Search Results

Search found 1070 results on 43 pages for 'michelle grant'.

Page 13/43 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • Learn SSIS from the Authors of SSIS Design Patterns at the PASS Summit 2012!

    - by andyleonard
    Jessica Moss ( blog | @jessicammoss ), Michelle Ufford ( blog | @sqlfool ), Tim Mitchell ( blog | @tim_mitchell ), Matt Masson ( blog | @mattmasson ), and me – we are all presenting the SSIS Design Patterns pre-conference session at the PASS Summit 2012 ! We will be covering material from, and based upon, the book. We will describe and demonstrate patterns for package execution, package logging, loading flat file and XML sources, loading the cloud, dynamic package generation, SSIS Frameworks, data...(read more)

    Read the article

  • New Book! SQL Server 2012 Integration Services Design Patterns!

    - by andyleonard
    SQL Server 2012 Integration Services Design Patterns has been released! The book is done and available thanks to the hard work and dedication of a great crew: Michelle Ufford ( Blog | @sqlfool ) – co-author Jessica M. Moss ( Blog | @jessicammoss ) – co-author Tim Mitchell ( Blog | @tim_mitchell ) – co-author Matt Masson ( Blog | @mattmasson ) – co-author Donald Farmer ( Blog | @donalddotfarmer ) – foreword David Stein ( Blog | @made2mentor ) – technical editing Mark Powers – editing Jonathan Gennick...(read more)

    Read the article

  • How to Effectively Embrace Talent Management

    Michelle Newell, Senior Director for the Human Capital Management product from Oracle, discusses with Fred how companies manage their key people -- or talent -- in ways that increase their engagement levels and help them to thrive. Also, hear about how employers can put the right people in the right position at the right time to help their organizations succeed.

    Read the article

  • Oracle's Human Capital Management-Employee 2.0 solution

    Listen to Michelle Newell, Senior Director of Oracles HCM Applications Marketing discuss Oracle's HCM Employee 2.0 solution and how organizations can increase employee engagement and accelerate benefits to the bottom-line by combining Web 2.0 capabilities securely with their existing Talent Management solution.

    Read the article

  • Python beautifulsoup trying to remove html tags 'span'

    - by Michelle Jun Lee
    I am trying to remove [<span class="street-address"> 510 E Airline Way </span>] and I have used this clean function to remove the one that is in between < > def clean(val): if type(val) is not StringType: val = str(val) val = re.sub(r'<.*?>', '',val) val = re.sub("\s+" , " ", val) return val.strip() and it produces [ 510 E Airline Way ]` i am trying to add within "clean" function to remove the char '[' and ']' and basically i just want to get the "510 E Airline Way". anyone has any clue what can i add to clean function? thank you

    Read the article

  • python MySQLdb got invalid syntax when trying to INSERT INTO table

    - by Michelle Jun Lee
    ## COMMENT OUT below just for reference "" cursor.execute (""" CREATE TABLE yellowpages ( business_id BIGINT(20) NOT NULL AUTO_INCREMENT, categories_name VARCHAR(255), business_name VARCHAR(500) NOT NULL, business_address1 VARCHAR(500), business_city VARCHAR(255), business_state VARCHAR(255), business_zipcode VARCHAR(255), phone_number1 VARCHAR(255), website1 VARCHAR(1000), website2 VARCHAR(1000), created_date datetime, modified_date datetime, PRIMARY KEY(business_id) ) """) "" ## TOP COMMENT OUT (just for reference) ## code website1g = "http://www.triman.com" business_nameg = "Triman Sales Inc" business_address1g = "510 E Airline Way" business_cityg = "Gardena" business_stateg = "CA" business_zipcodeg = "90248" phone_number1g = "(310) 323-5410" phone_number2g = "" website2g = "" cursor.execute (""" INSERT INTO yellowpages(categories_name, business_name, business_address1, business_city, business_state, business_zipcode, phone_number1, website1, website2) VALUES ('%s','%s','%s','%s','%s','%s','%s','%s','%s') """, (''gas-stations'', business_nameg, business_address1g, business_cityg, business_stateg, business_zipcodeg, phone_number1g, website1g, website2g)) cursor.close() conn.close() I keep getting this error File "testdb.py", line 51 """, (''gas-stations'', business_nameg, business_address1g, business_cityg, business_stateg, business_zipcodeg, phone_number1g, website1g, website2g)) ^ SyntaxError: invalid syntax any idea why? By the way, the up arrow is pointing to website1g (the b character) . Thanks for the help in advance

    Read the article

  • dynamic date formats in eyecon's Bootstrap Datepicker

    - by Jennifer Michelle
    I need to update my datepickers' date format (mm.dd.yyyy etc) using a select box. I am currently using Eyecon's Bootstrap Datepicker because it had the smallest files size that I could find (8k minified), and includes the date formats I need. I also tried to trigger date format changes in several other datepickers without any success. Fiddle: http://jsfiddle.net/Yshy7/8/ Is there an obvious way to trigger a change from the select box to the datepickers? //date format var dateFormat = $('#custom_date_format').val() || "mm/dd/yyyy"; $('#custom_date_format').change(function() { var dateFormat = $(this).val(); }); //start and end dates var nowTemp = new Date(); var now = new Date(nowTemp.getFullYear(), nowTemp.getMonth(), nowTemp.getDate(), 0, 0, 0, 0); var checkin = $('.j-start-date').datepicker({ format: dateFormat, onRender: function(date) { //return date.valueOf() < now.valueOf() ? 'disabled' : ''; } }).on('changeDate', function(ev) { if (ev.date.valueOf() > checkout.date.valueOf()) { var newDate = new Date(ev.date) newDate.setDate(newDate.getDate()); checkout.setValue(newDate); } checkin.hide(); $('.j-end-date')[0].focus(); }).data('datepicker'); var checkout = $('.j-end-date').datepicker({ format: dateFormat, onRender: function(date) { return date.valueOf() <= checkin.date.valueOf() ? 'disabled' : ''; } }).on('changeDate', function(ev) { checkout.hide(); }).data('datepicker');

    Read the article

  • R glm standard error estimate differences to SAS PROC GENMOD

    - by Michelle
    I am converting a SAS PROC GENMOD example into R, using glm in R. The SAS code was: proc genmod data=data0 namelen=30; model boxcoxy=boxcoxxy ~ AGEGRP4 + AGEGRP5 + AGEGRP6 + AGEGRP7 + AGEGRP8 + RACE1 + RACE3 + WEEKEND + SEQ/dist=normal; FREQ REPLICATE_VAR; run; My R code is: parmsg2 <- glm(boxcoxxy ~ AGEGRP4 + AGEGRP5 + AGEGRP6 + AGEGRP7 + AGEGRP8 + RACE1 + RACE3 + WEEKEND + SEQ , data=data0, family=gaussian, weights = REPLICATE_VAR) When I use summary(parmsg2) I get the same coefficient estimates as in SAS, but my standard errors are wildly different. The summary output from SAS is: Name df Estimate StdErr LowerWaldCL UpperWaldCL ChiSq ProbChiSq Intercept 1 6.5007436 .00078884 6.4991975 6.5022897 67911982 0 agegrp4 1 .64607262 .00105425 .64400633 .64813891 375556.79 0 agegrp5 1 .4191395 .00089722 .41738099 .42089802 218233.76 0 agegrp6 1 -.22518765 .00083118 -.22681672 -.22355857 73401.113 0 agegrp7 1 -1.7445189 .00087569 -1.7462352 -1.7428026 3968762.2 0 agegrp8 1 -2.2908855 .00109766 -2.2930369 -2.2887342 4355849.4 0 race1 1 -.13454883 .00080672 -.13612997 -.13296769 27817.29 0 race3 1 -.20607036 .00070966 -.20746127 -.20467944 84319.131 0 weekend 1 .0327884 .00044731 .0319117 .03366511 5373.1931 0 seq2 1 -.47509583 .00047337 -.47602363 -.47416804 1007291.3 0 Scale 1 2.9328613 .00015586 2.9325559 2.9331668 -127 The summary output from R is: Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 6.50074 0.10354 62.785 < 2e-16 AGEGRP4 0.64607 0.13838 4.669 3.07e-06 AGEGRP5 0.41914 0.11776 3.559 0.000374 AGEGRP6 -0.22519 0.10910 -2.064 0.039031 AGEGRP7 -1.74452 0.11494 -15.178 < 2e-16 AGEGRP8 -2.29089 0.14407 -15.901 < 2e-16 RACE1 -0.13455 0.10589 -1.271 0.203865 RACE3 -0.20607 0.09315 -2.212 0.026967 WEEKEND 0.03279 0.05871 0.558 0.576535 SEQ -0.47510 0.06213 -7.646 2.25e-14 The importance of the difference in the standard errors is that the SAS coefficients are all statistically significant, but the RACE1 and WEEKEND coefficients in the R output are not. I have found a formula to calculate the Wald confidence intervals in R, but this is pointless given the difference in the standard errors, as I will not get the same results. Apparently SAS uses a ridge-stabilized Newton-Raphson algorithm for its estimates, which are ML. The information I read about the glm function in R is that the results should be equivalent to ML. What can I do to change my estimation procedure in R so that I get the equivalent coefficents and standard error estimates that were produced in SAS? To update, thanks to Spacedman's answer, I used weights because the data are from individuals in a dietary survey, and REPLICATE_VAR is a balanced repeated replication weight, that is an integer (and quite large, in the order of 1000s or 10000s). The website that describes the weight is here. I don't know why the FREQ rather than the WEIGHT command was used in SAS. I will now test by expanding the number of observations using REPLICATE_VAR and rerunning the analysis.

    Read the article

  • Using 'git pull' vs 'git checkout -f' for website deployment

    - by Michelle
    I've found two common approaches to automatically deploying website updates using a bare remote repo. The first requires that the repo is cloned into the document root of the webserver and in the post-update hook a git pull is used. cd /srv/www/siteA/ || exit unset GIT_DIR git pull hub master The second approach adds a 'detached work tree' to the bare repository. The post-receive hook uses git checkout -f to replicate the repository's HEAD into the work directory which is the webservers document root i.e. GIT_WORK_TREE=/srv/www/siteA/ git checkout -f The first approach has the advantage that changes made in the websites working directory can be committed and pushed back to the bare repo (however files should not be updated on the live server). The second approach has the advantage that the git directory is not within the document root but this is easily solved using htaccess. Is one method objectively better than the other in terms of best practice? What other advantages and disadvantages am I missing?

    Read the article

  • why am I stuck on "Initiating update" when deploying to google

    - by michelle
    I've have not had any trouble deploying through eclipse until now. I'm guessing it might have to do with all the stuff I've added today a folder of .pdf and .tex files (in war/web-inf directory) a bit of JDO stuff and a servlet that reads the files in the directory and indexes them into the JDO Is there any way to find out what exactly is the problem? I currently get stuck at "Initiating update" and the stack trace say "ConnectionReset" Any helkp of imput will be appreciated, I really need to deploy this today, thanks! here's the deploy trace: Unable to update: java.net.SocketException: Connection reset at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method) at sun.reflect.NativeConstructorAccessorImpl.newInstance(Unknown Source) at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(Unknown Source) at java.lang.reflect.Constructor.newInstance(Unknown Source) at sun.net.www.protocol.http.HttpURLConnection$6.run(Unknown Source) at java.security.AccessController.doPrivileged(Native Method) at sun.net.www.protocol.http.HttpURLConnection.getChainedException(Unknown Source) at sun.net.www.protocol.http.HttpURLConnection.getInputStream(Unknown Source) at java.net.HttpURLConnection.getResponseCode(Unknown Source) at com.google.appengine.tools.admin.ServerConnection.getAuthCookie(ServerConnection.java:315) at com.google.appengine.tools.admin.ServerConnection.authenticate(ServerConnection.java:219) at com.google.appengine.tools.admin.ServerConnection.send(ServerConnection.java:145) at com.google.appengine.tools.admin.ServerConnection.post(ServerConnection.java:81) at com.google.appengine.tools.admin.AppVersionUpload.send(AppVersionUpload.java:427) at com.google.appengine.tools.admin.AppVersionUpload.beginTransaction(AppVersionUpload.java:241) at com.google.appengine.tools.admin.AppVersionUpload.doUpload(AppVersionUpload.java:98) at com.google.appengine.tools.admin.AppAdminImpl.update(AppAdminImpl.java:56) at com.google.appengine.eclipse.core.proxy.AppEngineBridgeImpl.deploy(AppEngineBridgeImpl.java:271) at com.google.appengine.eclipse.core.deploy.DeployProjectJob.runInWorkspace(DeployProjectJob.java:148) at org.eclipse.core.internal.resources.InternalWorkspaceJob.run(InternalWorkspaceJob.java:38) at org.eclipse.core.internal.jobs.Worker.run(Worker.java:55) Caused by: java.net.SocketException: Connection reset at java.net.SocketInputStream.read(Unknown Source) at java.io.BufferedInputStream.fill(Unknown Source) at java.io.BufferedInputStream.read1(Unknown Source) at java.io.BufferedInputStream.read(Unknown Source) at sun.net.www.http.HttpClient.parseHTTPHeader(Unknown Source) at sun.net.www.http.HttpClient.parseHTTP(Unknown Source) at sun.net.www.http.HttpClient.parseHTTP(Unknown Source) at sun.net.www.protocol.http.HttpURLConnection.getInputStream(Unknown Source) at sun.net.www.protocol.http.HttpURLConnection.getHeaderFieldKey(Unknown Source) at com.google.appengine.tools.util.ClientCookieManager.readCookies(ClientCookieManager.java:123) at com.google.appengine.tools.admin.ServerConnection.connect(ServerConnection.java:340) at com.google.appengine.tools.admin.ServerConnection.getAuthCookie(ServerConnection.java:314) ... 11 more

    Read the article

  • Rails way for querying join table in has_and_belongs_to_many

    - by Michelle
    I have a user model and a role model with a has_and_belongs_to_many reliationship. The join table is roles_users (two columns - the PK of the user and the role) and has no corresponding model. I want to have a method that returns all users with a given role. In SQL that'd be something like SELECT u.id FROM role.r, roles_users ru WHERE r.role_id = #{role.id} AND r.role_id = ru.role_id I see that Rails' activerecord has a find_by_sql method, but it's only expecting one results to be returned. What is the "Rails Way" to give me a list of users with a given role e.g. def self.find_users_with_role(role) users = [] users << # Some ActiveRecord magic or custom code here..? end

    Read the article

  • Dice Emulation - ImageView

    - by Michelle Harris
    I am trying to emulate dice using ImageView. When I click the button, nothing seems to happen. I have hard coded this example to replace the image with imageView4 for debugging purposes (I was making sure the random wasn't fail). Can anyone point out what I am doing wrong? I am new to Java, Eclipse and Android so I'm sure I've probably made more than one mistake. Java: import java.util.Random; import android.app.Activity; import android.os.Bundle; import android.view.View; import android.widget.ArrayAdapter; import android.widget.ImageView; import android.widget.Spinner; import android.widget.Toast; public class Yahtzee4Activity extends Activity { /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.main); Spinner s = (Spinner) findViewById(R.id.spinner); ArrayAdapter adapter = ArrayAdapter.createFromResource( this, R.array.score_types, android.R.layout.simple_spinner_dropdown_item); adapter.setDropDownViewResource(android.R.layout.simple_spinner_dropdown_item); s.setAdapter(adapter); } public void onMyButtonClick(View view) { ImageView imageView1 = new ImageView(this); Random rand = new Random(); int rndInt = 4; //rand.nextInt(6) + 1; // n = the number of images, that start at index 1 String imgName = "die" + rndInt; int id = getResources().getIdentifier(imgName, "drawable", getPackageName()); imageView1.setImageResource(id); } } XML for the button: <Button android:id="@+id/button_roll" android:layout_width="wrap_content" android:layout_height="wrap_content" android:text="@string/roll" android:onClick="onMyButtonClick" />

    Read the article

  • remove a varchar2 string from the middle of table data values

    - by Michelle Daniel
    Data in the file_name field of the generation table should be an assigned number, then _01, _02, or _03, etc. and then .ldf (example 82617_01.pdf). Somewhere, the program is putting a state name and sometimes a date/time stamp, between the assigned number and the 01, 02, etc. (82617_ALABAMA_01.pdf or 19998_MAINE_07-31-2010_11-05-59_AM.pdf or 5485325_OREGON_01.pdf for example). We would like to develop an SQL statement to find the bad file names and fix them. In theory it seems rather simple to find file_names that include a varchar2 data type and remove it, but putting the statement together is beyond me. Any help or suggestions apprecuiated. Something like ........... UPDATE GENERATION SET FILE_NAME (?) WHERE FILE_NAME (?...LIKE '%STRING%');?

    Read the article

  • Guide to reduce TFS database growth using the Test Attachment Cleaner

    - by terje
    Recently there has been several reports on TFS databases growing too fast and growing too big.  Notable this has been observed when one has started to use more features of the Testing system.  Also, the TFS 2010 handles test results differently from TFS 2008, and this leads to more data stored in the TFS databases. As a consequence of this there has been released some tools to remove unneeded data in the database, and also some fixes to correct for bugs which has been found and corrected during this process.  Further some preventive practices and maintenance rules should be adopted. A lot of people have blogged about this, among these are: Anu’s very important blog post here describes both the problem and solutions to handle it.  She describes both the Test Attachment Cleaner tool, and also some QFE/CU releases to fix some underlying bugs which prevented the tool from being fully effective. Brian Harry’s blog post here describes the problem too This forum thread describes the problem with some solution hints. Ravi Shanker’s blog post here describes best practices on solving this (TBP) Grant Holidays blogpost here describes strategies to use the Test Attachment Cleaner both to detect space problems and how to rectify them.   The problem can be divided into the following areas: Publishing of test results from builds Publishing of manual test results and their attachments in particular Publishing of deployment binaries for use during a test run Bugs in SQL server preventing total cleanup of data (All the published data above is published into the TFS database as attachments.) The test results will include all data being collected during the run.  Some of this data can grow rather large, like IntelliTrace logs and video recordings.   Also the pushing of binaries which happen for automated test runs, including tests run during a build using code coverage which will include all the files in the deployment folder, contributes a lot to the size of the attached data.   In order to handle this systematically, I have set up a 3-stage process: Find out if you have a database space issue Set up your TFS server to minimize potential database issues If you have the “problem”, clean up the database and otherwise keep it clean   Analyze the data Are your database( s) growing ?  Are unused test results growing out of proportion ? To find out about this you need to query your TFS database for some of the information, and use the Test Attachment Cleaner (TAC) to obtain some  more detailed information. If you don’t have too many databases you can use the SQL Server reports from within the Management Studio to analyze the database and table sizes. Or, you can use a set of queries . I find queries often faster to use because I can tweak them the way I want them.  But be aware that these queries are non-documented and non-supported and may change when the product team wants to change them. If you have multiple Project Collections, find out which might have problems: (Disclaimer: The queries below work on TFS 2010. They will not work on Dev-11, since the table structure have been changed.  I will try to update them for Dev-11 when it is released.) Open a SQL Management Studio session onto the SQL Server where you have your TFS Databases. Use the query below to find the Project Collection databases and their sizes, in descending size order.  use master select DB_NAME(database_id) AS DBName, (size/128) SizeInMB FROM sys.master_files where type=0 and substring(db_name(database_id),1,4)='Tfs_' and DB_NAME(database_id)<>'Tfs_Configuration' order by size desc Doing this on one of our SQL servers gives the following results: It is pretty easy to see on which collection to start the work   Find out which tables are possibly too large Keep a special watch out for the Tfs_Attachment table. Use the script at the bottom of Grant’s blog to find the table sizes in descending size order. In our case we got this result: From Grant’s blog we learnt that the tbl_Content is in the Version Control category, so the major only big issue we have here is the tbl_AttachmentContent.   Find out which team projects have possibly too large attachments In order to use the TAC to find and eventually delete attachment data we need to find out which team projects have these attachments. The team project is a required parameter to the TAC. Use the following query to find this, replace the collection database name with whatever applies in your case:   use Tfs_DefaultCollection select p.projectname, sum(a.compressedlength)/1024/1024 as sizeInMB from dbo.tbl_Attachment as a inner join tbl_testrun as tr on a.testrunid=tr.testrunid inner join tbl_project as p on p.projectid=tr.projectid group by p.projectname order by sum(a.compressedlength) desc In our case we got this result (had to remove some names), out of more than 100 team projects accumulated over quite some years: As can be seen here it is pretty obvious the “Byggtjeneste – Projects” are the main team project to take care of, with the ones on lines 2-4 as the next ones.  Check which attachment types takes up the most space It can be nice to know which attachment types takes up the space, so run the following query: use Tfs_DefaultCollection select a.attachmenttype, sum(a.compressedlength)/1024/1024 as sizeInMB from dbo.tbl_Attachment as a inner join tbl_testrun as tr on a.testrunid=tr.testrunid inner join tbl_project as p on p.projectid=tr.projectid group by a.attachmenttype order by sum(a.compressedlength) desc We then got this result: From this it is pretty obvious that the problem here is the binary files, as also mentioned in Anu’s blog. Check which file types, by their extension, takes up the most space Run the following query use Tfs_DefaultCollection select SUBSTRING(filename,len(filename)-CHARINDEX('.',REVERSE(filename))+2,999)as Extension, sum(compressedlength)/1024 as SizeInKB from tbl_Attachment group by SUBSTRING(filename,len(filename)-CHARINDEX('.',REVERSE(filename))+2,999) order by sum(compressedlength) desc This gives a result like this:   Now you should have collected enough information to tell you what to do – if you got to do something, and some of the information you need in order to set up your TAC settings file, both for a cleanup and for scheduled maintenance later.    Get your TFS server and environment properly set up Even if you have got the problem or if have yet not got the problem, you should ensure the TFS server is set up so that the risk of getting into this problem is minimized.  To ensure this you should install the following set of updates and components. The assumption is that your TFS Server is at SP1 level. Install the QFE for KB2608743 – which also contains detailed instructions on its use, download from here. The QFE changes the default settings to not upload deployed binaries, which are used in automated test runs. Binaries will still be uploaded if: Code coverage is enabled in the test settings. You change the UploadDeploymentItem to true in the testsettings file. Be aware that this might be reset back to false by another user which haven't installed this QFE. The hotfix should be installed to The build servers (the build agents) The machine hosting the Test Controller Local development computers (Visual Studio) Local test computers (MTM) It is not required to install it to the TFS Server, test agents or the build controller – it has no effect on these programs. If you use the SQL Server 2008 R2 you should also install the CU 10 (or later).  This CU fixes a potential problem of hanging “ghost” files.  This seems to happen only in certain trigger situations, but to ensure it doesn’t bite you, it is better to make sure this CU is installed. There is no such CU for SQL Server 2008 pre-R2 Work around:  If you suspect hanging ghost files, they can be – with some mental effort, deduced from the ghost counters using the following SQL query: use master SELECT DB_NAME(database_id) as 'database',OBJECT_NAME(object_id) as 'objectname', index_type_desc,ghost_record_count,version_ghost_record_count,record_count,avg_record_size_in_bytes FROM sys.dm_db_index_physical_stats (DB_ID(N'<DatabaseName>'), OBJECT_ID(N'<TableName>'), NULL, NULL , 'DETAILED') The problem is a stalled ghost cleanup process.  Restarting the SQL server after having stopped all components that depends on it, like the TFS Server and SPS services – that is all applications that connect to the SQL server. Then restart the SQL server, and finally start up all dependent processes again.  (I would guess a complete server reboot would do the trick too.) After this the ghost cleanup process will run properly again. The fix will come in the next CU cycle for SQL Server R2 SP1.  The R2 pre-SP1 and R2 SP1 have separate maintenance cycles, and are maintained individually. Each have its own set of CU’s. When it comes I will add the link here to that CU. The "hanging ghost file” issue came up after one have run the TAC, and deleted enourmes amount of data.  The SQL Server can get into this hanging state (without the QFE) in certain cases due to this. And of course, install and set up the Test Attachment Cleaner command line power tool.  This should be done following some guidelines from Ravi Shanker: “When you run TAC, ensure that you are deleting small chunks of data at regular intervals (say run TAC every night at 3AM to delete data that is between age 730 to 731 days) – this will ensure that small amounts of data are being deleted and SQL ghosted record cleanup can catch up with the number of deletes performed. “ This rule minimizes the risk of the ghosted hang problem to occur, and further makes it easier for the SQL server ghosting process to work smoothly. “Run DBCC SHRINKDB post the ghosted records are cleaned up to physically reclaim the space on the file system” This is the last step in a 3 step process of removing SQL server data. First they are logically deleted. Then they are cleaned out by the ghosting process, and finally removed using the shrinkdb command. Cleaning out the attachments The TAC is run from the command line using a set of parameters and controlled by a settingsfile.  The parameters point out a server uri including the team project collection and also point at a specific team project. So in order to run this for multiple team projects regularly one has to set up a script to run the TAC multiple times, once for each team project.  When you install the TAC there is a very useful readme file in the same directory. When the deployment binaries are published to the TFS server, ALL items are published up from the deployment folder. That often means much more files than you would assume are necessary. This is a brute force technique. It works, but you need to take care when cleaning up. Grant has shown how their settings file looks in his blog post, removing all attachments older than 180 days , as long as there are no active workitems connected to them. This setting can be useful to clean out all items, both in a clean-up once operation, and in a general There are two scenarios we need to consider: Cleaning up an existing overgrown database Maintaining a server to avoid an overgrown database using scheduled TAC   1. Cleaning up a database which has grown too big due to these attachments. This job is a “Once” job.  We do this once and then move on to make sure it won’t happen again, by taking the actions in 2) below.  In this scenario you should only consider the large files. Your goal should be to simply reduce the size, and don’t bother about  the smaller stuff. That can be left a scheduled TAC cleanup ( 2 below). Here you can use a very general settings file, and just remove the large attachments, or you can choose to remove any old items.  Grant’s settings file is an example of the last one.  A settings file to remove only large attachments could look like this: <!-- Scenario : Remove large files --> <DeletionCriteria> <TestRun /> <Attachment> <SizeInMB GreaterThan="10" /> </Attachment> </DeletionCriteria> Or like this: If you want only to remove dll’s and pdb’s about that size, add an Extensions-section.  Without that section, all extensions will be deleted. <!-- Scenario : Remove large files of type dll's and pdb's --> <DeletionCriteria> <TestRun /> <Attachment> <SizeInMB GreaterThan="10" /> <Extensions> <Include value="dll" /> <Include value="pdb" /> </Extensions> </Attachment> </DeletionCriteria> Before you start up your scheduled maintenance, you should clear out all older items. 2. Scheduled maintenance using the TAC If you run a schedule every night, and remove old items, and also remove them in small batches.  It is important to run this often, like every night, in order to keep the number of deleted items low. That way the SQL ghost process works better. One approach could be to delete all items older than some number of days, let’s say 180 days. This could be combined with restricting it to keep attachments with active or resolved bugs.  Doing this every night ensures that only small amounts of data is deleted. <!-- Scenario : Remove old items except if they have active or resolved bugs --> <DeletionCriteria> <TestRun> <AgeInDays OlderThan="180" /> </TestRun> <Attachment /> <LinkedBugs> <Exclude state="Active" /> <Exclude state="Resolved"/> </LinkedBugs> </DeletionCriteria> In my experience there are projects which are left with active or resolved workitems, akthough no further work is done.  It can be wise to have a cleanup process with no restrictions on linked bugs at all. Note that you then have to remove the whole LinkedBugs section. A approach which could work better here is to do a two step approach, use the schedule above to with no LinkedBugs as a sweeper cleaning task taking away all data older than you could care about.  Then have another scheduled TAC task to take out more specifically attachments that you are not likely to use. This task could be much more specific, and based on your analysis clean out what you know is troublesome data. <!-- Scenario : Remove specific files early --> <DeletionCriteria> <TestRun > <AgeInDays OlderThan="30" /> </TestRun> <Attachment> <SizeInMB GreaterThan="10" /> <Extensions> <Include value="iTrace"/> <Include value="dll"/> <Include value="pdb"/> <Include value="wmv"/> </Extensions> </Attachment> <LinkedBugs> <Exclude state="Active" /> <Exclude state="Resolved" /> </LinkedBugs> </DeletionCriteria> The readme document for the TAC says that it recognizes “internal” extensions, but it does recognize any extension. To run the tool do the following command: tcmpt attachmentcleanup /collection:your_tfs_collection_url /teamproject:your_team_project /settingsfile:path_to_settingsfile /outputfile:%temp%/teamproject.tcmpt.log /mode:delete   Shrinking the database You could run a shrink database command after the TAC has run in cases where there are a lot of data being deleted.  In this case you SHOULD do it, to free up all that space.  But, after the shrink operation you should do a rebuild indexes, since the shrink operation will leave the database in a very fragmented state, which will reduce performance. Note that you need to rebuild indexes, reorganizing is not enough. For smaller amounts of data you should NOT shrink the database, since the data will be reused by the SQL server when it need to add more records.  In fact, it is regarded as a bad practice to shrink the database regularly.  So on a daily maintenance schedule you should NOT shrink the database. To shrink the database you do a DBCC SHRINKDATABASE command, and then follow up with a DBCC INDEXDEFRAG afterwards.  I find the easiest way to do this is to create a SQL Maintenance plan including the Shrink Database Task and the Rebuild Index Task and just execute it when you need to do this.

    Read the article

  • Finding a person in the forest

    - by PointsToShare
    © 2011 By: Dov Trietsch. All rights reserved finding a person in the forest or Limiting the AD result in SharePoint People Picker There are times when we need to limit the SharePoint audience of certain farms or servers or site collections to a particular audience. One of my experiences involved limiting access to US citizens, another to a particular location. Now, most of us – your humble servant included – are not Active Directory experts – but we must be able to handle the “audience restrictions” as required. So here is how it’s done in a nutshell. Important note. Not all could be done in PowerShell (at least not yet)! There are no Windows PowerShell commands to configure People Picker. The stsadm command is: stsadm -o setproperty -pn peoplepicker-searchadcustomquery -pv ADQuery –url http://somethingOrOther Note the long-hyphenated property name. Now to filling the ADQuery.   LDAP Query in a nutshell Syntax LDAP is no older than SQL and an LDAP query is actually a query against the LDAP Database. LDAP attributes are the equivalent of Database columns, so why do we have to learn a new query language? Beats me! But we must, so here it is. The syntax of an LDAP query string is made of individual statements with relational operators including: = Equal <= Lower than or equal >= Greater than or equal… and memberOf – a group membership. ! Not * Wildcard Equal and memberOf are the most commonly used. Checking for absence uses the ! – not and the * - wildcard Example: (SN=Grant) All whose last name – SurName – is Grant Example: (!(SN=Grant)) All except Grant Example: (!(SN=*)) all where there is no SurName i.e SurName is absent (probably Rappers). Example: (CN=MyGroup) Common Name is MyGroup.  Example: (GN=J*) all the Given Names that start with J (JJ, Jane, Jon, John, etc.) The cryptic SN, CN, GN, etc. are attributes and more about them later All the queries are enclosed in parentheses (Query). Complex queries are comprised of sets that are in AND or OR conditions. AND is denoted by the ampersand (&) and the OR is denoted by the vertical pipe (|). The general syntax is that of the Prefix polish notation where the operand precedes the variables. E.g +ab is the sum of a and b. In an LDAP query (&(A)(B)) will garner the objects for which both A and B are true. In an LDAP query (&(A)(B)(C)) will garner the objects for which A, B and C are true. There’s no limit to the number of conditions. In an LDAP query (|(A)(B)) will garner the objects for which either A or B are true. In an LDAP query (|(A)(B)(C)) will garner the objects for which at least one of A, B and C is true. There’s no limit to the number of conditions. More complex queries have both types of conditions and the parentheses determine the order of operations. Attributes Now let’s get into the SN, CN, GN, and other attributes of the query SN – is the SurName (last name) GN – is the Given Name (first name) CN – is the Common Name, usually GN followed by SN OU – is an Organization Unit such as division, department etc. DC – is a Domain Content in the AD forest l – lower case ‘L’ stands for location. Jerusalem anybody? Or Katmandu. UPN – User Principal Name, is usually the first part of an email address. By nature it is unique in the forest. Most systems set the UPN to be the first initial followed by the SN of the person involved. Some limit the total to 8 characters. If we have many ‘jsmith’ we have to somehow distinguish them from each other. DN – is the distinguished name – a name unique to AD forest in which it lives. Usually it’s a CN with some domain or group distinguishers. DN is important in conjunction with the memberOf relation. Groups have stricter requirement. Each group has to have a unique name - its CN and it has to be unique regardless of its place. See more below. All of the attributes are case insensitive. CN, cn, Cn, and cN are identical. objectCategory is an element that requires special consideration. AD contains many different object like computers, printers, and of course people and groups. In the queries below, we’re limiting our search to people (person). Putting it altogether Let’s get a list of all the Johns in the SPAdmin group of the Jerusalem that local domain. (&(objectCategory=person)(memberOf=cn=SPAdmin,ou=Jerusalem,dc=local)) The memberOf=cn=SPAdmin uses the cn (Common Name) of the SPAdmin group. This is how the memberOf relation is used. ‘SPAdmin’ is actually the DN of the group. Also the memberOf relation does not allow wild cards (*) in the group name. Also, you are limited to at most one ‘OU’ entry. Let’s add Marvin Minsky to the search above. |(&(objectCategory=person)(memberOf=cn=SPAdmin,ou=Jerusalem,dc=local))(CN=Marvin Minsky) Here I added the or pipeline at the beginning of the query and put the CN requirement for Minsky at the end. Note that if Marvin was already in the prior result, he’s not going to be listed twice. One last note: You may see a dryer but more complete list of attributes rules and examples in: http://www.tek-tips.com/faqs.cfm?fid=5667 And finally (thus negating the claim that my previous note was last), to the best of my knowledge there are 3 more ways to limit the audience. One is to use the peoplepicker-searchadcustomfilter property using the same ADQuery. This works only in SP1 and above. The second is to limit the search to users within this particular site collection – the property name is peoplepicker-onlysearchwithinsitecollection and the value is yes (-pv yes) And the third is –pn peoplepicker-serviceaccountdirectorypaths –pv “OU=ou1,DC=dc1…..” Again you are limited to at most one ‘OU’ phrase – no OU=ou1,OU=ou2… And now the real end. The main property discussed in this sprawling and seemingly endless monogram – peoplepicker-searchadcustomquery - is the most general way of getting the job done. Here are a few examples of command lines that worked and some that didn’t. Can you see why? C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\12\BIN>stsa dm -o setproperty -url http://somethingOrOther -pn peoplepicker-searchadcustomfi lter -pv (Title=David) Operation completed successfully. C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\12\BIN>stsa dm -o setproperty -url http://somethingOrOther -pn peoplepicker-searchadcustomfi lter -pv (!Title=David) Operation completed successfully. C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\12\BIN>stsa dm -o setproperty -url http://somethingOrOther -pn peoplepicker-searchadcustomfi lter -pv (OU=OURealName,OU=OUMid,OU=OUTop,DC=TopDC,DC=MidDC,DC=BottomDC) Command line error. Too many OUs C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\12\BIN>stsa dm -o setproperty -url http://somethingOrOther -pn peoplepicker-searchadcustomfi lter -pv (OU=OURealName) Operation completed successfully. C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\12\BIN>stsa dm -o setproperty -url http://somethingOrOther -pn peoplepicker-searchadcustomfi lter -pv (DC=TopDC,DC=MidDC,DC=BottomDC) Operation completed successfully. C:\Program Files\Common Files\Microsoft Shared\Web Server Extensions\12\BIN>stsa dm -o setproperty -url http://somethingOrOther -pn peoplepicker-searchadcustomfi lter -pv (OU=OURealName,DC=TopDC,DC=MidDC,DC=BottomDC) Operation completed successfully.   That’s all folks!

    Read the article

  • Goldtouch USB Keyboard reverses keystrokes in fast typing -- expected?

    - by Justin Grant
    I am running into an odd keyboard problem: some key combinations end up reversed (e.g. "pl" ends up being emitted as "lp") when I'm typing quickly. The problematic ones are the key combos I hit with two adjacent fingers on my right hand-- in other words, the combos I can hit the fastest. No idea how fast is "fastest", but I guess around 50-150 msecs gap between them. I'm trying to track down whether this represents a failed keyboard, an inherent limitation of my Goldtouch USB keyboards, or a software problem on my Windows 7 Lenovo T500. I use a PS/2 version of the same Goldtouch keyboard at home with no problems. I've tried another USB keyboard with my laptop and can't repro the problem. I've also used this keyboard on other laptops without a problem. According to this SU thread, USB keyboards have higher latency than PS/2 keyboards-- up to 30 msecs. I find it hard to imagine that I can type key combos faster than 50 msecs, probably more like 100-150. Anyone encountered this problem with this or another keyboard? If so, how did you fix it? Any idea if there's a "keyboard log" or some way to diagnose the problem inside Windows?

    Read the article

  • Google chrome asking for username and password for OWA

    - by Grant
    Hi, i have a question about the google chrome browser. When i navigate to my work's Outlook Web Access site to read my emails, the chrome browser is prompting me for a username and password to the server saying "Authentication Required - the server XXXXXX.XXX:443 requires a username and password. After i put them in i then have to enter in the normal OWA username and password to access my emails as per normal. The funny thing is.. 1] If i click CANCEL on the first dialog it takes me to the OWA screen and i can log in normal anyway. However - subqeuent page clicks will keep prompting me each time for the server credentials. 2] I am NOT prompted for server UN and PW if i use IE or fireFox. Does anyone know how to stop chrome from asking me each time? or is it a server setting - i do know that a friend who uses the same browser (chrome) and also OWA does not have the same problem (NB: they work at a different company) Thanks!

    Read the article

  • Does this laptop have high enough specifications for gaming? [closed]

    - by Grant
    Here's the laptop It wouldn't be hardcore gaming, mostly things like the new Deus Ex game, Mirror's Edge, Portal 2, etc... I need to replace my current, broken, laptop and I thought this would be a good opportunity to get to play some of these games. My current laptop is really only lacking in its graphics card. (Intel series 4 chipset) If this laptop isn't good enough, I would really appreciate suggestions. I won't be able to get a desktop, otherwise I would, and I can't spend more than $1000 dollars on my new laptop.

    Read the article

  • How to read oom-killer syslog messages?

    - by Grant
    I have a Ubuntu 12.04 server which sometimes dies completely - no SSH, no ping, nothing until it is physically rebooted. After the reboot, I see in syslog that the oom-killer killed, well, pretty much everything. There's a lot of detailed memory usage information in them. How do I read these logs to see what caused the OOM issue? The server has far more memory than it needs, so it shouldn't be running out of memory. Oct 25 07:28:04 nldedip4k031 kernel: [87946.529511] oom_kill_process: 9 callbacks suppressed Oct 25 07:28:04 nldedip4k031 kernel: [87946.529514] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529516] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529518] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:04 nldedip4k031 kernel: [87946.529519] Call Trace: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529525] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529528] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529530] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529532] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529535] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529537] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529541] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529543] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529546] [] vfs_read+0x8c/0x160 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529548] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529550] [] sys_read+0x3d/0x70 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529554] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529555] Mem-Info: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529556] DMA per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529557] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529558] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529560] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529561] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529562] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529563] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529564] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529565] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529566] Normal per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529567] CPU 0: hi: 186, btch: 31 usd: 179 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529568] CPU 1: hi: 186, btch: 31 usd: 182 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529569] CPU 2: hi: 186, btch: 31 usd: 132 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529570] CPU 3: hi: 186, btch: 31 usd: 175 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529571] CPU 4: hi: 186, btch: 31 usd: 91 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529572] CPU 5: hi: 186, btch: 31 usd: 173 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529573] CPU 6: hi: 186, btch: 31 usd: 159 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529574] CPU 7: hi: 186, btch: 31 usd: 164 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529575] HighMem per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529576] CPU 0: hi: 186, btch: 31 usd: 165 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529577] CPU 1: hi: 186, btch: 31 usd: 183 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529578] CPU 2: hi: 186, btch: 31 usd: 185 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529579] CPU 3: hi: 186, btch: 31 usd: 138 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529580] CPU 4: hi: 186, btch: 31 usd: 155 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529581] CPU 5: hi: 186, btch: 31 usd: 104 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529582] CPU 6: hi: 186, btch: 31 usd: 133 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529583] CPU 7: hi: 186, btch: 31 usd: 170 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_anon:5523 inactive_anon:354 isolated_anon:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_file:2815 inactive_file:6849119 isolated_file:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] unevictable:0 dirty:449 writeback:10 unstable:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] free:1304125 slab_reclaimable:104672 slab_unreclaimable:3419 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529588] mapped:2661 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529591] DMA free:4252kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:4kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11564kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529594] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529599] Normal free:44052kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:616kB inactive_file:568kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:0kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:407124kB slab_unreclaimable:13672kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:2083 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529602] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529606] HighMem free:5168196kB min:512kB low:402312kB high:804112kB active_anon:22092kB inactive_anon:1416kB active_file:10640kB inactive_file:27395920kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:1796kB writeback:40kB mapped:10640kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:04 nldedip4k031 kernel: [87946.529609] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529611] DMA: 6*4kB 6*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4232kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529616] Normal: 297*4kB 180*8kB 119*16kB 73*32kB 67*64kB 47*128kB 35*256kB 13*512kB 5*1024kB 1*2048kB 1*4096kB = 44052kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529622] HighMem: 1*4kB 6*8kB 27*16kB 11*32kB 2*64kB 1*128kB 0*256kB 0*512kB 4*1024kB 1*2048kB 1260*4096kB = 5168196kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529627] 6852076 total pagecache pages Oct 25 07:28:04 nldedip4k031 kernel: [87946.529628] 0 pages in swap cache Oct 25 07:28:04 nldedip4k031 kernel: [87946.529629] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529630] Free swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529631] Total swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.571914] 8437743 pages RAM Oct 25 07:28:04 nldedip4k031 kernel: [87946.571916] 8209409 pages HighMem Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 159556 pages reserved Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 6862034 pages shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571918] 123540 pages non-shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571919] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:04 nldedip4k031 kernel: [87946.571927] [ 421] 0 421 709 152 3 0 0 upstart-udev-br Oct 25 07:28:04 nldedip4k031 kernel: [87946.571929] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571931] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571932] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571934] [ 764] 0 764 712 103 1 0 0 upstart-socket- Oct 25 07:28:04 nldedip4k031 kernel: [87946.571936] [ 772] 103 772 815 164 5 0 0 dbus-daemon Oct 25 07:28:04 nldedip4k031 kernel: [87946.571938] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571940] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571942] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571943] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571945] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571947] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571949] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571950] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571952] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:04 nldedip4k031 kernel: [87946.571954] [ 948] 0 948 902 159 3 0 0 irqbalance Oct 25 07:28:04 nldedip4k031 kernel: [87946.571956] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:04 nldedip4k031 kernel: [87946.571957] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571959] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:04 nldedip4k031 kernel: [87946.571961] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571963] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571965] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571967] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571969] [ 1090] 33 1090 6175 1451 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571971] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571972] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571974] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571976] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571978] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571980] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571982] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:04 nldedip4k031 kernel: [87946.571984] [ 2573] 0 2573 3394 1689 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571986] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571988] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571990] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:04 nldedip4k031 kernel: [87946.571992] Out of memory: Kill process 421 (upstart-udev-br) score 1 or sacrifice child Oct 25 07:28:04 nldedip4k031 kernel: [87946.572407] Killed process 421 (upstart-udev-br) total-vm:2836kB, anon-rss:156kB, file-rss:452kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.573107] init: upstart-udev-bridge main process (421) killed by KILL signal Oct 25 07:28:04 nldedip4k031 kernel: [87946.573126] init: upstart-udev-bridge main process ended, respawning Oct 25 07:28:34 nldedip4k031 kernel: [87976.461570] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461573] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461576] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:34 nldedip4k031 kernel: [87976.461578] Call Trace: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461585] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461588] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461591] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461595] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461599] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461602] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461606] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461609] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461613] [] vfs_read+0x8c/0x160 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461616] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461619] [] sys_read+0x3d/0x70 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461624] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461626] Mem-Info: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461628] DMA per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461629] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461631] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461633] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461634] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461636] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461638] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461639] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461641] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461642] Normal per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461644] CPU 0: hi: 186, btch: 31 usd: 61 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461646] CPU 1: hi: 186, btch: 31 usd: 49 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461647] CPU 2: hi: 186, btch: 31 usd: 8 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461649] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461651] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461652] CPU 5: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461654] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461656] CPU 7: hi: 186, btch: 31 usd: 30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461657] HighMem per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461658] CPU 0: hi: 186, btch: 31 usd: 4 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461660] CPU 1: hi: 186, btch: 31 usd: 204 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461662] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461663] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461665] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461667] CPU 5: hi: 186, btch: 31 usd: 31 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461668] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461670] CPU 7: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_anon:5441 inactive_anon:412 isolated_anon:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_file:2668 inactive_file:6922842 isolated_file:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461675] unevictable:0 dirty:836 writeback:0 unstable:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461676] free:1231664 slab_reclaimable:105781 slab_unreclaimable:3399 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461677] mapped:2649 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461682] DMA free:4248kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11560kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:5687 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461686] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461693] Normal free:44184kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:20kB inactive_file:1096kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:4kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:411564kB slab_unreclaimable:13592kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1816 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461697] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461703] HighMem free:4878224kB min:512kB low:402312kB high:804112kB active_anon:21764kB inactive_anon:1648kB active_file:10652kB inactive_file:27690268kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:3340kB writeback:0kB mapped:10592kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:34 nldedip4k031 kernel: [87976.461708] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461711] DMA: 8*4kB 7*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4248kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461719] Normal: 272*4kB 178*8kB 76*16kB 52*32kB 42*64kB 36*128kB 23*256kB 20*512kB 7*1024kB 2*2048kB 1*4096kB = 44176kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461727] HighMem: 1*4kB 45*8kB 31*16kB 24*32kB 5*64kB 3*128kB 1*256kB 2*512kB 4*1024kB 2*2048kB 1188*4096kB = 4877852kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461736] 6925679 total pagecache pages Oct 25 07:28:34 nldedip4k031 kernel: [87976.461737] 0 pages in swap cache Oct 25 07:28:34 nldedip4k031 kernel: [87976.461739] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461740] Free swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461741] Total swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.524951] 8437743 pages RAM Oct 25 07:28:34 nldedip4k031 kernel: [87976.524953] 8209409 pages HighMem Oct 25 07:28:34 nldedip4k031 kernel: [87976.524954] 159556 pages reserved Oct 25 07:28:34 nldedip4k031 kernel: [87976.524955] 6936141 pages shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524956] 124602 pages non-shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524957] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:34 nldedip4k031 kernel: [87976.524966] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524968] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524971] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524973] [ 764] 0 764 712 103 3 0 0 upstart-socket- Oct 25 07:28:34 nldedip4k031 kernel: [87976.524976] [ 772] 103 772 815 164 2 0 0 dbus-daemon Oct 25 07:28:34 nldedip4k031 kernel: [87976.524979] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524981] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524983] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524986] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524988] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524990] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524992] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524995] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524997] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:34 nldedip4k031 kernel: [87976.524999] [ 948] 0 948 902 159 5 0 0 irqbalance Oct 25 07:28:34 nldedip4k031 kernel: [87976.525002] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:34 nldedip4k031 kernel: [87976.525004] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525007] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:34 nldedip4k031 kernel: [87976.525009] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525012] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.525014] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525017] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525019] [ 1090] 33 1090 6175 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525021] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525024] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525026] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525029] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525031] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525033] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525036] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:34 nldedip4k031 kernel: [87976.525038] [ 2573] 0 2573 3394 1689 3 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525040] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525043] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525045] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:34 nldedip4k031 kernel: [87976.525048] [ 2847] 0 2847 709 89 0 0 0 upstart-udev-br Oct 25 07:28:34 nldedip4k031 kernel: [87976.525050] Out of memory: Kill process 764 (upstart-socket-) score 1 or sacrifice child Oct 25 07:28:34 nldedip4k031 kernel: [87976.525484] Killed process 764 (upstart-socket-) total-vm:2848kB, anon-rss:204kB, file-rss:208kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.526161] init: upstart-socket-bridge main process (764) killed by KILL signal Oct 25 07:28:34 nldedip4k031 kernel: [87976.526180] init: upstart-socket-bridge main process ended, respawning Oct 25 07:28:44 nldedip4k031 kernel: [87986.439671] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439674] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439676] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:44 nldedip4k031 kernel: [87986.439678] Call Trace: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439684] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439686] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439688] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439691] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439694] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439696] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439699] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439702] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439704] [] vfs_read+0x8c/0x160 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439707] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439709] [] sys_read+0x3d/0x70 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439712] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] Mem-Info: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] DMA per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439716] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439717] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439718] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439719] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439720] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439721] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439722] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439723] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439724] Normal per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439725] CPU 0: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439726] CPU 1: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439727] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439728] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439729] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:33:48 nldedip4k031 kernel: imklog 5.8.6, log source = /proc/kmsg started. Oct 25 07:33:48 nldedip4k031 rsyslogd: [origin software="rsyslogd" swVersion="5.8.6" x-pid="2880" x-info="http://www.rsyslog.com"] start Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's groupid changed to 103 Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's userid changed to 101 Oct 25 07:33:48 nldedip4k031 rsyslogd-2039: Could not open output pipe '/dev/xconsole' [try http://www.rsyslog.com/e/2039 ]

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >