVC 2 Application called Northwind Traders Human Resources.  The sample code for the project is attached at the bottom of this post. We are going to use a slightly modified Northwind database. The screen capture from SQL server management studio shows the change. I added a new column called Salary, inserted some random salaries for the employees and then turned off AllowNulls.   The reporting relationship for Northwind Employees is shown below.   The requirements for our application are as follows: Employees can see their LastName, FirstName, Title, Address and Salary Employees are allowed to edit only their Address information Employees can see the LastName, FirstName, Title, Address and Salary of their immediate reports Employees cannot see records of non immediate reports.  Employees are allowed to edit only the Salary and Title information of their immediate reports. Employees are not allowed to edit the Address of an immediate report Employees should be authenticated into the system. Employees by default get the “Employee” role. If a user has direct reports, they will also get assigned a “Manager” role. We use a very basic empId/pwd scheme of EmployeeID (1-9) and password test$1. You should never do this in an actual application. The application should protect from Cross Site Request Forgery (CSRF). For example, Michael could trick Steven, who is already logged on to the HR website, to load a page which contains a malicious request. where without Steven’s knowledge, a form on the site posts information back to the Northwind HR website using Steven’s credentials. Michael could use this technique to give himself a raise :-) UI Notes The layout of our app looks like so: When Nancy (EmpID 1) signs on, she sees the default page with her details and is allowed to edit her address. If Nancy attempts to view the record of employee Andrew who has an employeeID of 2 (Employees/Edit/2), she will get a “Not Authorized” error page. When Andrew (EmpID 2) signs on, he can edit the address field of his record and change the title and salary of employees that directly report to him. Implementation Notes All controllers inherit from a BaseController. The BaseController currently only has error handling code. When a user signs on, we check to see if they are in a Manager role. We then create a FormsAuthenticationTicket, encrypt it (including the roles that the employee belongs to) and add it to a cookie. private void SetAuthenticationCookie(int employeeID, List<string> roles) { HttpCookiesSection cookieSection = (HttpCookiesSection) ConfigurationManager.GetSection("system.web/httpCookies"); AuthenticationSection authenticationSection = (AuthenticationSection) ConfigurationManager.GetSection("system.web/authentication"); FormsAuthenticationTicket authTicket = new FormsAuthenticationTicket( 1, employeeID.ToString(), DateTime.Now, DateTime.Now.AddMinutes(authenticationSection.Forms.Timeout.TotalMinutes), false, string.Join("|", roles.ToArray())); String encryptedTicket = FormsAuthentication.Encrypt(authTicket); HttpCookie authCookie = new HttpCookie(FormsAuthentication.FormsCookieName, encryptedTicket); if (cookieSection.RequireSSL || authenticationSection.Forms.RequireSSL) { authCookie.Secure = true; } HttpContext.Current.Response.Cookies.Add(authCookie); } We read this cookie back in Global.asax and set the Context.User to be a new GenericPrincipal with the roles we assigned earlier. protected void Application_AuthenticateRequest(Object sender, EventArgs e){ if (Context.User != null) { string cookieName = FormsAuthentication.FormsCookieName; HttpCookie authCookie = Context.Request.Cookies[cookieName]; if (authCookie == null) return; FormsAuthenticationTicket authTicket = FormsAuthentication.Decrypt(authCookie.Value); string[] roles = authTicket.UserData.Split(new char[] { '|' }); FormsIdentity fi = (FormsIdentity)(Context.User.Identity); Context.User = new System.Security.Principal.GenericPrincipal(fi, roles); }} We ensure that a user has permissions to view a record by creating a custom attribute AuthorizeToViewID that inherits from ActionFilterAttribute. public class AuthorizeToViewIDAttribute : ActionFilterAttribute{ IEmployeeRepository employeeRepository = new EmployeeRepository(); public override void OnActionExecuting(ActionExecutingContext filterContext) { if (filterContext.ActionParameters.ContainsKey("id") && filterContext.ActionParameters["id"] != null) { if (employeeRepository.IsAuthorizedToView((int)filterContext.ActionParameters["id"])) { return; } } throw new UnauthorizedAccessException("The record does not exist or you do not have permission to access it"); }} We add the AuthorizeToView attribute to any Action method that requires authorization. [HttpPost][Authorize(Order = 1)]//To prevent CSRF[ValidateAntiForgeryToken(Salt = Globals.EditSalt, Order = 2)]//See AuthorizeToViewIDAttribute class[AuthorizeToViewID(Order = 3)] [ActionName("Edit")]public ActionResult Update(int id){ var employeeToEdit = employeeRepository.GetEmployee(id); if (employeeToEdit != null) { //Employees can edit only their address //A manager can edit the title and salary of their subordinate string[] whiteList = (employeeToEdit.IsSubordinate) ? new string[] { "Title", "Salary" } : new string[] { "Address" }; if (TryUpdateModel(employeeToEdit, whiteList)) { employeeRepository.Save(employeeToEdit); return RedirectToAction("Details", new { id = id }); } else { ModelState.AddModelError("", "Please correct the following errors."); } } return View(employeeToEdit);} The Authorize attribute is added to ensure that only authorized users can execute that Action. We use the TryUpdateModel with a white list to ensure that (a) an employee is able to edit only their Address and (b) that a manager is able to edit only the Title and Salary of a subordinate. This works in conjunction with the AuthorizeToViewIDAttribute. The ValidateAntiForgeryToken attribute is added (with a salt) to avoid CSRF. The Order on the attributes specify the order in which the attributes are executed. The Edit View uses the AntiForgeryToken helper to render the hidden token: ......<% using (Html.BeginForm()) {%><%=Html.AntiForgeryToken(NorthwindHR.Models.Globals.EditSalt)%><%= Html.ValidationSummary(true, "Please correct the errors and try again.") %><div class="editor-label"> <%= Html.LabelFor(model => model.LastName) %></div><div class="editor-field">...... The application uses View specific models for ease of model binding. public class EmployeeViewModel{ public int EmployeeID; [Required] [DisplayName("Last Name")] public string LastName { get; set; } [Required] [DisplayName("First Name")] public string FirstName { get; set; } [Required] [DisplayName("Title")] public string Title { get; set; } [Required] [DisplayName("Address")] public string Address { get; set; } [Required] [DisplayName("Salary")] [Range(500, double.MaxValue)] public decimal Salary { get; set; } public bool IsSubordinate { get; set; }} To help with displaying readonly/editable fields, we use a helper method. //Simple extension method to display a TextboxFor or DisplayFor based on the isEditable variablepublic static MvcHtmlString TextBoxOrLabelFor<TModel, TProperty>(this HtmlHelper<TModel> htmlHelper, Expression<Func<TModel, TProperty>> expression, bool isEditable){ if (isEditable) { return htmlHelper.TextBoxFor(expression); } else { return htmlHelper.DisplayFor(expression); }} The helper method is used in the view like so: <%=Html.TextBoxOrLabelFor(model => model.Title, Model.IsSubordinate)%> As mentioned in this post, there is a much easier way to update properties on an object. Download Demo Project VS 2008, ASP.NET MVC 2 RTM Remember to change the connectionString to point to your Northwind DB NorthwindHR.zip Feedback and bugs are always welcome :-)

    Read the article

  • ASP.NET MVC 3: Implicit and Explicit code nuggets with Razor

    - by ScottGu
    This is another in a series of posts I’m doing that cover some of the new ASP.NET MVC 3 features: New @model keyword in Razor (Oct 19th) Layouts with Razor (Oct 22nd) Server-Side Comments with Razor (Nov 12th) Razor’s @: and <text> syntax (Dec 15th) Implicit and Explicit code nuggets with Razor (today) In today’s post I’m going to discuss how Razor enables you to both implicitly and explicitly define code nuggets within your view templates, and walkthrough some code examples of each of them.  Fluid Coding with Razor ASP.NET MVC 3 ships with a new view-engine option called “Razor” (in addition to the existing .aspx view engine).  You can learn more about Razor, why we are introducing it, and the syntax it supports from my Introducing Razor blog post. Razor minimizes the number of characters and keystrokes required when writing a view template, and enables a fast, fluid coding workflow. Unlike most template syntaxes, you do not need to interrupt your coding to explicitly denote the start and end of server blocks within your HTML. The Razor parser is smart enough to infer this from your code. This enables a compact and expressive syntax which is clean, fast and fun to type. For example, the Razor snippet below can be used to iterate a collection of products and output a <ul> list of product names that link to their corresponding product pages: When run, the above code generates output like below: Notice above how we were able to embed two code nuggets within the content of the foreach loop.  One of them outputs the name of the Product, and the other embeds the ProductID within a hyperlink.  Notice that we didn’t have to explicitly wrap these code-nuggets - Razor was instead smart enough to implicitly identify where the code began and ended in both of these situations.  How Razor Enables Implicit Code Nuggets Razor does not define its own language.  Instead, the code you write within Razor code nuggets is standard C# or VB.  This allows you to re-use your existing language skills, and avoid having to learn a customized language grammar. The Razor parser has smarts built into it so that whenever possible you do not need to explicitly mark the end of C#/VB code nuggets you write.  This makes coding more fluid and productive, and enables a nice, clean, concise template syntax.  Below are a few scenarios that Razor supports where you can avoid having to explicitly mark the beginning/end of a code nugget, and instead have Razor implicitly identify the code nugget scope for you: Property Access Razor allows you to output a variable value, or a sub-property on a variable that is referenced via “dot” notation: You can also use “dot” notation to access sub-properties multiple levels deep: Array/Collection Indexing: Razor allows you to index into collections or arrays: Calling Methods: Razor also allows you to invoke methods: Notice how for all of the scenarios above how we did not have to explicitly end the code nugget.  Razor was able to implicitly identify the end of the code block for us. Razor’s Parsing Algorithm for Code Nuggets The below algorithm captures the core parsing logic we use to support “@” expressions within Razor, and to enable the implicit code nugget scenarios above: Parse an identifier - As soon as we see a character that isn't valid in a C# or VB identifier, we stop and move to step 2 Check for brackets - If we see "(" or "[", go to step 2.1., otherwise, go to step 3  Parse until the matching ")" or "]" (we track nested "()" and "[]" pairs and ignore "()[]" we see in strings or comments) Go back to step 2 Check for a "." - If we see one, go to step 3.1, otherwise, DO NOT ACCEPT THE "." as code, and go to step 4 If the character AFTER the "." is a valid identifier, accept the "." and go back to step 1, otherwise, go to step 4 Done! Differentiating between code and content Step 3.1 is a particularly interesting part of the above algorithm, and enables Razor to differentiate between scenarios where an identifier is being used as part of the code statement, and when it should instead be treated as static content: Notice how in the snippet above we have ? and ! characters at the end of our code nuggets.  These are both legal C# identifiers – but Razor is able to implicitly identify that they should be treated as static string content as opposed to being part of the code expression because there is whitespace after them.  This is pretty cool and saves us keystrokes. Explicit Code Nuggets in Razor Razor is smart enough to implicitly identify a lot of code nugget scenarios.  But there are still times when you want/need to be more explicit in how you scope the code nugget expression.  The @(expression) syntax allows you to do this: You can write any C#/VB code statement you want within the @() syntax.  Razor will treat the wrapping () characters as the explicit scope of the code nugget statement.  Below are a few scenarios where we could use the explicit code nugget feature: Perform Arithmetic Calculation/Modification: You can perform arithmetic calculations within an explicit code nugget: Appending Text to a Code Expression Result: You can use the explicit expression syntax to append static text at the end of a code nugget without having to worry about it being incorrectly parsed as code: Above we have embedded a code nugget within an <img> element’s src attribute.  It allows us to link to images with URLs like “/Images/Beverages.jpg”.  Without the explicit parenthesis, Razor would have looked for a “.jpg” property on the CategoryName (and raised an error).  By being explicit we can clearly denote where the code ends and the text begins. Using Generics and Lambdas Explicit expressions also allow us to use generic types and generic methods within code expressions – and enable us to avoid the <> characters in generics from being ambiguous with tag elements. One More Thing….Intellisense within Attributes We have used code nuggets within HTML attributes in several of the examples above.  One nice feature supported by the Razor code editor within Visual Studio is the ability to still get VB/C# intellisense when doing this. Below is an example of C# code intellisense when using an implicit code nugget within an <a> href=”” attribute: Below is an example of C# code intellisense when using an explicit code nugget embedded in the middle of a <img> src=”” attribute: Notice how we are getting full code intellisense for both scenarios – despite the fact that the code expression is embedded within an HTML attribute (something the existing .aspx code editor doesn’t support).  This makes writing code even easier, and ensures that you can take advantage of intellisense everywhere. Summary Razor enables a clean and concise templating syntax that enables a very fluid coding workflow.  Razor’s ability to implicitly scope code nuggets reduces the amount of typing you need to perform, and leaves you with really clean code. When necessary, you can also explicitly scope code expressions using a @(expression) syntax to provide greater clarity around your intent, as well as to disambiguate code statements from static markup. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Regression testing with Selenium GRID

    - by Ben Adderson
    A lot of software teams out there are tasked with supporting and maintaining systems that have grown organically over time, and the web team here at Red Gate is no exception. We're about to embark on our first significant refactoring endeavour for some time, and as such its clearly paramount that the code be tested thoroughly for regressions. Unfortunately we currently find ourselves with a codebase that isn't very testable - the three layers (database, business logic and UI) are currently tightly coupled. This leaves us with the unfortunate problem that, in order to confidently refactor the code, we need unit tests. But in order to write unit tests, we need to refactor the code :S To try and ease the initial pain of decoupling these layers, I've been looking into the idea of using UI automation to provide a sort of system-level regression test suite. The idea being that these tests can help us identify regressions whilst we work towards a more testable codebase, at which point the more traditional combination of unit and integration tests can take over. Ending up with a strong battery of UI tests is also a nice bonus :) Following on from my previous posts (here, here and here) I knew I wanted to use Selenium. I also figured that this would be a good excuse to put my xUnit [Browser] attribute to good use. Pretty quickly, I had a raft of tests that looked like the following (this particular example uses Reflector Pro). In a nut shell the test traverses our shopping cart and, for a particular combination of number of users and months of support, checks that the price calculations all come up with the correct values. [BrowserTheory] [Browser(Browsers.Firefox3_6, "http://www.red-gate.com")] public void Purchase1UserLicenceNoSupport(SeleniumProvider seleniumProvider) {     //Arrange     _browser = seleniumProvider.GetBrowser();     _browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                  //Act     _browser = ShoppingCartHelpers.TraverseShoppingCart(_browser, 1, 0, ".NET Reflector Pro");     //Assert     var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);         Assert.Equal(priceResult.Price, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.Equal(priceResult.Tax, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.Equal(priceResult.Total, _browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } These tests are pretty concise, with much of the common code in the TraverseShoppingCart() and GetNewPurchasePrice() methods. The (inevitable) problem arose when it came to execute these tests en masse. Selenium is a very slick tool, but it can't mask the fact that UI automation is very slow. To give you an idea, the set of cases that covers all of our products, for all combinations of users and support, came to 372 tests (for now only considering purchases in dollars). In the world of automated integration tests, that's a very manageable number. For unit tests, it's a trifle. However for UI automation, those 372 tests were taking just over two hours to run. Two hours may not sound like a lot, but those cases only cover one of the three currencies we deal with, and only one of the many different ways our systems can be asked to calculate a price. It was already pretty clear at this point that in order for this approach to be viable, I was going to have to find a way to speed things up. Up to this point I had been using Selenium Remote Control to automate Firefox, as this was the approach I had used previously and it had worked well. Fortunately,  the guys at SeleniumHQ also maintain a tool for executing multiple Selenium RC tests in parallel: Selenium Grid. Selenium Grid uses a central 'hub' to handle allocation of Selenium tests to individual RCs. The Remote Controls simply register themselves with the hub when they start, and then wait to be assigned work. The (for me) really clever part is that, as far as the client driver library is concerned, the grid hub looks exactly the same as a vanilla remote control. To create a new browser session against Selenium RC, the following C# code suffices: new DefaultSelenium("localhost", 4444, "*firefox", "http://www.red-gate.com"); This assumes that the RC is running on the local machine, and is listening on port 4444 (the default). Assuming the hub is running on your local machine, then to create a browser session in Selenium Grid, via the hub rather than directly against the control, the code is exactly the same! Behind the scenes, the hub will take this request and hand it off to one of the registered RCs that provides the "*firefox" execution environment. It will then pass all communications back and forth between the test runner and the remote control transparently. This makes running existing RC tests on a Selenium Grid a piece of cake, as the developers intended. For a more detailed description of exactly how Selenium Grid works, see this page. Once I had a test environment capable of running multiple tests in parallel, I needed a test runner capable of doing the same. Unfortunately, this does not currently exist for xUnit (boo!). MbUnit on the other hand, has the concept of concurrent execution baked right into the framework. So after swapping out my assembly references, and fixing up the resulting mismatches in assertions, my example test now looks like this: [Test] public void Purchase1UserLicenceNoSupport() {    //Arrange    ISelenium browser = BrowserHelpers.GetBrowser();    var db = DbHelpers.GetWebsiteDBDataContext();    browser.Start();    browser.Open("http://www.red-gate.com/dynamic/shoppingCart/ProductOption.aspx?Product=ReflectorPro");                 //Act     browser = ShoppingCartHelpers.TraverseShoppingCart(browser, 1, 0, ".NET Reflector Pro");    var priceResult = PriceHelpers.GetNewPurchasePrice(db, "ReflectorPro", 1, 0, Currencies.Euros);    //Assert     Assert.AreEqual(priceResult.Price, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl01_Price"));     Assert.AreEqual(priceResult.Tax, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Tax"));     Assert.AreEqual(priceResult.Total, browser.GetText("ctl00_content_InvoiceShoppingItemRepeater_ctl02_Total")); } This is pretty much the same as the xUnit version. The exceptions are that the attributes have changed,  the //Arrange phase now has to handle setting up the ISelenium object, as the attribute that previously did this has gone away, and the test now sets up its own database connection. Previously I was using a shared database connection, but this approach becomes more complicated when tests are being executed concurrently. To avoid complexity each test has its own connection, which it is responsible for closing. For the sake of readability, I snipped out the code that closes the browser session and the db connection at the end of the test. With all that done, there was only one more step required before the tests would execute concurrently. It is necessary to tell the test runner which tests are eligible to run in parallel, via the [Parallelizable] attribute. This can be done at the test, fixture or assembly level. Since I wanted to run all tests concurrently, I marked mine at the assembly level in the AssemblyInfo.cs using the following: [assembly: DegreeOfParallelism(3)] [assembly: Parallelizable(TestScope.All)] The second attribute marks all tests in the assembly as [Parallelizable], whilst the first tells the test runner how many concurrent threads to use when executing the tests. I set mine to three since I was using 3 RCs in separate VMs. With everything now in place, I fired up the Icarus* test runner that comes with MbUnit. Executing my 372 tests three at a time instead of one at a time reduced the running time from 2 hours 10 minutes, to 55 minutes, that's an improvement of about 58%! I'd like to have seen an improvement of 66%, but I can understand that either inefficiencies in the hub code, my test environment or the test runner code (or some combination of all three most likely) contributes to a slightly diminished improvement. That said, I'd love to hear about any experience you have in upping this efficiency. Ultimately though, it was a saving that was most definitely worth having. It makes regression testing via UI automation a far more plausible prospect. The other obvious point to make is that this approach scales far better than executing tests serially. So if ever we need to improve performance, we just register additional RC's with the hub, and up the DegreeOfParallelism. *This was just my personal preference for a GUI runner. The MbUnit/Gallio installer also provides a command line runner, a TestDriven.net runner, and a Resharper 4.5 runner. For now at least, Resharper 5 isn't supported.

    Read the article

  • Packaging Swing apps with integrated JavaFX content

    - by igor
    JavaFX provides a lot of interesting capabilities for developing rich client applications in Java, but what if you are working on an existing Swing application and you want to take advantage of these new features?  Maybe you want to use one or two controls like the LineChart or a MediaView.  Maybe you want to embed a large Scene Graph as an initial step in porting your application to FX.  A hybrid Swing/FX application might just be the answer. Developing a hybrid Swing + JavaFX application is not terribly difficult, but until recently the deployment of hybrid applications has not simple as a "pure" JavaFX application.  The existing tools focused on packaging FX Applications, or Swing applications - they did not account for hybrid applications. But with JavaFX 2.2 the tools include support for this hybrid application use case.  Solution  In JavaFX 2.2 we extended the packaging ant tasks to greatly simplify deploying hybrid applications.  You now use the same deployment approach as you would for pure JavaFX applications.  Just bundle your main application jar with the fx:jar ant task and then generate html/jnlp files using fx:deploy.  The only difference is setting toolkit attribute for the fx:application tag as shown below: <fx:application id="swingFXApp" mainClass="${main.class}" toolkit="swing"/>  The value of ${main.class} in the example above is your application class which has a main method.  It does not need to extend JavaFX Application class. The resulting package provides support for the same set of execution modes as a package for a JavaFX application, although the packages which are created are not identical to the packages created for a pure FX application.  You will see two JNLP files generated in the case of a hybrid application - one for use from Swing applet and another for the webstart launch.  Note that these improvements do not alter the set of features available to Swing applications. The packaging tools just make it easier to use the advanced features of JavaFX in your Swing application. The same limits still apply, for example a Swing application can not use JavaFX Preloaders and code changes are necessary to support HTML splash screens. Why should I use the JavaFX ant tasks for packaging my Swing application?  While using FX packaging tool for a Swing application may seem like a mismatch at face value, there are some really good reasons to use this approach.  The primary justification for our packaging tools is to simplify the creation of your application artifacts, and to reduce manual errors.  Plus, no one should have to write JNLP by hand. Some specific benefits include: Your application jar will include a launcher program.  This improves your standalone launch by: checking for the JavaFX runtime guiding the user through any necessary installations setting the system proxy for Java The ant tasks will generate JNLP and HTML files for your swing app: avoids learning unnecessary details about JNLP, and eliminates the error-prone hand editing of JNLP files simplifies using advanced features like embedding JNLP and signing jars as BLOBs to improve launch performance.you can also embed the signing certificate details to improve the user's experience  allows the use of web page templates to inject the generated code directly into your actual web page instead of being forced to copy/paste the generated code snippets. What about native packing? Absolutely!  The very same ant task can generate a native bundle for a Swing application with JavaFX content.  Try running one of these sample native bundles for the "SwingInterop" FX example: exe and dmg.   I also used another feature on these examples: a click-through license agreement for .exe installers and OS X DMG drag installers. Small Caveat This packaging procedure is optimized around using the JavaFX packaging tools for your entire Swing application.  If you are trying to embed JavaFX content into existing project (with an existing build/packing process) then you may need to experiment in order to find the best way to integrate the JavaFX packaging steps into your existing build procedure. As long as you can use ant in your build process this should be a workable approach. It some cases solution could be less than ideal. For example, you need to use fx:jar to package your main jar file in order to produce a double-clickable jar or a native bundle.  The jar will be created from scratch, but you may already be creating the main jar file with a custom manifest.  This may lead to some redundant steps in your build process.  Hopefully the benefits will outweigh the problems. This is an area of ongoing development for the team, and we will continue to refine and improve both the tools and the process. Please share your experiences and suggestions with us.  You can comment here on the blog or file issues to JIRA. Sample code Here is the full ant code used to package SwingInterop.  You can grab latest JavaFX samples and try it yourself:  <target name="-post-jar"> <taskdef resource="com/sun/javafx/tools/ant/antlib.xml" uri="javafx:com.sun.javafx.tools.ant" classpath="${javafx.tools.ant.jar}"/> <!-- Mark application as Swing-based --> <fx:application id="swingFXApp" mainClass="${main.class}" toolkit="swing"/> <!-- Create doubleclickable jar file with embedded launcher --> <fx:jar destfile="${dist.jar}"> <fileset dir="${build.classes.dir}"/> <fx:application refid="swingFXApp" name="SwingInterop"/> <manifest> <attribute name="Implementation-Vendor" value="${application.vendor}"/> <attribute name="Implementation-Title" value="${application.title}"/> <attribute name="Implementation-Version" value="1.0"/> </manifest> </fx:jar> <!-- sign application jar. Use new self signed certificate --> <delete file="${build.dir}/test.keystore"/> <genkey alias="TestAlias" storepass="xyz123" keystore="${build.dir}/test.keystore" dname="CN=Samples, OU=JavaFX Dev, O=Oracle, C=US"/> <fx:signjar keystore="${build.dir}/test.keystore" alias="TestAlias" storepass="xyz123"> <fileset file="${dist.jar}"/> </fx:signjar> <!-- generate JNLPs, HTML and native bundles --> <fx:deploy width="960" height="720" includeDT="true" nativeBundles="all" outdir="${basedir}/${dist.dir}" embedJNLP="true" outfile="${application.title}"> <fx:application refId="swingFXApp"/> <fx:resources> <fx:fileset dir="${basedir}/${dist.dir}" includes="SwingInterop.jar"/> </fx:resources> <fx:permissions/> <info title="Sample app: ${application.title}" vendor="${application.vendor}"/> </fx:deploy> </target>

    Read the article

  • Parsing "true" and "false" using Boost.Spirit.Lex and Boost.Spirit.Qi

    - by Andrew Ross
    As the first stage of a larger grammar using Boost.Spirit I'm trying to parse "true" and "false" to produce the corresponding bool values, true and false. I'm using Spirit.Lex to tokenize the input and have a working implementation for integer and floating point literals (including those expressed in a relaxed scientific notation), exposing int and float attributes. Token definitions #include <boost/spirit/include/lex_lexertl.hpp> namespace lex = boost::spirit::lex; typedef boost::mpl::vector<int, float, bool> token_value_type; template <typename Lexer> struct basic_literal_tokens : lex::lexer<Lexer> { basic_literal_tokens() { this->self.add_pattern("INT", "[-+]?[0-9]+"); int_literal = "{INT}"; // To be lexed as a float a numeric literal must have a decimal point // or include an exponent, otherwise it will be considered an integer. float_literal = "{INT}(((\\.[0-9]+)([eE]{INT})?)|([eE]{INT}))"; literal_true = "true"; literal_false = "false"; this->self = literal_true | literal_false | float_literal | int_literal; } lex::token_def<int> int_literal; lex::token_def<float> float_literal; lex::token_def<bool> literal_true, literal_false; }; Testing parsing of float literals My real implementation uses Boost.Test, but this is a self-contained example. #include <string> #include <iostream> #include <cmath> #include <cstdlib> #include <limits> bool parse_and_check_float(std::string const & input, float expected) { typedef std::string::const_iterator base_iterator_type; typedef lex::lexertl::token<base_iterator_type, token_value_type > token_type; typedef lex::lexertl::lexer<token_type> lexer_type; basic_literal_tokens<lexer_type> basic_literal_lexer; base_iterator_type input_iter(input.begin()); float actual; bool result = lex::tokenize_and_parse(input_iter, input.end(), basic_literal_lexer, basic_literal_lexer.float_literal, actual); return result && std::abs(expected - actual) < std::numeric_limits<float>::epsilon(); } int main(int argc, char *argv[]) { if (parse_and_check_float("+31.4e-1", 3.14)) { return EXIT_SUCCESS; } else { return EXIT_FAILURE; } } Parsing "true" and "false" My problem is when trying to parse "true" and "false". This is the test code I'm using (after removing the Boost.Test parts): bool parse_and_check_bool(std::string const & input, bool expected) { typedef std::string::const_iterator base_iterator_type; typedef lex::lexertl::token<base_iterator_type, token_value_type > token_type; typedef lex::lexertl::lexer<token_type> lexer_type; basic_literal_tokens<lexer_type> basic_literal_lexer; base_iterator_type input_iter(input.begin()); bool actual; lex::token_def<bool> parser = expected ? basic_literal_lexer.literal_true : basic_literal_lexer.literal_false; bool result = lex::tokenize_and_parse(input_iter, input.end(), basic_literal_lexer, parser, actual); return result && actual == expected; } but compilation fails with: boost/spirit/home/qi/detail/assign_to.hpp: In function ‘void boost::spirit::traits::assign_to(const Iterator&, const Iterator&, Attribute&) [with Iterator = __gnu_cxx::__normal_iterator<const char*, std::basic_string<char, std::char_traits<char>, std::allocator<char> > >, Attribute = bool]’: boost/spirit/home/lex/lexer/lexertl/token.hpp:434: instantiated from ‘static void boost::spirit::traits::assign_to_attribute_from_value<Attribute, boost::spirit::lex::lexertl::token<Iterator, AttributeTypes, HasState>, void>::call(const boost::spirit::lex::lexertl::token<Iterator, AttributeTypes, HasState>&, Attribute&) [with Attribute = bool, Iterator = __gnu_cxx::__normal_iterator<const char*, std::basic_string<char, std::char_traits<char>, std::allocator<char> > >, AttributeTypes = boost::mpl::vector<int, float, bool, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na, mpl_::na>, HasState = mpl_::bool_<true>]’ ... backtrace of instantiation points .... boost/spirit/home/qi/detail/assign_to.hpp:79: error: no matching function for call to ‘boost::spirit::traits::assign_to_attribute_from_iterators<bool, __gnu_cxx::__normal_iterator<const char*, std::basic_string<char, std::char_traits<char>, std::allocator<char> > >, void>::call(const __gnu_cxx::__normal_iterator<const char*, std::basic_string<char, std::char_traits<char>, std::allocator<char> > >&, const __gnu_cxx::__normal_iterator<const char*, std::basic_string<char, std::char_traits<char>, std::allocator<char> > >&, bool&)’ boost/spirit/home/qi/detail/construct.hpp:64: note: candidates are: static void boost::spirit::traits::assign_to_attribute_from_iterators<bool, Iterator, void>::call(const Iterator&, const Iterator&, char&) [with Iterator = __gnu_cxx::__normal_iterator<const char*, std::basic_string<char, std::char_traits<char>, std::allocator<char> > >] My interpretation of this is that Spirit.Qi doesn't know how to convert a string to a bool - surely that's not the case? Has anyone else done this before? If so, how?

    Read the article

  • WebSocket Applications using Java: JSR 356 Early Draft Now Available (TOTD #183)

    - by arungupta
    WebSocket provide a full-duplex and bi-directional communication protocol over a single TCP connection. JSR 356 is defining a standard API for creating WebSocket applications in the Java EE 7 Platform. This Tip Of The Day (TOTD) will provide an introduction to WebSocket and how the JSR is evolving to support the programming model. First, a little primer on WebSocket! WebSocket is a combination of IETF RFC 6455 Protocol and W3C JavaScript API (still a Candidate Recommendation). The protocol defines an opening handshake and data transfer. The API enables Web pages to use the WebSocket protocol for two-way communication with the remote host. Unlike HTTP, there is no need to create a new TCP connection and send a chock-full of headers for every message exchange between client and server. The WebSocket protocol defines basic message framing, layered over TCP. Once the initial handshake happens using HTTP Upgrade, the client and server can send messages to each other, independent from the other. There are no pre-defined message exchange patterns of request/response or one-way between client and and server. These need to be explicitly defined over the basic protocol. The communication between client and server is pretty symmetric but there are two differences: A client initiates a connection to a server that is listening for a WebSocket request. A client connects to one server using a URI. A server may listen to requests from multiple clients on the same URI. Other than these two difference, the client and server behave symmetrically after the opening handshake. In that sense, they are considered as "peers". After a successful handshake, clients and servers transfer data back and forth in conceptual units referred as "messages". On the wire, a message is composed of one or more frames. Application frames carry payload intended for the application and can be text or binary data. Control frames carry data intended for protocol-level signaling. Now lets talk about the JSR! The Java API for WebSocket is worked upon as JSR 356 in the Java Community Process. This will define a standard API for building WebSocket applications. This JSR will provide support for: Creating WebSocket Java components to handle bi-directional WebSocket conversations Initiating and intercepting WebSocket events Creation and consumption of WebSocket text and binary messages The ability to define WebSocket protocols and content models for an application Configuration and management of WebSocket sessions, like timeouts, retries, cookies, connection pooling Specification of how WebSocket application will work within the Java EE security model Tyrus is the Reference Implementation for JSR 356 and is already integrated in GlassFish 4.0 Promoted Builds. And finally some code! The API allows to create WebSocket endpoints using annotations and interface. This TOTD will show a simple sample using annotations. A subsequent blog will show more advanced samples. A POJO can be converted to a WebSocket endpoint by specifying @WebSocketEndpoint and @WebSocketMessage. @WebSocketEndpoint(path="/hello")public class HelloBean {     @WebSocketMessage    public String sayHello(String name) {         return "Hello " + name + "!";     }} @WebSocketEndpoint marks this class as a WebSocket endpoint listening at URI defined by the path attribute. The @WebSocketMessage identifies the method that will receive the incoming WebSocket message. This first method parameter is injected with payload of the incoming message. In this case it is assumed that the payload is text-based. It can also be of the type byte[] in case the payload is binary. A custom object may be specified if decoders attribute is specified in the @WebSocketEndpoint. This attribute will provide a list of classes that define how a custom object can be decoded. This method can also take an optional Session parameter. This is injected by the runtime and capture a conversation between two endpoints. The return type of the method can be String, byte[] or a custom object. The encoders attribute on @WebSocketEndpoint need to define how a custom object can be encoded. The client side is an index.jsp with embedded JavaScript. The JSP body looks like: <div style="text-align: center;"> <form action="">     <input onclick="say_hello()" value="Say Hello" type="button">         <input id="nameField" name="name" value="WebSocket" type="text"><br>    </form> </div> <div id="output"></div> The code is relatively straight forward. It has an HTML form with a button that invokes say_hello() method and a text field named nameField. A div placeholder is available for displaying the output. Now, lets take a look at some JavaScript code: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/HelloWebSocket/hello";     var websocket = new WebSocket(wsUri);     websocket.onopen = function(evt) { onOpen(evt) };     websocket.onmessage = function(evt) { onMessage(evt) };     websocket.onerror = function(evt) { onError(evt) };     function init() {         output = document.getElementById("output");     }     function say_hello() {      websocket.send(nameField.value);         writeToScreen("SENT: " + nameField.value);     } This application is deployed as "HelloWebSocket.war" (download here) on GlassFish 4.0 promoted build 57. So the WebSocket endpoint is listening at "ws://localhost:8080/HelloWebSocket/hello". A new WebSocket connection is initiated by specifying the URI to connect to. The JavaScript API defines callback methods that are invoked when the connection is opened (onOpen), closed (onClose), error received (onError), or a message from the endpoint is received (onMessage). The client API has several send methods that transmit data over the connection. This particular script sends text data in the say_hello method using nameField's value from the HTML shown earlier. Each click on the button sends the textbox content to the endpoint over a WebSocket connection and receives a response based upon implementation in the sayHello method shown above. How to test this out ? Download the entire source project here or just the WAR file. Download GlassFish4.0 build 57 or later and unzip. Start GlassFish as "asadmin start-domain". Deploy the WAR file as "asadmin deploy HelloWebSocket.war". Access the application at http://localhost:8080/HelloWebSocket/index.jsp. After clicking on "Say Hello" button, the output would look like: Here are some references for you: WebSocket - Protocol and JavaScript API JSR 356: Java API for WebSocket - Specification (Early Draft) and Implementation (already integrated in GlassFish 4 promoted builds) Subsequent blogs will discuss the following topics (not necessary in that order) ... Binary data as payload Custom payloads using encoder/decoder Error handling Interface-driven WebSocket endpoint Java client API Client and Server configuration Security Subprotocols Extensions Other topics from the API Capturing WebSocket on-the-wire messages

    Read the article

  • MVC Portable Area Modules *Without* MasterPages

    - by Steve Michelotti
    Portable Areas from MvcContrib provide a great way to build modular and composite applications on top of MVC. In short, portable areas provide a way to distribute MVC binary components as simple .NET assemblies where the aspx/ascx files are actually compiled into the assembly as embedded resources. I’ve blogged about Portable Areas in the past including this post here which talks about embedding resources and you can read more of an intro to Portable Areas here. As great as Portable Areas are, the question that seems to come up the most is: what about MasterPages? MasterPages seems to be the one thing that doesn’t work elegantly with portable areas because you specify the MasterPage in the @Page directive and it won’t use the same mechanism of the view engine so you can’t just embed them as resources. This means that you end up referencing a MasterPage that exists in the host application but not in your portable area. If you name the ContentPlaceHolderId’s correctly, it will work – but it all seems a little fragile. Ultimately, what I want is to be able to build a portable area as a module which has no knowledge of the host application. I want to be able to invoke the module by a full route on the user’s browser and it gets invoked and “automatically appears” inside the application’s visual chrome just like a MasterPage. So how could we accomplish this with portable areas? With this question in mind, I looked around at what other people are doing to address similar problems. Specifically, I immediately looked at how the Orchard team is handling this and I found it very compelling. Basically Orchard has its own custom layout/theme framework (utilizing a custom view engine) that allows you to build your module without any regard to the host. You simply decorate your controller with the [Themed] attribute and it will render with the outer chrome around it: 1: [Themed] 2: public class HomeController : Controller Here is the slide from the Orchard talk at this year MIX conference which shows how it conceptually works:   It’s pretty cool stuff.  So I figure, it must not be too difficult to incorporate this into the portable areas view engine as an optional piece of functionality. In fact, I’ll even simplify it a little – rather than have 1) Document.aspx, 2) Layout.ascx, and 3) <view>.ascx (as shown in the picture above); I’ll just have the outer page be “Chrome.aspx” and then the specific view in question. The Chrome.aspx not only takes the place of the MasterPage, but now since we’re no longer constrained by the MasterPage infrastructure, we have the choice of the Chrome.aspx living in the host or inside the portable areas as another embedded resource! Disclaimer: credit where credit is due – much of the code from this post is me re-purposing the Orchard code to suit my needs. To avoid confusion with Orchard, I’m going to refer to my implementation (which will be based on theirs) as a Chrome rather than a Theme. The first step I’ll take is to create a ChromedAttribute which adds a flag to the current HttpContext to indicate that the controller designated Chromed like this: 1: [Chromed] 2: public class HomeController : Controller The attribute itself is an MVC ActionFilter attribute: 1: public class ChromedAttribute : ActionFilterAttribute 2: { 3: public override void OnActionExecuting(ActionExecutingContext filterContext) 4: { 5: var chromedAttribute = GetChromedAttribute(filterContext.ActionDescriptor); 6: if (chromedAttribute != null) 7: { 8: filterContext.HttpContext.Items[typeof(ChromedAttribute)] = null; 9: } 10: } 11:   12: public static bool IsApplied(RequestContext context) 13: { 14: return context.HttpContext.Items.Contains(typeof(ChromedAttribute)); 15: } 16:   17: private static ChromedAttribute GetChromedAttribute(ActionDescriptor descriptor) 18: { 19: return descriptor.GetCustomAttributes(typeof(ChromedAttribute), true) 20: .Concat(descriptor.ControllerDescriptor.GetCustomAttributes(typeof(ChromedAttribute), true)) 21: .OfType<ChromedAttribute>() 22: .FirstOrDefault(); 23: } 24: } With that in place, we only have to override the FindView() method of the custom view engine with these 6 lines of code: 1: public override ViewEngineResult FindView(ControllerContext controllerContext, string viewName, string masterName, bool useCache) 2: { 3: if (ChromedAttribute.IsApplied(controllerContext.RequestContext)) 4: { 5: var bodyView = ViewEngines.Engines.FindPartialView(controllerContext, viewName); 6: var documentView = ViewEngines.Engines.FindPartialView(controllerContext, "Chrome"); 7: var chromeView = new ChromeView(bodyView, documentView); 8: return new ViewEngineResult(chromeView, this); 9: } 10:   11: // Just execute normally without applying Chromed View Engine 12: return base.FindView(controllerContext, viewName, masterName, useCache); 13: } If the view engine finds the [Chromed] attribute, it will invoke it’s own process – otherwise, it’ll just defer to the normal web forms view engine (with masterpages). The ChromeView’s primary job is to independently set the BodyContent on the view context so that it can be rendered at the appropriate place: 1: public class ChromeView : IView 2: { 3: private ViewEngineResult bodyView; 4: private ViewEngineResult documentView; 5:   6: public ChromeView(ViewEngineResult bodyView, ViewEngineResult documentView) 7: { 8: this.bodyView = bodyView; 9: this.documentView = documentView; 10: } 11:   12: public void Render(ViewContext viewContext, System.IO.TextWriter writer) 13: { 14: ChromeViewContext chromeViewContext = ChromeViewContext.From(viewContext); 15:   16: // First render the Body view to the BodyContent 17: using (var bodyViewWriter = new StringWriter()) 18: { 19: var bodyViewContext = new ViewContext(viewContext, bodyView.View, viewContext.ViewData, viewContext.TempData, bodyViewWriter); 20: this.bodyView.View.Render(bodyViewContext, bodyViewWriter); 21: chromeViewContext.BodyContent = bodyViewWriter.ToString(); 22: } 23: // Now render the Document view 24: this.documentView.View.Render(viewContext, writer); 25: } 26: } The ChromeViewContext (code excluded here) mainly just has a string property for the “BodyContent” – but it also makes sure to put itself in the HttpContext so it’s available. Finally, we created a little extension method so the module’s view can be rendered in the appropriate place: 1: public static void RenderBody(this HtmlHelper htmlHelper) 2: { 3: ChromeViewContext chromeViewContext = ChromeViewContext.From(htmlHelper.ViewContext); 4: htmlHelper.ViewContext.Writer.Write(chromeViewContext.BodyContent); 5: } At this point, the other thing left is to decide how we want to implement the Chrome.aspx page. One approach is the copy/paste the HTML from the typical Site.Master and change the main content placeholder to use the HTML helper above – this way, there are no MasterPages anywhere. Alternatively, we could even have Chrome.aspx utilize the MasterPage if we wanted (e.g., in the case where some pages are Chromed and some pages want to use traditional MasterPage): 1: <%@ Page Title="" Language="C#" MasterPageFile="~/Views/Shared/Site.Master" Inherits="System.Web.Mvc.ViewPage" %> 2: <asp:Content ID="Content2" ContentPlaceHolderID="MainContent" runat="server"> 3: <% Html.RenderBody(); %> 4: </asp:Content> At this point, it’s all academic. I can create a controller like this: 1: [Chromed] 2: public class WidgetController : Controller 3: { 4: public ActionResult Index() 5: { 6: return View(); 7: } 8: } Then I’ll just create Index.ascx (a partial view) and put in the text “Inside my widget”. Now when I run the app, I can request the full route (notice the controller name of “widget” in the address bar below) and the HTML from my Index.ascx will just appear where it is supposed to.   This means no more warnings for missing MasterPages and no more need for your module to have knowledge of the host’s MasterPage placeholders. You have the option of using the Chrome.aspx in the host or providing your own while embedding it as an embedded resource itself. I’m curious to know what people think of this approach. The code above was done with my own local copy of MvcContrib so it’s not currently something you can download. At this point, these are just my initial thoughts – just incorporating some ideas for Orchard into non-Orchard apps to enable building modular/composite apps more easily. Additionally, on the flip side, I still believe that Portable Areas have potential as the module packaging story for Orchard itself.   What do you think?

    Read the article

  • xs:choice unbounded list

    - by Matt
    I want to define an XSD schema for an XML document, example below: <?xml version="1.0" encoding="utf-8"?> <view xmlns="http://localhost/model_data" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://localhost/model_data XMLSchemaView.xsd" path="wibble" id="wibble"> <text name="PageTitle">Homepage</text> <text name="Keywords">home foo bar</text> <image name="MainImage"> <description>lolem ipsum</description> <title>i haz it</title> <url>/images/main-image.jpg</url> <type>image/jpeg</type> <alt>alt text for image</alt> <width>400</width> <height>300</height> </image> <link name="TermsAndConditionsLink"> <url>/tnc.html</url> <title>Terms and Conditions</title> <target>_blank</target> </link> </view> There's a view root element and then an unknown number of field elements (of various types). I'm using the following XSD schema: <?xml version="1.0" encoding="utf-8"?> <xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="http://localhost/model_data" targetNamespace="http://localhost/model_data" id="XMLSchema1"> <xs:element name="text" type="text_field"/> <xs:element name="view" type="model_data"/> <xs:complexType name="model_data"> <xs:choice maxOccurs="unbounded"> <xs:element name="text" type="text_field"/> <xs:element name="image" type="image_field"/> <xs:element name="link" type="link_field"/> </xs:choice> <xs:attribute name="path" type="xs:string"/> <xs:attribute name="id" type="xs:string"/> </xs:complexType> <xs:complexType name="image_field"> <xs:all> <xs:element name="description" type="xs:string"/> <xs:element name="title" type="xs:string"/> <xs:element name="type" type="xs:string"/> <xs:element name="url" type="xs:string"/> <xs:element name="alt" type="xs:string"/> <xs:element name="height" type="xs:int"/> <xs:element name="width" type="xs:int"/> </xs:all> <xs:attribute name="name" type="xs:string"/> </xs:complexType> <xs:complexType name="text_field"> <xs:simpleContent> <xs:extension base="xs:string"> <xs:attribute name="name" type="xs:string"/> </xs:extension> </xs:simpleContent> </xs:complexType> <xs:complexType name="link_field"> <xs:all> <xs:element name="target" type="xs:string"/> <xs:element name="title" type="xs:string"/> <xs:element name="url" type="xs:string"/> </xs:all> <xs:attribute name="name" type="xs:string"/> </xs:complexType> </xs:schema> This looks like it should work to me, but it doesn't and I always get the following error: Element <text> is not allowed under element <view>. Reason: The following elements are expected at this location (see below) <text> <image> <link> Error location: view / text Details cvc-model-group: Element <text> unexpected by type 'model_data' of element <view>. cvc-elt.5.2.1: The element <view> is not valid with respect to the actual type definition 'model_data'. I've never really used XSD schemas before, so I'd really appreciate it if someone could point out where I'm going wrong.

    Read the article

  • Custom Section Name Crashing NSFetchedResultsController

    - by Mike H.
    I have a managed object with a dueDate attribute. Instead of displaying using some ugly date string as the section headers of my UITableView I created a transient attribute called "category" and defined it like so: - (NSString*)category { [self willAccessValueForKey:@"category"]; NSString* categoryName; if ([self isOverdue]) { categoryName = @"Overdue"; } else if ([self.finishedDate != nil]) { categoryName = @"Done"; } else { categoryName = @"In Progress"; } [self didAccessValueForKey:@"category"]; return categoryName; } Here is the NSFetchedResultsController set up: NSFetchRequest *fetchRequest = [[NSFetchRequest alloc] init]; NSEntityDescription *entity = [NSEntityDescription entityForName:@"Task" inManagedObjectContext:managedObjectContext]; [fetchRequest setEntity:entity]; NSMutableArray* descriptors = [[NSMutableArray alloc] init]; NSSortDescriptor *dueDateDescriptor = [[NSSortDescriptor alloc] initWithKey:@"dueDate" ascending:YES]; [descriptors addObject:dueDateDescriptor]; [dueDateDescriptor release]; [fetchRequest setSortDescriptors:descriptors]; fetchedResultsController = [[NSFetchedResultsController alloc] initWithFetchRequest:fetchRequest managedObjectContext:managedObjectContext sectionNameKeyPath:@"category" cacheName:@"Root"]; The table initially displays fine, showing the unfinished items whose dueDate has not passed in a section titled "In Progress". Now, the user can tap a row in the table view which pushes a new details view onto the navigation stack. In this new view the user can tap a button to indicate that the item is now "Done". Here is the handler for the button (self.task is the managed object): - (void)taskDoneButtonTapped { self.task.finishedDate = [NSDate date]; } As soon as the value of the "finishedDate" attribute changes I'm hit with this exception: 2010-03-18 23:29:52.476 MyApp[1637:207] Serious application error. Exception was caught during Core Data change processing: no section named 'Done' found with userInfo (null) 2010-03-18 23:29:52.477 MyApp[1637:207] *** Terminating app due to uncaught exception 'NSInternalInconsistencyException', reason: 'no section named 'Done' found' I've managed to figure out that the UITableView that is currently hidden by the new details view is trying to update its rows and sections because the NSFetchedResultsController was notified that something changed in the data set. Here's my table update code (copied from either the Core Data Recipes sample or the CoreBooks sample -- I can't remember which): - (void)controllerWillChangeContent:(NSFetchedResultsController *)controller { [self.tableView beginUpdates]; } - (void)controller:(NSFetchedResultsController *)controller didChangeObject:(id)anObject atIndexPath:(NSIndexPath *)indexPath forChangeType:(NSFetchedResultsChangeType)type newIndexPath:(NSIndexPath *)newIndexPath { switch(type) { case NSFetchedResultsChangeInsert: [self.tableView insertRowsAtIndexPaths:[NSArray arrayWithObject:newIndexPath] withRowAnimation:UITableViewRowAnimationFade]; break; case NSFetchedResultsChangeDelete: [self.tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath] withRowAnimation:UITableViewRowAnimationFade]; break; case NSFetchedResultsChangeUpdate: [self configureCell:[self.tableView cellForRowAtIndexPath:indexPath] atIndexPath:indexPath]; break; case NSFetchedResultsChangeMove: [self.tableView deleteRowsAtIndexPaths:[NSArray arrayWithObject:indexPath] withRowAnimation:UITableViewRowAnimationFade]; // Reloading the section inserts a new row and ensures that titles are updated appropriately. [self.tableView reloadSections:[NSIndexSet indexSetWithIndex:newIndexPath.section] withRowAnimation:UITableViewRowAnimationFade]; break; } } - (void)controller:(NSFetchedResultsController *)controller didChangeSection:(id <NSFetchedResultsSectionInfo>)sectionInfo atIndex:(NSUInteger)sectionIndex forChangeType:(NSFetchedResultsChangeType)type { switch(type) { case NSFetchedResultsChangeInsert: [self.tableView insertSections:[NSIndexSet indexSetWithIndex:sectionIndex] withRowAnimation:UITableViewRowAnimationFade]; break; case NSFetchedResultsChangeDelete: [self.tableView deleteSections:[NSIndexSet indexSetWithIndex:sectionIndex] withRowAnimation:UITableViewRowAnimationFade]; break; } } - (void)controllerDidChangeContent:(NSFetchedResultsController *)controller { [self.tableView endUpdates]; } I put breakpoints in each of these functions and found that only controllerWillChange is called. The exception is thrown before either controller:didChangeObject:atIndexPath:forChangeType:newIndex or controller:didChangeSection:atIndex:forChangeType are called. At this point I'm stuck. If I change my sectionNameKeyPath to just "dueDate" then everything works fine. I think that's because the dueDate attribute never changes whereas the category will be different when read back after the finishedDate attribute changes. Please help! UPDATE: Here is my UITableViewDataSource code: - (NSInteger)numberOfSectionsInTableView:(UITableView *)tableView { return [[self.fetchedResultsController sections] count]; } - (NSInteger)tableView:(UITableView *)tableView numberOfRowsInSection:(NSInteger)section { id <NSFetchedResultsSectionInfo> sectionInfo = [[self.fetchedResultsController sections] objectAtIndex:section]; return [sectionInfo numberOfObjects]; } - (UITableViewCell *)tableView:(UITableView *)tableView cellForRowAtIndexPath:(NSIndexPath *)indexPath { static NSString *CellIdentifier = @"Cell"; UITableViewCell *cell = [self.tableView dequeueReusableCellWithIdentifier:CellIdentifier]; if (cell == nil) { cell = [[[UITableViewCell alloc] initWithStyle:UITableViewCellStyleDefault reuseIdentifier:CellIdentifier] autorelease]; } [self configureCell:cell atIndexPath:indexPath]; return cell; } - (NSString *)tableView:(UITableView *)tableView titleForHeaderInSection:(NSInteger)section { id <NSFetchedResultsSectionInfo> sectionInfo = [[self.fetchedResultsController sections] objectAtIndex:section]; return [sectionInfo name]; }

    Read the article

  • Lync Server 2010

    - by ManojDhobale
    Microsoft Lync Server 2010 communications software and its client software, such as Microsoft Lync 2010, enable your users to connect in new ways and to stay connected, regardless of their physical location. Lync 2010 and Lync Server 2010 bring together the different ways that people communicate in a single client interface, are deployed as a unified platform, and are administered through a single management infrastructure. Workload Description IM and presence Instant messaging (IM) and presence help your users find and communicate with one another efficiently and effectively. IM provides an instant messaging platform with conversation history, and supports public IM connectivity with users of public IM networks such as MSN/Windows Live, Yahoo!, and AOL. Presence establishes and displays a user’s personal availability and willingness to communicate through the use of common states such as Available or Busy. This rich presence information enables other users to immediately make effective communication choices. Conferencing Lync Server includes support for IM conferencing, audio conferencing, web conferencing, video conferencing, and application sharing, for both scheduled and impromptu meetings. All these meeting types are supported with a single client. Lync Server also supports dial-in conferencing so that users of public switched telephone network (PSTN) phones can participate in the audio portion of conferences. Conferences can seamlessly change and grow in real time. For example, a single conference can start as just instant messages between a few users, and escalate to an audio conference with desktop sharing and a larger audience instantly, easily, and without interrupting the conversation flow. Enterprise Voice Enterprise Voice is the Voice over Internet Protocol (VoIP) offering in Lync Server 2010. It delivers a voice option to enhance or replace traditional private branch exchange (PBX) systems. In addition to the complete telephony capabilities of an IP PBX, Enterprise Voice is integrated with rich presence, IM, collaboration, and meetings. Features such as call answer, hold, resume, transfer, forward and divert are supported directly, while personalized speed dialing keys are replaced by Contacts lists, and automatic intercom is replaced with IM. Enterprise Voice supports high availability through call admission control (CAC), branch office survivability, and extended options for data resiliency. Support for remote users You can provide full Lync Server functionality for users who are currently outside your organization’s firewalls by deploying servers called Edge Servers to provide a connection for these remote users. These remote users can connect to conferences by using a personal computer with Lync 2010 installed, the phone, or a web interface. Deploying Edge Servers also enables you to federate with partner or vendor organizations. A federated relationship enables your users to put federated users on their Contacts lists, exchange presence information and instant messages with these users, and invite them to audio calls, video calls, and conferences. Integration with other products Lync Server integrates with several other products to provide additional benefits to your users and administrators. Meeting tools are integrated into Outlook 2010 to enable organizers to schedule a meeting or start an impromptu conference with a single click and make it just as easy for attendees to join. Presence information is integrated into Outlook 2010 and SharePoint 2010. Exchange Unified Messaging (UM) provides several integration features. Users can see if they have new voice mail within Lync 2010. They can click a play button in the Outlook message to hear the audio voice mail, or view a transcription of the voice mail in the notification message. Simple deployment To help you plan and deploy your servers and clients, Lync Server provides the Microsoft Lync Server 2010, Planning Tool and the Topology Builder. Lync Server 2010, Planning Tool is a wizard that interactively asks you a series of questions about your organization, the Lync Server features you want to enable, and your capacity planning needs. Then, it creates a recommended deployment topology based on your answers, and produces several forms of output to aid your planning and installation. Topology Builder is an installation component of Lync Server 2010. You use Topology Builder to create, adjust and publish your planned topology. It also validates your topology before you begin server installations. When you install Lync Server on individual servers, the installation program deploys the server as directed in the topology. Simple management After you deploy Lync Server, it offers the following powerful and streamlined management tools: Active Directory for its user information, which eliminates the need for separate user and policy databases. Microsoft Lync Server 2010 Control Panel, a new web-based graphical user interface for administrators. With this web-based UI, Lync Server administrators can manage their systems from anywhere on the corporate network, without needing specialized management software installed on their computers. Lync Server Management Shell command-line management tool, which is based on the Windows PowerShell command-line interface. It provides a rich command set for administration of all aspects of the product, and enables Lync Server administrators to automate repetitive tasks using a familiar tool. While the IM and presence features are automatically installed in every Lync Server deployment, you can choose whether to deploy conferencing, Enterprise Voice, and remote user access, to tailor your deployment to your organization’s needs.

    Read the article

  • Better documentation for tasks waiting on resources

    - by SQLOS Team
    The sys.dm_os_waiting_tasks DMV contains a wealth of useful information about tasks waiting on a resource, but until now detailed information about the resource being consumed - sys.dm_os_waiting_tasks.resource_description - hasn't been documented, apart from a rather self-evident "Description of the resource that is being consumed."   Thanks to a recent Connect suggestion this column will get more information added. Here is a summary of the possible values that can appear in this column - Note this information is current for SQL Server 2008 R2 and Denali:   Thread-pool resource owner:•       threadpool id=scheduler<hex-address> Parallel query resource owner:•       exchangeEvent id={Port|Pipe}<hex-address> WaitType=<exchange-wait-type> nodeId=<exchange-node-id> Exchange-wait-type can be one of the following.•       e_waitNone•       e_waitPipeNewRow•       e_waitPipeGetRow•       e_waitSynchronizeConsumerOpen•       e_waitPortOpen•       e_waitPortClose•       e_waitRange Lock resource owner:<type-specific-description> id=lock<lock-hex-address> mode=<mode> associatedObjectId=<associated-obj-id>               <type-specific-description> can be:• For DATABASE: databaselock subresource=<databaselock-subresource> dbid=<db-id>• For FILE: filelock fileid=<file-id> subresource=<filelock-subresource> dbid=<db-id>• For OBJECT: objectlock lockPartition=<lock-partition-id> objid=<obj-id> subresource=<objectlock-subresource> dbid=<db-id>• For PAGE: pagelock fileid=<file-id> pageid=<page-id> dbid=<db-id> subresource=<pagelock-subresource>• For Key: keylock  hobtid=<hobt-id> dbid=<db-id>• For EXTENT: extentlock fileid=<file-id> pageid=<page-id> dbid=<db-id>• For RID: ridlock fileid=<file-id> pageid=<page-id> dbid=<db-id>• For APPLICATION: applicationlock hash=<hash> databasePrincipalId=<role-id> dbid=<db-id>• For METADATA: metadatalock subresource=<metadata-subresource> classid=<metadatalock-description> dbid=<db-id>• For HOBT: hobtlock hobtid=<hobt-id> subresource=<hobt-subresource> dbid=<db-id>• For ALLOCATION_UNIT: allocunitlock hobtid=<hobt-id> subresource=<alloc-unit-subresource> dbid=<db-id> <mode> can be:• Sch-S• Sch-M• S• U• X• IS• IU• IX• SIU• SIX• UIX• BU• RangeS-S• RangeS-U• RangeI-N• RangeI-S• RangeI-U• RangeI-X• RangeX-S• RangeX-U• RangeX-X External resource owner:•       External ExternalResource=<wait-type> Generic resource owner:•       TransactionMutex TransactionInfo Workspace=<workspace-id>•       Mutex•       CLRTaskJoin•       CLRMonitorEvent•       CLRRWLockEvent•       resourceWait Latch resource owner:•       <db-id>:<file-id>:<page-in-file>•       <GUID>•       <latch-class> (<latch-address>)   Further Information Slava Oks's weblog: sys.dm_os_waiting_tasks.Informit.com: Identifying Blocking Using sys.dm_os_waiting_tasks - Ken Henderson   - Guy

    Read the article

  • Subterranean IL: Custom modifiers

    - by Simon Cooper
    In IL, volatile is an instruction prefix used to set a memory barrier at that instruction. However, in C#, volatile is applied to a field to indicate that all accesses on that field should be prefixed with volatile. As I mentioned in my previous post, this means that the field definition needs to store this information somehow, as such a field could be accessed from another assembly. However, IL does not have a concept of a 'volatile field'. How is this information stored? Attributes The standard way of solving this is to apply a VolatileAttribute or similar to the field; this extra metadata notifies the C# compiler that all loads and stores to that field should use the volatile prefix. However, there is a problem with this approach, namely, the .NET C++ compiler. C++ allows methods to be overloaded using properties, like volatile or const, on the parameters; this is perfectly legal C++: public ref class VolatileMethods { void Method(int *i) {} void Method(volatile int *i) {} } If volatile was specified using a custom attribute, then the VolatileMethods class wouldn't be compilable to IL, as there is nothing to differentiate the two methods from each other. This is where custom modifiers come in. Custom modifiers Custom modifiers are similar to custom attributes, but instead of being applied to an IL element separately to its declaration, they are embedded within the field or parameter's type signature itself. The VolatileMethods class would be compiled to the following IL: .class public VolatileMethods { .method public instance void Method(int32* i) {} .method public instance void Method( int32 modreq( [mscorlib]System.Runtime.CompilerServices.IsVolatile)* i) {} } The modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile) is the custom modifier. This adds a TypeDef or TypeRef token to the signature of the field or parameter, and even though they are mostly ignored by the CLR when it's executing the program, this allows methods and fields to be overloaded in ways that wouldn't be allowed using attributes. Because the modifiers are part of the signature, they need to be fully specified when calling such a method in IL: call instance void Method( int32 modreq([mscorlib]System.Runtime.CompilerServices.IsVolatile)*) There are two ways of applying modifiers; modreq specifies required modifiers (like IsVolatile), and modopt specifies optional modifiers that can be ignored by compilers (like IsLong or IsConst). The type specified as the modifier argument are simple placeholders; if you have a look at the definitions of IsVolatile and IsLong they are completely empty. They exist solely to be referenced by a modifier. Custom modifiers are used extensively by the C++ compiler to specify concepts that aren't expressible in IL, but still need to be taken into account when calling method overloads. C++ and C# That's all very well and good, but how does this affect C#? Well, the C++ compiler uses modreq(IsVolatile) to specify volatility on both method parameters and fields, as it would be slightly odd to have the same concept represented using a modifier or attribute depending on what it was applied to. Once you've compiled your C++ project, it can then be referenced and used from C#, so the C# compiler has to recognise the modreq(IsVolatile) custom modifier applied to fields, and vice versa. So, even though you can't overload fields or parameters with volatile using C#, volatile needs to be expressed using a custom modifier rather than an attribute to guarentee correct interoperability and behaviour with any C++ dlls that happen to come along. Next up: a closer look at attributes, and how certain attributes compile in unexpected ways.

    Read the article

  • SQL SERVER – What are Actions in SSAS and How to Make a Reporting Action

    - by Pinal Dave
    Actions are used for customized browsing and drilling of data for the end-user. It’s an event that a user can raise while accessing the cube data. They are used in cube browsers like excel and are triggered when a user in a client tool clicks on a particular member, level, dimension, cells or may be the cube itself.  For example a user might be able to see a reporting services report, open a web page or drill through to detailed information related to the cube data. Analysis server supports 3 types of actions :- Report Drill-through Standard Actions In this blog post, I will explain the Reporting  action. The objective of this action is to return a report with details of the product where the sales amount is greater than 1000 in cube browser analysis. You need to create a basic cube first with the facts and dimensions you want in the analysis. Following are the steps to create reporting action. Go to SQL server data tools and open the analysis services project. Navigate to actions and click on new reporting action. 2.) Specify the name of the action and choose target type as attribute members since we have to create the action on members for a attribute. 3.) Specify the Target object of your report action. Target object would be the dimension or attribute on which you want the report to appear. In our case it is product name. 4.) Next you have to define the condition on which you want the report link to appear. However, this is an optional feature. In this example we are specifying a condition, which will check if the sales amount is greater than 10,000. So, that the link appears only for those products where the defined condition is met. 5.) Next you have to specify the server name on which the report is present, report path  and the report format in which you want the report to appear. 6.) Additionally you can specify the parameters. As with conditional expression, the parameters should be a valid MDX expression. The parameter name should be same as the one defined in the report. 7.) Deploy your solution after you are done with specifying parameters and go to the cube browser. 8.) Click on the analyze in excel button, this will open your cube in excel 9.) Make an analysis which shows product names and their sales amount. 10.) Right click on a product where sales amount is greater than 10000 you will see the reporting action link. Click on that and you will be taken to your reporting services report. 11.) Clicking on the link will take you to the URL of the report. I created this report using report project wizard in SQL server data tools. So, this is how we can launch reports from a cube browser. Similarly you can open web pages, run applications and a number of  other tasks. Koenig Solutions offers SSAS training which contains all Analysis Services including Reporting in great detail. In my next blog post I will talk about drill-through actions. Author: Namita Sharma, Senior Corporate Trainer at Koenig Solutions. Reference: Pinal Dave (http://blog.sqlauthority.com)Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL Tagged: SSAS

    Read the article

  • forEach and Facelets - a bugfarm just waiting for harvest

    - by Duncan Mills
    An issue that I've encountered before and saw again today seems worthy of a little write-up. It's all to do with a subtle yet highly important difference in behaviour between JSF 2 running with JSP and running on Facelets (.jsf pages). The incident I saw today can be seen as a report on the ADF EMG bugzilla (Issue 53) and in a blog posting by Ulrich Gerkmann-Bartels who reported the issue to the EMG. Ulrich's issue nicely shows how tricky this particular gochya can be. On the surface, the problem is squarely the fault of MDS but underneath MDS is, in fact, innocent. To summarize the problem in a simpler testcase than Ulrich's example, here's a simple fragment of code: <af:forEach var="item" items="#{itemList.items}"> <af:commandLink id="cl1" text="#{item.label}" action="#{item.doAction}"  partialSubmit="true"/> </af:forEach> Looks innocent enough right? We see a bunch of links printed out, great. The issue here though is the id attribute. Logically you can kind of see the problem. The forEach loop is creating (presumably) multiple instances of the commandLink, but only one id is specified - cl1. We know that IDs have to be unique within a JSF component tree, so that must be a bad thing?  The problem is that JSF under JSP implements some hacks when the component tree is generated to transparently fix this problem for you. Behind the scenes it ensures that each instance really does have a unique id. Really nice of it to do so, thank you very much. However, (you could see this coming), the same is not true when running with Facelets  (this is under 11.1.2.n)  in that case, what you put for the id is what you get, and JSF does not mess around in the background for you. So you end up with a component tree that contains duplicate ids which are only created at runtime.  So subtle chaos can ensue.  The symptoms are wide and varied, from something pretty obscure such as the combination Ulrich uncovered, to something as frustrating as your ActionListener just not being triggered. And yes I've wasted hours on just such an issue.  The Solution  Once you're aware of this one it's really simple to fix it, there are two options: Remove the id attribute on components that will cause some kind of submission within the forEach loop altogether and let JSF do the right thing in generating them. Then you'll be assured of uniqueness. Use the var attribute of the loop to generate a unique id for each child instance.  for example in the above case: <af:commandLink id="cl1_#{item.index}" ... />.  So one to watch out for in your upgrades to JSF 2 and one perhaps, for your coding standards today to prepare you for. For completeness, here's the reference to the underlying JSF issue that's at the heart of this: JAVASERVERFACES-1527

    Read the article

  • Computing a normal matrix in conjunction with gluLookAt

    - by Chris Smith
    I have a hand-rolled camera class that converts yaw, pitch, and roll angles into a forward, side, and up vector suitable for calling gluLookAt. Using this camera class I can modify the model-view matrix to move about the 3D world just fine. However, I am having trouble when using this camera class (and associated model-view matrix) when trying to perform directional lighting in my vertex shader. The problem is that the light direction, (0, 1, 0) for example, is relative to where the 'camera is looking' and not the actual world coordinates. (Or is this eye coordinates vs. model coordinates?) I would like the light direction to be unaffected by the camera's viewing direction. For example, when the camera is looking down the Z axis the ground is lit correctly. However, if I point the camera straight at the ground, then it goes dark. This is (I think) because the light direction is parallel with the camera's 'up' vector which is perpendicular with the ground's normal vector. I tried computing the normal matrix without taking the camera's model view into account, but then none of my objects were rotated correctly. Sorry if this sounds vague. I suspect there is a straight forward answer, but I'm not 100% clear on how the normal matrix should be used for transforming vertex normals in my vertex shader. For reference, here is pseudo code for my rendering loop: pMatrix = new Matrix(); pMatrix = makePerspective(...) mvMatrix = new Matrix() camera.apply(mvMatrix); // Calls gluLookAt // Move the object into position. mvMatrix.translatev(position); mvMatrix.rotatef(rotation.x, 1, 0, 0); mvMatrix.rotatef(rotation.y, 0, 1, 0); mvMatrix.rotatef(rotation.z, 0, 0, 1); var nMatrix = new Matrix(); nMatrix.set(mvMatrix.get().getInverse().getTranspose()); // Set vertex shader uniforms. gl.uniformMatrix4fv(shaderProgram.pMatrixUniform, false, new Float32Array(pMatrix.getFlattened())); gl.uniformMatrix4fv(shaderProgram.mvMatrixUniform, false, new Float32Array(mvMatrix.getFlattened())); gl.uniformMatrix4fv(shaderProgram.nMatrixUniform, false, new Float32Array(nMatrix.getFlattened())); // ... gl.drawElements(gl.TRIANGLES, this.vertexIndexBuffer.numItems, gl.UNSIGNED_SHORT, 0); And the corresponding vertex shader: // Attributes attribute vec3 aVertexPosition; attribute vec4 aVertexColor; attribute vec3 aVertexNormal; // Uniforms uniform mat4 uMVMatrix; uniform mat4 uNMatrix; uniform mat4 uPMatrix; // Varyings varying vec4 vColor; // Constants const vec3 LIGHT_DIRECTION = vec3(0, 1, 0); // Opposite direction of photons. const vec4 AMBIENT_COLOR = vec4 (0.2, 0.2, 0.2, 1.0); float ComputeLighting() { vec4 transformedNormal = vec4(aVertexNormal.xyz, 1.0); transformedNormal = uNMatrix * transformedNormal; float base = dot(normalize(transformedNormal.xyz), normalize(LIGHT_DIRECTION)); return max(base, 0.0); } void main(void) { gl_Position = uPMatrix * uMVMatrix * vec4(aVertexPosition, 1.0); float lightWeight = ComputeLighting(); vColor = vec4(aVertexColor.xyz * lightWeight, 1.0) + AMBIENT_COLOR; } Note that I am using WebGL, so if the anser is use glFixThisProblem(...) any pointers on how to re-implement that on WebGL if missing would be appreciated.

    Read the article

  • DataContractSerializer: type is not serializable because it is not public?

    - by Michael B. McLaughlin
    I recently ran into an odd and annoying error when working with the DataContractSerializer class for a WP7 project. I thought I’d share it to save others who might encounter it the same annoyance I had. So I had an instance of  ObservableCollection<T> that I was trying to serialize (with T being a class I wrote for the project) and whenever it would hit the code to save it, it would give me: The data contract type 'ProjectName.MyMagicItemsClass' is not serializable because it is not public. Making the type public will fix this error. Alternatively, you can make it internal, and use the InternalsVisibleToAttribute attribute on your assembly in order to enable serialization of internal members - see documentation for more details. Be aware that doing so has certain security implications. This, of course, was malarkey. I was trying to write an instance of MyAwesomeClass that looked like this: [DataContract] public class MyAwesomeClass { [DataMember] public ObservableCollection<MyMagicItemsClass> GreatItems { get; set; }   [DataMember] public ObservableCollection<MyMagicItemsClass> SuperbItems { get; set; }     public MyAwesomeClass { GreatItems = new ObservableCollection<MyMagicItemsClass>(); SuperbItems = new ObservableCollection<MyMagicItemsClass>(); } }   That’s all well and fine. And MyMagicItemsClass was also public with a parameterless public constructor. It too had DataContractAttribute applied to it and it had DataMemberAttribute applied to all the properties and fields I wanted to serialize. Everything should be cool, but it’s not because I keep getting that “not public” exception. I could tell you about all the things I tried (generating a List<T> on the fly to make sure it wasn’t ObservableCollection<T>, trying to serialize the the Collections directly, moving it all to a separate library project, etc.), but I want to keep this short. In the end, I remembered my the “Debug->Exceptions…” VS menu option that brings up the list of exception-related circumstances under which the Visual Studio debugger will break. I checked the “Thrown” checkbox for “Common Language Runtime Exceptions”, started the project under the debugger, and voilà: the true problem revealed itself. Some of my properties had fairly elaborate setters whose logic I wanted to ignore. So for some of them, I applied an IgnoreDataMember attribute to them and applied the DataMember attribute to the underlying fields instead. All of which, in line with good programming practices, were private. Well, it just so happens that WP7 apps run in a “partial trust” environment and outside of “full trust”-land, DataContractSerializer refuses to serialize or deserialize non-public members. Of course that exception was swallowed up internally by .NET so all I ever saw was that bizarre message about things that I knew for certain were public being “not public”. I changed all the private fields I was serializing to public and everything worked just fine. In hindsight it all makes perfect sense. The serializer uses reflection to build up its graph of the object in order to write it out. In partial trust, you don’t want people using reflection to get at non-public members of an object since there are potential security problems with allowing that (you could break out of the sandbox pretty quickly by reflecting and calling the appropriate methods and cause some havoc by reflecting and setting the appropriate fields in certain circumstances. The fact that you cannot reflect your own assembly seems a bit heavy-handed, but then again I’m not a compiler writer or a framework designer and I have no idea what sorts of difficulties would go into allowing that from a compilation standpoint or what sorts of security problems allowing that could present (if any). So, lesson learned. If you get an incomprehensible exception message, turn on break on all thrown exceptions and try running it again (it might take a couple of tries, depending) and see what pops out. Chances are you’ll find the buried exception that actually explains what was going on. And if you’re getting a weird exception when trying to use DataContractSerializer complaining about public types not being public, chances are you’re trying to serialize a private or protected field/property.

    Read the article

  • In hindsight, is basing XAML on XML a mistake or a good approach?

    - by romkyns
    XAML is essentially a subset of XML. One of the main benefits of basing XAML on XML is said to be that it can be parsed with existing tools. And it can, to a large degree, although the (syntactically non-trivial) attribute values will stay in text form and require further parsing. There are two major alternatives to describing a GUI in an XML-derived language. One is to do what WinForms did, and describe it in real code. There are numerous problems with this, though it’s not completely advantage-free (a question to compare XAML to this approach). The other major alternative is to design a completely new syntax specifically tailored for the task at hand. This is generally known as a domain-specific language. So, in hindsight, and as a lesson for the future generations, was it a good idea to base XAML on XML, or would it have been better as a custom-designed domain-specific language? If we were designing an even better UI framework, should we pick XML or a custom DSL? Since it’s much easier to think positively about the status quo, especially one that is quite liked by the community, I’ll give some example reasons for why building on top of XML might be considered a mistake. Basing a language off XML has one thing going for it: it’s much easier to parse (the core parser is already available), requires much, much less design work, and alternative parsers are also much easier to write for 3rd party developers. But the resulting language can be unsatisfying in various ways. It is rather verbose. If you change the type of something, you need to change it in the closing tag. It has very poor support for comments; it’s impossible to comment out an attribute. There are limitations placed on the content of attributes by XML. The markup extensions have to be built "on top" of the XML syntax, not integrated deeply and nicely into it. And, my personal favourite, if you set something via an attribute, you use completely different syntax than if you set the exact same thing as a content property. It’s also said that since everyone knows XML, XAML requires less learning. Strictly speaking this is true, but learning the syntax is a tiny fraction of the time spent learning a new UI framework; it’s the framework’s concepts that make the curve steep. Besides, the idiosyncracies of an XML-based language might actually add to the "needs learning" basket. Are these disadvantages outweighted by the ease of parsing? Should the next cool framework continue the tradition, or invest the time to design an awesome DSL that can’t be parsed by existing tools and whose syntax needs to be learned by everyone? P.S. Not everyone confuses XAML and WPF, but some do. XAML is the XML-like thing. WPF is the framework with support for bindings, theming, hardware acceleration and a whole lot of other cool stuff.

    Read the article

  • Philosophy of [WebInvoke(ResponseFormat = WebMessageFormat.Json)]

    - by Mikey Cee
    Hi everyone, I'm writing what I'm referring to as a POJ (Plain Old JSON) WCF web service - one that takes and emits standard JSON with none of the crap that ASP.NET Ajax likes to add to it. It seems that there are three steps to accomplish this: Change to in the endpoint's tag Decorate the method with [WebInvoke(ResponseFormat = WebMessageFormat.Json)] Add an incantation of [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] to the service contract This is all working OK for me - I can pass in and am being returned nice plain JSON. If I remove the WebInvoke attribute, then I get XML returned instead, so it is certainly doing what it is supposed to do. But it strikes me as odd that the option to specify JSON output appears here and not in the configuration file. Say I wanted to expose my method as an XML endpoint too - how would I do this? Currently the only way I can see would be to have a second method that does exactly the same thing but does not have WebMethodFormat.Json specified. Then rinse and repeat for every method in my service? Yuck. Specifying that the output should be serialized to JSON in the attribute seems to be completely contrary to the philosophy of WCF, where the service is implemented is a transport and encoding agnostic manner, leaving the nasty details of how the data will be moved around to the configuration file. Is there a better way of doing what I want to do? Or are we stuck with this awkward attribute? Or do I not understanding WCF deeply enough?

    Read the article

  • ASP.NET MVC 2.0 Validation and ErrorMessages

    - by Raj Aththanayake
    I need to set the ErrorMessage property of the DataAnnotation's validation attribute in MVC 2.0. For example I should be able to pass an ID instead of the actual error message for the Model property, for example... [StringLength(2, ErrorMessage = "EmailContentID")] [DataType(DataType.EmailAddress)] public string Email { get; set; } Then use this ID ("EmailContentID") to retrieve some content(error message) from a another service e.g database. Then the error error message is displayed to the user instead of the ID. In order to do this I need to set the DataAnnotation validation attribute’s ErrorMessage property. It seems like a stright forward task by just overriding the DataAnnotationsModelValidatorProvider‘s protected override IEnumerable GetValidators(ModelMetadata metadata, ControllerContext context, IEnumerable attributes) However it is complicated now.... A. MVC DatannotationsModelValidator’s ErrorMessage property is readonly. So I cannot set anything here B. System.ComponentModel.DataAnnotationErrorMessage property(get and set) which is already set in MVC DatannotationsModelValidator so I cannot set it again. If I try to set it I get “The property cannot set more than once…” error message. public class CustomDataAnnotationProvider : DataAnnotationsModelValidatorProvider { protected override IEnumerable<ModelValidator> GetValidators(ModelMetadata metadata, ControllerContext context, IEnumerable<Attribute> attributes) { IEnumerable<ModelValidator> validators = base.GetValidators(metadata, context, attributes); foreach (ValidationAttribute validator in validators.OfType<ValidationAttribute>()) { messageId = validator.ErrorMessage; validator.ErrorMessage = "Error string from DB And" + messageId ; } //...... } } Can anyone please give me the right direction on this? Thanks in advance.

    Read the article

  • JAX-WS client with Axis service

    - by Jon
    I'm relatively new to web services, but I need to integrate a call to an existing service in my application. Ideally, I'd like to use JAX-WS because I'm looking for the simplest, quickest-to-develop solution on my end, and MyEclipse is able to generate a JAX-WS client from a WSDL. Unfortunately, the WSDL I've inherited was built from what appears to be Axis using RPC. Will this still work? When trying to generate the code, I get these errors, and the web searches I've found seem to say that it's the service end that needs to upgrade: <restriction base="soapenc:Array"> <attribute ref="soapenc:arrayType" wsdl:arrayType="impl:MyTypeList[]" /> </restriction> WS-I: (BP2108) An Array declaration uses - restricts or extends - the soapEnc:Array type, or the wsdl:arrayType attribute is used in the type declaration WS-I: (BP2122) A wsdl:types element contained a data type definition that is not an XML schema definition <wsdlsoap:body encodingStyle="http://schemas.xmlsoap.org/soap/encoding/" namespace="http://ws.host.com" use="encoded" / WS-I: (BP2406) The use attribute of a soapbind:body, soapbind:fault, soapbind:header and soapbind:headerfault does not have value of "literal".

    Read the article

  • RotatingFileHandler throws an exception when delay parameter is set

    - by Eli Courtwright
    When I run the following code under Python 2.6 import logging from logging.handlers import RotatingFileHandler rfh = RotatingFileHandler("testing.log", delay=True) logging.getLogger().addHandler(rfh) logging.warning("Boo!") then the last line throws AttributeError: RotatingFileHandler instance has no attribute 'level'. So I add the line rfh.setLevel(logging.DEBUG) before the call to addHandler, and then the last line throws AttributeError: RotatingFileHandler instance has no attribute 'filters'. So if I manually set filters to be an empty list, then it complains about not having the attribute lock, etc. When I remove the delay=True to leave it as the default value of False as documented here, the problem completely goes away. Am I missing something? How do I properly use the delay parameter of the RotatingFileHandler class? EDIT: Upon further analysis (presented in my own answer below), this looks like a bug, but I can't find a bug report on this in the Python bug tracker, even trying different search terms, so I guess I'll report it. However, if someone can locate the actual bug report, then I can avoid submitting a duplicate reporting and wasting the time of the Python developers. I'll hold off on reporting the bug for a few hours, and if someone posts an answer that has the current bug report, then I'll accept that answer for this question.

    Read the article

  • Usercontrol losing Viewstate across Postback

    - by Robert W
    I have a user control which uses objects as inner properties (some code is below). I am having trouble with setting the attribute of the Step class programmatically, when set programmatically it is being lost across postback which would indicate something to do with Viewstate (?). When setting the property of the Step class declaratively it's working fine. Does anybody have any ideas of what this code be/what's causing it to lose the state across postback? public partial class StepControl : System.Web.UI.UserControl { [PersistenceMode(PersistenceMode.InnerProperty)] [DesignerSerializationVisibility(DesignerSerializationVisibility.Content)] [NotifyParentProperty(true)] public Step Step1 { get; set; } [PersistenceMode(PersistenceMode.InnerProperty)] [DesignerSerializationVisibility(DesignerSerializationVisibility.Content)] [NotifyParentProperty(true)] public Step Step2 { get; set; } protected void Page_Init(object sender, EventArgs e) { AddSteps(); } private void AddSteps() { } } [Serializable()] [ParseChildren(true)] [PersistChildren(false)] public class Step { [PersistenceMode(PersistenceMode.Attribute)] public string Title { get; set; } [PersistenceMode(PersistenceMode.Attribute)] public string Status { get; set; } [PersistenceMode(PersistenceMode.InnerProperty)] [TemplateInstance(TemplateInstance.Single)] [TemplateContainer(typeof(StepContentContainer))] public ITemplate Content { get; set; } public class StepContentContainer : Control, INamingContainer { } }

    Read the article

< Previous Page | 125 126 127 128 129 130 131 132 133 134 135 136  | Next Page >