Search Results

Search found 2953 results on 119 pages for 'graph visualization'.

Page 13/119 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • Managing Matrix Relationships: Organization Visualization and Navigation

    - by Nancy Estell Zoder
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Oracle is pleased to announce the posting of our latest feature, Matrix Relationship Administration. Our continued investment in our Organization Visualization and Navigation solution is demonstrated with the release of Matrix Relationship Administration as well as the enhancements made to our Org Viewer capabilities. Some of those enhancements include the ability to export to Excel and Visio, Search, Zoom, as well as the addition of Manager Self Service transactions. Matrix relationships are relationships defined by rules or ad hoc. These relationships can include, but are not limited to, product or project affiliations, functional groups including multi dimensional relationships such as when the product, region or even the customer is the profit center. The PeopleSoft solution will enable you to configure how you work in this multi dimensional world to ensure you have the tools to be productive……. For more information, please check out the datasheet available on oracle.com, video on the feature on YouTube or contact your sales representative.

    Read the article

  • Help:Graph contest problem: maybe a modified Dijkstra or another alternative algorithm

    - by newba
    Hi you all, I'm trying to do this contest exercise about graphs: XPTO is an intrepid adventurer (a little too temerarious for his own good) who boasts about exploring every corner of the universe, no matter how inhospitable. In fact, he doesn't visit the planets where people can easily live in, he prefers those where only a madman would go with a very good reason (several millions of credits for instance). His latest exploit is trying to survive in Proxima III. The problem is that Proxima III suffers from storms of highly corrosive acids that destroy everything, including spacesuits that were especially designed to withstand corrosion. Our intrepid explorer was caught in a rectangular area in the middle of one of these storms. Fortunately, he has an instrument that is capable of measuring the exact concentration of acid on each sector and how much damage it does to his spacesuit. Now, he only needs to find out if he can escape the storm. Problem The problem consists of finding an escape route that will allow XPTOto escape the noxious storm. You are given the initial energy of the spacesuit, the size of the rectangular area and the damage that the spacesuit will suffer while standing in each sector. Your task is to find the exit sector, the number of steps necessary to reach it and the amount of energy his suit will have when he leaves the rectangular area. The escape route chosen should be the safest one (i.e., the one where his spacesuit will be the least damaged). Notice that Rodericus will perish if the energy of his suit reaches zero. In case there are more than one possible solutions, choose the one that uses the least number of steps. If there are at least two sectors with the same number of steps (X1, Y1) and (X2, Y2) then choose the first if X1 < X2 or if X1 = X2 and Y1 < Y2. Constraints 0 < E = 30000 the suit's starting energy 0 = W = 500 the rectangle's width 0 = H = 500 rectangle's height 0 < X < W the starting X position 0 < Y < H the starting Y position 0 = D = 10000 the damage sustained in each sector Input The first number given is the number of test cases. Each case will consist of a line with the integers E, X and Y. The following line will have the integers W and H. The following lines will hold the matrix containing the damage D the spacesuit will suffer whilst in the corresponding sector. Notice that, as is often the case for computer geeks, (1,1) corresponds to the upper left corner. Output If there is a solution, the output will be the remaining energy, the exit sector's X and Y coordinates and the number of steps of the route that will lead Rodericus to safety. In case there is no solution, the phrase Goodbye cruel world! will be written. Sample Input 3 40 3 3 7 8 12 11 12 11 3 12 12 12 11 11 12 2 1 13 11 11 12 2 13 2 14 10 11 13 3 2 1 12 10 11 13 13 11 12 13 12 12 11 13 11 13 12 13 12 12 11 11 11 11 13 13 10 10 13 11 12 8 3 4 7 6 4 3 3 2 2 3 2 2 5 2 2 2 3 3 2 1 2 2 3 2 2 4 3 3 2 2 4 1 3 1 4 3 2 3 1 2 2 3 3 0 3 4 10 3 4 7 6 3 3 1 2 2 1 0 2 2 2 4 2 2 5 2 2 1 3 0 2 2 2 2 1 3 3 4 2 3 4 4 3 1 1 3 1 2 2 4 2 2 1 Sample Output 12 5 1 8 Goodbye cruel world! 5 1 4 2 Basically, I think we have to do a modified Dijkstra, in which the distance between nodes is the suit's energy (and we have to subtract it instead of suming up like is normal with distances) and the steps are the ....steps made along the path. The pos with the bester binomial (Energy,num_Steps) is our "way out". Important : XPTO obviously can't move in diagonals, so we have to cut out this cases. I have many ideas, but I have such a problem implementing them... Could someone please help me thinking about this with some code or, at least, ideas? Am I totally wrong?

    Read the article

  • Graph spacing algorithm

    - by David
    Hi, I am looking for an algorithm that would be useful for determining x y coordinates for a number objects to display on screen. Each object can be related to another object and there can be any number of relationships and there can be any number of these objects. There is no restriction on the overall size of area on which to display these object. I am writing this in php and would be looking to store the coordinates in an array.

    Read the article

  • create graph using adjacency list

    - by sum1needhelp
    #include<iostream> using namespace std; class TCSGraph{ public: void addVertex(int vertex); void display(); TCSGraph(){ head = NULL; } ~TCSGraph(); private: struct ListNode { string name; struct ListNode *next; }; ListNode *head; } void TCSGraph::addVertex(int vertex){ ListNode *newNode; ListNode *nodePtr; string vName; for(int i = 0; i < vertex ; i++ ){ cout << "what is the name of the vertex"<< endl; cin >> vName; newNode = new ListNode; newNode->name = vName; if (!head) head = newNode; else nodePtr = head; while(nodePtr->next) nodePtr = nodePtr->next; nodePtr->next = newNode; } } void TCSGraph::display(){ ListNode *nodePtr; nodePtr = head; while(nodePtr){ cout << nodePtr->name<< endl; nodePtr = nodePtr->next; } } int main(){ int vertex; cout << " how many vertex u wan to add" << endl; cin >> vertex; TCSGraph g; g.addVertex(vertex); g.display(); return 0; }

    Read the article

  • Finding backedges in a graph, with special conditions.

    - by Morteza M.
    There is a vertex v, such that from the subtree rooted at v, there are at least two backedges to proper ancestors of v. The problem is finding whether such backedges exist or not ( finding v is not important at all). I run DFS algorithm, I can find backedges and save them in an array. I know which backedges in this array belong to a common tree. but I have problem on matching this condition in O(E) time. can anyone help me with that?

    Read the article

  • How to perform undirected graph processing from SQL data

    - by recipriversexclusion
    I ran into the following problem in dynamically creating topics for our ActiveMQ system: I have a number of processes (M_1, ..., M_n), where n is not large, typically 5-10. Some of the processes will listen to the output of others, through a message queue; these edges are specified in an XML file, e.g. <link from="M1" to="M3"</link> <link from="M2" to="M4"</link> <link from="M3" to="M4"</link> etc. The edges are sparse, so there won't be many of them. I will parse this XML and store this information in an SQL DB, one table for nodes and another for edges. Now, I need to dynamically create strings of the form M1.exe --output_topic=T1 M2.exe --output_topic=T2 M3.exe --input_topic=T1 --output_topic=T3 M4.exe --input_topic=T2 --input_topic=T3 where the tags are sequentially generated. What is the best way to go about querying SQL to obtain these relationships? Are there any tools or other tutorials you can point me to? I've never done graps with SQL. Using SQL is imperative, because we use it for other stuff, too. Thanks!

    Read the article

  • Graph diffing and versioning tool

    - by hashable
    I am working with a team that edits large DAGs represented as single files. Currently we are unable to work with multiple users concurrently modifying the DAG. Is there a tool (somewhat like the Eclipse SVN plugin) that can do do revision control on the file (manage timestamps/revision stamps) to identify incoming/outgoing/conflicting changes (Node/Link insertion/deletion/modification) and merge changes just like programmers do with source code files? The system should be able to do dependency management also. E.g. an incoming Link must not be accepted when one of the two Nodes is absent. That is, it should not "break" the existing DAG by allowing partial updates. If there is a framework to do this using generic "Node" and "Link" interfaces? Note: I am aware of Protege and its plugins. They currently do not satisfy my requirements.

    Read the article

  • how to get large pictures from photo album via facebook graph api

    - by Nav
    I am currently using the following code to retrieve all the photos from a user profile FB.api('/me/albums?fields=id,name', function(response) { //console.log(response.data.length); for (var i = 0; i < response.data.length; i++) { var album = response.data[i]; FB.api('/' + album.id + '/photos', function(photos) { if (photos && photos.data && photos.data.length) { for (var j = 0; j < photos.data.length; j++) { var photo = photos.data[j]; // photo.picture contain the link to picture var image = document.createElement('img'); image.src = photo.picture; document.body.appendChild(image); image.className = "border"; image.onclick = function() { //this.parentNode.removeChild(this); document.getElementById(info.id).src = this.src; document.getElementById(info.id).style.width = "220px"; document.getElementById(info.id).style.height = "126px"; }; } } }); } }); but, the photos that it returns are of poor quality and are basically like thumbnails.How to retrieve larger photos from the albums. Generally for profile picture I use ?type=large which returns a decent profile image but the type=large is not working in the case of photos from photo albums and also is there a way to get the photos in zip format from facebook once I specify the photo url as I want users to be able to download the photos.

    Read the article

  • PHP SDK for Facebook: Uploading an Image for an Event created using the Graph API

    - by wenbert
    Can anyone shed some light on my problem? <?php $config = array(); $config['appId'] = "foo"; $config['secret'] = "bar"; $config['cookie'] = true; $config['fileUpload'] = true; $facebook = new Facebook($config); $eventParams = array( "privacy_type" => $this->request->data['Event']['privacy'], "name" => $this->request->data['Event']['event'], "description" => $this->request->data['Event']['details'], "start_time" => $this->request->data['Event']['when'], "country" => "NZ" ); //around 300x300 pixels //I have set the permissions to Everyone $imgpath = "C:\\Yes\\Windows\\Path\\Photo_for_the_event_app.jpg"; $eventParams["@file.jpg"] = "@".$imgpath; $fbEvent = $facebook->api("me/events", "POST", $eventParams); var_dump($fbEvent); //I get the event id I also have this in my "scope" when the user is asked to Allow the app to post on his behalf: user_about_me,email,publish_stream,create_event,photo_upload This works. It creates the event with all the details I have specified. EXCEPT for the event image. I have been to most of Stackoverflow posts related to my problem but all of them are not working for me. (EG: http://stackoverflow.com/a/4245260/66767) I also do not get any error. Any ideas? THanks!

    Read the article

  • A Plot Graph .NET WindowsForm Component Free

    - by user255946
    Hello All, I'm searching for a plot .NET component to plot a 2D line chart, given an array of data. It will be used with WindowsForm (C#) and It will be very helpful if it could be freeware. It is for a scientific application. This is my first asked question in stackoverflow, and excuse me for my terrible English written.

    Read the article

  • Hopcroft–Karp algorithm in Python

    - by Simon
    I am trying to implement the Hopcroft Karp algorithm in Python using networkx as graph representation. Currently I am as far as this: #Algorithms for bipartite graphs import networkx as nx import collections class HopcroftKarp(object): INFINITY = -1 def __init__(self, G): self.G = G def match(self): self.N1, self.N2 = self.partition() self.pair = {} self.dist = {} self.q = collections.deque() #init for v in self.G: self.pair[v] = None self.dist[v] = HopcroftKarp.INFINITY matching = 0 while self.bfs(): for v in self.N1: if self.pair[v] and self.dfs(v): matching = matching + 1 return matching def dfs(self, v): if v != None: for u in self.G.neighbors_iter(v): if self.dist[ self.pair[u] ] == self.dist[v] + 1 and self.dfs(self.pair[u]): self.pair[u] = v self.pair[v] = u return True self.dist[v] = HopcroftKarp.INFINITY return False return True def bfs(self): for v in self.N1: if self.pair[v] == None: self.dist[v] = 0 self.q.append(v) else: self.dist[v] = HopcroftKarp.INFINITY self.dist[None] = HopcroftKarp.INFINITY while len(self.q) > 0: v = self.q.pop() if v != None: for u in self.G.neighbors_iter(v): if self.dist[ self.pair[u] ] == HopcroftKarp.INFINITY: self.dist[ self.pair[u] ] = self.dist[v] + 1 self.q.append(self.pair[u]) return self.dist[None] != HopcroftKarp.INFINITY def partition(self): return nx.bipartite_sets(self.G) The algorithm is taken from http://en.wikipedia.org/wiki/Hopcroft%E2%80%93Karp_algorithm However it does not work. I use the following test code G = nx.Graph([ (1,"a"), (1,"c"), (2,"a"), (2,"b"), (3,"a"), (3,"c"), (4,"d"), (4,"e"),(4,"f"),(4,"g"), (5,"b"), (5,"c"), (6,"c"), (6,"d") ]) matching = HopcroftKarp(G).match() print matching Unfortunately this does not work, I end up in an endless loop :(. Can someone spot the error, I am out of ideas and I must admit that I have not yet fully understand the algorithm, so it is mostly an implementation of the pseudo code on wikipedia

    Read the article

  • Generating video or images of geometrical objects from data

    - by Jonathan Barbero
    Hello, I'm working in a course's project to predict the velocity and position of the solar system planets (and other objects). It will be really cool if I can visualize the predicted objects data, if it's possible generating 3D images, if in video that's amazing. Do you know any library that lets me to use this data to generate an image or video? (I don't care in which language) Data: - simulation step (time line step for a video) - positions of the objects - radius and/or colours of the objects Thanks in advance, any suggestion is welcome.

    Read the article

  • Visualizing the SiteMap of a large (page number) website

    - by Michael
    I'm looking for a tool or service that can spider a web domain with a large number of pages, create a sitemap, and then visualize that map in a way that will help me see, understand and group content (I'm new to the site) Something like a tree-view or other standard Site Map visualizations would be great. I am yet unable to find a tool that does this (I've found plenty of things to spider the site and create an xml file, nothing to visualize it) Thanks!

    Read the article

  • How can I use the Boost Graph Library to lay out verticies?

    - by Mike
    I'm trying to lay out vertices using the Boost Graph Library. However, I'm running into some compilation issues which I'm unsure about. Am I using the BGL in an improper manner? My code is: PositionVec position_vec(2); PositionMap position(position_vec.begin(), get(vertex_index, g)); int iterations = 100; double width = 100.0; double height = 100.0; minstd_rand gen; rectangle_topology<> topology(gen, 0, 0, 100, 100); fruchterman_reingold_force_directed_layout(g, position, topology); //Compile fails on this line The diagnostics produced by clang++(I've also tried GCC) are: In file included from test.cpp:2: /Volumes/Data/mike/Downloads/boost_1_43_0/boost/graph/fruchterman_reingold.hpp:95:3: error: no member named 'dimensions' in 'boost::simple_point<double>' BOOST_STATIC_ASSERT (Point::dimensions == 2); ^~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ In file included from test.cpp:2: In file included from /Volumes/Data/mike/Downloads/boost_1_43_0/boost/graph/fruchterman_reingold.hpp:13: In file included from /Volumes/Data/mike/Downloads/boost_1_43_0/boost/graph/graph_traits.hpp:15: In file included from /Volumes/Data/mike/Downloads/boost_1_43_0/boost/tuple/tuple.hpp:24: /Volumes/Data/mike/Downloads/boost_1_43_0/boost/static_assert.hpp:118:49: note: instantiated from: sizeof(::boost::STATIC_ASSERTION_FAILURE< BOOST_STATIC_ASSERT_BOOL_CAST( B ) >)>\ ^ In file included from test.cpp:2: /Volumes/Data/mike/Downloads/boost_1_43_0/boost/graph/fruchterman_reingold.hpp:95:3: note: instantiated from: BOOST_STATIC_ASSERT (Point::dimensions == 2); ^ ~~~~~~~ /Volumes/Data/mike/Downloads/boost_1_43_0/boost/graph/fruchterman_reingold.hpp:95:31: note: instantiated from: BOOST_STATIC_ASSERT (Point::dimensions == 2); ~~~~~~~^ /Volumes/Data/mike/Downloads/boost_1_43_0/boost/graph/fruchterman_reingold.hpp:417:19: note: in instantiation of template class 'boost::grid_force_pairs<boost::rectangle_topology<boost::random::linear_congruential<int, 48271, 0, 2147483647, 399268537> >, boost::iterator_property_map<__gnu_cxx::__normal_iterator<boost::simple_point<double> *, std::vector<boost::simple_point<double>, std::allocator<boost::simple_point<double> > > >, boost::vec_adj_list_vertex_id_map<boost::property<boost::vertex_name_t, std::basic_string<char>, boost::no_property>, unsigned long>, boost::simple_point<double>, boost::simple_point<double> &> >' requested here make_grid_force_pairs(topology, position, g)), ^ /Volumes/Data/mike/Downloads/boost_1_43_0/boost/graph/fruchterman_reingold.hpp:431:3: note: in instantiation of function template specialization 'boost::fruchterman_reingold_force_directed_layout<boost::rectangle_topology<boost::random::linear_congruential<int, 48271, 0, 2147483647, 399268537> >, boost::adjacency_list<boost::listS, boost::vecS, boost::undirectedS, boost::property<boost::vertex_name_t, std::basic_string<char>, boost::no_property>, boost::no_property, boost::no_property, boost::listS>, boost::iterator_property_map<__gnu_cxx::__normal_iterator<boost::simple_point<double> *, std::vector<boost::simple_point<double>, std::allocator<boost::simple_point<double> > > >, boost::vec_adj_list_vertex_id_map<boost::property<boost::vertex_name_t, std::basic_string<char>, boost::no_property>, unsigned long>, boost::simple_point<double>, boost::simple_point<double> &>, boost::square_distance_attractive_force, boost::attractive_force_t, boost::no_property>' requested here fruchterman_reingold_force_directed_layout ^ test.cpp:48:3: note: in instantiation of function template specialization 'boost::fruchterman_reingold_force_directed_layout<boost::rectangle_topology<boost::random::linear_congruential<int, 48271, 0, 2147483647, 399268537> >, boost::adjacency_list<boost::listS, boost::vecS, boost::undirectedS, boost::property<boost::vertex_name_t, std::basic_string<char>, boost::no_property>, boost::no_property, boost::no_property, boost::listS>, boost::iterator_property_map<__gnu_cxx::__normal_iterator<boost::simple_point<double> *, std::vector<boost::simple_point<double>, std::allocator<boost::simple_point<double> > > >, boost::vec_adj_list_vertex_id_map<boost::property<boost::vertex_name_t, std::basic_string<char>, boost::no_property>, unsigned long>, boost::simple_point<double>, boost::simple_point<double> &> >' requested here fruchterman_reingold_force_directed_layout(g, position, topology); ^ 1 error generated.

    Read the article

  • finding shortest valid path in a colored-edge graphs

    - by user1067083
    Given a directed graph G, with edges colored either green or purple, and a vertex S in G, I must find an algorithm that finds the shortest path from s to each vertex in G so the path includes at most two purple edges (and green as much as needed). I thought of BFS on G after removing all the purple edges, and for every vertex that the shortest path is still infinity, do something to try to find it, but I'm kinda stuck, and it takes alot of the running time as well... Any other suggestions? Thanks in advance

    Read the article

  • Am I right about the differences between Floyd-Warshall, Dijkstra's and Bellman-Ford algorithms?

    - by Programming Noob
    I've been studying the three and I'm stating my inferences from them below. Could someone tell me if I have understood them accurately enough or not? Thank you. Dijkstra's algorithm is used only when you have a single source and you want to know the smallest path from one node to another, but fails in cases like this Floyd-Warshall's algorithm is used when any of all the nodes can be a source, so you want the shortest distance to reach any destination node from any source node. This only fails when there are negative cycles (this is the most important one. I mean, this is the one I'm least sure about:) 3.Bellman-Ford is used like Dijkstra's, when there is only one source. This can handle negative weights and its working is the same as Floyd-Warshall's except for one source, right? If you need to have a look, the corresponding algorithms are (courtesy Wikipedia): Bellman-Ford: procedure BellmanFord(list vertices, list edges, vertex source) // This implementation takes in a graph, represented as lists of vertices // and edges, and modifies the vertices so that their distance and // predecessor attributes store the shortest paths. // Step 1: initialize graph for each vertex v in vertices: if v is source then v.distance := 0 else v.distance := infinity v.predecessor := null // Step 2: relax edges repeatedly for i from 1 to size(vertices)-1: for each edge uv in edges: // uv is the edge from u to v u := uv.source v := uv.destination if u.distance + uv.weight < v.distance: v.distance := u.distance + uv.weight v.predecessor := u // Step 3: check for negative-weight cycles for each edge uv in edges: u := uv.source v := uv.destination if u.distance + uv.weight < v.distance: error "Graph contains a negative-weight cycle" Dijkstra: 1 function Dijkstra(Graph, source): 2 for each vertex v in Graph: // Initializations 3 dist[v] := infinity ; // Unknown distance function from 4 // source to v 5 previous[v] := undefined ; // Previous node in optimal path 6 // from source 7 8 dist[source] := 0 ; // Distance from source to source 9 Q := the set of all nodes in Graph ; // All nodes in the graph are 10 // unoptimized - thus are in Q 11 while Q is not empty: // The main loop 12 u := vertex in Q with smallest distance in dist[] ; // Start node in first case 13 if dist[u] = infinity: 14 break ; // all remaining vertices are 15 // inaccessible from source 16 17 remove u from Q ; 18 for each neighbor v of u: // where v has not yet been 19 removed from Q. 20 alt := dist[u] + dist_between(u, v) ; 21 if alt < dist[v]: // Relax (u,v,a) 22 dist[v] := alt ; 23 previous[v] := u ; 24 decrease-key v in Q; // Reorder v in the Queue 25 return dist; Floyd-Warshall: 1 /* Assume a function edgeCost(i,j) which returns the cost of the edge from i to j 2 (infinity if there is none). 3 Also assume that n is the number of vertices and edgeCost(i,i) = 0 4 */ 5 6 int path[][]; 7 /* A 2-dimensional matrix. At each step in the algorithm, path[i][j] is the shortest path 8 from i to j using intermediate vertices (1..k-1). Each path[i][j] is initialized to 9 edgeCost(i,j). 10 */ 11 12 procedure FloydWarshall () 13 for k := 1 to n 14 for i := 1 to n 15 for j := 1 to n 16 path[i][j] = min ( path[i][j], path[i][k]+path[k][j] );

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >