Search Results

Search found 308 results on 13 pages for 'nicholas a evans'.

Page 13/13 | < Previous Page | 9 10 11 12 13 

  • Javascript self contained sandbox events and client side stack

    - by amnon
    I'm in the process of moving a JSF heavy web application to a REST and mainly JS module application . I've watched "scalable javascript application architecture" by Nicholas Zakas on yui theater (excellent video) and implemented much of the talk with good success but i have some questions : I found the lecture a little confusing in regards to the relationship between modules and sandboxes , on one had to my understanding modules should not be effected by something happening outside of their sandbox and this is why they publish events via the sandbox (and not via the core as they do access the core for hiding base libary) but each module in the application gets a new sandbox ? , shouldn't the sandbox limit events to the modoules using it ? or should events be published cross page ? e.g. : if i have two editable tables but i want to contain each one in a different sandbox and it's events effect only the modules inside that sandbox something like messabe box per table which is a different module/widget how can i do that with sandbox per module , ofcourse i can prefix the events with the moduleid but that creates coupling that i want to avoid ... and i don't want to package modules toghter as one module per combination as i already have 6-7 modules ? while i can hide the base library for small things like id selector etc.. i would still like to use the base library for module dependencies and resource loading and use something like yui loader or dojo.require so in fact i'm hiding the base library but the modules themself are defined and loaded by the base library ... seems a little strange to me libraries don't return simple js objects but usualy wrap them e.g. : u can do something like $$('.classname').each(.. which cleans the code alot , it makes no sense to wrap the base and then in the module create a dependency for the base library by executing .each but not using those features makes a lot of code written which can be left out ... and implemnting that functionality is very bug prone does anyonen have any experience with building a front side stack of this order ? how easy is it to change a base library and/or have modules from different libraries , using yui datatable but doing form validation with dojo ... ? some what of a combination of 2+4 if u choose to do something like i said and load dojo form validation widgets for inputs via yui loader would that mean dojocore is a module and the form module is dependant on it ? Thanks .

    Read the article

  • Thursday Community Keynote: "By the Community, For the Community"

    - by Janice J. Heiss
    Sharat Chander, JavaOne Community Chairperson, began Thursday's Community Keynote. As part of the morning’s theme of "By the Community, For the Community," Chander noted that 60% of the material at the 2012 JavaOne conference was presented by Java Community members. "So next year, when the call for papers starts, put-in your submissions," he urged.From there, Gary Frost, Principal Member of Technical Staff, AMD, expanded upon Sunday's Strategy Keynote exploration of Project Sumatra, an OpenJDK project targeted at bringing Java to heterogeneous computing platforms (which combine the CPU and the parallel processor of the GPU into a single piece of silicon). Sumatra entails enhancing the JVM to make maximum use of these advanced platforms. Within this development space, AMD created the Aparapi API, which converts Java bytecode into OpenCL for execution on such GPU devices. The Aparapi API was open sourced in September 2011.Whether it was zooming-in on a Mandelbrot set, "the game of life," or a swarm of 10,000 Dukes in a space-bound gravitational dance, Frost's demos, using an Aparapi/OpenCL implementation, produced stunningly faster display results. He indicated that the Java 9 timeframe is where they see Project Sumatra coming to ultimate fruition, employing the Lamdas of Java 8.Returning to the theme of the keynote, Donald Smith, Director, Java Product Management, Oracle, explored a mind map graphic demonstrating the importance of Community in terms of fostering innovation. "It's the sharing and mixing of culture, the diversity, and the rapid prototyping," he said. Within this topic, Smith, brought up a panel of representatives from Cloudera, Eclipse, Eucalyptus, Perrone Robotics, and Twitter--ideal manifestations of community and innovation in the world of Java.Marten Mickos, CEO, Eucalyptus Systems, explored his company's open source cloud software platform, written in Java, and used by gaming companies, technology companies, media companies, and more. Chris Aniszczyk, Operations Engineering,Twitter, noted the importance of the JVM in terms of their multiple-language development environment. Mike Olson, CEO, Cloudera, described his company's Apache Hadoop-based software, support, and training. Mike Milinkovich, Executive Director, Eclipse Foundation, noted that they have about 270 tools projects at Eclipse, with 267 of them written in Java. Milinkovich added that Eclipse will even be going into space in 2013, as part of the control software on various experiments aboard the International Space Station. Lastly, Paul Perrone, CEO, Perrone Robotics, detailed his company's robotics and automation software platform built 100% on Java, including Java SE and Java ME--"on rat, to cat, to elephant-sized systems." Milinkovic noted that communities are by nature so good at innovation because of their very openness--"The more open you make your innovation process, the more ideas are challenged, and the more developers are focused on justifying their choices all the way through the process."From there, Georges Saab, VP Development Java SE OpenJDK, continued the topic of innovation and helping the Java Community to "Make the Future Java." Martijn Verburg, representing the London Java Community (winner of a Duke's Choice Award 2012 for their activity in OpenJDK and JCP), soon joined Saab onstage. Verburg detailed the LJC's "Adopt a JSR" program--"to get day-to-day developers more involved in the innovation that's happening around them."  From its London launching pad, the innovative program has spread to Brazil, Morocco, Latvia, India, and more.Other active participants in the program joined Verburg onstage--Ben Evans, London Java Community; James Gough, Stackthread; Bruno Souza, SOUJava; Richard Warburton, jClarity; and Cecelia Borg, Oracle--OpenJDK Onboarding. Together, the group explored the goals and tasks inherent in the Adopt a JSR program--from organizing hack days (testing prototype implementations), to managing mailing lists and forums, to triaging issues, to evangelism—all with the goal of fostering greater community/developer involvement, but equally importantly, building better open standards. “Come join us, and make your ecosystem better!" urged Verburg.Paul Perrone returned to profile the latest in his company's robotics work around Java--including the AARDBOTS family of smaller robotic vehicles, running the Perrone MAX platform on top of the Java JVM. Perrone took his "Rumbles" four-wheeled robot out for a spin onstage--a roaming, ARM-based security-bot vehicle, complete with IR, ultrasonic, and "cliff" sensors (the latter, for the raised stage at JavaOne). As an ultimate window into the future of robotics, Perrone displayed a "head-set" controller--a sensor directed at the forehead to monitor brainwaves, for the someday-implementation of brain-to-robot control.Then, just when it seemed this might be the end of the day's futuristic offerings, a mystery voice from offstage pronounced "I've got some toys"--proving to be guest-visitor James Gosling, there to explore his cutting-edge work with Liquid Robotics. While most think of robots as something with wheels or arms or lasers, Gosling explained, the Liquid Robotics vehicle is an entirely new and innovative ocean-going 'bot. Looking like a floating surfboard, with an attached set of underwater wings, the autonomous devices roam the oceans using only the energy of ocean waves to propel them, and a single actuated rudder to steer. "We have to accomplish all guidance just by wiggling the rudder," Gosling said. The devices offer applications from self-installing weather buoy, to pollution monitoring station, to marine mammal monitoring device, to climate change data gathering, to even ocean life genomic sampling. The early versions of the vehicle used C code on very tiny industrial micro controllers, where they had to "count the bytes one at a time."  But the latest generation vehicles, which just hit the water a week or so ago, employ an ARM processor running Linux and the ARM version of JDK 7. Gosling explained that vehicle communication from remote locations is achieved via the Iridium satellite network. But because of the costs of this communication path, the data must be sent in very small bursts--using SBD short burst data. "It costs $1/kb, so that rules everything in the software design,” said Gosling. “If you were trying to stream a Netflix video over this, it would cost a million dollars a movie. …We don't have a 'big data' problem," he quipped. There are currently about 150 Liquid Robotics vehicles out traversing the oceans. Gosling demonstrated real time satellite tracking of several vehicles currently at sea, noting that Java is actually particularly good at AI applications--due to the language having garbage collection, which facilitates complex data structures. To close-out his time onstage, Gosling of course participated in the ceremonial Java tee-shirt toss out to the audience…In parting, Chander passed the JavaOne Community Chairperson baton to Stephen Chin, Java Technology Evangelist, Oracle. Onstage in full motorcycle gear, Chin noted that he'll soon be touring Europe by motorcycle, meeting Java Community Members and streaming live via UStream--the ultimate manifestation of community and technology!  He also reminded attendees of the upcoming JavaOne Latin America 2012, São Paulo, Brazil (December 4-6, 2012), and stated that the CFP (call for papers) at the conference has been extended for one more week. "Remember, December is summer in Brazil!" Chin said.

    Read the article

  • Agile Testing Days 2012 – Day 3 – Agile or agile?

    - by Chris George
    Another early start for my last Lean Coffee of the conference, and again it was not wasted. We had some really interesting discussions around how to determine what test automation is useful, if agile is not faster, why do it? and a rather existential discussion on whether unicorns exist! First keynote of the day was entitled “Fast Feedback Teams” by Ola Ellnestam. Again this relates nicely to the releasing faster talk on day 2, and something that we are looking at and some teams are actively trying. Introducing the notion of feedback, Ola describes a game he wrote for his eldest child. It was a simple game where every time he clicked a button, it displayed “You’ve Won!”. He then changed it to be a Win-Lose-Win-Lose pattern and watched the feedback from his son who then twigged the pattern and got his younger brother to play, alternating turns… genius! (must do that with my children). The idea behind this was that you need that feedback loop to learn and progress. If you are not getting the feedback you need to close that loop. An interesting point Ola made was to solve problems BEFORE writing software. It may be that you don’t have to write anything at all, perhaps it’s a communication/training issue? Perhaps the problem can be solved another way. Writing software, although it’s the business we are in, is expensive, and this should be taken into account. He again mentions frequent releases, and how they should be made as soon as stuff is ready to be released, don’t leave stuff on the shelf cause it’s not earning you anything, money or data. I totally agree with this and it’s something that we will be aiming for moving forwards. “Exceptions, Assumptions and Ambiguity: Finding the truth behind the story” by David Evans started off very promising by making references to ‘Grim up North’ referring to the north of England. Not sure it was appreciated by most of the audience, but it made me laugh! David explained how there are always risks associated with exceptions, giving the example of a one-way road near where he lives, with an exception sign giving rights to coaches to go the wrong way. Therefore you could merrily swing around the corner of the one way road straight into a coach! David showed the danger in making assumptions with lyrical quotes from Lola by The Kinks “I’m glad I’m a man, and so is Lola” and with a picture of a toilet flush that needed instructions to operate the full and half flush. With this particular flush, you pulled the handle all the way down to half flush, and half way down to full flush! hmmm, a bit of a crappy user experience methinks! Then through a clever use of a passage from the Jabberwocky, David then went onto show how mis-translation/ambiguity is the can completely distort the original meaning of something, and this is a real enemy of software development. This was all helping to demonstrate that the term Story is often heavily overloaded in the Agile world, and should really be stripped back to what it is really for, stating a business problem, and offering a technical solution. Therefore a story could be worded as “In order to {make some improvement}, we will { do something}”. The first ‘in order to’ statement is stakeholder neutral, and states the problem through requesting an improvement to the software/process etc. The second part of the story is the verb, the doing bit. So to achieve the ‘improvement’ which is not currently true, we will do something to make this true in the future. My PM is very interested in this, and he’s observed some of the problems of overloading stories so I’m hoping between us we can use some of David’s suggestions to help clarify our stories better. The second keynote of the day (and our last) proved to be the most entertaining and exhausting of the conference for me. “The ongoing evolution of testing in agile development” by Scott Barber. I’ve never had the pleasure of seeing Scott before… OMG I would love to have even half of the energy he has! What struck me during this presentation was Scott’s explanation of how testing has become the role/job that it is (largely) today, and how this has led to the need for ‘methodologies’ to make dev and test work! The argument that we should be trying to converge the roles again is a very valid one, and one that a couple of the teams at work are actively doing with great results. Making developers as responsible for quality as testers is something that has been lost over the years, but something that we are now striving to achieve. The idea that we (testers) should be testing experts/specialists, not testing ‘union members’, supports this idea so the entire team works on all aspects of a feature/product, with the ‘specialists’ taking the lead and advising/coaching the others. This leads to better propagation of information around the team, a greater holistic understanding of the project and it allows the team to continue functioning if some of it’s members are off sick, for example. Feeling somewhat drained from Scott’s keynote (but at the same time excited that alot of the points he raised supported actions we are taking at work), I headed into my last presentation for Agile Testing Days 2012 before having to make my way to Tegel to catch the flight home. “Thinking and working agile in an unbending world” with Pete Walen was a talk I was not going to miss! Having spoken to Pete several times during the past few days, I was looking forward to hearing what he was going to say, and I was not disappointed. Pete started off by trying to separate the definitions of ‘Agile’ as in the methodology, and ‘agile’ as in the adjective by pronouncing them the ‘english’ and ‘american’ ways. So Agile pronounced (Ajyle) and agile pronounced (ajul). There was much confusion around what the hell he was talking about, although I thought it was quite clear. Agile – Software development methodology agile – Marked by ready ability to move with quick easy grace; Having a quick resourceful and adaptable character. Anyway, that aside (although it provided a few laughs during the presentation), the point was that many teams that claim to be ‘Agile’ but are not, in fact, ‘agile’ by nature. Implementing ‘Agile’ methodologies that are so prescriptive actually goes against the very nature of Agile development where a team should anticipate, adapt and explore. Pete made a valid point that very few companies intentionally put up roadblocks to impede work, so if work is being blocked/delayed, why? This is where being agile as a team pays off because the team can inspect what’s going on, explore options and adapt their processes. It is through experimentation (and that means trying and failing as well as trying and succeeding) that a team will improve and grow leading to focussing on what really needs to be done to achieve X. So, that was it, the last talk of our conference. I was gutted that we had to miss the closing keynote from Matt Heusser, as Matt was another person I had spoken too a few times during the conference, but the flight would not wait, and just as well we left when we did because the traffic was a nightmare! My Takeaway Triple from Day 3: Release often and release small – don’t leave stuff on the shelf Keep the meaning of the word ‘agile’ in mind when working in ‘Agile Look at testing as more of a skill than a role  

    Read the article

  • Domain Validation in a CQRS architecture

    - by Jupaol
    Basically I want to know if there is a better way to validate my domain entities. This is how I am planning to do it but I would like your opinion The first approach I considered was: class Customer : EntityBase<Customer> { public void ChangeEmail(string email) { if(string.IsNullOrWhitespace(email)) throw new DomainException(“...”); if(!email.IsEmail()) throw new DomainException(); if(email.Contains(“@mailinator.com”)) throw new DomainException(); } } I actually do not like this validation because even when I am encapsulating the validation logic in the correct entity, this is violating the Open/Close principle (Open for extension but Close for modification) and I have found that violating this principle, code maintenance becomes a real pain when the application grows up in complexity. Why? Because domain rules change more often than we would like to admit, and if the rules are hidden and embedded in an entity like this, they are hard to test, hard to read, hard to maintain but the real reason why I do not like this approach is: if the validation rules change, I have to come and edit my domain entity. This has been a really simple example but in RL the validation could be more complex So following the philosophy of Udi Dahan, making roles explicit, and the recommendation from Eric Evans in the blue book, the next try was to implement the specification pattern, something like this class EmailDomainIsAllowedSpecification : IDomainSpecification<Customer> { private INotAllowedEmailDomainsResolver invalidEmailDomainsResolver; public bool IsSatisfiedBy(Customer customer) { return !this.invalidEmailDomainsResolver.GetInvalidEmailDomains().Contains(customer.Email); } } But then I realize that in order to follow this approach I had to mutate my entities first in order to pass the value being valdiated, in this case the email, but mutating them would cause my domain events being fired which I wouldn’t like to happen until the new email is valid So after considering these approaches, I came out with this one, since I am going to implement a CQRS architecture: class EmailDomainIsAllowedValidator : IDomainInvariantValidator<Customer, ChangeEmailCommand> { public void IsValid(Customer entity, ChangeEmailCommand command) { if(!command.Email.HasValidDomain()) throw new DomainException(“...”); } } Well that’s the main idea, the entity is passed to the validator in case we need some value from the entity to perform the validation, the command contains the data coming from the user and since the validators are considered injectable objects they could have external dependencies injected if the validation requires it. Now the dilemma, I am happy with a design like this because my validation is encapsulated in individual objects which brings many advantages: easy unit test, easy to maintain, domain invariants are explicitly expressed using the Ubiquitous Language, easy to extend, validation logic is centralized and validators can be used together to enforce complex domain rules. And even when I know I am placing the validation of my entities outside of them (You could argue a code smell - Anemic Domain) but I think the trade-off is acceptable But there is one thing that I have not figured out how to implement it in a clean way. How should I use this components... Since they will be injected, they won’t fit naturally inside my domain entities, so basically I see two options: Pass the validators to each method of my entity Validate my objects externally (from the command handler) I am not happy with the option 1 so I would explain how I would do it with the option 2 class ChangeEmailCommandHandler : ICommandHandler<ChangeEmailCommand> { public void Execute(ChangeEmailCommand command) { private IEnumerable<IDomainInvariantValidator> validators; // here I would get the validators required for this command injected, and in here I would validate them, something like this using (var t = this.unitOfWork.BeginTransaction()) { var customer = this.unitOfWork.Get<Customer>(command.CustomerId); this.validators.ForEach(x =. x.IsValid(customer, command)); // here I know the command is valid // the call to ChangeEmail will fire domain events as needed customer.ChangeEmail(command.Email); t.Commit(); } } } Well this is it. Can you give me your thoughts about this or share your experiences with Domain entities validation EDIT I think it is not clear from my question, but the real problem is: Hiding the domain rules has serious implications in the future maintainability of the application, and also domain rules change often during the life-cycle of the app. Hence implementing them with this in mind would let us extend them easily. Now imagine in the future a rules engine is implemented, if the rules are encapsulated outside of the domain entities, this change would be easier to implement

    Read the article

  • The Java Specialist: An Interview with Java Champion Heinz Kabutz

    - by Janice J. Heiss
    Dr. Heinz Kabutz is well known for his Java Specialists’ Newsletter, initiated in November 2000, where he displays his acute grasp of the intricacies of the Java platform for an estimated 70,000 readers; for his work as a consultant; and for his workshops and trainings at his home on the Island of Crete where he has lived since 2006 -- where he is known to curl up on the beach with his laptop to hack away, in between dips in the Mediterranean. Kabutz was born of German parents and raised in Cape Town, South Africa, where he developed a love of programming in junior high school through his explorations on a ZX Spectrum computer. He received a B.S. from the University of Cape Town, and at 25, a Ph.D., both in computer science. He will be leading a two-hour hands-on lab session, HOL6500 – “Finding and Solving Java Deadlocks,” at this year’s JavaOne that will explore what causes deadlocks and how to solve them. Q: Tell us about your JavaOne plans.A: I am arriving on Sunday evening and have just one hands-on-lab to do on Monday morning. This is the first time that a non-Oracle team is doing a HOL at JavaOne under Oracle's stewardship and we are all a bit nervous about how it will turn out. Oracle has been immensely helpful in getting us set up. I have a great team helping me: Kirk Pepperdine, Dario Laverde, Benjamin Evans and Martijn Verburg from jClarity, Nathan Reynolds from Oracle, Henri Tremblay of OCTO Technology and Jeff Genender of Savoir Technologies. Monday will be hard work, but after that, I will hopefully get to network with fellow Java experts, attend interesting sessions and just enjoy San Francisco. Oh, and my kids have already given me a shopping list of things to get, like a GoPro Hero 2 dive housing for shooting those nice videos of Crete. (That's me at the beginning diving down.) Q: What sessions are you attending that we should know about?A: Sometimes the most unusual sessions are the best. I avoid the "big names". They often are spread too thin with all their sessions, which makes it difficult for them to deliver what I would consider deep content. I also avoid entertainers who might be good at presenting but who do not say that much.In 2010, I attended a session by Vladimir Yaroslavskiy where he talked about sorting. Although he struggled to speak English, what he had to say was spectacular. There was hardly anybody in the room, having not heard of Vladimir before. To me that was the highlight of 2010. Funnily enough, he was supposed to speak with Joshua Bloch, but if you remember, Google cancelled. If Bloch has been there, the room would have been packed to capacity.Q: Give us an update on the Java Specialists’ Newsletter.A: The Java Specialists' Newsletter continues being read by an elite audience around the world. The apostrophe in the name is significant.  It is a newsletter for Java specialists. When I started it twelve years ago, I was trying to find non-obvious things in Java to write about. Things that would be interesting to an advanced audience.As an April Fool's joke, I told my readers in Issue 44 that subscribing would remain free, but that they would have to pay US$5 to US$7 depending on their geographical location. I received quite a few angry emails from that one. I would have not earned that much from unsubscriptions. Most readers stay for a very long time.After Oracle bought Sun, the Java community held its breath for about two years whilst Oracle was figuring out what to do with Java. For a while, we were quite concerned that there was not much progress shown by Oracle. My newsletter still continued, but it was quite difficult finding new things to write about. We have probably about 70,000 readers, which is quite a small number for a Java publication. However, our readers are the top in the Java industry. So I don't mind having "only" 70000 readers, as long as they are the top 0.7%.Java concurrency is a very important topic that programmers think they should know about, but often neglect to fully understand. I continued writing about that and made some interesting discoveries. For example, in Issue 165, I showed how we can get thread starvation with the ReadWriteLock. This was a bug in Java 5, which was corrected in Java 6, but perhaps a bit too much. Whereas we could get starvation of writers in Java 5, in Java 6 we could now get starvation of readers. All of these interesting findings make their way into my courseware to help companies avoid these pitfalls.Another interesting discovery was how polymorphism works in the Server HotSpot compiler in Issue 157 and Issue 158. HotSpot can inline methods from interfaces that have only one implementation class in the JVM. When a new subclass is instantiated and called for the first time, the JVM will undo the previous optimization and re-optimize differently.Here is a little memory puzzle for your readers: public class JavaMemoryPuzzle {  private final int dataSize =      (int) (Runtime.getRuntime().maxMemory() * 0.6);  public void f() {    {      byte[] data = new byte[dataSize];    }    byte[] data2 = new byte[dataSize];  }  public static void main(String[] args) {    JavaMemoryPuzzle jmp = new JavaMemoryPuzzle();    jmp.f();  }}When you run this you will always get an OutOfMemoryError, even though the local variable data is no longer visible outside of the code block.So here comes the puzzle, that I'd like you to ponder a bit. If you very politely ask the VM to release memory, then you don't get an OutOfMemoryError: public class JavaMemoryPuzzlePolite {  private final int dataSize =      (int) (Runtime.getRuntime().maxMemory() * 0.6);  public void f() {    {      byte[] data = new byte[dataSize];    }    for(int i=0; i<10; i++) {      System.out.println("Please be so kind and release memory");    }    byte[] data2 = new byte[dataSize];  }  public static void main(String[] args) {    JavaMemoryPuzzlePolite jmp = new JavaMemoryPuzzlePolite();    jmp.f();    System.out.println("No OutOfMemoryError");  }}Why does this work? When I published this in my newsletter, I received over 400 emails from excited readers around the world, most of whom sent me the wrong explanation. After the 300th wrong answer, my replies became unfortunately a bit curt. Have a look at Issue 174 for a detailed explanation, but before you do, put on your thinking caps and try to figure it out yourself. Q: What do you think Java developers should know that they currently do not know?A: They should definitely get to know more about concurrency. It is a tough subject that most programmers try to avoid. Unfortunately we do come in contact with it. And when we do, we need to know how to protect ourselves and how to solve tricky system errors.Knowing your IDE is also useful. Most IDEs have a ton of shortcuts, which can make you a lot more productive in moving code around. Another thing that is useful is being able to read GC logs. Kirk Pepperdine has a great talk at JavaOne that I can recommend if you want to learn more. It's this: CON5405 – “Are Your Garbage Collection Logs Speaking to You?” Q: What are you looking forward to in Java 8?A: I'm quite excited about lambdas, though I must confess that I have not studied them in detail yet. Maurice Naftalin's Lambda FAQ is quite a good start to document what you can do with them. I'm looking forward to finding all the interesting bugs that we will now get due to lambdas obscuring what is really going on underneath, just like we had with generics.I am quite impressed with what the team at Oracle did with OpenJDK's performance. A lot of the benchmarks now run faster.Hopefully Java 8 will come with JSR 310, the Date and Time API. It still boggles my mind that such an important API has been left out in the cold for so long.What I am not looking forward to is losing perm space. Even though some systems run out of perm space, at least the problem is contained and they usually manage to work around it. In most cases, this is due to a memory leak in that region of memory. Once they bundle perm space with the old generation, I predict that memory leaks in perm space will be harder to find. More contracts for us, but also more pain for our customers. Originally published on blogs.oracle.com/javaone.

    Read the article

  • The Java Specialist: An Interview with Java Champion Heinz Kabutz

    - by Janice J. Heiss
    Dr. Heinz Kabutz is well known for his Java Specialists’ Newsletter, initiated in November 2000, where he displays his acute grasp of the intricacies of the Java platform for an estimated 70,000 readers; for his work as a consultant; and for his workshops and trainings at his home on the Island of Crete where he has lived since 2006 -- where he is known to curl up on the beach with his laptop to hack away, in between dips in the Mediterranean. Kabutz was born of German parents and raised in Cape Town, South Africa, where he developed a love of programming in junior high school through his explorations on a ZX Spectrum computer. He received a B.S. from the University of Cape Town, and at 25, a Ph.D., both in computer science. He will be leading a two-hour hands-on lab session, HOL6500 – “Finding and Solving Java Deadlocks,” at this year’s JavaOne that will explore what causes deadlocks and how to solve them. Q: Tell us about your JavaOne plans.A: I am arriving on Sunday evening and have just one hands-on-lab to do on Monday morning. This is the first time that a non-Oracle team is doing a HOL at JavaOne under Oracle's stewardship and we are all a bit nervous about how it will turn out. Oracle has been immensely helpful in getting us set up. I have a great team helping me: Kirk Pepperdine, Dario Laverde, Benjamin Evans and Martijn Verburg from jClarity, Nathan Reynolds from Oracle, Henri Tremblay of OCTO Technology and Jeff Genender of Savoir Technologies. Monday will be hard work, but after that, I will hopefully get to network with fellow Java experts, attend interesting sessions and just enjoy San Francisco. Oh, and my kids have already given me a shopping list of things to get, like a GoPro Hero 2 dive housing for shooting those nice videos of Crete. (That's me at the beginning diving down.) Q: What sessions are you attending that we should know about?A: Sometimes the most unusual sessions are the best. I avoid the "big names". They often are spread too thin with all their sessions, which makes it difficult for them to deliver what I would consider deep content. I also avoid entertainers who might be good at presenting but who do not say that much.In 2010, I attended a session by Vladimir Yaroslavskiy where he talked about sorting. Although he struggled to speak English, what he had to say was spectacular. There was hardly anybody in the room, having not heard of Vladimir before. To me that was the highlight of 2010. Funnily enough, he was supposed to speak with Joshua Bloch, but if you remember, Google cancelled. If Bloch has been there, the room would have been packed to capacity.Q: Give us an update on the Java Specialists’ Newsletter.A: The Java Specialists' Newsletter continues being read by an elite audience around the world. The apostrophe in the name is significant.  It is a newsletter for Java specialists. When I started it twelve years ago, I was trying to find non-obvious things in Java to write about. Things that would be interesting to an advanced audience.As an April Fool's joke, I told my readers in Issue 44 that subscribing would remain free, but that they would have to pay US$5 to US$7 depending on their geographical location. I received quite a few angry emails from that one. I would have not earned that much from unsubscriptions. Most readers stay for a very long time.After Oracle bought Sun, the Java community held its breath for about two years whilst Oracle was figuring out what to do with Java. For a while, we were quite concerned that there was not much progress shown by Oracle. My newsletter still continued, but it was quite difficult finding new things to write about. We have probably about 70,000 readers, which is quite a small number for a Java publication. However, our readers are the top in the Java industry. So I don't mind having "only" 70000 readers, as long as they are the top 0.7%.Java concurrency is a very important topic that programmers think they should know about, but often neglect to fully understand. I continued writing about that and made some interesting discoveries. For example, in Issue 165, I showed how we can get thread starvation with the ReadWriteLock. This was a bug in Java 5, which was corrected in Java 6, but perhaps a bit too much. Whereas we could get starvation of writers in Java 5, in Java 6 we could now get starvation of readers. All of these interesting findings make their way into my courseware to help companies avoid these pitfalls.Another interesting discovery was how polymorphism works in the Server HotSpot compiler in Issue 157 and Issue 158. HotSpot can inline methods from interfaces that have only one implementation class in the JVM. When a new subclass is instantiated and called for the first time, the JVM will undo the previous optimization and re-optimize differently.Here is a little memory puzzle for your readers: public class JavaMemoryPuzzle {  private final int dataSize =      (int) (Runtime.getRuntime().maxMemory() * 0.6);  public void f() {    {      byte[] data = new byte[dataSize];    }    byte[] data2 = new byte[dataSize];  }  public static void main(String[] args) {    JavaMemoryPuzzle jmp = new JavaMemoryPuzzle();    jmp.f();  }}When you run this you will always get an OutOfMemoryError, even though the local variable data is no longer visible outside of the code block.So here comes the puzzle, that I'd like you to ponder a bit. If you very politely ask the VM to release memory, then you don't get an OutOfMemoryError: public class JavaMemoryPuzzlePolite {  private final int dataSize =      (int) (Runtime.getRuntime().maxMemory() * 0.6);  public void f() {    {      byte[] data = new byte[dataSize];    }    for(int i=0; i<10; i++) {      System.out.println("Please be so kind and release memory");    }    byte[] data2 = new byte[dataSize];  }  public static void main(String[] args) {    JavaMemoryPuzzlePolite jmp = new JavaMemoryPuzzlePolite();    jmp.f();    System.out.println("No OutOfMemoryError");  }}Why does this work? When I published this in my newsletter, I received over 400 emails from excited readers around the world, most of whom sent me the wrong explanation. After the 300th wrong answer, my replies became unfortunately a bit curt. Have a look at Issue 174 for a detailed explanation, but before you do, put on your thinking caps and try to figure it out yourself. Q: What do you think Java developers should know that they currently do not know?A: They should definitely get to know more about concurrency. It is a tough subject that most programmers try to avoid. Unfortunately we do come in contact with it. And when we do, we need to know how to protect ourselves and how to solve tricky system errors.Knowing your IDE is also useful. Most IDEs have a ton of shortcuts, which can make you a lot more productive in moving code around. Another thing that is useful is being able to read GC logs. Kirk Pepperdine has a great talk at JavaOne that I can recommend if you want to learn more. It's this: CON5405 – “Are Your Garbage Collection Logs Speaking to You?” Q: What are you looking forward to in Java 8?A: I'm quite excited about lambdas, though I must confess that I have not studied them in detail yet. Maurice Naftalin's Lambda FAQ is quite a good start to document what you can do with them. I'm looking forward to finding all the interesting bugs that we will now get due to lambdas obscuring what is really going on underneath, just like we had with generics.I am quite impressed with what the team at Oracle did with OpenJDK's performance. A lot of the benchmarks now run faster.Hopefully Java 8 will come with JSR 310, the Date and Time API. It still boggles my mind that such an important API has been left out in the cold for so long.What I am not looking forward to is losing perm space. Even though some systems run out of perm space, at least the problem is contained and they usually manage to work around it. In most cases, this is due to a memory leak in that region of memory. Once they bundle perm space with the old generation, I predict that memory leaks in perm space will be harder to find. More contracts for us, but also more pain for our customers.

    Read the article

  • Entity Framework 4.0 and DDD patterns

    - by Voice
    Hi everybody I use EntityFramework as ORM and I have simple POCO Domain Model with two base classes that represent Value Object and Entity Object Patterns (Evans). These two patterns is all about equality of two objects, so I overrode Equals and GetHashCode methods. Here are these two classes: public abstract class EntityObject<T>{ protected T _ID = default(T); public T ID { get { return _ID; } protected set { _ID = value; } } public sealed override bool Equals(object obj) { EntityObject<T> compareTo = obj as EntityObject<T>; return (compareTo != null) && ((HasSameNonDefaultIdAs(compareTo) || (IsTransient && compareTo.IsTransient)) && HasSameBusinessSignatureAs(compareTo)); } public virtual void MakeTransient() { _ID = default(T); } public bool IsTransient { get { return _ID == null || _ID.Equals(default(T)); } } public override int GetHashCode() { if (default(T).Equals(_ID)) return 0; return _ID.GetHashCode(); } private bool HasSameBusinessSignatureAs(EntityObject<T> compareTo) { return ToString().Equals(compareTo.ToString()); } private bool HasSameNonDefaultIdAs(EntityObject<T> compareTo) { return (_ID != null && !_ID.Equals(default(T))) && (compareTo._ID != null && !compareTo._ID.Equals(default(T))) && _ID.Equals(compareTo._ID); } public override string ToString() { StringBuilder str = new StringBuilder(); str.Append(" Class: ").Append(GetType().FullName); if (!IsTransient) str.Append(" ID: " + _ID); return str.ToString(); } } public abstract class ValueObject<T, U> : IEquatable<T> where T : ValueObject<T, U> { private static List<PropertyInfo> Properties { get; set; } private static Func<ValueObject<T, U>, PropertyInfo, object[], object> _GetPropValue; static ValueObject() { Properties = new List<PropertyInfo>(); var propParam = Expression.Parameter(typeof(PropertyInfo), "propParam"); var target = Expression.Parameter(typeof(ValueObject<T, U>), "target"); var indexPar = Expression.Parameter(typeof(object[]), "indexPar"); var call = Expression.Call(propParam, typeof(PropertyInfo).GetMethod("GetValue", new[] { typeof(object), typeof(object[]) }), new[] { target, indexPar }); var lambda = Expression.Lambda<Func<ValueObject<T, U>, PropertyInfo, object[], object>>(call, target, propParam, indexPar); _GetPropValue = lambda.Compile(); } public U ID { get; protected set; } public override Boolean Equals(Object obj) { if (ReferenceEquals(null, obj)) return false; if (obj.GetType() != GetType()) return false; return Equals(obj as T); } public Boolean Equals(T other) { if (ReferenceEquals(null, other)) return false; if (ReferenceEquals(this, other)) return true; foreach (var property in Properties) { var oneValue = _GetPropValue(this, property, null); var otherValue = _GetPropValue(other, property, null); if (null == oneValue && null == otherValue) return false; if (false == oneValue.Equals(otherValue)) return false; } return true; } public override Int32 GetHashCode() { var hashCode = 36; foreach (var property in Properties) { var propertyValue = _GetPropValue(this, property, null); if (null == propertyValue) continue; hashCode = hashCode ^ propertyValue.GetHashCode(); } return hashCode; } public override String ToString() { var stringBuilder = new StringBuilder(); foreach (var property in Properties) { var propertyValue = _GetPropValue(this, property, null); if (null == propertyValue) continue; stringBuilder.Append(propertyValue.ToString()); } return stringBuilder.ToString(); } protected static void RegisterProperty(Expression<Func<T, Object>> expression) { MemberExpression memberExpression; if (ExpressionType.Convert == expression.Body.NodeType) { var body = (UnaryExpression)expression.Body; memberExpression = body.Operand as MemberExpression; } else memberExpression = expression.Body as MemberExpression; if (null == memberExpression) throw new InvalidOperationException("InvalidMemberExpression"); Properties.Add(memberExpression.Member as PropertyInfo); } } Everything was OK until I tried to delete some related objects (aggregate root object with two dependent objects which was marked for cascade deletion): I've got an exception "The relationship could not be changed because one or more of the foreign-key properties is non-nullable". I googled this and found http://blog.abodit.com/2010/05/the-relationship-could-not-be-changed-because-one-or-more-of-the-foreign-key-properties-is-non-nullable/ I changed GetHashCode to base.GetHashCode() and error disappeared. But now it breaks all my code: I can't override GetHashCode for my POCO objects = I can't override Equals = I can't implement Value Object and Entity Object patters for my POCO objects. So, I appreciate any solutions, workarounds here etc.

    Read the article

  • Much Ado About Nothing: Stub Objects

    - by user9154181
    The Solaris 11 link-editor (ld) contains support for a new type of object that we call a stub object. A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be executed — the runtime linker will kill any process that attempts to load one. However, you can link to a stub object as a dependency, allowing the stub to act as a proxy for the real version of the object. You may well wonder if there is a point to producing an object that contains nothing but linking interface. As it turns out, stub objects are very useful for building large bodies of code such as Solaris. In the last year, we've had considerable success in applying them to one of our oldest and thorniest build problems. In this discussion, I will describe how we came to invent these objects, and how we apply them to building Solaris. This posting explains where the idea for stub objects came from, and details our long and twisty journey from hallway idea to standard link-editor feature. I expect that these details are mainly of interest to those who work on Solaris and its makefiles, those who have done so in the past, and those who work with other similar bodies of code. A subsequent posting will omit the history and background details, and instead discuss how to build and use stub objects. If you are mainly interested in what stub objects are, and don't care about the underlying software war stories, I encourage you to skip ahead. The Long Road To Stubs This all started for me with an email discussion in May of 2008, regarding a change request that was filed in 2002, entitled: 4631488 lib/Makefile is too patient: .WAITs should be reduced This CR encapsulates a number of cronic issues with Solaris builds: We build Solaris with a parallel make (dmake) that tries to build as much of the code base in parallel as possible. There is a lot of code to build, and we've long made use of parallelized builds to get the job done quicker. This is even more important in today's world of massively multicore hardware. Solaris contains a large number of executables and shared objects. Executables depend on shared objects, and shared objects can depend on each other. Before you can build an object, you need to ensure that the objects it needs have been built. This implies a need for serialization, which is in direct opposition to the desire to build everying in parallel. To accurately build objects in the right order requires an accurate set of make rules defining the things that depend on each other. This sounds simple, but the reality is quite complex. In practice, having programmers explicitly specify these dependencies is a losing strategy: It's really hard to get right. It's really easy to get it wrong and never know it because things build anyway. Even if you get it right, it won't stay that way, because dependencies between objects can change over time, and make cannot help you detect such drifing. You won't know that you got it wrong until the builds break. That can be a long time after the change that triggered the breakage happened, making it hard to connect the cause and the effect. Usually this happens just before a release, when the pressure is on, its hard to think calmly, and there is no time for deep fixes. As a poor compromise, the libraries in core Solaris were built using a set of grossly incomplete hand written rules, supplemented with a number of dmake .WAIT directives used to group the libraries into sets of non-interacting groups that can be built in parallel because we think they don't depend on each other. From time to time, someone will suggest that we could analyze the built objects themselves to determine their dependencies and then generate make rules based on those relationships. This is possible, but but there are complications that limit the usefulness of that approach: To analyze an object, you have to build it first. This is a classic chicken and egg scenario. You could analyze the results of a previous build, but then you're not necessarily going to get accurate rules for the current code. It should be possible to build the code without having a built workspace available. The analysis will take time, and remember that we're constantly trying to make builds faster, not slower. By definition, such an approach will always be approximate, and therefore only incremantally more accurate than the hand written rules described above. The hand written rules are fast and cheap, while this idea is slow and complex, so we stayed with the hand written approach. Solaris was built that way, essentially forever, because these are genuinely difficult problems that had no easy answer. The makefiles were full of build races in which the right outcomes happened reliably for years until a new machine or a change in build server workload upset the accidental balance of things. After figuring out what had happened, you'd mutter "How did that ever work?", add another incomplete and soon to be inaccurate make dependency rule to the system, and move on. This was not a satisfying solution, as we tend to be perfectionists in the Solaris group, but we didn't have a better answer. It worked well enough, approximately. And so it went for years. We needed a different approach — a new idea to cut the Gordian Knot. In that discussion from May 2008, my fellow linker-alien Rod Evans had the initial spark that lead us to a game changing series of realizations: The link-editor is used to link objects together, but it only uses the ELF metadata in the object, consisting of symbol tables, ELF versioning sections, and similar data. Notably, it does not look at, or understand, the machine code that makes an object useful at runtime. If you had an object that only contained the ELF metadata for a dependency, but not the code or data, the link-editor would find it equally useful for linking, and would never know the difference. Call it a stub object. In the core Solaris OS, we require all objects to be built with a link-editor mapfile that describes all of its publically available functions and data. Could we build a stub object using the mapfile for the real object? It ought to be very fast to build stub objects, as there are no input objects to process. Unlike the real object, stub objects would not actually require any dependencies, and so, all of the stubs for the entire system could be built in parallel. When building the real objects, one could link against the stub objects instead of the real dependencies. This means that all the real objects can be built built in parallel too, without any serialization. We could replace a system that requires perfect makefile rules with a system that requires no ordering rules whatsoever. The results would be considerably more robust. We immediately realized that this idea had potential, but also that there were many details to sort out, lots of work to do, and that perhaps it wouldn't really pan out. As is often the case, it would be necessary to do the work and see how it turned out. Following that conversation, I set about trying to build a stub object. We determined that a faithful stub has to do the following: Present the same set of global symbols, with the same ELF versioning, as the real object. Functions are simple — it suffices to have a symbol of the right type, possibly, but not necessarily, referencing a null function in its text segment. Copy relocations make data more complicated to stub. The possibility of a copy relocation means that when you create a stub, the data symbols must have the actual size of the real data. Any error in this will go uncaught at link time, and will cause tragic failures at runtime that are very hard to diagnose. For reasons too obscure to go into here, involving tentative symbols, it is also important that the data reside in bss, or not, matching its placement in the real object. If the real object has more than one symbol pointing at the same data item, we call these aliased symbols. All data symbols in the stub object must exhibit the same aliasing as the real object. We imagined the stub library feature working as follows: A command line option to ld tells it to produce a stub rather than a real object. In this mode, only mapfiles are examined, and any object or shared libraries on the command line are are ignored. The extra information needed (function or data, size, and bss details) would be added to the mapfile. When building the real object instead of the stub, the extra information for building stubs would be validated against the resulting object to ensure that they match. In exploring these ideas, I immediately run headfirst into the reality of the original mapfile syntax, a subject that I would later write about as The Problem(s) With Solaris SVR4 Link-Editor Mapfiles. The idea of extending that poor language was a non-starter. Until a better mapfile syntax became available, which seemed unlikely in 2008, the solution could not involve extentions to the mapfile syntax. Instead, we cooked up the idea (hack) of augmenting mapfiles with stylized comments that would carry the necessary information. A typical definition might look like: # DATA(i386) __iob 0x3c0 # DATA(amd64,sparcv9) __iob 0xa00 # DATA(sparc) __iob 0x140 iob; A further problem then became clear: If we can't extend the mapfile syntax, then there's no good way to extend ld with an option to produce stub objects, and to validate them against the real objects. The idea of having ld read comments in a mapfile and parse them for content is an unacceptable hack. The entire point of comments is that they are strictly for the human reader, and explicitly ignored by the tool. Taking all of these speed bumps into account, I made a new plan: A perl script reads the mapfiles, generates some small C glue code to produce empty functions and data definitions, compiles and links the stub object from the generated glue code, and then deletes the generated glue code. Another perl script used after both objects have been built, to compare the real and stub objects, using data from elfdump, and validate that they present the same linking interface. By June 2008, I had written the above, and generated a stub object for libc. It was a useful prototype process to go through, and it allowed me to explore the ideas at a deep level. Ultimately though, the result was unsatisfactory as a basis for real product. There were so many issues: The use of stylized comments were fine for a prototype, but not close to professional enough for shipping product. The idea of having to document and support it was a large concern. The ideal solution for stub objects really does involve having the link-editor accept the same arguments used to build the real object, augmented with a single extra command line option. Any other solution, such as our prototype script, will require makefiles to be modified in deeper ways to support building stubs, and so, will raise barriers to converting existing code. A validation script that rederives what the linker knew when it built an object will always be at a disadvantage relative to the actual linker that did the work. A stub object should be identifyable as such. In the prototype, there was no tag or other metadata that would let you know that they weren't real objects. Being able to identify a stub object in this way means that the file command can tell you what it is, and that the runtime linker can refuse to try and run a program that loads one. At that point, we needed to apply this prototype to building Solaris. As you might imagine, the task of modifying all the makefiles in the core Solaris code base in order to do this is a massive task, and not something you'd enter into lightly. The quality of the prototype just wasn't good enough to justify that sort of time commitment, so I tabled the project, putting it on my list of long term things to think about, and moved on to other work. It would sit there for a couple of years. Semi-coincidentally, one of the projects I tacked after that was to create a new mapfile syntax for the Solaris link-editor. We had wanted to do something about the old mapfile syntax for many years. Others before me had done some paper designs, and a great deal of thought had already gone into the features it should, and should not have, but for various reasons things had never moved beyond the idea stage. When I joined Sun in late 2005, I got involved in reviewing those things and thinking about the problem. Now in 2008, fresh from relearning for the Nth time why the old mapfile syntax was a huge impediment to linker progress, it seemed like the right time to tackle the mapfile issue. Paving the way for proper stub object support was not the driving force behind that effort, but I certainly had them in mind as I moved forward. The new mapfile syntax, which we call version 2, integrated into Nevada build snv_135 in in February 2010: 6916788 ld version 2 mapfile syntax PSARC/2009/688 Human readable and extensible ld mapfile syntax In order to prove that the new mapfile syntax was adequate for general purpose use, I had also done an overhaul of the ON consolidation to convert all mapfiles to use the new syntax, and put checks in place that would ensure that no use of the old syntax would creep back in. That work went back into snv_144 in June 2010: 6916796 OSnet mapfiles should use version 2 link-editor syntax That was a big putback, modifying 517 files, adding 18 new files, and removing 110 old ones. I would have done this putback anyway, as the work was already done, and the benefits of human readable syntax are obvious. However, among the justifications listed in CR 6916796 was this We anticipate adding additional features to the new mapfile language that will be applicable to ON, and which will require all sharable object mapfiles to use the new syntax. I never explained what those additional features were, and no one asked. It was premature to say so, but this was a reference to stub objects. By that point, I had already put together a working prototype link-editor with the necessary support for stub objects. I was pleased to find that building stubs was indeed very fast. On my desktop system (Ultra 24), an amd64 stub for libc can can be built in a fraction of a second: % ptime ld -64 -z stub -o stubs/libc.so.1 -G -hlibc.so.1 \ -ztext -zdefs -Bdirect ... real 0.019708910 user 0.010101680 sys 0.008528431 In order to go from prototype to integrated link-editor feature, I knew that I would need to prove that stub objects were valuable. And to do that, I knew that I'd have to switch the Solaris ON consolidation to use stub objects and evaluate the outcome. And in order to do that experiment, ON would first need to be converted to version 2 mapfiles. Sub-mission accomplished. Normally when you design a new feature, you can devise reasonably small tests to show it works, and then deploy it incrementally, letting it prove its value as it goes. The entire point of stub objects however was to demonstrate that they could be successfully applied to an extremely large and complex code base, and specifically to solve the Solaris build issues detailed above. There was no way to finesse the matter — in order to move ahead, I would have to successfully use stub objects to build the entire ON consolidation and demonstrate their value. In software, the need to boil the ocean can often be a warning sign that things are trending in the wrong direction. Conversely, sometimes progress demands that you build something large and new all at once. A big win, or a big loss — sometimes all you can do is try it and see what happens. And so, I spent some time staring at ON makefiles trying to get a handle on how things work, and how they'd have to change. It's a big and messy world, full of complex interactions, unspecified dependencies, special cases, and knowledge of arcane makefile features... ...and so, I backed away, put it down for a few months and did other work... ...until the fall, when I felt like it was time to stop thinking and pondering (some would say stalling) and get on with it. Without stubs, the following gives a simplified high level view of how Solaris is built: An initially empty directory known as the proto, and referenced via the ROOT makefile macro is established to receive the files that make up the Solaris distribution. A top level setup rule creates the proto area, and performs operations needed to initialize the workspace so that the main build operations can be launched, such as copying needed header files into the proto area. Parallel builds are launched to build the kernel (usr/src/uts), libraries (usr/src/lib), and commands. The install makefile target builds each item and delivers a copy to the proto area. All libraries and executables link against the objects previously installed in the proto, implying the need to synchronize the order in which things are built. Subsequent passes run lint, and do packaging. Given this structure, the additions to use stub objects are: A new second proto area is established, known as the stub proto and referenced via the STUBROOT makefile macro. The stub proto has the same structure as the real proto, but is used to hold stub objects. All files in the real proto are delivered as part of the Solaris product. In contrast, the stub proto is used to build the product, and then thrown away. A new target is added to library Makefiles called stub. This rule builds the stub objects. The ld command is designed so that you can build a stub object using the same ld command line you'd use to build the real object, with the addition of a single -z stub option. This means that the makefile rules for building the stub objects are very similar to those used to build the real objects, and many existing makefile definitions can be shared between them. A new target is added to the Makefiles called stubinstall which delivers the stub objects built by the stub rule into the stub proto. These rules reuse much of existing plumbing used by the existing install rule. The setup rule runs stubinstall over the entire lib subtree as part of its initialization. All libraries and executables link against the objects in the stub proto rather than the main proto, and can therefore be built in parallel without any synchronization. There was no small way to try this that would yield meaningful results. I would have to take a leap of faith and edit approximately 1850 makefiles and 300 mapfiles first, trusting that it would all work out. Once the editing was done, I'd type make and see what happened. This took about 6 weeks to do, and there were many dark days when I'd question the entire project, or struggle to understand some of the many twisted and complex situations I'd uncover in the makefiles. I even found a couple of new issues that required changes to the new stub object related code I'd added to ld. With a substantial amount of encouragement and help from some key people in the Solaris group, I eventually got the editing done and stub objects for the entire workspace built. I found that my desktop system could build all the stub objects in the workspace in roughly a minute. This was great news, as it meant that use of the feature is effectively free — no one was likely to notice or care about the cost of building them. After another week of typing make, fixing whatever failed, and doing it again, I succeeded in getting a complete build! The next step was to remove all of the make rules and .WAIT statements dedicated to controlling the order in which libraries under usr/src/lib are built. This came together pretty quickly, and after a few more speed bumps, I had a workspace that built cleanly and looked like something you might actually be able to integrate someday. This was a significant milestone, but there was still much left to do. I turned to doing full nightly builds. Every type of build (open, closed, OpenSolaris, export, domestic) had to be tried. Each type failed in a new and unique way, requiring some thinking and rework. As things came together, I became aware of things that could have been done better, simpler, or cleaner, and those things also required some rethinking, the seeking of wisdom from others, and some rework. After another couple of weeks, it was in close to final form. My focus turned towards the end game and integration. This was a huge workspace, and needed to go back soon, before changes in the gate would made merging increasingly difficult. At this point, I knew that the stub objects had greatly simplified the makefile logic and uncovered a number of race conditions, some of which had been there for years. I assumed that the builds were faster too, so I did some builds intended to quantify the speedup in build time that resulted from this approach. It had never occurred to me that there might not be one. And so, I was very surprised to find that the wall clock build times for a stock ON workspace were essentially identical to the times for my stub library enabled version! This is why it is important to always measure, and not just to assume. One can tell from first principles, based on all those removed dependency rules in the library makefile, that the stub object version of ON gives dmake considerably more opportunities to overlap library construction. Some hypothesis were proposed, and shot down: Could we have disabled dmakes parallel feature? No, a quick check showed things being build in parallel. It was suggested that we might be I/O bound, and so, the threads would be mostly idle. That's a plausible explanation, but system stats didn't really support it. Plus, the timing between the stub and non-stub cases were just too suspiciously identical. Are our machines already handling as much parallelism as they are capable of, and unable to exploit these additional opportunities? Once again, we didn't see the evidence to back this up. Eventually, a more plausible and obvious reason emerged: We build the libraries and commands (usr/src/lib, usr/src/cmd) in parallel with the kernel (usr/src/uts). The kernel is the long leg in that race, and so, wall clock measurements of build time are essentially showing how long it takes to build uts. Although it would have been nice to post a huge speedup immediately, we can take solace in knowing that stub objects simplify the makefiles and reduce the possibility of race conditions. The next step in reducing build time should be to find ways to reduce or overlap the uts part of the builds. When that leg of the build becomes shorter, then the increased parallelism in the libs and commands will pay additional dividends. Until then, we'll just have to settle for simpler and more robust. And so, I integrated the link-editor support for creating stub objects into snv_153 (November 2010) with 6993877 ld should produce stub objects PSARC/2010/397 ELF Stub Objects followed by the work to convert the ON consolidation in snv_161 (February 2011) with 7009826 OSnet should use stub objects 4631488 lib/Makefile is too patient: .WAITs should be reduced This was a huge putback, with 2108 modified files, 8 new files, and 2 removed files. Due to the size, I was allowed a window after snv_160 closed in which to do the putback. It went pretty smoothly for something this big, a few more preexisting race conditions would be discovered and addressed over the next few weeks, and things have been quiet since then. Conclusions and Looking Forward Solaris has been built with stub objects since February. The fact that developers no longer specify the order in which libraries are built has been a big success, and we've eliminated an entire class of build error. That's not to say that there are no build races left in the ON makefiles, but we've taken a substantial bite out of the problem while generally simplifying and improving things. The introduction of a stub proto area has also opened some interesting new possibilities for other build improvements. As this article has become quite long, and as those uses do not involve stub objects, I will defer that discussion to a future article.

    Read the article

< Previous Page | 9 10 11 12 13