Search Results

Search found 3973 results on 159 pages for 'boost filesystem'.

Page 13/159 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • typedef boost::shared_ptr<MyJob> Ptr; or #define Ptr boost::shared_ptr

    - by danio
    I've just started wrking on a new codebase where each class contains a shared_ptr typedef (similar to this) like: typedef boost::shared_ptr<MyClass> Ptr; Is the only purpose to save typing boost::shared_ptr? If that is the case why not do #define Ptr boost::shared_ptr in one common header? Then you can do: Ptr<MyClass> myClass(new MyClass); which is no more typing than MyClass::Ptr myClass(new MyClass); and saves the Ptr definition in each class.

    Read the article

  • How to use boost::fusion::transform on heterogeneous containers?

    - by Kyle
    Boost.org's example given for fusion::transform is as follows: struct triple { typedef int result_type; int operator()(int t) const { return t * 3; }; }; // ... assert(transform(make_vector(1,2,3), triple()) == make_vector(3,6,9)); Yet I'm not "getting it." The vector in their example contains elements all of the same type, but a major point of using fusion is containers of heterogeneous types. What if they had used make_vector(1, 'a', "howdy") instead? int operator()(int t) would need to become template<typename T> T& operator()(T& const t) But how would I write the result_type? template<typename T> typedef T& result_type certainly isn't valid syntax, and it wouldn't make sense even if it was, because it's not tied to the function.

    Read the article

  • Simple and efficient distribution of C++/Boost source code (amalgamation)

    - by Arrieta
    Hello: My job mostly consists of engineering analysis, but I find myself distributing code more and more frequently among my colleagues. A big pain is that not every user is proficient in the intricacies of compiling source code, and I cannot distribute executables. I've been working with C++ using Boost, and the problem is that I cannot request every sysadmin of every network to install the libraries. Instead, I want to distribute a single source file (or as few as possible) so that the user can g++ source.c -o program. So, the question is: can you pack the Boost libraries with your code, and end up with a single file? I am talking about the Boost libraries which are "headers only" or "templates only". As an inspiration, please look at the distribution of SQlite or the Lemon Parser Generator; the author amalgamates the stuff into a single source file which is trivial to compile. Thank you.

    Read the article

  • HowTo parse numbers from string with BOOST methods?

    - by mosg
    Problem: Visual C++ 10 project (using MFC and Boost libraries). In one of my methods I'm reading simple test.txt file. Here is what inside of the file (std::string): 12 asdf789, 54,19 1000 nsfewer:22!13 Then I'm reading it and I have to convert all digits to int only with boost methods. For example, I have a list of different characters which I have to parse: ( ’ ' ) ( [ ], ( ), { }, ? ? ) ( : ) ( , ) ( ! ) ( . ) ( - ) ( ? ) ( ‘ ’, “ ”, « » ) ( ; ) ( / ) And after conversation I must have some kind of a massive of int's values, like this one: 12,789,54,19,1000,22,13 Maybe some one already did this job? PS. I'm new for boost. Thanks!

    Read the article

  • C++ Boost bind value type

    - by aaa
    hello. I look in documentation and source code but cannot figure out how to get return value type of boost bind functor. I am trying to accomplish following: 35 template<typename T,size_t N, class F> 36 boost::array<typename F::value_type, N> make_array(T (&input)[N], F unary) { 37 boost::array<typename F::value_type, N> array; 38 std::transform(input, input + N, array.begin(), unary); 39 return array; 40 } where F can be bind functor. the above does not work because functor does not have value_type. for that matter, is there standard interface for unary/binary functor as far as return value. Thanks

    Read the article

  • Problem with basic program using Boost Threads in c++

    - by Eternal Learner
    I have a simple program which creates and executes as thread using boost threads in c++. #include<boost/thread/thread.hpp> #include<iostream> void hello() { std::cout<<"Hello, i am a thread"<<std::endl; } int main() { boost::thread th1(&hello); th1.join(); } The compiler throws an error against the th1.join() line. It says " Multiple markers at this line - undefined reference to `boost::thread::join()' - undefined reference to `boost::thread::~thread()' "

    Read the article

  • thread destructors in C++0x vs boost

    - by Abruzzo Forte e Gentile
    Hi All These days I am reading the pdf Designing MT programs . It explains that the user MUST explicitly call detach() on an object of class std::thread in C++0x before that object gets out of scope. If you don't call it std::terminate() will be called and the application will die. I usually use boost::thread for threading in C++. Correct me if I am wrong but a boost::thread object detaches automatically when it get out of scope. Is seems to me that the boost approach follow a RAII principle and the std doesn't. Do you know if there is some particular reason for this? Kind Regards AFG

    Read the article

  • Linking error in OMNeT++ using Boost serialization library

    - by astriffe
    I'm very new to OMNeT++ and I'd like to use the serialization-library contained in the boost framework. However, when trying to use it, I get quite many errors such as: Description Resource Path Location Type undefined reference to `boost::archive::archive_exception::~archive_exception()' OmCCN line 36, external location: /home/alexander/UniBE/BT/simulator/boost-compiledLibs /include/boost/serialization/throw_exception.hpp C/C++ Problem . I guess the problem is that I didn't yet link the compiled library in OMNeT. I've had a look at the makefile but any changes there are worthless since it is generated automatically by makemake. Furthermore, trying to access the menu item 'makemake' in project properties OMNeT++ IDE throws an error (The currently displayed page contains invalid values). Can anyone give me a hint concerning what the error could cause or how to link the compiled library correctly? Any hints are very appreciated! cheers alex

    Read the article

  • Boost Shared Pointers and Memory Management

    - by Izza
    I began using boost rather recently and am impressed by the functionality and APIs provided. In using boost::shared_ptr, when I check the program with Valgrind, I found a considerable number of "Still reachable" memory leaks. As per the documentation of Valgrind, these are not a problem. However, since I used to use the standard C++ library only, I always made sure that any program written is completely free from memory leaks. My question is, are these memory leaks something to worry about? I tried using reset(), however it only decrements the reference count, doesn't deallocate memory. Can I safely ignore these, or any way to forcibly deallocate the memory allocated by boost::shared_ptr? Thank you.

    Read the article

  • C++ Boost bind value type {solved}

    - by aaa
    hello. I look in documentation and source code but cannot figure out how to get return value type of boost bind functor. I am trying to accomplish following: 35 template<typename T,size_t N, class F> 36 boost::array<typename F::value_type, N> make_array(T (&input)[N], F unary) { 37 boost::array<typename F::value_type, N> array; 38 std::transform(input, input + N, array.begin(), unary); 39 return array; 40 } where F can be bind functor. the above does not work because functor does not have value_type. for that matter, is there standard interface for unary/binary functor as far as return value. solution: it should be result_type. also equivalent defined are argument_type and first/second_argument_type for binary functions Thanks

    Read the article

  • What's up with OCFS2?

    - by wcoekaer
    On Linux there are many filesystem choices and even from Oracle we provide a number of filesystems, all with their own advantages and use cases. Customers often confuse ACFS with OCFS or OCFS2 which then causes assumptions to be made such as one replacing the other etc... I thought it would be good to write up a summary of how OCFS2 got to where it is, what we're up to still, how it is different from other options and how this really is a cool native Linux cluster filesystem that we worked on for many years and is still widely used. Work on a cluster filesystem at Oracle started many years ago, in the early 2000's when the Oracle Database Cluster development team wrote a cluster filesystem for Windows that was primarily focused on providing an alternative to raw disk devices and help customers with the deployment of Oracle Real Application Cluster (RAC). Oracle RAC is a cluster technology that lets us make a cluster of Oracle Database servers look like one big database. The RDBMS runs on many nodes and they all work on the same data. It's a Shared Disk database design. There are many advantages doing this but I will not go into detail as that is not the purpose of my write up. Suffice it to say that Oracle RAC expects all the database data to be visible in a consistent, coherent way, across all the nodes in the cluster. To do that, there were/are a few options : 1) use raw disk devices that are shared, through SCSI, FC, or iSCSI 2) use a network filesystem (NFS) 3) use a cluster filesystem(CFS) which basically gives you a filesystem that's coherent across all nodes using shared disks. It is sort of (but not quite) combining option 1 and 2 except that you don't do network access to the files, the files are effectively locally visible as if it was a local filesystem. So OCFS (Oracle Cluster FileSystem) on Windows was born. Since Linux was becoming a very important and popular platform, we decided that we would also make this available on Linux and thus the porting of OCFS/Windows started. The first version of OCFS was really primarily focused on replacing the use of Raw devices with a simple filesystem that lets you create files and provide direct IO to these files to get basically native raw disk performance. The filesystem was not designed to be fully POSIX compliant and it did not have any where near good/decent performance for regular file create/delete/access operations. Cache coherency was easy since it was basically always direct IO down to the disk device and this ensured that any time one issues a write() command it would go directly down to the disk, and not return until the write() was completed. Same for read() any sort of read from a datafile would be a read() operation that went all the way to disk and return. We did not cache any data when it came down to Oracle data files. So while OCFS worked well for that, since it did not have much of a normal filesystem feel, it was not something that could be submitted to the kernel mail list for inclusion into Linux as another native linux filesystem (setting aside the Windows porting code ...) it did its job well, it was very easy to configure, node membership was simple, locking was disk based (so very slow but it existed), you could create regular files and do regular filesystem operations to a certain extend but anything that was not database data file related was just not very useful in general. Logfiles ok, standard filesystem use, not so much. Up to this point, all the work was done, at Oracle, by Oracle developers. Once OCFS (1) was out for a while and there was a lot of use in the database RAC world, many customers wanted to do more and were asking for features that you'd expect in a normal native filesystem, a real "general purposes cluster filesystem". So the team sat down and basically started from scratch to implement what's now known as OCFS2 (Oracle Cluster FileSystem release 2). Some basic criteria were : Design it with a real Distributed Lock Manager and use the network for lock negotiation instead of the disk Make it a Linux native filesystem instead of a native shim layer and a portable core Support standard Posix compliancy and be fully cache coherent with all operations Support all the filesystem features Linux offers (ACL, extended Attributes, quotas, sparse files,...) Be modern, support large files, 32/64bit, journaling, data ordered journaling, endian neutral, we can mount on both endian /cross architecture,.. Needless to say, this was a huge development effort that took many years to complete. A few big milestones happened along the way... OCFS2 was development in the open, we did not have a private tree that we worked on without external code review from the Linux Filesystem maintainers, great folks like Christopher Hellwig reviewed the code regularly to make sure we were not doing anything out of line, we submitted the code for review on lkml a number of times to see if we were getting close for it to be included into the mainline kernel. Using this development model is standard practice for anyone that wants to write code that goes into the kernel and having any chance of doing so without a complete rewrite or.. shall I say flamefest when submitted. It saved us a tremendous amount of time by not having to re-fit code for it to be in a Linus acceptable state. Some other filesystems that were trying to get into the kernel that didn't follow an open development model had a lot harder time and a lot harsher criticism. March 2006, when Linus released 2.6.16, OCFS2 officially became part of the mainline kernel, it was accepted a little earlier in the release candidates but in 2.6.16. OCFS2 became officially part of the mainline Linux kernel tree as one of the many filesystems. It was the first cluster filesystem to make it into the kernel tree. Our hope was that it would then end up getting picked up by the distribution vendors to make it easy for everyone to have access to a CFS. Today the source code for OCFS2 is approximately 85000 lines of code. We made OCFS2 production with full support for customers that ran Oracle database on Linux, no extra or separate support contract needed. OCFS2 1.0.0 started being built for RHEL4 for x86, x86-64, ppc, s390x and ia64. For RHEL5 starting with OCFS2 1.2. SuSE was very interested in high availability and clustering and decided to build and include OCFS2 with SLES9 for their customers and was, next to Oracle, the main contributor to the filesystem for both new features and bug fixes. Source code was always available even prior to inclusion into mainline and as of 2.6.16, source code was just part of a Linux kernel download from kernel.org, which it still is, today. So the latest OCFS2 code is always the upstream mainline Linux kernel. OCFS2 is the cluster filesystem used in Oracle VM 2 and Oracle VM 3 as the virtual disk repository filesystem. Since the filesystem is in the Linux kernel it's released under the GPL v2 The release model has always been that new feature development happened in the mainline kernel and we then built consistent, well tested, snapshots that had versions, 1.2, 1.4, 1.6, 1.8. But these releases were effectively just snapshots in time that were tested for stability and release quality. OCFS2 is very easy to use, there's a simple text file that contains the node information (hostname, node number, cluster name) and a file that contains the cluster heartbeat timeouts. It is very small, and very efficient. As Sunil Mushran wrote in the manual : OCFS2 is an efficient, easily configured, quickly installed, fully integrated and compatible, feature-rich, architecture and endian neutral, cache coherent, ordered data journaling, POSIX-compliant, shared disk cluster file system. Here is a list of some of the important features that are included : Variable Block and Cluster sizes Supports block sizes ranging from 512 bytes to 4 KB and cluster sizes ranging from 4 KB to 1 MB (increments in power of 2). Extent-based Allocations Tracks the allocated space in ranges of clusters making it especially efficient for storing very large files. Optimized Allocations Supports sparse files, inline-data, unwritten extents, hole punching and allocation reservation for higher performance and efficient storage. File Cloning/snapshots REFLINK is a feature which introduces copy-on-write clones of files in a cluster coherent way. Indexed Directories Allows efficient access to millions of objects in a directory. Metadata Checksums Detects silent corruption in inodes and directories. Extended Attributes Supports attaching an unlimited number of name:value pairs to the file system objects like regular files, directories, symbolic links, etc. Advanced Security Supports POSIX ACLs and SELinux in addition to the traditional file access permission model. Quotas Supports user and group quotas. Journaling Supports both ordered and writeback data journaling modes to provide file system consistency in the event of power failure or system crash. Endian and Architecture neutral Supports a cluster of nodes with mixed architectures. Allows concurrent mounts on nodes running 32-bit and 64-bit, little-endian (x86, x86_64, ia64) and big-endian (ppc64) architectures. In-built Cluster-stack with DLM Includes an easy to configure, in-kernel cluster-stack with a distributed lock manager. Buffered, Direct, Asynchronous, Splice and Memory Mapped I/Os Supports all modes of I/Os for maximum flexibility and performance. Comprehensive Tools Support Provides a familiar EXT3-style tool-set that uses similar parameters for ease-of-use. The filesystem was distributed for Linux distributions in separate RPM form and this had to be built for every single kernel errata release or every updated kernel provided by the vendor. We provided builds from Oracle for Oracle Linux and all kernels released by Oracle and for Red Hat Enterprise Linux. SuSE provided the modules directly for every kernel they shipped. With the introduction of the Unbreakable Enterprise Kernel for Oracle Linux and our interest in reducing the overhead of building filesystem modules for every minor release, we decide to make OCFS2 available as part of UEK. There was no more need for separate kernel modules, everything was built-in and a kernel upgrade automatically updated the filesystem, as it should. UEK allowed us to not having to backport new upstream filesystem code into an older kernel version, backporting features into older versions introduces risk and requires extra testing because the code is basically partially rewritten. The UEK model works really well for continuing to provide OCFS2 without that extra overhead. Because the RHEL kernel did not contain OCFS2 as a kernel module (it is in the source tree but it is not built by the vendor in kernel module form) we stopped adding the extra packages to Oracle Linux and its RHEL compatible kernel and for RHEL. Oracle Linux customers/users obviously get OCFS2 included as part of the Unbreakable Enterprise Kernel, SuSE customers get it by SuSE distributed with SLES and Red Hat can decide to distribute OCFS2 to their customers if they chose to as it's just a matter of compiling the module and making it available. OCFS2 today, in the mainline kernel is pretty much feature complete in terms of integration with every filesystem feature Linux offers and it is still actively maintained with Joel Becker being the primary maintainer. Since we use OCFS2 as part of Oracle VM, we continue to look at interesting new functionality to add, REFLINK was a good example, and as such we continue to enhance the filesystem where it makes sense. Bugfixes and any sort of code that goes into the mainline Linux kernel that affects filesystems, automatically also modifies OCFS2 so it's in kernel, actively maintained but not a lot of new development happening at this time. We continue to fully support OCFS2 as part of Oracle Linux and the Unbreakable Enterprise Kernel and other vendors make their own decisions on support as it's really a Linux cluster filesystem now more than something that we provide to customers. It really just is part of Linux like EXT3 or BTRFS etc, the OS distribution vendors decide. Do not confuse OCFS2 with ACFS (ASM cluster Filesystem) also known as Oracle Cloud Filesystem. ACFS is a filesystem that's provided by Oracle on various OS platforms and really integrates into Oracle ASM (Automatic Storage Management). It's a very powerful Cluster Filesystem but it's not distributed as part of the Operating System, it's distributed with the Oracle Database product and installs with and lives inside Oracle ASM. ACFS obviously is fully supported on Linux (Oracle Linux, Red Hat Enterprise Linux) but OCFS2 independently as a native Linux filesystem is also, and continues to also be supported. ACFS is very much tied into the Oracle RDBMS, OCFS2 is just a standard native Linux filesystem with no ties into Oracle products. Customers running the Oracle database and ASM really should consider using ACFS as it also provides storage/clustered volume management. Customers wanting to use a simple, easy to use generic Linux cluster filesystem should consider using OCFS2. To learn more about OCFS2 in detail, you can find good documentation on http://oss.oracle.com/projects/ocfs2 in the Documentation area, or get the latest mainline kernel from http://kernel.org and read the source. One final, unrelated note - since I am not always able to publicly answer or respond to comments, I do not want to selectively publish comments from readers. Sometimes I forget to publish comments, sometime I publish them and sometimes I would publish them but if for some reason I cannot publicly comment on them, it becomes a very one-sided stream. So for now I am going to not publish comments from anyone, to be fair to all sides. You are always welcome to email me and I will do my best to respond to technical questions, questions about strategy or direction are sometimes not possible to answer for obvious reasons.

    Read the article

  • Does the FAT filesystem have a signature?

    - by DxCK
    Given the following BPB: The "MSWIN4.1" string is just the "OEM ID" field, and by Microsoft documentation it should not be used to identify FAT volumes. The "FAT32 " string is the BS_FilSysType field, and by Microsoft documentation it should not be used to identify FAT volumes either. So how do i identify that the volume is formatted to FAT? Is there any reliable signature I can relay on?

    Read the article

  • Filesystem synchronization library?

    - by IsaacB
    Hi, I've got 10 GB of files to back up daily to another site. The client is way out in the country so bandwidth is an issue. Does anyone know of any existing software or libraries out there that help with keeping a folder with its files synchronized across a slow link, that is it only sends files across if they have changed? Some kind of hash checking would be nice, too, to at least confirm the two sides are the same. I don't mind paying some money for it, seeing as how it might take me several weeks to a month to implement something decent on my own. I just don't want to re-invent the wheel, here. BTW it is a windows shop (they have an in house windows IT guy) so windows is preferred. I also have 10 GB of SQL Server 2000 databases to go across. Is the SQL server replication mode reliable? Thanks!

    Read the article

  • iPhone filesystem permissions POSIX-compliant?

    - by Seva Alekseyev
    Hi all, I'm trying to pass some files from one app to another. I communicate the path (via a custom URL). The target application cannot read the file, citing errno 13 (permission denied). I've checked the permissions on file - they're 0644 (O+R), the permissions on directories all the way up to the root are 755 (O+RX). From a POSIX perspective, the file should be readable to any process and any user. Yet it's not. Any ideas, please? I can think of some workarounds. I could use a Web service (upload, get a cookie, communicate the cookie to the other app, other app downloads). I could also pass the actual file data in the URL - unelegant, and probably subject to length limitations. Clipboard is not supported on iPhone OS 2 IIRC.

    Read the article

  • iPhone filesystem POSIX-compliant?

    - by Seva Alekseyev
    Hi all, I'm trying to pass some files from one app to another. I communicate the path (via a custom URL). The target application cannot read the file, citing errno 13 (permission denied). I've checked the permissions on file - they're 0644 (O+R), the permissions on directories all the way up to the root are 755 (O+RX). From a POSIX perspective, the file should be readable to any process and any user. Yet it's not. Any ideas, please? I can think of some workarounds. I could use a Web service (upload, get a cookie, communicate the cookie to the other app, other app downloads). I could also pass the actual file data in the URL - unelegant, and probably subject to length limitations. Clipboard is not supported on iPhone OS 2 IIRC.

    Read the article

  • Cross Compiling Boost for use on the Gumstix Overo with GumROS

    - by amelim
    I'm trying to cross-compile boost for use with the ROS framework on a Gumstix Overo. I've been following the posted instructions here (modifying the script when need be), however I've come across an issue where bjam will not compile boost properly. I call bjam as follows: # boost if [ ! -f /opt/gumros/lib/libboost_date_time-gcc41-mt-1_38.so ] ; then if [ ! -f boost_1_38_0.tar.gz ] ; then wget --tries=10 http://heanet.dl.sourceforge.net/sourceforge/boost/boost_1_38_0.tar.gz fi # tar xzf boost_1_38_0.tar.gz cd boost_1_38_0 GPP_PATH=${OVEROTOP}/tmp/cross/armv7a/arm-angstrom-linux-gnueabi/bin/g++ GPP_VER=`${GPP_PATH} -v 2>&1 | tail -1 | awk '{print $3}'` echo "using gcc : ${GPP_VER} : ${GPP_PATH} ; " > tools/build/v2/user-config.jam sudo apt-get install bjam set +o errexit sudo bjam --toolset=gcc-${GPP_VER} --prefix=/opt/gumros --with-date_time install set -o errexit cd .. else echo "boost appears to be already installed; skipping." fi if [ ! -f /opt/gumros/lib/libboost_date_time-gcc41-mt-1_38.so ] ; then echo "Failed to compile libboost_date_time"; exit; fi I've checked the user-config to make sure everything was kosher as well as making sure the GPP_PATH is correct. However, when I run the scrip I come across compilation errors such as: Reading package lists... Done Building dependency tree Reading state information... Done bjam is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 5 not upgraded. ...patience... ...found 14370 targets... ...updating 14 targets... gcc.compile.c++ bin.v2/libs/date_time/build/gcc-4.3.3/release/threading-multi/gregorian/greg_month.o g++: error trying to exec 'cc1plus': execvp: No such file or directory "/home/andrew/overo-oe/tmp/cross/armv7a/arm-angstrom-linux-gnueabi/bin/g++" -ftemplate-depth-128 -O3 -finline-functions -Wno-inline -Wall -pthread -fPIC -DBOOST_ALL_DYN_LINK=1 -DBOOST_ALL_NO_LIB=1 -DDATE_TIME_INLINE -DNDEBUG -I"." -c -o "bin.v2/libs/date_time/build/gcc-4.3.3/release/threading-multi/gregorian/greg_month.o" "libs/date_time/src/gregorian/greg_month.cpp" ...failed gcc.compile.c++ bin.v2/libs/date_time/build/gcc-4.3.3/release/threading-multi/gregorian/greg_month.o... gcc.compile.c++ bin.v2/libs/date_time/build/gcc-4.3.3/release/threading-multi/gregorian/greg_weekday.o g++: error trying to exec 'cc1plus': execvp: No such file or directory "/home/andrew/overo-oe/tmp/cross/armv7a/arm-angstrom-linux-gnueabi/bin/g++" -ftemplate-depth-128 -O3 -finline-functions -Wno-inline -Wall -pthread -fPIC -DBOOST_ALL_DYN_LINK=1 -DBOOST_ALL_NO_LIB=1 -DDATE_TIME_INLINE -DNDEBUG -I"." -c -o "bin.v2/libs/date_time/build/gcc-4.3.3/release/threading-multi/gregorian/greg_weekday.o" "libs/date_time/src/gregorian/greg_weekday.cpp" ...failed gcc.compile.c++ bin.v2/libs/date_time/build/gcc-4.3.3/release/threading-multi/gregorian/greg_weekday.o... gcc.compile.c++ bin.v2/libs/date_time/build/gcc-4.3.3/release/threading-multi/gregorian/date_generators.o g++: error trying to exec 'cc1plus': execvp: No such file or directory Etc... For reference, I'm using this tutorial to help me out. http://www.ros.org/wiki/gumros

    Read the article

  • Boost::Spirit::Qi autorules -- avoiding repeated copying of AST data structures

    - by phooji
    I've been using Qi and Karma to do some processing on several small languages. Most of the grammars are pretty small (20-40 rules). I've been able to use autorules almost exclusively, so my parse trees consist entirely of variants, structs, and std::vectors. This setup works great for the common case: 1) parse something (Qi), 2) make minor manipulations to the parse tree (visitor), and 3) output something (Karma). However, I'm concerned about what will happen if I want to make complex structural changes to a syntax tree, like moving big subtrees around. Consider the following toy example: A grammar for s-expr-style logical expressions that uses autorules... // Inside grammar class; rule names match struct names... pexpr %= pand | por | var | bconst; pand %= lit("(and ") >> (pexpr % lit(" ")) >> ")"; por %= lit("(or ") >> (pexpr % lit(" ")) >> ")"; pnot %= lit("(not ") >> pexpr >> ")"; ... which leads to parse tree representation that looks like this... struct var { std::string name; }; struct bconst { bool val; }; struct pand; struct por; struct pnot; typedef boost::variant<bconst, var, boost::recursive_wrapper<pand>, boost::recursive_wrapper<por>, boost::recursive_wrapper<pnot> > pexpr; struct pand { std::vector<pexpr> operands; }; struct por { std::vector<pexpr> operands; }; struct pnot { pexpr victim; }; // Many Fusion Macros here Suppose I have a parse tree that looks something like this: pand / ... \ por por / \ / \ var var var var (The ellipsis means 'many more children of similar shape for pand.') Now, suppose that I want negate each of the por nodes, so that the end result is: pand / ... \ pnot pnot | | por por / \ / \ var var var var The direct approach would be, for each por subtree: - create pnot node (copies por in construction); - re-assign the appropriate vector slot in the pand node (copies pnot node and its por subtree). Alternatively, I could construct a separate vector, and then replace (swap) the pand vector wholesale, eliminating a second round of copying. All of this seems cumbersome compared to a pointer-based tree representation, which would allow for the pnot nodes to be inserted without any copying of existing nodes. My question: Is there a way to avoid copy-heavy tree manipulations with autorule-compliant data structures? Should I bite the bullet and just use non-autorules to build a pointer-based AST (e.g., http://boost-spirit.com/home/2010/03/11/s-expressions-and-variants/)?

    Read the article

  • Turn off the warnings due to boost library

    - by Rahul
    Hello All, I am building an application in C++, Mac OS X, Qt and using boost libraries. Every time i build a project I get a huge list of warnings only from boost libraries itself. I want to turn off them so that I can see only my project specific warnings and errors. Can anybody help me? Thanks, Rahul

    Read the article

  • Boost.Thread Linking - boost_thread vs. boost_thread-mt

    - by Robert S. Barnes
    It's not clear to me what linking options exist for the Boost.Thread 1.34.1 library. I'm on Ubuntu 8.04 and I've found that using eitherr boost_thread or boost_thread-mt during linking both compile and run, but I don't see any documentation on these or any other linking options in above link. What Boost.Thread linking options are available and what do the mean?

    Read the article

  • How to turn off Turbo Boost temporarily?

    - by actual
    In our application we have many versions of the same routine optimized for different kind of processor architectures. During install we run performance tests and select the best version of routine. Latest processors can boost their frequencies if few cores are in use, so sometimes our tests peeking wrong version of routine. Is there some way to temporarily turn off Turbo Boost?

    Read the article

  • Boost::binary<>

    - by atch
    Hi, Is there anything in boost libraries like binary? For example I would like to write: binary<10101> a; I'm ashamed to admit that I've tried to find it (Google, Boost) but no results. They're mention something about binary_int< but I couldn't find neither if it is available nor what header file shall I include; Thanks for help.

    Read the article

  • Unable to capture standard output of process using Boost.Process

    - by Chris Kaminski
    Currently am using Boost.Process from the Boost sandbox, and am having issues getting it to capture my standard output properly; wondering if someone can give me a second pair of eyeballs into what I might be doing wrong. I'm trying to take thumbnails out of RAW camera images using DCRAW (latest version), and capture them for conversion to QT QImage's. The process launch function: namespace bf = ::boost::filesystem; namespace bp = ::boost::process; QImage DCRawInterface::convertRawImage(string path) { // commandline: dcraw -e -c <srcfile> -> piped to stdout. if ( bf::exists( path ) ) { std::string exec = "bin\\dcraw.exe"; std::vector<std::string> args; args.push_back("-v"); args.push_back("-c"); args.push_back("-e"); args.push_back(path); bp::context ctx; ctx.stdout_behavior = bp::capture_stream(); bp::child c = bp::launch(exec, args, ctx); bp::pistream &is = c.get_stdout(); ofstream output("C:\\temp\\testcfk.jpg"); streamcopy(is, output); } return (NULL); } inline void streamcopy(std::istream& input, std::ostream& out) { char buffer[4096]; int i = 0; while (!input.eof() ) { memset(buffer, 0, sizeof(buffer)); int bytes = input.readsome(buffer, sizeof buffer); out.write(buffer, bytes); i++; } } Invoking the converter: DCRawInterface DcRaw; DcRaw.convertRawImage("test/CFK_2439.NEF"); The goal is to simply verify that I can copy the input stream to an output file. Currently, if I comment out the following line: args.push_back("-c"); then the thumbnail is written by DCRAW to the source directory with a name of CFK_2439.thumb.jpg, which proves to me that the process is getting invoked with the right arguments. What's not happening is connecting to the output pipe properly. FWIW: I'm performing this test on Windows XP under Eclipse 3.5/Latest MingW (GCC 4.4).

    Read the article

  • Boost Jam vs Jam

    - by User1
    I recently built the Boost libraries in Linux and noticed the package needed an executable called bjam in order to do the build. Is bjam related to jam? If it is related to jam, did they somehow extend (or even dumb-down) bjam? Is it used only for building Boost libraries or is it a general build tool for anything?

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >