Search Results

Search found 55736 results on 2230 pages for 'asp net mvc uihint'.

Page 13/2230 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • Creating Wizard in ASP.NET MVC (Part 3 - jQuery)

    - by bipinjoshi
    In Part 1 and Part 2 of this article series you developed a wizard in an ASP.NET MVC application using full page postback and Ajax helper respectively. In this final part of this series you will develop a client side wizard using jQuery. The navigation between various wizard steps (Next, Previous) happens without any postback (neither full nor partial). The only step that causes form submission to the server is clicking on the Finish wizard button.http://www.binaryintellect.net/articles/d278e8aa-3f37-40c5-92a2-74e65b1b5653.aspx 

    Read the article

  • Employee Info Starter Kit - Visual Studio 2010 and .NET 4.0 Version (4.0.0) Available

    - by joycsharp
    Employee Info Starter Kit is a ASP.NET based web application, which includes very simple user requirements, where we can create, read, update and delete (crud) the employee info of a company. Based on just a database table, it explores and solves all major problems in web development architectural space.  This open source starter kit extensively uses major features available in latest Visual Studio, ASP.NET and Sql Server to make robust, scalable, secured and maintanable web applications quickly and easily. Since it's first release, this starter kit achieved a huge popularity in web developer community and includes 1,40,000+ download from project web site. Visual Studio 2010 and .NET 4.0 came up with lots of exciting features to make software developers life easier.  A new version (v4.0.0) of Employee Info Starter Kit is now available in both MSDN Code Gallery and CodePlex. Chckout the latest version of this starter kit to enjoy cool features available in Visual Studio 2010 and .NET 4.0. [ Release Notes ] Architectural Overview Simple 2 layer architecture (user interface and data access layer) with 1 optional cache layer ASP.NET Web Form based user interface Custom Entity Data Container implemented (with primitive C# types for data fields) Active Record Design Pattern based Data Access Layer, implemented in C# and Entity Framework 4.0 Sql Server Stored Procedure to perform actual CRUD operation Standard infrastructure (architecture, helper utility) for automated integration (bottom up manner) and unit testing Technology UtilizedProgramming Languages/Scripts Browser side: JavaScript Web server side: C# 4.0 Database server side: T-SQL .NET Framework Components .NET 4.0 Entity Framework .NET 4.0 Optional/Named Parameters .NET 4.0 Tuple .NET 3.0+ Extension Method .NET 3.0+ Lambda Expressions .NET 3.0+ Aanonymous Type .NET 3.0+ Query Expressions .NET 3.0+ Automatically Implemented Properties .NET 3.0+ LINQ .NET 2.0 + Partial Classes .NET 2.0 + Generic Type .NET 2.0 + Nullable Type   ASP.NET 3.5+ List View (TBD) ASP.NET 3.5+ Data Pager (TBD) ASP.NET 2.0+ Grid View ASP.NET 2.0+ Form View ASP.NET 2.0+ Skin ASP.NET 2.0+ Theme ASP.NET 2.0+ Master Page ASP.NET 2.0+ Object Data Source ASP.NET 1.0+ Role Based Security Visual Studio Features Visual Studio 2010 CodedUI Test Visual Studio 2010 Layer Diagram Visual Studio 2010 Sequence Diagram Visual Studio 2010 Directed Graph Visual Studio 2005+ Database Unit Test Visual Studio 2005+ Unit Test Visual Studio 2005+ Web Test Visual Studio 2005+ Load Test Sql Server Features Sql Server 2005 Stored Procedure Sql Server 2005 Xml type Sql Server 2005 Paging support

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Html5 Input Validation Presentation

    - by srkirkland
    Last week I gave a presentations to the 2011 UC Davis IT Security Symposium that covered input validation features in HTML5.  I mostly discussed the following three topics: New Html5 Input Types (like <input type=”email” />) Html5 Constraints (like <input type=”text” required maxlength=”8” />) Polyfills The slides only cover part of the story since there are a few “live demos.”  You can find all of the demo code on my github repository https://github.com/srkirkland/ITSecuritySymposium.  You’ll need ASP.NET Mvc 3 installed to run them. The slides are also available in my GitHub repository, but I’ve also added them to slideshare as well because that’s what the cool kids do: http://www.slideshare.net/srkirkland/data-validation-in-web-applications. I believe the presentation was well received and most people learned something, so I just wanted to share.  When loading up the Html5 demo just click on the Html5 tab and go through each example. Enjoy!   [Examples from the Slides and Demos]  

    Read the article

  • Using Razor together with ASP.NET Web API

    - by Fredrik N
    On the blog post “If Then, If Then, If Then, MVC” I found the following code example: [HttpGet]public ActionResult List() { var list = new[] { "John", "Pete", "Ben" }; if (Request.AcceptTypes.Contains("application/json")) { return Json(list, JsonRequestBehavior.AllowGet); } if (Request.IsAjaxRequest()) [ return PartialView("_List", list); } return View(list); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The code is a ASP.NET MVC Controller where it reuse the same “business” code but returns JSON if the request require JSON, a partial view when the request is an AJAX request or a normal ASP.NET MVC View. The above code may have several reasons to be changed, and also do several things, the code is not closed for modifications. To extend the code with a new way of presenting the model, the code need to be modified. So I started to think about how the above code could be rewritten so it will follow the Single Responsibility and open-close principle. I came up with the following result and with the use of ASP.NET Web API: public String[] Get() { return new[] { "John", "Pete", "Ben" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   It just returns the model, nothing more. The code will do one thing and it will do it well. But it will not solve the problem when it comes to return Views. If we use the ASP.NET Web Api we can get the result as JSON or XML, but not as a partial view or as a ASP.NET MVC view. Wouldn’t it be nice if we could do the following against the Get() method?   Accept: application/json JSON will be returned – Already part of the Web API   Accept: text/html Returns the model as HTML by using a View   The best thing, it’s possible!   By using the RazorEngine I created a custom MediaTypeFormatter (RazorFormatter, code at the end of this blog post) and associate it with the media type “text/html”. I decided to use convention before configuration to decide which Razor view should be used to render the model. To register the formatter I added the following code to Global.asax: GlobalConfiguration.Configuration.Formatters.Add(new RazorFormatter()); Here is an example of a ApiController that just simply returns a model: using System.Web.Http; namespace WebApiRazor.Controllers { public class CustomersController : ApiController { // GET api/values public Customer Get() { return new Customer { Name = "John Doe", Country = "Sweden" }; } } public class Customer { public string Name { get; set; } public string Country { get; set; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Because I decided to use convention before configuration I only need to add a view with the same name as the model, Customer.cshtml, here is the example of the View:   <!DOCTYPE html> <html> <head> <script src="http://ajax.aspnetcdn.com/ajax/jquery/jquery-1.5.1.min.js" type="text/javascript"></script> </head> <body> <div id="body"> <section> <div> <hgroup> <h1>Welcome '@Model.Name' to ASP.NET Web API Razor Formatter!</h1> </hgroup> </div> <p> Using the same URL "api/values" but using AJAX: <button>Press to show content!</button> </p> <p> </p> </section> </div> </body> <script type="text/javascript"> $("button").click(function () { $.ajax({ url: '/api/values', type: "GET", contentType: "application/json; charset=utf-8", success: function(data, status, xhr) { alert(data.Name); }, error: function(xhr, status, error) { alert(error); }}); }); </script> </html> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Now when I open up a browser and enter the following URL: http://localhost/api/customers the above View will be displayed and it will render the model the ApiController returns. If I use Ajax against the same ApiController with the content type set to “json”, the ApiController will now return the model as JSON. Here is a part of a really early prototype of the Razor formatter (The code is far from perfect, just use it for testing). I will rewrite the code and also make it possible to specify an attribute to the returned model, so it can decide which view to be used when the media type is “text/html”, but by default the formatter will use convention: using System; using System.Net.Http.Formatting; namespace WebApiRazor.Models { using System.IO; using System.Net; using System.Net.Http.Headers; using System.Reflection; using System.Threading.Tasks; using RazorEngine; public class RazorFormatter : MediaTypeFormatter { public RazorFormatter() { SupportedMediaTypes.Add(new MediaTypeHeaderValue("text/html")); SupportedMediaTypes.Add(new MediaTypeHeaderValue("application/xhtml+xml")); } //... public override Task WriteToStreamAsync( Type type, object value, Stream stream, HttpContentHeaders contentHeaders, TransportContext transportContext) { var task = Task.Factory.StartNew(() => { var viewPath = // Get path to the view by the name of the type var template = File.ReadAllText(viewPath); Razor.Compile(template, type, type.Name); var razor = Razor.Run(type.Name, value); var buf = System.Text.Encoding.Default.GetBytes(razor); stream.Write(buf, 0, buf.Length); stream.Flush(); }); return task; } } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Summary By using formatters and the ASP.NET Web API we can easily just extend our code without doing any changes to our ApiControllers when we want to return a new format. This blog post just showed how we can extend the Web API to use Razor to format a returned model into HTML.   If you want to know when I will post more blog posts, please feel free to follow me on twitter:   @fredrikn

    Read the article

  • ORM Profiler v1.1 has been released!

    - by FransBouma
    We've released ORM Profiler v1.1, which has the following new features: Real time profiling A real time viewer (RTV) has been added, which gives insight in the activity as it is received by the client, in two views: a chronological connection overview and an activity graph overview. This RTV allows the user to directly record to a snapshot using record buttons, pause the view, mark a range to create a snapshot from that range, and view graphs about the # of connection open actions and # of commands per second. The RTV has a 'range' in which it keeps live data and auto-cleans data that's older than this range. Screenshot of the activity graphs part of the real-time viewer: Low-level activity tab A new tab has been added to the Application tabs: the Low-level activity tab. This tab shows the main activity as it has been received over the named pipe. It can help to get insight in the chronological activity without the grouping over connections, so multiple connections at the same time per thread are easier to spot. Clicking a command will sync the rest of the application tabs, clicking a row will show the details below the splitter bar, as it is done with the other application tabs as well. Default application name in interceptor When an empty string or null is passed for application name to the Initialize method of the interceptor, the AppDomain's friendly name is used instead. Copy call stack to clipboard A call stack viewed in a grid in various parts of the UI is now copyable to the clipboard by clicking a button. Enable/Disable interceptor from the config file It's now possible to enable/disable the interceptor Initialization from the application's config file, using: Code: <appSettings> <add key="ORMProfilerEnabled" value="true"/> </appSettings> if value is true, the interceptor's Initialize method will proceed. If the value is false, the interceptor's Initialize method will not proceed and initialization won't be performed, meaning no interception will take place. If the setting is absent, or misconfigured, the Initialize method will proceed as normal and perform the initialization. Stored procedure calls for select databases are now properly displayed as a call For the databases: SQL Server, Oracle, DB2, Sybase ASA, Sybase ASE and Informix a stored procedure call is displayed as an execute/call statement and copy to clipboard works as-is. I'm especially happy with the new real-time profiling feature in ORM Profiler, which is the flagship feature for this release: it offers a completely new way to use the profiler, namely directly during debugging: you can immediately see what's going on without the necessity of a snapshot. The activity graph feature combined with the auto-cleanup of older data, allows you to keep the profiler open for a long period of time and see any spike of activity on the profiled application.

    Read the article

  • WP7 Tips–Part I– Media File Coding Techniques to help pass the Windows Phone 7 Marketplace Certification Requirements

    - by seaniannuzzi
    Overview Developing an application that plays media files on a Windows Phone 7 Device seems fairly straight forward.  However, what can make this a bit frustrating are the necessary requirements in order to pass the WP7 marketplace requirements so that your application can be published.  If you are new to this development, be aware of these common challenges that are likely to be made.  Below are some techniques and recommendations on how optimize your application to handle playing MP3 and/or WMA files that needs to adhere to the marketplace requirements.   Windows Phone 7 Certification Requirements Windows Phone 7 Developers Blog   Some common challenges are: Not prompting the user if another media file is playing in the background before playing your media file Not allowing the user to control the volume Not allowing the user to mute the sound Not allowing the media to be interrupted by a phone call  To keep this as simple as possible I am only going to focus on what “not to do” and what “to do” in order to implement a simple media solution. Things you will need or may be useful to you before you begin: Visual Studio 2010 Visual Studio 2010 Feature Packs Windows Phone 7 Developer Tools Visual Studio 2010 Express for Windows Phone Windows Phone Emulator Resources Silverlight 4 Tools For Visual Studio XNA Game Studio 4.0 Microsoft Expression Blend for Windows Phone Note: Please keep in mind you do not need all of these downloaded and installed, it is just easier to have all that you need now rather than add them on later.   Objective Summary Create a Windows Phone 7 – Windows Media Sample Application.  The application will implement many of the required features in order to pass the WP7 marketplace certification requirements in order to publish an application to WP7’s marketplace. (Disclaimer: I am not trying to indicate that this application will always pass as the requirements may change or be updated)   Step 1: – Create a New Windows Phone 7 Project   Step 2: – Update the Title and Application Name of your WP7 Application For this example I changed: the Title to: “DOTNETNUZZI WP7 MEDIA SAMPLE - v1.00” and the Page Title to:  “media magic”. Note: I also updated the background.   Step 3: – XAML - Media Element Preparation and Best Practice Before we begin the next step I just wanted to point out a few things that you should not do as a best practice when developing an application for WP7 that is playing music.  Please keep in mind that these requirements are not the same if you are playing Sound Effects and are geared towards playing media in the background.   If you have coded this – be prepared to change it:   To avoid a failure from the market place remove all of your media source elements from your XAML or simply create them dynamically.  To keep this simple we will remove the source and set the AutoPlay property to false to ensure that there are no media elements are active when the application is started. Proper example of the media element with No Source:   Some Additional Settings - Add XAML Support for a Mute Button   Step 4: – Boolean to handle toggle of Mute Feature Step 5: – Add Event Handler for Main Page Load   Step 6: – Add Reference to the XNA Framework   Step 7: – Add two Using Statements to Resolve the Namespace of Media and the Application Bar using Microsoft.Xna.Framework.Media; using Microsoft.Phone.Shell;   Step 8: – Add the Method to Check the Media State as Shown Below   Step 9: – Add Code to Mute the Media File Step 10: – Add Code to Play the Media File //if the state of the media has been checked you are good to go. media_sample.Play(); Note: If we tried to perform this operation at this point you will receive the following error: System.InvalidOperationException was unhandled Message=FrameworkDispatcher.Update has not been called. Regular FrameworkDispatcher.Update calls are necessary for fire and forget sound effects and framework events to function correctly. See http://go.microsoft.com/fwlink/?LinkId=193853 for details. StackTrace:        at Microsoft.Xna.Framework.FrameworkDispatcher.AddNewPendingCall(ManagedCallType callType, UInt32 arg)        at Microsoft.Xna.Framework.UserAsyncDispatcher.HandleManagedCallback(ManagedCallType managedCallType, UInt32 managedCallArgs) at Microsoft.Xna.Framework.UserAsyncDispatcher.AsyncDispatcherThreadFunction()            It is not recommended that you just add the FrameworkDispatcher.Update(); call before playing the media file. It is recommended that you implement the following class to your solution and implement this class in the app.xaml.cs file.   Step 11: – Add FrameworkDispatcher Features I recommend creating a class named XNAAsyncDispatcher and adding the following code:   After you have added the code accordingly, you can now implement this into your app.xaml.cs file as highlighted below.   Note:  If you application sound file is not playing make sure you have the proper “Build Action” set such as Content.   Running the Sample Now that we have some of the foundation created you should be able to run the application successfully.  When the application launches your sound options should be set accordingly when the “checkMediaState” method is called.  As a result the application will properly setup the media options and/or alert the user accordinglyper the certification requirements.  In addition, the sample also shows a quick way to mute the sound in your application by simply removing the URI source of the media file.  If everything successfully compiled the application should look similar to below.                 <sound playing>   Summary At this point we have a fully functional application that provides techniques on how to avoid some common challenges when working with media files and developing applications for Windows Phone 7.  The techniques mentioned above should make things a little easier and helpful in getting your WP7 application approved and published on the Marketplace.  The next blog post will be titled: WP7 Tips–Part II - How to write code that will pass the Windows Phone 7 Marketplace Requirements for Themes (light and dark). If anyone has any questions or comments please comment on this blog. 

    Read the article

  • ASP.NET4.0-Compatibility Settings for rendering controls

    - by Jalpesh P. Vadgama
    With asp.net 4.0 Microsoft has taken a great step for rendering controls. Now it will have more cleaner html there are lots of enhancement for rendering html controls in asp.net 4.0 now all controls like Menu, List View and other controls renders more cleaner html. But recently i have faced strange problem in rendering controls I have my site in asp.net 3.5 and i want to convert it in asp.net 4.0. I have applied my style as per 3.5 rendering and some of items are obsolete in asp.net 4.0. Modifying style sheet was a tedious job here asp.net 4.0 compatibility  setting comes into help. Asp.net 4.0 compatibility settings provides full backward compatibility in terms of the rendering controls. You can assign this in your web.config section like following. XML, using GeSHi 1.0.8.6<system.web> <pages controlRenderingCompatibilityVersion="3.5|4.0"/> </system.web>  Parsed in 0.001 seconds at 84.92 KB/s Here the values of controlRenderingCompatibility is a string which will indicate on which way control should render in browser if you provide 4.0 then it will controls with more cleaner html and while if you want to go with old legacy rendering like 3.5 then you can put 3.5 and it will render same way as you are doing in asp.net 3.5. Hope this help you!!! Technorati Tags: ASP.NET 4.0,controlRenderingCompatibility

    Read the article

  • Should I migrate to MVC3?

    - by eestein
    Hi everyone. I have a MVC2 project, my question is: should I migrate to MVC3? Why? I'd like the opinion of some who already migrated, or at least used MVC3 and MVC2. Already read http://weblogs.asp.net/scottgu/archive/2011/01/13/announcing-release-of-asp-net-mvc-3-iis-express-sql-ce-4-web-farm-framework-orchard-webmatrix.aspx and I already know about the described tool for migrating: http://blogs.msdn.com/b/marcinon/archive/2011/01/13/mvc-3-project-upgrade-tool.aspx What I'd really appreciate is your valuable insight. Best regards.

    Read the article

  • How to implement Survey page using ASP.NET MVC?

    - by Aleks
    I need to implement the survey page using ASP.NET MVC (v.4) That functionality has already been implemented in our project using ASP.NET WebForms. (I really searched a lot for real examples of similar functionality implemented via MVC, but failed) Goal: staying on the same page (in webforms -'Survey.aspx') each time user clicks 'Next Page', load next bunch of questions (controls) which user is going to answer. Type of controls in questions are defined only in run-time (retrieved from Data Base). To explain better the question I manually created (rather simple) mark-up below of 'two' pages (two loads of controls): <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Survey.aspx.cs" Inherits="WebSite.Survey" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div><h2>Internal Survey</h2></div> <div><h3>Page 1</h3></div> <div style="padding-bottom: 10px"><div><b>Did you have internet disconnections during last week?</b></div> <asp:RadioButtonList ID="RadioButtonList1" runat="server"> <asp:ListItem>Yes</asp:ListItem> <asp:ListItem>No</asp:ListItem> </asp:RadioButtonList> </div> <div style="padding-bottom: 10px"><div><b>Which days of the week suit you best for meeting up ?</b></div> <asp:CheckBoxList ID="CheckBoxList1" runat="server"> <asp:ListItem>Monday</asp:ListItem> <asp:ListItem>Tuesday</asp:ListItem> <asp:ListItem>Wednesday</asp:ListItem> <asp:ListItem>Thursday</asp:ListItem> <asp:ListItem>Friday</asp:ListItem> </asp:CheckBoxList> </div> <div style="padding-bottom: 10px"> <div><b>How satisfied are you with your job? </b></div> <asp:RadioButtonList ID="RadioButtonList2" runat="server"> <asp:ListItem>Very Good</asp:ListItem> <asp:ListItem>Good</asp:ListItem> <asp:ListItem>Bad</asp:ListItem> <asp:ListItem>Very Bad</asp:ListItem> </asp:RadioButtonList> </div> <div style="padding-bottom: 10px"> <div><b>How satisfied are you with your direct supervisor ? </b></div> <asp:RadioButtonList ID="RadioButtonList3" runat="server"> <asp:ListItem>Not Satisfied</asp:ListItem> <asp:ListItem>Somewhat Satisfied</asp:ListItem> <asp:ListItem>Neutral</asp:ListItem> <asp:ListItem>Satisfied</asp:ListItem> <asp:ListItem>Very Satisfied</asp:ListItem> </asp:RadioButtonList> </div> <div style="padding-bottom: 10px"> <asp:Button ID="Button1" runat="server" Text="Next Page" onclick="Button1_Click" /> </div> </form> </body> </html> PAGE 2 <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Survey.aspx.cs" Inherits="WebSite.Survey" %> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server"> <title></title> </head> <body> <form id="form1" runat="server"> <div><h2>Internal Survey</h2></div> <div><h3>Page 2</h3></div> <div style="padding-bottom: 10px"><div><b>Did admininstators fix your internet connection in time ?</b></div> <asp:RadioButtonList ID="RadioButtonList1" runat="server"> <asp:ListItem>Yes</asp:ListItem> <asp:ListItem>No</asp:ListItem> </asp:RadioButtonList> </div> <div style="padding-bottom: 10px"><div><b>What's your overal impression about the job ?</b></div> <asp:TextBox ID="TextBox1" runat="server" Height="88px" Width="322px"></asp:TextBox> </div> <div style="padding-bottom: 10px"> <div><b>Select day which best suits you for admin support ? </b></div> <asp:DropDownList ID="DropDownList1" runat="server"> <asp:ListItem>Select day</asp:ListItem> <asp:ListItem>Monday</asp:ListItem> <asp:ListItem>Wednesday</asp:ListItem> <asp:ListItem>Friday</asp:ListItem> </asp:DropDownList> </div> <div style="padding-bottom: 10px"> <asp:Button ID="Button1" runat="server" Text="Next Page" onclick="Button1_Click" /> </div> </form> </body> </html>

    Read the article

  • New HTML 5 input types in ASP.Net 4.5 Developer Preview

    - by sreejukg
    Microsoft has released developer previews for Visual Studio 2011 and .Net framework 4.5. There are lots of new features available in the developer preview. One of the most interested things for web developers is the support introduced for new HTML 5 form controls. The following are the list of new controls available in HTML 5 email url number range Date pickers (date, month, week, time, datetime, datetime-local) search color Describing the functionality for these controls is not in the scope of this article. If you want to know about these controls, refer the below URLs http://msdn.microsoft.com/en-us/magazine/hh547102.aspx http://www.w3schools.com/html5/html5_form_input_types.asp ASP.Net 4.5 introduced more possible values to the Text Mode attribute to cater the above requirements. Let us evaluate these. I have created a project in Visual Studio 2011 developer preview, and created a page named “controls.aspx”. In the page I placed on Text box control from the toolbox Now select the control and go to the properties pane, look at the TextMode attribute. Now you can see more options are added here than prior versions of ASP.Net. I just selected Email as TextMode. I added one button to submit my page. The screen shot of the page in Visual Studio 2011 designer is as follows See the corresponding markup <form id="form1" runat="server">     <div>         Enter your email:         <asp:TextBox ID="TextBox1" runat="server" TextMode="Email"></asp:TextBox     </div>     <asp:Button ID="Button1" runat="server" Text="Submit" /> </form> Now let me run this page, IE 9 do not have the support for new form fields. I browsed the page using Firefox and the page appears as below. From the source of the rendered page, I saw the below markup for my email textbox <input name="TextBox1" type="email" id="TextBox1" /> Try to enter an invalid email and you will see the browser will ask you to enter a valid one by default. When rendered in non-supported browsers, these fields are behaving just as normal text boxes. So make sure you are using validation controls with these fields. See the browser support compatability matrix with these controls with various browser vendors. ASP.Net 4.5 introduced the support for these new form controls. You can build interactive forms using the newly added controls, keeping in mind that you need to validate the data for non-supported browsers.

    Read the article

  • NoSQL with RavenDB and ASP.NET MVC - Part 2

    - by shiju
    In my previous post, we have discussed on how to work with RavenDB document database in an ASP.NET MVC application. We have setup RavenDB for our ASP.NET MVC application and did basic CRUD operations against a simple domain entity. In this post, let’s discuss on domain entity with deep object graph and how to query against RavenDB documents using Indexes.Let's create two domain entities for our demo ASP.NET MVC appplication  public class Category {       public string Id { get; set; }     [Required(ErrorMessage = "Name Required")]     [StringLength(25, ErrorMessage = "Must be less than 25 characters")]     public string Name { get; set;}     public string Description { get; set; }     public List<Expense> Expenses { get; set; }       public Category()     {         Expenses = new List<Expense>();     } }    public class Expense {       public string Id { get; set; }     public Category Category { get; set; }     public string  Transaction { get; set; }     public DateTime Date { get; set; }     public double Amount { get; set; }   }  We have two domain entities - Category and Expense. A single category contains a list of expense transactions and every expense transaction should have a Category.Let's create  ASP.NET MVC view model  for Expense transaction public class ExpenseViewModel {     public string Id { get; set; }       public string CategoryId { get; set; }       [Required(ErrorMessage = "Transaction Required")]            public string Transaction { get; set; }       [Required(ErrorMessage = "Date Required")]            public DateTime Date { get; set; }       [Required(ErrorMessage = "Amount Required")]     public double Amount { get; set; }       public IEnumerable<SelectListItem> Category { get; set; } } Let's create a contract type for Expense Repository  public interface IExpenseRepository {     Expense Load(string id);     IEnumerable<Expense> GetExpenseTransactions(DateTime startDate,DateTime endDate);     void Save(Expense expense,string categoryId);     void Delete(string id);  } Let's create a concrete type for Expense Repository for handling CRUD operations. public class ExpenseRepository : IExpenseRepository {   private IDocumentSession session; public ExpenseRepository() {         session = MvcApplication.CurrentSession; } public Expense Load(string id) {     return session.Load<Expense>(id); } public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; } public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } public void Delete(string id) {     var expense = Load(id);     session.Delete<Expense>(expense);     session.SaveChanges(); }   }  Insert/Update Expense Transaction The Save method is used for both insert a new expense record and modifying an existing expense transaction. For a new expense transaction, we store the expense object with associated category into document session object and load the existing expense object and assign values to it for editing a existing record.  public void Save(Expense expense,string categoryId) {     var category = session.Load<Category>(categoryId);     if (string.IsNullOrEmpty(expense.Id))     {         //new expense transaction         expense.Category = category;         session.Store(expense);     }     else     {         //modifying an existing expense transaction         var expenseToEdit = Load(expense.Id);         //Copy values to  expenseToEdit         ModelCopier.CopyModel(expense, expenseToEdit);         //set category object         expenseToEdit.Category = category;       }     //save changes     session.SaveChanges(); } Querying Expense transactions   public IEnumerable<Expense> GetExpenseTransactions(DateTime startDate, DateTime endDate) {             //Querying using the Index name "ExpenseTransactions"     //filtering with dates     var expenses = session.LuceneQuery<Expense>("ExpenseTransactions")         .WaitForNonStaleResults()         .Where(exp => exp.Date >= startDate && exp.Date <= endDate)         .ToArray();     return expenses; }  The GetExpenseTransactions method returns expense transactions using a LINQ query expression with a Date comparison filter. The Lucene Query is using a index named "ExpenseTransactions" for getting the result set. In RavenDB, Indexes are LINQ queries stored in the RavenDB server and would be  executed on the background and will perform query against the JSON documents. Indexes will be working with a lucene query expression or a set operation. Indexes are composed using a Map and Reduce function. Check out Ayende's blog post on Map/Reduce We can create index using RavenDB web admin tool as well as programmitically using its Client API. The below shows the screen shot of creating index using web admin tool. We can also create Indexes using Raven Cleint API as shown in the following code documentStore.DatabaseCommands.PutIndex("ExpenseTransactions",     new IndexDefinition<Expense,Expense>() {     Map = Expenses => from exp in Expenses                     select new { exp.Date } });  In the Map function, we used a Linq expression as shown in the following from exp in docs.Expensesselect new { exp.Date };We have not used a Reduce function for the above index. A Reduce function is useful while performing aggregate functions based on the results from the Map function. Indexes can be use with set operations of RavenDB.SET OperationsUnlike other document databases, RavenDB supports set based operations that lets you to perform updates, deletes and inserts to the bulk_docs endpoint of RavenDB. For doing this, you just pass a query to a Index as shown in the following commandDELETE http://localhost:8080/bulk_docs/ExpenseTransactions?query=Date:20100531The above command using the Index named "ExpenseTransactions" for querying the documents with Date filter and  will delete all the documents that match the query criteria. The above command is equivalent of the following queryDELETE FROM ExpensesWHERE Date='2010-05-31' Controller & ActionsWe have created Expense Repository class for performing CRUD operations for the Expense transactions. Let's create a controller class for handling expense transactions.   public class ExpenseController : Controller { private ICategoryRepository categoyRepository; private IExpenseRepository expenseRepository; public ExpenseController(ICategoryRepository categoyRepository, IExpenseRepository expenseRepository) {     this.categoyRepository = categoyRepository;     this.expenseRepository = expenseRepository; } //Get Expense transactions based on dates public ActionResult Index(DateTime? StartDate, DateTime? EndDate) {     //If date is not passed, take current month's first and last dte     DateTime dtNow;     dtNow = DateTime.Today;     if (!StartDate.HasValue)     {         StartDate = new DateTime(dtNow.Year, dtNow.Month, 1);         EndDate = StartDate.Value.AddMonths(1).AddDays(-1);     }     //take last date of startdate's month, if endate is not passed     if (StartDate.HasValue && !EndDate.HasValue)     {         EndDate = (new DateTime(StartDate.Value.Year, StartDate.Value.Month, 1)).AddMonths(1).AddDays(-1);     }       var expenses = expenseRepository.GetExpenseTransactions(StartDate.Value, EndDate.Value);     if (Request.IsAjaxRequest())     {           return PartialView("ExpenseList", expenses);     }     ViewData.Add("StartDate", StartDate.Value.ToShortDateString());     ViewData.Add("EndDate", EndDate.Value.ToShortDateString());             return View(expenses);            }   // GET: /Expense/Edit public ActionResult Edit(string id) {       var expenseModel = new ExpenseViewModel();     var expense = expenseRepository.Load(id);     ModelCopier.CopyModel(expense, expenseModel);     var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems(expense.Category.Id.ToString());                    return View("Save", expenseModel);          }   // // GET: /Expense/Create   public ActionResult Create() {     var expenseModel = new ExpenseViewModel();               var categories = categoyRepository.GetCategories();     expenseModel.Category = categories.ToSelectListItems("-1");     expenseModel.Date = DateTime.Today;     return View("Save", expenseModel); }   // // POST: /Expense/Save // Insert/Update Expense Tansaction [HttpPost] public ActionResult Save(ExpenseViewModel expenseViewModel) {     try     {         if (!ModelState.IsValid)         {               var categories = categoyRepository.GetCategories();                 expenseViewModel.Category = categories.ToSelectListItems(expenseViewModel.CategoryId);                               return View("Save", expenseViewModel);         }           var expense=new Expense();         ModelCopier.CopyModel(expenseViewModel, expense);          expenseRepository.Save(expense, expenseViewModel.CategoryId);                       return RedirectToAction("Index");     }     catch     {         return View();     } } //Delete a Expense Transaction public ActionResult Delete(string id) {     expenseRepository.Delete(id);     return RedirectToAction("Index");     }     }     Download the Source - You can download the source code from http://ravenmvc.codeplex.com

    Read the article

  • Multiple file upload with asp.net 4.5 and Visual Studio 2012

    - by Jalpesh P. Vadgama
    This post will be part of Visual Studio 2012 feature series. In earlier version of ASP.NET there is no way to upload multiple files at same time. We need to use third party control or we need to create custom control for that. But with asp.net 4.5 now its possible to upload multiple file with file upload control. With ASP.NET 4.5 version Microsoft has enhanced file upload control to support HTML5 multiple attribute. There is a property called ‘AllowedMultiple’ to support that attribute and with that you can easily upload the file. So what we are waiting for!! It’s time to create one example. On the default.aspx file I have written following. <asp:FileUpload ID="multipleFile" runat="server" AllowMultiple="true" /> <asp:Button ID="uploadFile" runat="server" Text="Upload files" onclick="uploadFile_Click"/> Here you can see that I have given file upload control id as multipleFile and I have set AllowMultiple file to true. I have also taken one button for uploading file.For this example I am going to upload file in images folder. As you can see I have also attached event handler for button’s click event. So it’s time to write server side code for this. Following code is for the server side. protected void uploadFile_Click(object sender, EventArgs e) { if (multipleFile.HasFiles) { foreach(HttpPostedFile uploadedFile in multipleFile.PostedFiles) { uploadedFile.SaveAs(System.IO.Path.Combine(Server.MapPath("~/Images/"),uploadedFile.FileName)); Response.Write("File uploaded successfully"); } } } Here in the above code you can see that I have checked whether multiple file upload control has multiple files or not and then I have save that in Images folder of web application. Once you run the application in browser it will look like following. I have selected two files. Once I have selected and clicked on upload file button it will give message like following. As you can see now it has successfully upload file and you can see in windows explorer like following. As you can see it’s very easy to upload multiple file in ASP.NET 4.5. Stay tuned for more. Till then happy programming. P.S.: This feature is only supported in browser who support HTML5 multiple file upload. For other browsers it will work like normal file upload control in asp.net.

    Read the article

  • Great library of ASP.NET videos – Pluralsight!

    - by hajan
    I have been subscribed to the Pluralsight website and of course since ASP.NET is my favorite development technology, I passed throughout few series of videos related to ASP.NET. You have list of ASP.NET galleries from Fundamentals to Advanced topics including the latest features of ASP.NET 4.0, ASP.NET Ajax, ASP.NET MVC etc. Most of the speakers are either Microsoft MVPs or known technology experts! I was really curious to see the way they have organized the entire course materials, and trust me, I was quite amazed. I saw the ASP.NET 4.0 video series to confirm my knowledge and some other video series regarding general software development concepts, design patterns etc. I would like to point out if anyone of you is interested to get FREE 1-week .NET training pass in the Pluralsight library, please CONTACT ME, write your name and email and include the purpose of the message in the content. I hope you will find this useful. Regards, Hajan

    Read the article

  • Getting Started with Chart control in ASP.Net 4.0

    - by sreejukg
    In this article I am going to demonstrate the Chart control available in ASP.Net 4 and Visual Studio 2010. Most of the web applications need to generate reports for business users. The business users are happy to view the results in a graphical format more that seeing it in numbers. For the purpose of this demonstration, I have created a sales table. I am going to create charts from this sale data. The sale table looks as follows I have created an ASP.Net web application project in Visual Studio 2010. I have a default.aspx page that I am going to use for the demonstration. First I am going to add a chart control to the page. Visual Studio 2010 has a chart control. The Chart Control comes under the Data Tab in the toolbox. Drag and drop the Chart control to the default.aspx page. Visual Studio adds the below markup to the page. <asp:Chart ID="Chart1" runat="server"></asp:Chart> In the designer view, the Chart controls gives the following output. As you can see this is exactly similar to other server controls in ASP.Net, and similar to other controls under the data tab, Chart control is also a data bound control. So I am going to bind this with my sales data. From the design view, right click the chart control and select “show smart tag” Here you need so choose the Data source property and the chart type. From the choose data source drop down, select new data source. In the data source configuration wizard, select the SQL data base and write the query to retrieve the data. At first I am going to show the chart for amount of sales done by each sales person. I am going to use the following query inside sqldatasource select command. “SELECT SUM(SaleAmount) AS Expr1, salesperson FROM SalesData GROUP BY SalesPerson” This query will give me the amount of sales achieved by each sales person. The mark up of SQLDataSource is as follows. <asp:SqlDataSource ID="SqlDataSource1" runat="server" ConnectionString="<%$ ConnectionStrings:SampleConnectionString %>" SelectCommand="SELECT SUM(SaleAmount) as amount, SalesPerson FROM SalesData GROUP BY SalesPerson"></asp:SqlDataSource> Once you selected the data source for the chart control, you need to select the X and Y values for the columns. I have entered salesperson in the X Value member and amount in the Y value member. After modifications, the Chart control looks as follows Click F5 to run the application. The output of the page is as follows. Using ASP.Net it is much easier to represent your data in graphical format. To show this chart, I didn’t even write any single line of code. The chart control is a great tool that helps the developer to show the business intelligence in their applications without using third party products. I will write another blog that explore further possibilities that shows more reports by using the same sales data. If you want to get the Project in zipped format, post your email below.

    Read the article

  • Dynamically creating meta tags in asp.net mvc

    - by Jalpesh P. Vadgama
    As we all know that Meta tag has very important roles in Search engine optimization and if we want to have out site listed with good ranking on search engines then we have to put meta tags. Before some time I have blogged about dynamically creating meta tags in asp.net 2.0/3.5 sites, in this blog post I am going to explain how we can create a meta tag dynamically very easily. To have meta tag dynamically we have to create a meta tag on server-side. So I have created a method like following. public string HomeMetaTags() { System.Text.StringBuilder strMetaTag = new System.Text.StringBuilder(); strMetaTag.AppendFormat(@"<meta content='{0}' name='Keywords'/>","Home Action Keyword"); strMetaTag.AppendFormat(@"<meta content='{0}' name='Descption'/>", "Home Description Keyword"); return strMetaTag.ToString(); } Here you can see that I have written a method which will return a string with meta tags. Here you can write any logic you can fetch it from the database or you can even fetch it from xml based on key passed. For the demo purpose I have written that hardcoded. So it will create a meta tag string and will return it. Now I am going to store that meta tag in ViewBag just like we have a title tag. In this post I am going to use standard template so we have our title tag there in viewbag message. Same way I am going save meta tag like following in ViewBag. public ActionResult Index() { ViewBag.Message = "Welcome to ASP.NET MVC!"; ViewBag.MetaTag = HomeMetaTags(); return View(); } Here in the above code you can see that I have stored MetaTag ViewBag. Now as I am using standard ASP.NET MVC3 template so we have our we have out head element in Shared folder _layout.cshtml file. So to render meta tag I have modified the Head tag part of _layout.cshtml like following. <head> <title>@ViewBag.Title</title> <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" /> <script src="@Url.Content("~/Scripts/jquery-1.5.1.min.js")" type="text/javascript"></script> @Html.Raw(ViewBag.MetaTag) </head> Here in the above code you can see I have use @Html.Raw method to embed meta tag in _layout.cshtml page. This HTML.Raw method will embed output to head tag section without encoding html. As we have already taken care of html tag in string function we don’t need the html encoding. Now it’s time to run application in browser. Now once you run your application in browser and click on view source you will find meta tag for home page as following. That’s its It’s very easy to create dynamically meta tag. Hope you liked it.. Stay tuned for more.. Till then happy programming.

    Read the article

  • ASP.NET MVC 3 Hosting :: How to Upgrade ASP.NET MVC 2 Project to ASP.NET MVC 3

    - by mbridge
    ASP.NET MVC 3 can be installed side by side with ASP.NET MVC 2 on the same computer, which gives you flexibility in choosing when to upgrade an ASP.NET MVC 2 application to ASP.NET MVC 3. The simplest way to upgrade is to create a new ASP.NET MVC 3 project and copy all the views, controllers, code, and content files from the existing MVC 2 project to the new project and then to update the assembly references in the new project to match the old project. If you have made changes to the Web.config file in the MVC 2 project, you must also merge those changes with the Web.config file in the MVC 3 project. To manually upgrade an existing ASP.NET MVC 2 application to version 3, do the following: 1. In both Web.config files in the MVC 3 project, globally search and replace the MVC version. Find the following: System.Web.Mvc, Version=2.0.0.0 Replace it with the following System.Web.Mvc, Version=3.0.0.0 There are three changes in the root Web.config and four in the Views\Web.config file. 2. In Solution Explorer, delete the reference to System.Web.Mvc (which points to the version 2 DLL). Then add a reference to System.Web.Mvc (v3.0.0.0). 3. In Solution Explorer, right-click the project name and then select Unload Project. Then right-click again and select Edit ProjectName.csproj. 4. Locate the ProjectTypeGuids element and replace {F85E285D-A4E0-4152-9332-AB1D724D3325} with {E53F8FEA-EAE0-44A6-8774-FFD645390401}. 5. Save the changes and then right-click the project and select Reload Project. 6. If the project references any third-party libraries that are compiled using ASP.NET MVC 2, add the following highlighted bindingRedirect element to the Web.config file in the application root under the configuration section: <runtime>   <assemblyBinding >     <dependentAssembly>       <assemblyIdentity name="System.Web.Mvc"           publicKeyToken="31bf3856ad364e35"/>       <bindingRedirect oldVersion="2.0.0.0" newVersion="3.0.0.0"/>     </dependentAssembly>   </assemblyBinding> </runtime> Another ASP.NET MVC 3 article: - Rolling with Razor in MVC v3 Preview - Deploying ASP.NET MVC 3 web application to server where ASP.NET MVC 3 is not installed - RenderAction with ASP.NET MVC 3 Sessionless Controllers

    Read the article

  • Upgarde from Asp.Net MVC 1 to MVC 2 - how to and issues with JsonRequestBehavior

    - by Renso
    Goal Upgrade your MVC 1 app to MVC 2 Issues You may get errors about your Json data being returned via a GET request violating security principles - we also address this here. This post is not intended to delve into why the Json GET request is or may be an issue, just how to resolve it as part of upgrading from MVC1 to 2. Solution First remove all references from your projects to the MVC 1 dll and replace it with the MVC 2 dll. Now update your web.config file in your web app root folder by simply changing references to assembly="System.Web.Mvc, Version 1.0.0.0 to Version 2.0.0.0, there are a couple of references in your config file, here are probably most of them you may have:         <compilation debug="true" defaultLanguage="c#">             <assemblies>                        <add assembly="System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" />             </assemblies>         </compilation>           <pages masterPageFile="~/Views/Masters/CRMTemplate.master" pageParserFilterType="System.Web.Mvc.ViewTypeParserFilter, System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" pageBaseType="System.Web.Mvc.ViewPage, System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" userControlBaseType="System.Web.Mvc.ViewUserControl, System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" validateRequest="False">             <controls>                 <add assembly="System.Web.Mvc, Version=2.0.0.0, Culture=neutral, PublicKeyToken=31BF3856AD364E35" namespace="System.Web.Mvc" tagPrefix="mvc" />   Secondly, if you return Json objects from an ajax call via the GET method you ahve several options to fix this depending on your situation: 1. The simplest, as in my case I did this for an internal web app, you may simply do:             return Json(myObject, JsonRequestBehavior.AllowGet);   2. In Mvc if you have a controller base you could wrap the Json method with:         public new JsonResult Json(object data)         {             return Json(data, "application/json", JsonRequestBehavior.AllowGet);                    }   3. The most work would be to decorate your Actions with:         [AcceptVerbs(HttpVerbs.Get)]   4. Another tnat is also a lot of work that needs to be done to every ajax call returning Json is:                             msg = $.ajax({ url: $('#ajaxGetSampleUrl').val(), dataType: 'json', type: 'POST', async: false, data: { name: theClass }, success: function(data, result) { if (!result) alert('Failure to retrieve the Sample Data.'); } }).responseText;   This should cover all the issues you may run into when upgrading. Let me kow if you run into any other ones.

    Read the article

  • Dependency Injection in ASP.NET MVC NerdDinner App using Unity 2.0

    - by shiju
    In my previous post Dependency Injection in ASP.NET MVC NerdDinner App using Ninject, we did dependency injection in NerdDinner application using Ninject. In this post, I demonstrate how to apply Dependency Injection in ASP.NET MVC NerdDinner App using Microsoft Unity Application Block (Unity) v 2.0.Unity 2.0Unity 2.0 is available on Codeplex at http://unity.codeplex.com . In earlier versions of Unity, the ObjectBuilder generic dependency injection mechanism, was distributed as a separate assembly, is now integrated with Unity core assembly. So you no longer need to reference the ObjectBuilder assembly in your applications. Two additional Built-In Lifetime Managers - HierarchicalifetimeManager and PerResolveLifetimeManager have been added to Unity 2.0.Dependency Injection in NerdDinner using UnityIn my Ninject post on NerdDinner, we have discussed the interfaces and concrete types of NerdDinner application and how to inject dependencies controller constructors. The following steps will configure Unity 2.0 to apply controller injection in NerdDinner application. Step 1 – Add reference for Unity Application BlockOpen the NerdDinner solution and add  reference to Microsoft.Practices.Unity.dll and Microsoft.Practices.Unity.Configuration.dllYou can download Unity from at http://unity.codeplex.com .Step 2 – Controller Factory for Unity The controller factory is responsible for creating controller instances.We extend the built in default controller factory with our own factory for working Unity with ASP.NET MVC. public class UnityControllerFactory : DefaultControllerFactory {     protected override IController GetControllerInstance(RequestContext reqContext, Type controllerType)     {         IController controller;         if (controllerType == null)             throw new HttpException(                     404, String.Format(                         "The controller for path '{0}' could not be found" +         "or it does not implement IController.",                     reqContext.HttpContext.Request.Path));           if (!typeof(IController).IsAssignableFrom(controllerType))             throw new ArgumentException(                     string.Format(                         "Type requested is not a controller: {0}",                         controllerType.Name),                         "controllerType");         try         {             controller = MvcUnityContainer.Container.Resolve(controllerType)                             as IController;         }         catch (Exception ex)         {             throw new InvalidOperationException(String.Format(                                     "Error resolving controller {0}",                                     controllerType.Name), ex);         }         return controller;     }   }   public static class MvcUnityContainer {     public static IUnityContainer Container { get; set; } }  Step 3 – Register Types and Set Controller Factory private void ConfigureUnity() {     //Create UnityContainer               IUnityContainer container = new UnityContainer()     .RegisterType<IFormsAuthentication, FormsAuthenticationService>()     .RegisterType<IMembershipService, AccountMembershipService>()     .RegisterInstance<MembershipProvider>(Membership.Provider)     .RegisterType<IDinnerRepository, DinnerRepository>();     //Set container for Controller Factory     MvcUnityContainer.Container = container;     //Set Controller Factory as UnityControllerFactory     ControllerBuilder.Current.SetControllerFactory(                         typeof(UnityControllerFactory));            } Unity 2.0 provides a fluent interface for type configuration. Now you can call all the methods in a single statement.The above Unity configuration specified in the ConfigureUnity method tells that, to inject instance of DinnerRepositiry when there is a request for IDinnerRepositiry and  inject instance of FormsAuthenticationService when there is a request for IFormsAuthentication and inject instance of AccountMembershipService when there is a request for IMembershipService. The AccountMembershipService class has a dependency with ASP.NET Membership provider. So we configure that inject the instance of Membership Provider.After the registering the types, we set UnityControllerFactory as the current controller factory. //Set container for Controller Factory MvcUnityContainer.Container = container; //Set Controller Factory as UnityControllerFactory ControllerBuilder.Current.SetControllerFactory(                     typeof(UnityControllerFactory)); When you register a type  by using the RegisterType method, the default behavior is for the container to use a transient lifetime manager. It creates a new instance of the registered, mapped, or requested type each time you call the Resolve or ResolveAll method or when the dependency mechanism injects instances into other classes. The following are the LifetimeManagers provided by Unity 2.0ContainerControlledLifetimeManager - Implements a singleton behavior for objects. The object is disposed of when you dispose of the container.ExternallyControlledLifetimeManager - Implements a singleton behavior but the container doesn't hold a reference to object which will be disposed of when out of scope.HierarchicalifetimeManager - Implements a singleton behavior for objects. However, child containers don't share instances with parents.PerResolveLifetimeManager - Implements a behavior similar to the transient lifetime manager except that instances are reused across build-ups of the object graph.PerThreadLifetimeManager - Implements a singleton behavior for objects but limited to the current thread.TransientLifetimeManager - Returns a new instance of the requested type for each call. (default behavior)We can also create custome lifetime manager for Unity container. The following code creating a custom lifetime manager to store container in the current HttpContext. public class HttpContextLifetimeManager<T> : LifetimeManager, IDisposable {     public override object GetValue()     {         return HttpContext.Current.Items[typeof(T).AssemblyQualifiedName];     }     public override void RemoveValue()     {         HttpContext.Current.Items.Remove(typeof(T).AssemblyQualifiedName);     }     public override void SetValue(object newValue)     {         HttpContext.Current.Items[typeof(T).AssemblyQualifiedName]             = newValue;     }     public void Dispose()     {         RemoveValue();     } }  Step 4 – Modify Global.asax.cs for configure Unity container In the Application_Start event, we call the ConfigureUnity method for configuring the Unity container and set controller factory as UnityControllerFactory void Application_Start() {     RegisterRoutes(RouteTable.Routes);       ViewEngines.Engines.Clear();     ViewEngines.Engines.Add(new MobileCapableWebFormViewEngine());     ConfigureUnity(); }Download CodeYou can download the modified NerdDinner code from http://nerddinneraddons.codeplex.com

    Read the article

  • ASP.NET Load unmanaged dll from bin folder

    - by Quandary
    Question: I use an embedded Firebird database in ASP.NET. Now, Firebird has a .NET wrapper around native dlls. The problem is, with the .NET compilation and execution process, the dlls get shadow copied to a temporary folder. Unfortunately, only the .NET dlls, and not the native dll. See http://msdn.microsoft.com/en-us/library/ms366723.aspx for details. Now, this makes it necessary to put the unmanaged dll somewhere into the system32 directory (or any other directory in the path environment variable). Now, I want to change the wrapper/native dll (opensource), so it loads the dll also if they are only in the bin folder. Now, my problem is, how can I, in .NET, load an unmanaged dll from an absolute path ? The absolute path is determined at runtime, not at compile-time...

    Read the article

  • Redirecting from ASP.NET WebForms to MVC

    - by Paul Gordon
    Hi there, We have a large existing ASP.NET WebForms application, but we are now moving over to MVC. Rather than go through a painful process of trying to integrate MVC into the existing app, we're looking at creating a brand new VS project to completely isolate the new code. As a first step, we are wanting to use the existing login process of the WebForms app, then redirect over to the MVC app. Does anyone know of an easy way to do this (i.e. redirect from a WebForms project to the MVC project, in the same VS solution)? All the information I've found so far suggests either starting from scratch in MVC, or combing MVC into the existing Webforms project - neither of which is very feasible. Many thanks, Paul

    Read the article

  • Image Preview in ASP.NET MVC

    - by imran_ku07
      Introduction :         Previewing an image is a great way to improve the UI of your site. Also it is always best to check the file type, size and see a preview before submitting the whole form. There are some ways to do this using simple JavaScript but not work in all browsers (like FF3).In this Article I will show you how do this using ASP.NET MVC application. You also see how this will work in case of nested form.   Description :          Create a new ASP.NET MVC project and then add a file upload and image control into your View. <form id="form1" method="post" action="NerdDinner/ImagePreview/AjaxSubmit">            <table>                <tr>                    <td>                        <input type="file" name="imageLoad1" id="imageLoad1"  onchange="ChangeImage(this,'#imgThumbnail')" />                    </td>                </tr>                <tr>                    <td align="center">                        <img src="images/TempImage.gif" id="imgThumbnail" height="200px" width="200px">                     </td>                </tr>            </table>        </form>           Note that here NerdDinner is refers to the virtual directory name, ImagePreview is the Controller and ImageLoad is the action name which you will see shortly          I will use the most popular jQuery form plug-in, that turns a form into an AJAX form with very little code. Therefore you must get these from Jquery site and then add these files into your page.          <script src="NerdDinner/Scripts/jquery-1.3.2.js" type="text/javascript"></script>        <script src="NerdDinner/Scripts/jquery.form.js" type="text/javascript"></script>            Then add the javascript function. <script type="text/javascript">function ChangeImage(fileId,imageId){ $("#form1").ajaxSubmit({success: function(responseText){ var d=new Date(); $(imageId)[0].src="NerdDinner/ImagePreview/ImageLoad?a="+d.getTime(); } });}</script>             This function simply submit the form named form1 asynchronously to ImagePreviewController's method AjaxSubmit and after successfully receiving the response, it will set the image src property to the action method ImageLoad. Here I am also adding querystring, preventing the browser to serve the cached image.           Now I will create a new Controller named ImagePreviewController. public class ImagePreviewController : Controller { [AcceptVerbs(HttpVerbs.Post)] public ActionResult AjaxSubmit(int? id) { Session["ContentLength"] = Request.Files[0].ContentLength; Session["ContentType"] = Request.Files[0].ContentType; byte[] b = new byte[Request.Files[0].ContentLength]; Request.Files[0].InputStream.Read(b, 0, Request.Files[0].ContentLength); Session["ContentStream"] = b; return Content( Request.Files[0].ContentType+";"+ Request.Files[0].ContentLength ); } public ActionResult ImageLoad(int? id) { byte[] b = (byte[])Session["ContentStream"]; int length = (int)Session["ContentLength"]; string type = (string)Session["ContentType"]; Response.Buffer = true; Response.Charset = ""; Response.Cache.SetCacheability(HttpCacheability.NoCache); Response.ContentType = type; Response.BinaryWrite(b); Response.Flush(); Session["ContentLength"] = null; Session["ContentType"] = null; Session["ContentStream"] = null; Response.End(); return Content(""); } }             The AjaxSubmit action method will save the image in Session and return content type and content length in response. ImageLoad action method will return the contents of image in response.Then clear these Sessions.           Just run your application and see the effect.   Checking Size and Content Type of File:          You may notice that AjaxSubmit action method is returning both content type and content length. You can check both properties before submitting your complete form.     $(myform).ajaxSubmit({success: function(responseText)            {                                var contentType=responseText.substring(0,responseText.indexOf(';'));                var contentLength=responseText.substring(responseText.indexOf(';')+1);                // Here you can do your validation                var d=new Date();                $(imageId)[0].src="http://weblogs.asp.net/MoneypingAPP/ImagePreview/ImageLoad?a="+d.getTime();            }        });  Handling Nested Form Case:          The above code will work if you have only one form. But this is not the case always.You may have a form control which wraps all the controls and you do not want to submit the whole form, just for getting a preview effect.           In this case you need to create a dynamic form control using JavaScript, and then add file upload control to this form and submit the form asynchronously  function ChangeImage(fileId,imageId)         {            var myform=document.createElement("form");                    myform.action="NerdDinner/ImagePreview/AjaxSubmit";            myform.enctype="multipart/form-data";            myform.method="post";            var imageLoad=document.getElementById(fileId).cloneNode(true);            myform.appendChild(imageLoad);            document.body.appendChild(myform);            $(myform).ajaxSubmit({success: function(responseText)                {                                    var contentType=responseText.substring(0,responseText.indexOf(';'));                    var contentLength=responseText.substring(responseText.indexOf(';')+1);                    var d=new Date();                    $(imageId)[0].src="http://weblogs.asp.net/MoneypingAPP/ImagePreview/ImageLoad?a="+d.getTime();                    document.body.removeChild(myform);                }            });        }            You also need append the child in order to send request and remove them after receiving response.

    Read the article

  • Webcast MSDN: Introducción a páginas Web ASP.NET con Razor Syntax

    - by carlone
    Estimados Amigo@s: Mañana tendré el gusto de estar compartiendo nuevamente con ustedes un webcast. Estan invitados:   Id. de evento: 1032487341 Moderador(es): Carlos Augusto Lone Saenz. Idiomas: Español. Productos: Microsoft ASP.NET y Microsoft SQL Server. Público: Programador/desarrollador de programas. Venga y aprenda en esta sesión, sobre el nuevo modelo de programación simplificado, nueva sintaxis y ayudantes para web que componen las páginas Web ASP.NET con 'Razor'. Esta nueva forma de construir aplicaciones ASP.NET se dirige directamente a los nuevos desarrolladores de la plataforma. NET y desarrolladores, tratando de crear aplicaciones web rápidamente. También se incluye SQL Compact, embedded database que es xcopy de implementar. Vamos a mostrar una nueva funcionalidad que se ha agregado recientemente, incluyendo un package manager que hace algo fácil el agregar bibliotecas de terceros para sus aplicaciones. Registrarse aqui: https://msevents.microsoft.com/CUI/EventDetail.aspx?EventID=1032487341&Culture=es-AR

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >