Search Results

Search found 16930 results on 678 pages for 'entity model'.

Page 13/678 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • Entity Relationship Diagram - Relationship Strength?

    - by 01010011
    Hi, I am trying to figure out under what circumstances I should use weak (non-identifying) relationships (where the primary key of the related entity does not contain a primary key component of the parent entity), verses when I should use strong (identifying) relationships (primary key of the related entity contains a primary key component of the parent entity). For example, when designing an Entity Relationship Diagram , if I have two entities, (e.g. book and purchaser), how do I know when to choose the solid Crows Foot or the dashed Crows Foot to connect the two entities? Any assistance will be appreciated. Thanks in advance.

    Read the article

  • Entity Framework mant to many insert

    - by Jacob
    I've been playing around with Entity Framework v2 and added some code to insert new entity with many to many relationship , lets say this entity is called meeting. I add hours to meeting : meeting.Hours.Add(hour); and I get different errors on different occasions On Update : Cannot insert the value NULL into column 'Meetings_Id', table 'Plan.dbo.MeetingHour'; column does not allow nulls. INSERT fails. The statement has been terminated. On Inset : An item with the same key has already been added. But the tricky party is that if I add this manually trough SQL Server Management Studio , I can update the entity with the same value , clearing it first (meeting.Hour.Clear()) Can't see what could be the problem , maybe entity model isn't mapped correctly ?

    Read the article

  • flex/actionscript client entity state refresh on JPA update using Pimento EntityManager

    - by Chris
    My Flex application uses a client-side pimento EntityManager which fetches quite a few objects and associations. It does this by forcing eager fetching of particular association ends in the form of fetch plans. I would like to update the client whenever a change has been made to an entity existing in the EntityManager's cache. Is it possible to update the state of the changed entity ONLY, including updating which entities are associated, without resetting the state of these associated entities? I have setup an EntityListener with a JPA post-update method that notifies clients when a persisted entity has been updated. I want this to trigger a refresh for the modified client-side entity, but calling EntityManager.refresh(entity) resets all lazy associations to proxies. Initializing these proxies resets the associated entities, even if they were loaded previously. I'm looking for an efficient way to keep the client's state in synch with the server's state, at least with respect to the entities that have already been retrieved by the initial load.

    Read the article

  • EF 4.1 Code First Detaching Entity

    - by Nazaf
    I am trying to add an entity to the DB. Once I have added it, I want to detach it, so I can manipulate the object safely without making any changes to the DB. After calling context.SaveChanges() I do the following to detach the entity: // save context.Stories.Add(story); // attach tags. They already exists in the database foreach(var tag in story.Tags) context.Entry(tag).State = System.Data.EntityState.Unchanged; context.SaveChanges(); context.Entry(story).State = System.Data.EntityState.Detached; However, changing the entity state to DETACHED will remove all related entities associated with the my entity. Is there a way to stop this ? If I don't detach the entity, all my changes are sent to the DB next time I call context.SaveChanges() Thanks!!

    Read the article

  • Slides and links for Entity Framework 4 and Azure from Devweek 2010

    - by Eric Nelson
    Last week (March 2010) I presented on Entity Framework 4 and the Windows Azure Platform at www.devweek.com. As usual, it was a great conference and I caught up with lots of old friends and made some new ones along the way. Entity Framework 4 Entity Framework 4 In Microsoft Visual Studio 2010 View more presentations from Eric Nelson. Windows Azure and SQL Azure Building An Application For Windows Azure And Sql Azure View more presentations from Eric Nelson. Entity Framework 4 Related Links Poll on Entity Framework 4 – one year on 101 EF4 Resources Recent resources on Entity Framework 4 Installing all the bits to demo Entity Framework 4 on the Visual Studio 2010 Release Candidate Azure Related Links UK Azure Online Community – join today. UK Windows Azure Site Start working with Windows Azure TCO and ROI calculator for Windows Azure

    Read the article

  • Entity Framework with large systems - how to divide models?

    - by jkohlhepp
    I'm working with a SQL Server database with 1000+ tables, another few hundred views, and several thousand stored procedures. We are looking to start using Entity Framework for our newer projects, and we are working on our strategy for doing so. The thing I'm hung up on is how best to split the tables into different models (EDMX or DbContext if we go code first). I can think of a few strategies right off the bat: Split by schema We have our tables split across probably a dozen schemas. We could do one model per schema. This isn't perfect, though, because dbo still ends up being very large, with 500+ tables / views. Another problem is that certain units of work will end up having to do transactions that span multiple models, which adds to complexity, although I assume EF makes this fairly straightforward. Split by intent Instead of worrying about schemas, split the models by intent. So we'll have different models for each application, or project, or module, or screen, depending on how granular we want to get. The problem I see with this is that there are certain tables that inevitably have to be used in every case, such as User or AuditHistory. Do we add those to every model (violates DRY I think), or are those in a separate model that is used by every project? Don't split at all - one giant model This is obviously simple from a development perspective but from my research and my intuition this seems like it could perform terribly, both at design time, compile time, and possibly run time. What is the best practice for using EF against such a large database? Specifically what strategies do people use in designing models against this volume of DB objects? Are there options that I'm not thinking of that work better than what I have above? Also, is this a problem in other ORMs such as NHibernate? If so have they come up with any better solutions than EF?

    Read the article

  • Complex Entity Framework linked-graphs issue: how to limit change set / break the graph?

    - by Hightechrider
    I have an EDMX containing Sentences, and Words, say and a Sentence contains three Words, say. Appropriate FK relationships exist between the tables. I create some words: Word word1 = new Word(); Word word2 = ... I build a Sentence: Sentence x = new Sentence (word1, word2, word3); I build another Sentence: Sentence y = new Sentence (word1, word4, word5); I try to save x to the database, but EF builds a change set that includes everything, including y, word4 and word5 that aren't ready to save to the database. When SaveChanges() happens it throws an exception: Unable to determine the principal end of the ... relationship. Multiple added entities may have the same primary key. I think it does this because Word has an EntityCollection<Sentence> on it from the FK relationship between the two tables, and thus Sentence y is inextricably linked to Sentence x through word1. So I remove the Navigation Property Sentences from Word and try again. It still tries to put the entire graph into the change set. What suggestions do the Entity Framework experts have for ways to break this connection. Essentially what I want is a one-way mapping from Sentence to Word; I don't want an EntityCollection<Sentence> on Word and I don't want the object graph to get intertwined like this. Code sample: This puts two sentences into the database because Verb1 links them and EF explores the entire graph of existing objects and added objects when you do Add/SaveChanges. Word subject1 = new Word(){ Text = "Subject1"}; Word subject2 = new Word(){ Text = "Subject2"}; Word verb1 = new Word(){ Text = "Verb11"}; Word object1 = new Word(){ Text = "Object1"}; Word object2 = new Word(){ Text = "Object2"}; Sentence s1 = new Sentence(){Subject = subject1, Verb=verb1, Object=object1}; Sentence s2 = new Sentence(){Subject=subject2, Verb=verb1, Object=object2}; context.AddToSentences(s1); context.SaveChanges(); foreach (var s in context.Sentences) { Console.WriteLine(s.Subject + " " + s.Verb + " " + s.Object); }

    Read the article

  • How far should an entity take care of its properties values by itself?

    - by Kharlos Dominguez
    Let's consider the following example of a class, which is an entity that I'm using through Entity Framework. - InvoiceHeader - BilledAmount (property, decimal) - PaidAmount (property, decimal) - Balance (property, decimal) I'm trying to find the best approach to keep Balance updated, based on the values of the two other properties (BilledAmount and PaidAmount). I'm torn between two practices here: Updating the balance amount every time BilledAmount and PaidAmount are updated (through their setters) Having a UpdateBalance() method that the callers would run on the object when appropriate. I am aware that I can just calculate the Balance in its getter. However, it isn't really possible because this is an entity field that needs to be saved back to the database, where it has an actual column, and where the calculated amount should be persisted to. My other worry about the automatically updating approach is that the calculated values might be a little bit different from what was originally saved to the database, due to rounding values (an older version of the software, was using floats, but now decimals). So, loading, let's say 2000 entities from the database could change their status and make the ORM believe that they have changed and be persisted back to the database the next time the SaveChanges() method is called on the context. It would trigger a mass of updates that I am not really interested in, or could cause problems, if the calculation methods changed (the entities fetched would lose their old values to be replaced by freshly recalculated ones, simply by being loaded). Then, let's take the example even further. Each invoice has some related invoice details, which also have BilledAmount, PaidAmount and Balance (I'm simplifying my actual business case for the sake of the example, so let's assume the customer can pay each item of the invoice separately rather than as a whole). If we consider the entity should take care of itself, any change of the child details should cause the Invoice totals to change as well. In a fully automated approach, a simple implementation would be looping through each detail of the invoice to recalculate the header totals, every time one the property changes. It probably would be fine for just a record, but if a lot of entities were fetched at once, it could create a significant overhead, as it would perform this process every time a new invoice detail record is fetched. Possibly worse, if the details are not already loaded, it could cause the ORM to lazy-load them, just to recalculate the balances. So far, I went with the Update() method-way, mainly for the reasons I explained above, but I wonder if it was right. I'm noticing I have to keep calling these methods quite often and at different places in my code and it is potential source of bugs. It also has a detrimental effect on data-binding because when the properties of the detail or header changes, the other properties are left out of date and the method has no way to be called. What is the recommended approach in this case?

    Read the article

  • Extend base type and automatically update audit information on Entity

    - by Nix
    I have an entity model that has audit information on every table (50+ tables) CreateDate CreateUser UpdateDate UpdateUser Currently we are programatically updating audit information. Ex: if(changed){ entity.UpdatedOn = DateTime.Now; entity.UpdatedBy = Environment.UserName; context.SaveChanges(); } But I am looking for a more automated solution. During save changes, if an entity is created/updated I would like to automatically update these fields before sending them to the database for storage. Any suggestion on how i could do this? I would prefer to not do any reflection, so using a text template is not out of the question. A solution has been proposed to override SaveChanges and do it there, but in order to achieve this i would either have to use reflection (in which I don't want to do ) or derive a base class. Assuming i go down this route how would I achieve this? For example EXAMPLE_DB_TABLE CODE NAME --Audit Tables CREATE_DATE CREATE_USER UPDATE_DATE UPDATE_USER And if i create a base class public abstract class IUpdatable{ public virtual DateTime CreateDate {set;} public virtual string CreateUser { set;} public virtual DateTime UpdateDate { set;} public virtual string UpdateUser { set;} } The end goal is to be able to do something like... public overrride void SaveChanges(){ //Go through state manager and update audit infromation //FOREACH changed entity in state manager if(entity is IUpdatable){ //If state is created... update create audit. //if state is updated... update update audit } } But I am not sure how I go about generating the code that would extend the interface.

    Read the article

  • Inner join and outer join options in Entity Framework 4.0

    - by bigb
    I am using EF 4.0 and I need to implement query with one inner join and with N outer joins I started to implement this using different approaches but get into trouble at some point. Here is two examples how I started of doing this using ObjectQuery<'T' and Linq to Entity 1)Using ObjectQuery<'T' I implement flexible outer join but I don't know how to perform inner join with entity Rules in that case (by default Include("Rules") doing outer join, but i need to inner join by Id). public static IEnumerable<Race> GetRace(List<string> includes, DateTime date) { IRepository repository = new Repository(new BEntities()); ObjectQuery<Race> result = (ObjectQuery<Race>)repository.AsQueryable<Race>(); //perform outer joins with related entities if (includes != null) foreach (string include in includes) result = result.Include(include); //here i need inner join insteard of default outer join result = result.Include("Rules"); return result.ToList(); } 2)Using Linq To Entity I need to have kind of outer join(somethin like in GetRace()) where i may pass a List with entities to include) and also i need to perform correct inner join with entity Rules public static IEnumerable<Race> GetRace2(List<string> includes, DateTime date) { IRepository repository = new Repository(new BEntities()); IEnumerable<Race> result = from o in repository.AsQueryable<Race>() from b in o.RaceBetRules select new { o }); //I need here: // 1. to perform the same way inner joins with related entities like with ObjectQuery above //here i getting List<AnonymousType> which i cant cast to //IEnumerable<Race> when i did try to cast like //(IEnumerable<Race>)result.ToList(); i did get error: //Unable to cast object of type //'System.Collections.Generic.List`1[<>f__AnonymousType0`1[BetsTipster.Entity.Tip.Types.Race]]' //to type //'System.Collections.Generic.IEnumerable`1[BetsTipster.Entity.Tip.Types.Race]'. return result.ToList(); } May be someone have some ideas about that.

    Read the article

  • How to create a link to Nintex Start Workflow Page in the document set home page

    - by ybbest
    In this blog post, I’d like to show you how to create a link to start Nintex Workflow Page in the document set home page. 1. Firstly, you need to upload the latest version of jQuery to the style library of your team site. 2. Then, upload a text file to the style library for writing your own html and JavaScript 3. In the document set home page, insert a new content editor web part and link the text file you just upload. 4. Update the text file with the following content, you can download this file here. <script type="text/javascript" src="/Style%20Library/jquery-1.9.0.min.js"></script> <script type="text/javascript" src="/_layouts/sp.js"></script> <script type="text/javascript"> $(document).ready(function() { listItemId=getParameterByName("ID"); setTheWorkflowLink("YBBESTDocumentLibrary"); }); function buildWorkflowLink(webRelativeUrl,listId,itemId) { var workflowLink =webRelativeUrl+"_layouts/NintexWorkflow/StartWorkflow.aspx?list="+listId+"&ID="+itemId+"&WorkflowName=Start Approval"; return workflowLink; } function getParameterByName(name) { name = name.replace(/[\[]/, "\\\[").replace(/[\]]/, "\\\]"); var regexS = "[\\?&]" + name + "=([^&#]*)"; var regex = new RegExp(regexS); var results = regex.exec(window.location.search); if(results == null){ return ""; } else{ return decodeURIComponent(results[1].replace(/\+/g, " ")); } } function setTheWorkflowLink(listName) { var SPContext = new SP.ClientContext.get_current(); web = SPContext.get_web(); list = web.get_lists().getByTitle(listName); SPContext.load(web,"ServerRelativeUrl"); SPContext.load(list, 'Title', 'Id'); SPContext.executeQueryAsync(setTheWorkflowLink_Success, setTheWorkflowLink_Fail); } function setTheWorkflowLink_Success(sender, args) { var listId = list.get_id(); var listTitle = list.get_title(); var webRelativeUrl = web.get_serverRelativeUrl(); var startWorkflowLink=buildWorkflowLink(webRelativeUrl,listId,listItemId) $("a#submitLink").attr('href',startWorkflowLink); } function setTheWorkflowLink_Fail(sender, args) { alert("There is a problem setting up the submit exam approval link"); } </script> <a href="" target="_blank" id="submitLink"><span style="font-size:14pt">Start the approval process.</span></a> 5. Save your changes and go to the document set Item, you will see the link is on the home page now. Notes: 1. You can create a link to start the workflow using the following build dynamic string configuration: {Common:WebUrl}/_layouts/NintexWorkflow/StartWorkflow.aspx?list={Common:ListID}&ID={ItemProperty:ID}&WorkflowName=workflowname. With this link you will still need to click the start button, this is standard SharePoint behaviour and cannot be altered. References: http://connect.nintex.com/forums/27143/ShowThread.aspx How to use html and JavaScript in Content Editor web part in SharePoint2010

    Read the article

  • Class-Level Model Validation with EF Code First and ASP.NET MVC 3

    - by ScottGu
    Earlier this week the data team released the CTP5 build of the new Entity Framework Code-First library.  In my blog post a few days ago I talked about a few of the improvements introduced with the new CTP5 build.  Automatic support for enforcing DataAnnotation validation attributes on models was one of the improvements I discussed.  It provides a pretty easy way to enable property-level validation logic within your model layer. You can apply validation attributes like [Required], [Range], and [RegularExpression] – all of which are built-into .NET 4 – to your model classes in order to enforce that the model properties are valid before they are persisted to a database.  You can also create your own custom validation attributes (like this cool [CreditCard] validator) and have them be automatically enforced by EF Code First as well.  This provides a really easy way to validate property values on your models.  I showed some code samples of this in action in my previous post. Class-Level Model Validation using IValidatableObject DataAnnotation attributes provides an easy way to validate individual property values on your model classes.  Several people have asked - “Does EF Code First also support a way to implement class-level validation methods on model objects, for validation rules than need to span multiple property values?”  It does – and one easy way you can enable this is by implementing the IValidatableObject interface on your model classes. IValidatableObject.Validate() Method Below is an example of using the IValidatableObject interface (which is built-into .NET 4 within the System.ComponentModel.DataAnnotations namespace) to implement two custom validation rules on a Product model class.  The two rules ensure that: New units can’t be ordered if the Product is in a discontinued state New units can’t be ordered if there are already more than 100 units in stock We will enforce these business rules by implementing the IValidatableObject interface on our Product class, and by implementing its Validate() method like so: The IValidatableObject.Validate() method can apply validation rules that span across multiple properties, and can yield back multiple validation errors. Each ValidationResult returned can supply both an error message as well as an optional list of property names that caused the violation (which is useful when displaying error messages within UI). Automatic Validation Enforcement EF Code-First (starting with CTP5) now automatically invokes the Validate() method when a model object that implements the IValidatableObject interface is saved.  You do not need to write any code to cause this to happen – this support is now enabled by default. This new support means that the below code – which violates one of our above business rules – will automatically throw an exception (and abort the transaction) when we call the “SaveChanges()” method on our Northwind DbContext: In addition to reactively handling validation exceptions, EF Code First also allows you to proactively check for validation errors.  Starting with CTP5, you can call the “GetValidationErrors()” method on the DbContext base class to retrieve a list of validation errors within the model objects you are working with.  GetValidationErrors() will return a list of all validation errors – regardless of whether they are generated via DataAnnotation attributes or by an IValidatableObject.Validate() implementation.  Below is an example of proactively using the GetValidationErrors() method to check (and handle) errors before trying to call SaveChanges(): ASP.NET MVC 3 and IValidatableObject ASP.NET MVC 2 included support for automatically honoring and enforcing DataAnnotation attributes on model objects that are used with ASP.NET MVC’s model binding infrastructure.  ASP.NET MVC 3 goes further and also honors the IValidatableObject interface.  This combined support for model validation makes it easy to display appropriate error messages within forms when validation errors occur.  To see this in action, let’s consider a simple Create form that allows users to create a new Product: We can implement the above Create functionality using a ProductsController class that has two “Create” action methods like below: The first Create() method implements a version of the /Products/Create URL that handles HTTP-GET requests - and displays the HTML form to fill-out.  The second Create() method implements a version of the /Products/Create URL that handles HTTP-POST requests - and which takes the posted form data, ensures that is is valid, and if it is valid saves it in the database.  If there are validation issues it redisplays the form with the posted values.  The razor view template of our “Create” view (which renders the form) looks like below: One of the nice things about the above Controller + View implementation is that we did not write any validation logic within it.  The validation logic and business rules are instead implemented entirely within our model layer, and the ProductsController simply checks whether it is valid (by calling the ModelState.IsValid helper method) to determine whether to try and save the changes or redisplay the form with errors. The Html.ValidationMessageFor() helper method calls within our view simply display the error messages our Product model’s DataAnnotations and IValidatableObject.Validate() method returned.  We can see the above scenario in action by filling out invalid data within the form and attempting to submit it: Notice above how when we hit the “Create” button we got an error message.  This was because we ticked the “Discontinued” checkbox while also entering a value for the UnitsOnOrder (and so violated one of our business rules).  You might ask – how did ASP.NET MVC know to highlight and display the error message next to the UnitsOnOrder textbox?  It did this because ASP.NET MVC 3 now honors the IValidatableObject interface when performing model binding, and will retrieve the error messages from validation failures with it. The business rule within our Product model class indicated that the “UnitsOnOrder” property should be highlighted when the business rule we hit was violated: Our Html.ValidationMessageFor() helper method knew to display the business rule error message (next to the UnitsOnOrder edit box) because of the above property name hint we supplied: Keeping things DRY ASP.NET MVC and EF Code First enables you to keep your validation and business rules in one place (within your model layer), and avoid having it creep into your Controllers and Views.  Keeping the validation logic in the model layer helps ensure that you do not duplicate validation/business logic as you add more Controllers and Views to your application.  It allows you to quickly change your business rules/validation logic in one single place (within your model layer) – and have all controllers/views across your application immediately reflect it.  This help keep your application code clean and easily maintainable, and makes it much easier to evolve and update your application in the future. Summary EF Code First (starting with CTP5) now has built-in support for both DataAnnotations and the IValidatableObject interface.  This allows you to easily add validation and business rules to your models, and have EF automatically ensure that they are enforced anytime someone tries to persist changes of them to a database.  ASP.NET MVC 3 also now supports both DataAnnotations and IValidatableObject as well, which makes it even easier to use them with your EF Code First model layer – and then have the controllers/views within your web layer automatically honor and support them as well.  This makes it easy to build clean and highly maintainable applications. You don’t have to use DataAnnotations or IValidatableObject to perform your validation/business logic.  You can always roll your own custom validation architecture and/or use other more advanced validation frameworks/patterns if you want.  But for a lot of applications this built-in support will probably be sufficient – and provide a highly productive way to build solutions. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • Inheritance Mapping Strategies with Entity Framework Code First CTP5: Part 3 – Table per Concrete Type (TPC) and Choosing Strategy Guidelines

    - by mortezam
    This is the third (and last) post in a series that explains different approaches to map an inheritance hierarchy with EF Code First. I've described these strategies in previous posts: Part 1 – Table per Hierarchy (TPH) Part 2 – Table per Type (TPT)In today’s blog post I am going to discuss Table per Concrete Type (TPC) which completes the inheritance mapping strategies supported by EF Code First. At the end of this post I will provide some guidelines to choose an inheritance strategy mainly based on what we've learned in this series. TPC and Entity Framework in the Past Table per Concrete type is somehow the simplest approach suggested, yet using TPC with EF is one of those concepts that has not been covered very well so far and I've seen in some resources that it was even discouraged. The reason for that is just because Entity Data Model Designer in VS2010 doesn't support TPC (even though the EF runtime does). That basically means if you are following EF's Database-First or Model-First approaches then configuring TPC requires manually writing XML in the EDMX file which is not considered to be a fun practice. Well, no more. You'll see that with Code First, creating TPC is perfectly possible with fluent API just like other strategies and you don't need to avoid TPC due to the lack of designer support as you would probably do in other EF approaches. Table per Concrete Type (TPC)In Table per Concrete type (aka Table per Concrete class) we use exactly one table for each (nonabstract) class. All properties of a class, including inherited properties, can be mapped to columns of this table, as shown in the following figure: As you can see, the SQL schema is not aware of the inheritance; effectively, we’ve mapped two unrelated tables to a more expressive class structure. If the base class was concrete, then an additional table would be needed to hold instances of that class. I have to emphasize that there is no relationship between the database tables, except for the fact that they share some similar columns. TPC Implementation in Code First Just like the TPT implementation, we need to specify a separate table for each of the subclasses. We also need to tell Code First that we want all of the inherited properties to be mapped as part of this table. In CTP5, there is a new helper method on EntityMappingConfiguration class called MapInheritedProperties that exactly does this for us. Here is the complete object model as well as the fluent API to create a TPC mapping: public abstract class BillingDetail {     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } }          public class BankAccount : BillingDetail {     public string BankName { get; set; }     public string Swift { get; set; } }          public class CreditCard : BillingDetail {     public int CardType { get; set; }     public string ExpiryMonth { get; set; }     public string ExpiryYear { get; set; } }      public class InheritanceMappingContext : DbContext {     public DbSet<BillingDetail> BillingDetails { get; set; }              protected override void OnModelCreating(ModelBuilder modelBuilder)     {         modelBuilder.Entity<BankAccount>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("BankAccounts");         });         modelBuilder.Entity<CreditCard>().Map(m =>         {             m.MapInheritedProperties();             m.ToTable("CreditCards");         });                 } } The Importance of EntityMappingConfiguration ClassAs a side note, it worth mentioning that EntityMappingConfiguration class turns out to be a key type for inheritance mapping in Code First. Here is an snapshot of this class: namespace System.Data.Entity.ModelConfiguration.Configuration.Mapping {     public class EntityMappingConfiguration<TEntityType> where TEntityType : class     {         public ValueConditionConfiguration Requires(string discriminator);         public void ToTable(string tableName);         public void MapInheritedProperties();     } } As you have seen so far, we used its Requires method to customize TPH. We also used its ToTable method to create a TPT and now we are using its MapInheritedProperties along with ToTable method to create our TPC mapping. TPC Configuration is Not Done Yet!We are not quite done with our TPC configuration and there is more into this story even though the fluent API we saw perfectly created a TPC mapping for us in the database. To see why, let's start working with our object model. For example, the following code creates two new objects of BankAccount and CreditCard types and tries to add them to the database: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount();     CreditCard creditCard = new CreditCard() { CardType = 1 };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Running this code throws an InvalidOperationException with this message: The changes to the database were committed successfully, but an error occurred while updating the object context. The ObjectContext might be in an inconsistent state. Inner exception message: AcceptChanges cannot continue because the object's key values conflict with another object in the ObjectStateManager. Make sure that the key values are unique before calling AcceptChanges. The reason we got this exception is because DbContext.SaveChanges() internally invokes SaveChanges method of its internal ObjectContext. ObjectContext's SaveChanges method on its turn by default calls AcceptAllChanges after it has performed the database modifications. AcceptAllChanges method merely iterates over all entries in ObjectStateManager and invokes AcceptChanges on each of them. Since the entities are in Added state, AcceptChanges method replaces their temporary EntityKey with a regular EntityKey based on the primary key values (i.e. BillingDetailId) that come back from the database and that's where the problem occurs since both the entities have been assigned the same value for their primary key by the database (i.e. on both BillingDetailId = 1) and the problem is that ObjectStateManager cannot track objects of the same type (i.e. BillingDetail) with the same EntityKey value hence it throws. If you take a closer look at the TPC's SQL schema above, you'll see why the database generated the same values for the primary keys: the BillingDetailId column in both BankAccounts and CreditCards table has been marked as identity. How to Solve The Identity Problem in TPC As you saw, using SQL Server’s int identity columns doesn't work very well together with TPC since there will be duplicate entity keys when inserting in subclasses tables with all having the same identity seed. Therefore, to solve this, either a spread seed (where each table has its own initial seed value) will be needed, or a mechanism other than SQL Server’s int identity should be used. Some other RDBMSes have other mechanisms allowing a sequence (identity) to be shared by multiple tables, and something similar can be achieved with GUID keys in SQL Server. While using GUID keys, or int identity keys with different starting seeds will solve the problem but yet another solution would be to completely switch off identity on the primary key property. As a result, we need to take the responsibility of providing unique keys when inserting records to the database. We will go with this solution since it works regardless of which database engine is used. Switching Off Identity in Code First We can switch off identity simply by placing DatabaseGenerated attribute on the primary key property and pass DatabaseGenerationOption.None to its constructor. DatabaseGenerated attribute is a new data annotation which has been added to System.ComponentModel.DataAnnotations namespace in CTP5: public abstract class BillingDetail {     [DatabaseGenerated(DatabaseGenerationOption.None)]     public int BillingDetailId { get; set; }     public string Owner { get; set; }     public string Number { get; set; } } As always, we can achieve the same result by using fluent API, if you prefer that: modelBuilder.Entity<BillingDetail>()             .Property(p => p.BillingDetailId)             .HasDatabaseGenerationOption(DatabaseGenerationOption.None); Working With The Object Model Our TPC mapping is ready and we can try adding new records to the database. But, like I said, now we need to take care of providing unique keys when creating new objects: using (var context = new InheritanceMappingContext()) {     BankAccount bankAccount = new BankAccount()      {          BillingDetailId = 1                          };     CreditCard creditCard = new CreditCard()      {          BillingDetailId = 2,         CardType = 1     };                      context.BillingDetails.Add(bankAccount);     context.BillingDetails.Add(creditCard);     context.SaveChanges(); } Polymorphic Associations with TPC is Problematic The main problem with this approach is that it doesn’t support Polymorphic Associations very well. After all, in the database, associations are represented as foreign key relationships and in TPC, the subclasses are all mapped to different tables so a polymorphic association to their base class (abstract BillingDetail in our example) cannot be represented as a simple foreign key relationship. For example, consider the the domain model we introduced here where User has a polymorphic association with BillingDetail. This would be problematic in our TPC Schema, because if User has a many-to-one relationship with BillingDetail, the Users table would need a single foreign key column, which would have to refer both concrete subclass tables. This isn’t possible with regular foreign key constraints. Schema Evolution with TPC is Complex A further conceptual problem with this mapping strategy is that several different columns, of different tables, share exactly the same semantics. This makes schema evolution more complex. For example, a change to a base class property results in changes to multiple columns. It also makes it much more difficult to implement database integrity constraints that apply to all subclasses. Generated SQLLet's examine SQL output for polymorphic queries in TPC mapping. For example, consider this polymorphic query for all BillingDetails and the resulting SQL statements that being executed in the database: var query = from b in context.BillingDetails select b; Just like the SQL query generated by TPT mapping, the CASE statements that you see in the beginning of the query is merely to ensure columns that are irrelevant for a particular row have NULL values in the returning flattened table. (e.g. BankName for a row that represents a CreditCard type). TPC's SQL Queries are Union Based As you can see in the above screenshot, the first SELECT uses a FROM-clause subquery (which is selected with a red rectangle) to retrieve all instances of BillingDetails from all concrete class tables. The tables are combined with a UNION operator, and a literal (in this case, 0 and 1) is inserted into the intermediate result; (look at the lines highlighted in yellow.) EF reads this to instantiate the correct class given the data from a particular row. A union requires that the queries that are combined, project over the same columns; hence, EF has to pad and fill up nonexistent columns with NULL. This query will really perform well since here we can let the database optimizer find the best execution plan to combine rows from several tables. There is also no Joins involved so it has a better performance than the SQL queries generated by TPT where a Join is required between the base and subclasses tables. Choosing Strategy GuidelinesBefore we get into this discussion, I want to emphasize that there is no one single "best strategy fits all scenarios" exists. As you saw, each of the approaches have their own advantages and drawbacks. Here are some rules of thumb to identify the best strategy in a particular scenario: If you don’t require polymorphic associations or queries, lean toward TPC—in other words, if you never or rarely query for BillingDetails and you have no class that has an association to BillingDetail base class. I recommend TPC (only) for the top level of your class hierarchy, where polymorphism isn’t usually required, and when modification of the base class in the future is unlikely. If you do require polymorphic associations or queries, and subclasses declare relatively few properties (particularly if the main difference between subclasses is in their behavior), lean toward TPH. Your goal is to minimize the number of nullable columns and to convince yourself (and your DBA) that a denormalized schema won’t create problems in the long run. If you do require polymorphic associations or queries, and subclasses declare many properties (subclasses differ mainly by the data they hold), lean toward TPT. Or, depending on the width and depth of your inheritance hierarchy and the possible cost of joins versus unions, use TPC. By default, choose TPH only for simple problems. For more complex cases (or when you’re overruled by a data modeler insisting on the importance of nullability constraints and normalization), you should consider the TPT strategy. But at that point, ask yourself whether it may not be better to remodel inheritance as delegation in the object model (delegation is a way of making composition as powerful for reuse as inheritance). Complex inheritance is often best avoided for all sorts of reasons unrelated to persistence or ORM. EF acts as a buffer between the domain and relational models, but that doesn’t mean you can ignore persistence concerns when designing your classes. SummaryIn this series, we focused on one of the main structural aspect of the object/relational paradigm mismatch which is inheritance and discussed how EF solve this problem as an ORM solution. We learned about the three well-known inheritance mapping strategies and their implementations in EF Code First. Hopefully it gives you a better insight about the mapping of inheritance hierarchies as well as choosing the best strategy for your particular scenario. Happy New Year and Happy Code-Firsting! References ADO.NET team blog Java Persistence with Hibernate book a { color: #5A99FF; } a:visited { color: #5A99FF; } .title { padding-bottom: 5px; font-family: Segoe UI; font-size: 11pt; font-weight: bold; padding-top: 15px; } .code, .typeName { font-family: consolas; } .typeName { color: #2b91af; } .padTop5 { padding-top: 5px; } .padTop10 { padding-top: 10px; } .exception { background-color: #f0f0f0; font-style: italic; padding-bottom: 5px; padding-left: 5px; padding-top: 5px; padding-right: 5px; }

    Read the article

  • Global Entity Framework Context in WPF Application

    - by OffApps Cory
    Good day, I am in the middle of development of a WPF application that is using Entity Framework (.NET 3.5). It accesses the entities in several places throughout. I am worried about consistency throughout the application in regard to the entities. Should I be instancing separate contexts in my different views, or should I (and is a a good way to do this) instance a single context that can be accessed globally? For instance, my entity model has three sections, Shipments (with child packages and further child contents), Companies/Contacts (with child addresses and telephones), and disk specs. The Shipments and EditShipment views access the DiskSpecs, and the OptionsView manages the DiskSpecs (Create, Edit, Delete). If I edit a DiskSpec, I have to have something in the ShipmentsView to retrieve the latest specs if I have separate contexts right? If it is safe to have one overall context from which the rest of the app retrieves it's objects, then I imagine that is the way to go. If so, where would that instance be put? I am using VB.NET, but I can translate from C# pretty good. Any help would be appreciated. I just don't want one of those applications where the user has to hit reload a dozen times in different parts of the app to get the new data. Update: OK so I have changed my app as follows: All contexts are created in Using Blocks to dispose of them after they are no longer needed. When loaded, all entities are detatched from context before it is disposed. A new property in the MainViewModel (ContextUpdated) raises an event that all of the other ViewModels subscribe to which runs that ViewModels RefreshEntities method. After implementing this, I started getting errors saying that an entity can only be referenced by one ChangeTracker at a time. Since I could not figure out which context was still referencing the entity (shouldn't be any context right?) I cast the object as IEntityWithChangeTracker, and set SetChangeTracker to nothing (Null). This has let to the current problem: When I Null the changeTracker on the Entity, and then attach it to a context, it loses it's changed state and does not get updated to the database. However if I do not null the change tracker, I can't attach. I have my own change tracking code, so that is not a problem. My new question is, how are you supposed to do this. A good example Entity query and entity save code snipped would go a long way, cause I am beating my head in trying to get what I once thought was a simple transaction to work. Any help would elevate you to near god-hood.

    Read the article

  • How to map a Entity Data Model conceptual model property to a storage model column using the "Serial

    - by codekaizen
    I have a conceptual model in EDM where one of the entities has a property which is essentially a big value object whose properties aren't really useful as columns in the datamodel. I'd like to apply the Serialized LOB pattern to it so that I can fit it into a 192 byte binary column. How do I map this in the EDM v4? Is it even possible at this time? Actually, is it possible in any ORM?

    Read the article

  • Adding sub-entities to existing entities. Should it be done in the Entity and Component classes?

    - by Coyote
    I'm in a situation where a player can be given the control of small parts of an entity (i.e. Left missile battery). Therefore I started implementing sub entities as follow. Entities are Objects with 3 arrays: pointers to components pointers to sub entities communication subscribers (temporary implementation) Now when an entity is built it has a few components as you might expect and also I can attach sub entities which are handled with some dedicated code in the Entity and Component classes. I noticed sub entities are sharing data in 3 parts: position: the sub entities are using the parent's position and their own as an offset. scrips: sub entities are draining ammo and energy from the parent. physics: sub entities add weight to the parent I made this to quickly go forward, but as I'm slowly fixing current implementations I wonder if this wasn't a mistake. Is my current implementation something commonly done? Will this implementation put me in a corner? I thought it might be a better thing to create some sort of SubEntityComponent where sub entities are attached and handled. But before changing anything I wanted to seek the community's wisdom.

    Read the article

  • Entity Framework v4 examples and tutorials of conceptual model mapping

    - by Rody van Sambeek
    In an application I'm writing I have a fairly complicated Database model. I'd like to use EF4 to map this to a whole lot nicer conceptual model. However all the tutorials I've read are with samples of 2 or 3 tables which all map 1 on 1 to the conceptual model. I'd like to learn how to correctly map the database model to a different conceptual model using VS 2010. However I can't find any good tutorials or (preferabally) instruction video's. Somebody got any tips, links or even books?

    Read the article

  • Selecting Entity Data Model Laguage -- Visual C# source file generated even when i select VB

    - by Nickson
    Am adding an Entity Data Model to an ASP.NET website. When i Add New Item to the website and select ADO.NET Entity Data Model, am asked for the model name and language. I go a head and select Visual Basic as the language, the model is added and the site can compile with out any issues. however, the model it adds a ModelName.Designer.cs source file, instead of a ModelName.Designer.vb source file. am thinking this is strange as its happening with only one of my website. my other sites have .vb designer source file for their Entity Data Models. The site still compiles with out any errors but am afraid some thing is not right. any one experienced this?, is this normal behavior?

    Read the article

  • Passing variables from Model to Model in codeigniter

    - by Craig Ward
    Hi, I need to pass a variable to model, that model needs to send another back and use that variable to query a different model. EG: I have a product_ID which I send to the product model, From that I find out the supplier_ID. I want to grab that supplier_ID to the supplier model to get the supplier name. How do you implement this in codeigniter?

    Read the article

  • JPA entity design / cannot delete entity

    - by timaschew
    I though its simple what I want, but I cannot find any solution for my problem. I'm using playframework 1.2.3 and it's using Hibernate as JPA. So I think playframework has nothing to do with the problem. I have some classes (I omit the nonrelevant fields) public class User { ... } public class Task { public DataContainer dataContainer; } public class DataContainer { public Session session; public User user; } public class Session { ... } So I have association from Task to DataContainer and from DataContainer to Sesssion and the DataContainer belongs to a User. The DataContainers can have always the same User, but the Session have to be different for each instance. And the DataContainer of a Task have also to be different in each instance. A DataContainer can have a Sesesion or not (it's optinal). I use only unidirectional assoc. It should be sufficient. In other words: Every Task must has one DataContainer. Every DataContainer must has one/the same User and can have one Session. To create a DB schema I use JPA annotations: @Entity public class User extends Model { ... } @Entity public class Task extends Model { @OneToOne(optional = false, cascade = CascadeType.ALL) public DataContainer dataContainer; } @Entity public class DataContainer extends Model { @OneToOne(optional = true, cascade = CascadeType.ALL) public Session session; @ManyToOne(optional = false, cascade = CascadeType.ALL) public User user; } @Entity public class Session extends Model { ... } BTW: Model is a play class and provides the primary id as long type. When I create some for each entity a object and 'connect them', I mean the associations, it works fine. But when I try to delete a Session, I get a constraint violation exception, because a DataContainer still refers to the Session I want to delete. I want that the Session (field) of the DataContainer will be set to null respectively the foreign key (session_id) should be unset in the database. This will be okay, because its optional. I don't know, I think I have multiple problems. Am I using the right annotation @OneToOne ? I found on the internet some additional annotation and attributes: @JoinColumn and a mappedBy attribute for the inverse relationship. But I don't have it, because its not bidirectional. Or is a bidirectional assoc. essentially? Another try was to use @OnDelete(action = OnDeleteAction.CASCADE) the the contraint changed from NO ACTIONs when update or delete to: ADD CONSTRAINT fk4745c17e6a46a56 FOREIGN KEY (session_id) REFERENCES annotation_session (id) MATCH SIMPLE ON UPDATE NO ACTION ON DELETE CASCADE; But in this case, when I delete a session, the DataContainer and User is deleted. That's wrong for me. EDIT: I'm using postgresql 9, the jdbc stuff is included in play, my only db config is db=postgres://app:app@localhost:5432/app

    Read the article

  • Can the following Domain Entity contain logic for creating/deleting other entities?

    - by user702769
    a) As far as I understand it, in most cases Domain Model DM doesn't contain code for creating/deleting domain entities, but instead it is the job of layers ( ie service layer or UI layer ) on top of DM to create/delete domain entities? b) Domain entities are modelled after real world entities. Assuming particular real world entity being abstracted does have the functionality of creating/deleting other real world entities, then I assume the domain entity abstracting this real world entity could also contain logic for creating/deleting other entities? class RobotDestroyerCreator { ... void heavyThinking() { ... if(...) unitOfWork.registerDelete(robot); ... if(...) { var robotNew = new Robot(...); unitOfWork.registerNew(robotNew); { ... } } Thank you

    Read the article

  • GuestPost: Unit Testing Entity Framework (v1) Dependent Code using TypeMock Isolator

    - by Eric Nelson
    Time for another guest post (check out others in the series), this time bringing together the world of mocking with the world of Entity Framework. A big thanks to Moses for agreeing to do this. Unit Testing Entity Framework Dependent Code using TypeMock Isolator by Muhammad Mosa Introduction Unit testing data access code in my opinion is a challenging thing. Let us consider unit tests and integration tests. In integration tests you are allowed to have environmental dependencies such as a physical database connection to insert, update, delete or retrieve your data. However when performing unit tests it is often much more efficient and productive to remove environmental dependencies. Instead you will need to fake these dependencies. Faking a database (also known as mocking) can be relatively straight forward but the version of Entity Framework released with .Net 3.5 SP1 has a number of implementation specifics which actually makes faking the existence of a database quite difficult. Faking Entity Framework As mentioned earlier, to effectively unit test you will need to fake/simulate Entity Framework calls to the database. There are many free open source mocking frameworks that can help you achieve this but it will require additional effort to overcome & workaround a number of limitations in those frameworks. Examples of these limitations include: Not able to fake calls to non virtual methods Not able to fake sealed classes Not able to fake LINQ to Entities queries (replace database calls with in-memory collection calls) There is a mocking framework which is flexible enough to handle limitations such as those above. The commercially available TypeMock Isolator can do the job for you with less code and ultimately more readable unit tests. I’m going to demonstrate tackling one of those limitations using MoQ as my mocking framework. Then I will tackle the same issue using TypeMock Isolator. Mocking Entity Framework with MoQ One basic need when faking Entity Framework is to fake the ObjectContext. This cannot be done by passing any connection string. You have to pass a correct Entity Framework connection string that specifies CSDL, SSDL and MSL locations along with a provider connection string. Assuming we are going to do that, we’ll explore another limitation. The limitation we are going to face now is related to not being able to fake calls to non-virtual/overridable members with MoQ. I have the following repository method that adds an EntityObject (instance of a Blog entity) to Blogs entity set in an ObjectContext. public override void Add(Blog blog) { if(BlogContext.Blogs.Any(b=>b.Name == blog.Name)) { throw new InvalidOperationException("Blog with same name already exists!"); } BlogContext.AddToBlogs(blog); } The method does a very simple check that the name of the new Blog entity instance doesn’t exist. This is done through the simple LINQ query above. If the blog doesn’t already exist it simply adds it to the current context to be saved when SaveChanges of the ObjectContext instance (e.g. BlogContext) is called. However, if a blog with the same name exits, and exception (InvalideOperationException) will be thrown. Let us now create a unit test for the Add method using MoQ. [TestMethod] [ExpectedException(typeof(InvalidOperationException))] public void Add_Should_Throw_InvalidOperationException_When_Blog_With_Same_Name_Already_Exits() { //(1) We shouldn't depend on configuration when doing unit tests! But, //its a workaround to fake the ObjectContext string connectionString = ConfigurationManager .ConnectionStrings["MyBlogConnString"] .ConnectionString; //(2) Arrange: Fake ObjectContext var fakeContext = new Mock<MyBlogContext>(connectionString); //(3) Next Line will pass, as ObjectContext now can be faked with proper connection string var repo = new BlogRepository(fakeContext.Object); //(4) Create fake ObjectQuery<Blog>. Will be used to substitute MyBlogContext.Blogs property var fakeObjectQuery = new Mock<ObjectQuery<Blog>>("[Blogs]", fakeContext.Object); //(5) Arrange: Set Expectations //Next line will throw an exception by MoQ: //System.ArgumentException: Invalid setup on a non-overridable member fakeContext.SetupGet(c=>c.Blogs).Returns(fakeObjectQuery.Object); fakeObjectQuery.Setup(q => q.Any(b => b.Name == "NewBlog")).Returns(true); //Act repo.Add(new Blog { Name = "NewBlog" }); } This test method is checking to see if the correct exception ([ExpectedException(typeof(InvalidOperationException))]) is thrown when a developer attempts to Add a blog with a name that’s already exists. On (1) a connection string is initialized from configuration file. To retrieve the full connection string. On (2) a fake ObjectContext is being created. The ObjectContext here is MyBlogContext and its being created using this var fakeContext = new Mock<MyBlogContext>(connectionString); This way a fake context is being created using MoQ. On (3) a BlogRepository instance is created. BlogRepository has dependency on generate Entity Framework ObjectContext, MyObjectContext. And so the fake context is passed to the constructor. var repo = new BlogRepository(fakeContext.Object); On (4) a fake instance of ObjectQuery<Blog> is being created to use as a substitute to MyObjectContext.Blogs property as we will see in (5). On (5) setup an expectation for calling Blogs property of MyBlogContext and substitute the return result with the fake ObjectQuery<Blog> instance created on (4). When you run this test it will fail with MoQ throwing an exception because of this line: fakeContext.SetupGet(c=>c.Blogs).Returns(fakeObjectQuery.Object); This happens because the generate property MyBlogContext.Blogs is not virtual/overridable. And assuming it is virtual or you managed to make it virtual it will fail at the following line throwing the same exception: fakeObjectQuery.Setup(q => q.Any(b => b.Name == "NewBlog")).Returns(true); This time the test will fail because the Any extension method is not virtual/overridable. You won’t be able to replace ObjectQuery<Blog> with fake in memory collection to test your LINQ to Entities queries. Now lets see how replacing MoQ with TypeMock Isolator can help. Mocking Entity Framework with TypeMock Isolator The following is the same test method we had above for MoQ but this time implemented using TypeMock Isolator: [TestMethod] [ExpectedException(typeof(InvalidOperationException))] public void Add_New_Blog_That_Already_Exists_Should_Throw_InvalidOperationException() { //(1) Create fake in memory collection of blogs var fakeInMemoryBlogs = new List<Blog> {new Blog {Name = "FakeBlog"}}; //(2) create fake context var fakeContext = Isolate.Fake.Instance<MyBlogContext>(); //(3) Setup expected call to MyBlogContext.Blogs property through the fake context Isolate.WhenCalled(() => fakeContext.Blogs) .WillReturnCollectionValuesOf(fakeInMemoryBlogs.AsQueryable()); //(4) Create new blog with a name that already exits in the fake in memory collection in (1) var blog = new Blog {Name = "FakeBlog"}; //(5) Instantiate instance of BlogRepository (Class under test) var repo = new BlogRepository(fakeContext); //(6) Acting by adding the newly created blog () repo.Add(blog); } When running the above test method it will pass as the Add method of BlogRepository is going to throw an InvalidOperationException which is the expected behaviour. Nothing prevents us from faking out the database interaction! Even faking ObjectContext  at (2) didn’t require a connection string. On (3) Isolator sets up a faking result for MyBlogContext.Blogs when its being called through the fake instance fakeContext created on (2). The faking result is just an in-memory collection declared an initialized on (1). Finally at (6) action we call the Add method of BlogRepository passing a new Blog instance that has a name that’s already exists in the fake in-memory collection which we set up at (1). As expected the test will pass because it will throw the expected exception defined on top of the test method - InvalidOperationException. TypeMock Isolator succeeded in faking Entity Framework with ease. Conclusion We explored how to write a simple unit test using TypeMock Isolator for code which is using Entity Framework. We also explored a few of the limitations of other mocking frameworks which TypeMock is successfully able to handle. There are workarounds that you can use to overcome limitations when using MoQ or Rhino Mock, however the workarounds will require you to write more code and your tests will likely be more complex. For a comparison between different mocking frameworks take a look at this document produced by TypeMock. You might also want to check out this open source project to compare mocking frameworks. I hope you enjoyed this post Muhammad Mosa http://mosesofegypt.net/ http://twitter.com/mosessaur Screencast of unit testing Entity Framework Related Links GuestPost: Introduction to Mocking GuesPost: Typemock Isolator – Much more than an Isolation framework

    Read the article

  • Two references to the same domain/entity model

    - by Sbossb
    Problem I want to save the attributes of a model that have changed when a user edits them. Here's what I want to do ... Retrieve edited view model Get domain model and map back updated value Call the update method on repository Get the "old" domain model and compare values of the fields Store the changed values (in JSON) into a table However I am having trouble with step number 4. It seems that the Entity Framework doesn't want to hit the database again to get the model with the old values. It just returns the same entity I have. Attempted Solutions I have tried using the Find() and the SingleOrDefault() methods, but they just return the model I currently have. Example Code private string ArchiveChanges(T updatedEntity) { //Here is the problem! //oldEntity is the same as updatedEntity T oldEntity = DbSet.SingleOrDefault(x => x.ID == updatedEntity.ID); Dictionary<string, object> changed = new Dictionary<string, object>(); foreach (var propertyInfo in typeof(T).GetProperties()) { var property = typeof(T).GetProperty(propertyInfo.Name); //Get the old value and the new value from the models var newValue = property.GetValue(updatedEntity, null); var oldValue = property.GetValue(oldEntity, null); //Check to see if the values are equal if (!object.Equals(newValue, oldValue)) { //Values have changed ... log it changed.Add(propertyInfo.Name, newValue); } } var ser = new System.Web.Script.Serialization.JavaScriptSerializer(); return ser.Serialize(changed); } public override void Update(T entityToUpdate) { //Do something with this string json = ArchiveChanges(entityToUpdate); entityToUpdate.AuditInfo.Updated = DateTime.Now; entityToUpdate.AuditInfo.UpdatedBy = Thread.CurrentPrincipal.Identity.Name; base.Update(entityToUpdate); }

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >