Search Results

Search found 5463 results on 219 pages for 'runtime'.

Page 13/219 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • visual c++ 2010 link against older runtime?

    - by Kugel
    Sorry if this has been asked. Just like I can select in C# project that I want it to build for .NET 2.0 runtime, is it possible for native c++ project to be built against older CRT, let's say one from visual studio 2005? I would like this because I have external SDK that was build with VS2005, but I'd like to use newer IDE.

    Read the article

  • Creating JMS Queues at runtime.

    - by ankur
    I am working on an application where the app user can create / delete queues . Also , he would be able to move a message from 1 queue to another, delete a message , rearrange the messages in the queue based on some filter. One possible design is to use activemq for queues and apache camel for various other operations having integrated with Grails. But I am not sure whether ActiveMQ allows creation /deleltion queues at runtime. Would this be a good choice to implement such system?

    Read the article

  • When are static class variables initialized during runtime?

    - by Jake
    Hi, I have the following: class Thing { static Thing PREDEFINED; type _private; Thing() { _private = initial_val; } } Thing Thing::PREDEFINED = redefined_val; in global scope, i have this Thing mything = Thing::PREDEFINED; but it does not have the desired effect. mything is still initial_value and there were no errors too. So, may I ask when is the static class variable initialized during runtime?

    Read the article

  • changing "enabled" value of a button during runtime in flex

    - by ruchir patwa
    i want to make a button disabled if a datagrid is empty and it should be enabled when there is atleast 1 entry.the entries in the grid are made at runtime.I tried this this is the button: <mx:Button id="update" label="Update Contact" enabled="{isButtonEnabled()}"/> and the function is defined as where dg_contact is the datagrid: public function isButtonEnabled():Boolean { if(dg_contact.selectedIndex==-1) { return false; } else { return true; } } where am i going wrong?

    Read the article

  • Resizing TextBox At Runtime in WPF

    - by j-t-s
    Hi All, Was just wondering how I would go about letting the user resize a TextBox control at runtime by dragging its corners in WPF. Less importantly, is the same technique used for the resizing of all controls? Thank you :)

    Read the article

  • Dragging Controls on Form at runtime

    - by j-t-s
    Hi All I've just started using WPF. But I'm trying to add my code that (from Winforms) enables the user to drag any control whereever they wish at runtime. But I can't seem to get the current Location of the mouse... Eh? There is no Location for Mouse? :(

    Read the article

  • Modifying groovy code at runtime in grails application

    - by parasjain01
    When I run my grails application using embedded jetty server(tomcat for grails 1.2), I can make changes to my controllers, services and other java files on-the-fly at runtime without restarting the application. How can I achieve the same functionality on my application deployed on Tomcat(or any server) for that matter. I have observed the exploded war folder under webapps has gsp files but not the groovy files.

    Read the article

  • controls in runtime

    - by user158182
    i have a textbox array using that i create 20 text boxes in runtime, i need to get the focus if a particular text box(if i press downarrow in keyboard how to get the key down of a particular text box it can be 3rd text box).

    Read the article

  • C# stop property change at runtime

    - by petebob796
    I have been trying to build a user control with some custom properties set in the designer. However the control involves some interop code and settings which shouldn't be adjusted at runtime. Is there a way to stop the values being changed after they have been initially set by the designer code?

    Read the article

  • Obtaining memory available to JVM at runtime

    - by Bo Tian
    I'm trying to sort a bunch of data such that that the size of data input to the program can be larger than the memory available to the JVM, and handling that requires external sort which is much slower than Quicksort. Is there any way of obtaining memory available to the JVM at runtime such that I could use in place sorting as much as possible, and only switch to Mergesort when data input is too large?

    Read the article

  • modify class on runtime?

    - by joe doe2
    how can i modify the method in memory so it makes new objects with that modified method? for example i want to modify or add page_init handler on runtime for the next time the page loads? see this also for clarification: http://stackoverflow.com/questions/3005338/page-load-another-handler

    Read the article

  • C++ STL vector iterator... but got runtime error

    - by nzer0
    I'm studying STL and made win32 project.. But I got stuck in runtime error.. I tried to debug it but.. please click to see picture this is very strange because in watch table, n1,p1,it are defined but n2 isn't and tmp is not either.. I can't find what is wrong... please help..

    Read the article

  • An internal error occurred during runtime. Smarty

    - by rag
    WARNING [2] include(somepath/templates_c/%%B0^B01^B019F522%%login.htm.php) [function.include]: failed to open stream: No such file or directory on Line No 1871 in somepath/Smarty.class.php Error!: An internal error occurred during runtime. Any body please tell me why this error is occuring..

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Excel Macro Runtime error 428 in Excel 2003

    - by Adam
    Hi I have created a xlt excel template which works fine in Excel 2007 under compatibility mode and shows no errors on compatibility check. The template runs a number of Macros which creates pivot tables and charts. When a colleague tries to run the same xlt on excel 2003 they get a Runtime error 428 (Object does not support this property or method). The runtime error fails at this point; ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= _ "raw!R1C1:R65536C37", Version:=xlPivotTableVersion10).CreatePivotTable _ TableDestination:="Frontpage!R7C1", TableName:="PivotTable2", _ DefaultVersion:=xlPivotTableVersion10 Any help would be appreciated. This is the full Macro; Sub Auto_Open() ' ' ImportData Macro ' Macro to import data, Data must be in your local D: Drive and named raw.csv ' ' Sheets("raw").Select With ActiveSheet.QueryTables.Add(Connection:= _ "TEXT;d:\raw.csv", Destination:=Range _ ("$A$1")) .Name = "raw_1" .FieldNames = True .RowNumbers = False .FillAdjacentFormulas = False .PreserveFormatting = True .RefreshOnFileOpen = False .RefreshStyle = xlInsertDeleteCells .SavePassword = False .SaveData = True .AdjustColumnWidth = True .RefreshPeriod = 0 .TextFilePromptOnRefresh = False .TextFilePlatform = 850 .TextFileStartRow = 1 .TextFileParseType = xlDelimited .TextFileTextQualifier = xlTextQualifierDoubleQuote .TextFileConsecutiveDelimiter = False .TextFileTabDelimiter = False .TextFileSemicolonDelimiter = False .TextFileCommaDelimiter = True .TextFileSpaceDelimiter = False .TextFileColumnDataTypes = Array(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, _ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) .TextFileTrailingMinusNumbers = True .Refresh BackgroundQuery:=False End With ' ' AddMonthColumn Macro ' ' Sheets("raw").Select Range("AK1").Select ActiveCell.FormulaR1C1 = "Month" Range("AK2").FormulaR1C1 = "=DATE(YEAR(RC[-36]),MONTH(RC[-36]),1)" LastRow = ActiveSheet.UsedRange.Rows.Count Range("AK2").AutoFill Destination:=Range("AK2:AK" & LastRow) Columns("AK:AK").EntireColumn.AutoFit Columns("AK:AK").Select Selection.NumberFormat = "mmmm" With Selection .HorizontalAlignment = xlCenter End With Columns("AK:AK").EntireColumn.AutoFit Selection.Copy Selection.PasteSpecial Paste:=xlPasteValues, Operation:=xlNone, SkipBlanks _ :=False, Transpose:=False ' ' Add Report Information [Text] ' Sheets("Frontpage").Select Range("A2:N2").Select Selection.Merge ActiveCell.FormulaR1C1 = "Service Activity Report" With Selection.Font .Size = 20 End With Range("A3:N3").Select Selection.Merge ActiveCell.FormulaR1C1 = InputBox("Customer Name") With Selection .HorizontalAlignment = xlCenter .VerticalAlignment = xlCenter End With Range("A4:N4").Select Selection.Merge ActiveCell.FormulaR1C1 = InputBox("Date Range dd/mm/yyyy - dd/mm/yyyy") With Selection .HorizontalAlignment = xlCenter .VerticalAlignment = xlCenter End With ' ' IncidentsbyPriority Macro ' ' Sheets("Frontpage").Select Range("A7").Select ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= _ "raw!R1C1:R65536C37", Version:=xlPivotTableVersion10).CreatePivotTable _ TableDestination:="Frontpage!R7C1", TableName:="PivotTable2", _ DefaultVersion:=xlPivotTableVersion10 Sheets("Frontpage").Select Cells(7, 1).Select ActiveSheet.Shapes.AddChart.Select ActiveChart.SetSourceData Source:=Range("Frontpage!$A$7:$H$22") ActiveChart.ChartType = xlColumnClustered With ActiveSheet.PivotTables("PivotTable2").PivotFields("Priority") .Orientation = xlRowField .Position = 1 End With ActiveSheet.PivotTables("PivotTable2").AddDataField ActiveSheet.PivotTables( _ "PivotTable2").PivotFields("Case ID"), "Count of Case ID", xlCount ActiveChart.Parent.Name = "IncidentsbyPriority" ActiveChart.ChartTitle.Text = "Incidents by Priority" Dim RngToCover As Range Dim ChtOb As ChartObject Set RngToCover = ActiveSheet.Range("D7:L16") Set ChtOb = ActiveSheet.ChartObjects("IncidentsbyPriority") ChtOb.Height = RngToCover.Height ' resize ChtOb.Width = RngToCover.Width ' resize ChtOb.Top = RngToCover.Top ' reposition ChtOb.Left = RngToCover.Left ' reposition ' ' IncidentbyMonth Macro ' ' Sheets("Frontpage").Select ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= _ "raw!R1C1:R65536C37", Version:=xlPivotTableVersion10).CreatePivotTable _ TableDestination:="Frontpage!R18C1", TableName:="PivotTable4", _ DefaultVersion:=xlPivotTableVersion10 Sheets("Frontpage").Select Cells(18, 1).Select ActiveSheet.Shapes.AddChart.Select ActiveChart.SetSourceData Source:=Range("Frontpage!$A$18:$H$38") ActiveChart.ChartType = xlColumnClustered With ActiveSheet.PivotTables("PivotTable4").PivotFields("Month") .Orientation = xlRowField .Position = 1 End With ActiveSheet.PivotTables("PivotTable4").AddDataField ActiveSheet.PivotTables( _ "PivotTable4").PivotFields("Case ID"), "Count of Case ID", xlCount ActiveChart.Parent.Name = "IncidentbyMonth" ActiveChart.ChartTitle.Text = "Incidents by Month" Dim RngToCover2 As Range Dim ChtOb2 As ChartObject Set RngToCover2 = ActiveSheet.Range("D18:L30") Set ChtOb2 = ActiveSheet.ChartObjects("IncidentbyMonth") ChtOb2.Height = RngToCover2.Height ' resize ChtOb2.Width = RngToCover2.Width ' resize ChtOb2.Top = RngToCover2.Top ' reposition ChtOb2.Left = RngToCover2.Left ' reposition ' ' IncidentbyCategory Macro ' ' Sheets("Frontpage").Select ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= _ "raw!R1C1:R65536C37", Version:=xlPivotTableVersion10).CreatePivotTable _ TableDestination:="Frontpage!R38C1", TableName:="PivotTable6", _ DefaultVersion:=xlPivotTableVersion10 Sheets("Frontpage").Select Cells(38, 1).Select ActiveSheet.Shapes.AddChart.Select ActiveChart.SetSourceData Source:=Range("Frontpage!$A$38:$H$119") ActiveChart.ChartType = xlColumnClustered With ActiveSheet.PivotTables("PivotTable6").PivotFields("Category 2") .Orientation = xlRowField .Position = 1 End With With ActiveSheet.PivotTables("PivotTable6").PivotFields("Category 3") .Orientation = xlPageField .Position = 1 End With ActiveSheet.PivotTables("PivotTable6").AddDataField ActiveSheet.PivotTables( _ "PivotTable6").PivotFields("Case ID"), "Count of Case ID", xlCount ActiveChart.Parent.Name = "IncidentbyCategory" ActiveChart.ChartTitle.Text = "Incidents by Category" Dim RngToCover3 As Range Dim ChtOb3 As ChartObject Set RngToCover3 = ActiveSheet.Range("D38:L56") Set ChtOb3 = ActiveSheet.ChartObjects("IncidentbyCategory") ChtOb3.Height = RngToCover3.Height ' resize ChtOb3.Width = RngToCover3.Width ' resize ChtOb3.Top = RngToCover3.Top ' reposition ChtOb3.Left = RngToCover3.Left ' reposition ' ' IncidentsbySiteandPriority Macro ' ' Sheets("Frontpage").Select Range("A71").Select ActiveWorkbook.PivotCaches.Create(SourceType:=xlDatabase, SourceData:= _ "raw!R1C1:R65536C37", Version:=xlPivotTableVersion10).CreatePivotTable _ TableDestination:="Frontpage!R71C1", TableName:="PivotTable3", _ DefaultVersion:=xlPivotTableVersion10 Sheets("Frontpage").Select Cells(71, 1).Select ActiveSheet.Shapes.AddChart.Select ActiveChart.SetSourceData Source:=Range("Frontpage!$A$71:$H$90") ActiveChart.ChartType = xlColumnClustered With ActiveSheet.PivotTables("PivotTable3").PivotFields("Site Name") .Orientation = xlRowField .Position = 1 End With With ActiveSheet.PivotTables("PivotTable3").PivotFields("Priority") .Orientation = xlColumnField .Position = 1 End With ActiveSheet.PivotTables("PivotTable3").AddDataField ActiveSheet.PivotTables( _ "PivotTable3").PivotFields("Case ID"), "Count of Case ID", xlCount ActiveChart.Parent.Name = "IncidentbySiteandPriority" ' ActiveChart.ChartTitle.Text = "Incidents by Site and Priority" Dim RngToCover4 As Range Dim ChtOb4 As ChartObject Set RngToCover4 = ActiveSheet.Range("H71:O91") Set ChtOb4 = ActiveSheet.ChartObjects("IncidentbySiteandPriority") ChtOb4.Height = RngToCover4.Height ' resize ChtOb4.Width = RngToCover4.Width ' resize ChtOb4.Top = RngToCover4.Top ' reposition ChtOb4.Left = RngToCover4.Left ' reposition Columns("A:G").Select Range("A52").Activate Columns("A:G").EntireColumn.AutoFit End Sub

    Read the article

  • How do I solve this error, "error while trying to deserialize parameter"

    - by Paul Rowland
    I have a web service that is working fine in one environment but not in another. The web service gets document meta data from SharePoint, it running on a server where I cant debug but with logging I confirmed that the method enters and exits successfully. What could be the reason for the errors? The error message is, The formatter threw an exception while trying to deserialize the message: There was an error while trying to deserialize parameter http://CompanyName.com.au/ProjectName:GetDocumentMetaDataResponse. The InnerException message was 'Error in line 1 position 388. 'Element' 'CustomFields' from namespace 'http://CompanyName.com.au/ProjectName' is not expected. Expecting element 'Id'.'. Please see InnerException for more details. The InnerException was System.ServiceModel.Dispatcher.NetDispatcherFaultException was caught Message="The formatter threw an exception while trying to deserialize the message: There was an error while trying to deserialize parameter http://CompanyName.com.au/ProjectName:GetDocumentMetaDataResponse. The InnerException message was 'Error in line 1 position 388. 'Element' 'CustomFields' from namespace 'http://CompanyName.com.au/ProjectName' is not expected. Expecting element 'Id'.'. Please see InnerException for more details." Source="mscorlib" Action="http://schemas.microsoft.com/net/2005/12/windowscommunicationfoundation/dispatcher/fault" StackTrace: Server stack trace: at System.ServiceModel.Dispatcher.DataContractSerializerOperationFormatter.DeserializeParameterPart(XmlDictionaryReader reader, PartInfo part, Boolean isRequest) at System.ServiceModel.Dispatcher.DataContractSerializerOperationFormatter.DeserializeParameter(XmlDictionaryReader reader, PartInfo part, Boolean isRequest) at System.ServiceModel.Dispatcher.DataContractSerializerOperationFormatter.DeserializeParameters(XmlDictionaryReader reader, PartInfo[] parts, Object[] parameters, Boolean isRequest) at System.ServiceModel.Dispatcher.DataContractSerializerOperationFormatter.DeserializeBody(XmlDictionaryReader reader, MessageVersion version, String action, MessageDescription messageDescription, Object[] parameters, Boolean isRequest) at System.ServiceModel.Dispatcher.OperationFormatter.DeserializeBodyContents(Message message, Object[] parameters, Boolean isRequest) at System.ServiceModel.Dispatcher.OperationFormatter.DeserializeReply(Message message, Object[] parameters) at System.ServiceModel.Dispatcher.ProxyOperationRuntime.AfterReply(ProxyRpc& rpc) at System.ServiceModel.Channels.ServiceChannel.HandleReply(ProxyOperationRuntime operation, ProxyRpc& rpc) at System.ServiceModel.Channels.ServiceChannel.Call(String action, Boolean oneway, ProxyOperationRuntime operation, Object[] ins, Object[] outs, TimeSpan timeout) at System.ServiceModel.Channels.ServiceChannel.Call(String action, Boolean oneway, ProxyOperationRuntime operation, Object[] ins, Object[] outs) at System.ServiceModel.Channels.ServiceChannelProxy.InvokeService(IMethodCallMessage methodCall, ProxyOperationRuntime operation) at System.ServiceModel.Channels.ServiceChannelProxy.Invoke(IMessage message) Exception rethrown at [0]: at System.Runtime.Remoting.Proxies.RealProxy.HandleReturnMessage(IMessage reqMsg, IMessage retMsg) at System.Runtime.Remoting.Proxies.RealProxy.PrivateInvoke(MessageData& msgData, Int32 type) at CompanyName.ProjectName.External.Sharepoint.WebServiceProxies.SharepointProjectNameSiteService.ProjectNameSiteSoap.GetDocumentMetaData(GetDocumentMetaDataRequest request) at CompanyName.ProjectName.External.Sharepoint.WebServiceProxies.SharepointProjectNameSiteService.ProjectNameSiteSoapClient.CompanyName.ProjectName.External.Sharepoint.WebServiceProxies.SharepointProjectNameSiteService.ProjectNameSiteSoap.GetDocumentMetaData(GetDocumentMetaDataRequest request) in D:\Source\TFSRoot\ProjectName\trunk\CodeBase\External\CompanyName.ProjectName.External.Sharepoint.WebServiceProxies\Service References\SharepointProjectNameSiteService\Reference.cs:line 2141 at CompanyName.ProjectName.External.Sharepoint.WebServiceProxies.SharepointProjectNameSiteService.ProjectNameSiteSoapClient.GetDocumentMetaData(ListSummaryDto listSummary, FileCriteriaDto criteria, List`1 customFields) in D:\Source\TFSRoot\ProjectName\trunk\CodeBase\External\CompanyName.ProjectName.External.Sharepoint.WebServiceProxies\Service References\SharepointProjectNameSiteService\Reference.cs:line 2150 at CompanyName.ProjectName.Services.Shared.SharepointAdapter.GetDocumentMetaData(ListSummaryDto listSummary, FileCriteriaDto criteria, List`1 customFields) in D:\Source\TFSRoot\ProjectName\trunk\CodeBase\Services\CompanyName.ProjectName.Services\Shared\SharepointAdapter.cs:line 260 at CompanyName.ProjectName.Services.Project.ProjectDocumentService.SetSharepointDocumentData(List`1 sourceDocuments) in D:\Source\TFSRoot\ProjectName\trunk\CodeBase\Services\CompanyName.ProjectName.Services\Project\ProjectDocumentService.cs:line 1963 at CompanyName.ProjectName.Services.Project.ProjectDocumentService.GetProjectConversionDocumentsImplementation(Int32 projectId) in D:\Source\TFSRoot\ProjectName\trunk\CodeBase\Services\CompanyName.ProjectName.Services\Project\ProjectDocumentService.cs:line 3212 InnerException: System.Runtime.Serialization.SerializationException Message="Error in line 1 position 388. 'Element' 'CustomFields' from namespace 'http://CompanyName.com.au/ProjectName' is not expected. Expecting element 'Id'." Source="System.Runtime.Serialization" StackTrace: at System.Runtime.Serialization.XmlObjectSerializerReadContext.ThrowRequiredMemberMissingException(XmlReaderDelegator xmlReader, Int32 memberIndex, Int32 requiredIndex, XmlDictionaryString[] memberNames) at System.Runtime.Serialization.XmlObjectSerializerReadContext.GetMemberIndexWithRequiredMembers(XmlReaderDelegator xmlReader, XmlDictionaryString[] memberNames, XmlDictionaryString[] memberNamespaces, Int32 memberIndex, Int32 requiredIndex, ExtensionDataObject extensionData) at ReadFileMetaDataDtoFromXml(XmlReaderDelegator , XmlObjectSerializerReadContext , XmlDictionaryString[] , XmlDictionaryString[] ) at System.Runtime.Serialization.ClassDataContract.ReadXmlValue(XmlReaderDelegator xmlReader, XmlObjectSerializerReadContext context) at System.Runtime.Serialization.XmlObjectSerializerReadContext.ReadDataContractValue(DataContract dataContract, XmlReaderDelegator reader) at System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(XmlReaderDelegator reader, String name, String ns, DataContract& dataContract) at System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(XmlReaderDelegator xmlReader, Int32 id, RuntimeTypeHandle declaredTypeHandle, String name, String ns) at ReadArrayOfFileMetaDataDtoFromXml(XmlReaderDelegator , XmlObjectSerializerReadContext , XmlDictionaryString , XmlDictionaryString , CollectionDataContract ) at System.Runtime.Serialization.CollectionDataContract.ReadXmlValue(XmlReaderDelegator xmlReader, XmlObjectSerializerReadContext context) at System.Runtime.Serialization.XmlObjectSerializerReadContext.ReadDataContractValue(DataContract dataContract, XmlReaderDelegator reader) at System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(XmlReaderDelegator reader, String name, String ns, DataContract& dataContract) at System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(XmlReaderDelegator xmlReader, Int32 id, RuntimeTypeHandle declaredTypeHandle, String name, String ns) at ReadMetaDataSearchResultsDtoFromXml(XmlReaderDelegator , XmlObjectSerializerReadContext , XmlDictionaryString[] , XmlDictionaryString[] ) at System.Runtime.Serialization.ClassDataContract.ReadXmlValue(XmlReaderDelegator xmlReader, XmlObjectSerializerReadContext context) at System.Runtime.Serialization.XmlObjectSerializerReadContext.ReadDataContractValue(DataContract dataContract, XmlReaderDelegator reader) at System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(XmlReaderDelegator reader, String name, String ns, DataContract& dataContract) at System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(XmlReaderDelegator xmlReader, Int32 id, RuntimeTypeHandle declaredTypeHandle, String name, String ns) at ReadGetDocumentMetaDataResponseBodyFromXml(XmlReaderDelegator , XmlObjectSerializerReadContext , XmlDictionaryString[] , XmlDictionaryString[] ) at System.Runtime.Serialization.ClassDataContract.ReadXmlValue(XmlReaderDelegator xmlReader, XmlObjectSerializerReadContext context) at System.Runtime.Serialization.XmlObjectSerializerReadContext.ReadDataContractValue(DataContract dataContract, XmlReaderDelegator reader) at System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(XmlReaderDelegator reader, String name, String ns, DataContract& dataContract) at System.Runtime.Serialization.XmlObjectSerializerReadContext.InternalDeserialize(XmlReaderDelegator xmlReader, Type declaredType, DataContract dataContract, String name, String ns) at System.Runtime.Serialization.DataContractSerializer.InternalReadObject(XmlReaderDelegator xmlReader, Boolean verifyObjectName) at System.Runtime.Serialization.XmlObjectSerializer.ReadObjectHandleExceptions(XmlReaderDelegator reader, Boolean verifyObjectName) at System.Runtime.Serialization.DataContractSerializer.ReadObject(XmlDictionaryReader reader, Boolean verifyObjectName) at System.ServiceModel.Dispatcher.DataContractSerializerOperationFormatter.DeserializeParameterPart(XmlDictionaryReader reader, PartInfo part, Boolean isRequest) InnerException:

    Read the article

  • What is a correct step by step logic of exporting scene with baked occlusion for loading it at runtime?

    - by myWallJSON
    I wonder what is a correct step by step logic of exporting scene with baked occlusion (Culling data) for loading that scene at runtime (on fly from the internet for example))? So currently my plan looks like this: I create prefabs Place them onto my scene (into Hierarchy) (say create 20 buffolows and some hourses and some buildings) Create empty prefab and drag all my scene objects from hierarchy onto it Export prefab So generally I put all my scene objects into one large prefab and export it but it seems that all objects that were marked as static get this property turned off when loading them at runtime and so no Frustrum Culling, and no Occlusion culling happens. So I wonder what is a correct way of exporting Sceen + Objecrts + Occlusion (and onther culing) data for future load of such scene at runtime? I wonder about current 3.5.2 Pro and future 4 Pro versions of U3D.

    Read the article

  • Nhibernate upgraded getting 'Antlr.Runtime.NoViableAltException' on outer join using *=

    - by user86431
    so we upgraded to newer Nhibernate and Fluent Nhibernate. now I' getting this exception: FailedNHibernate.Hql.Ast.ANTLR.QuerySyntaxException: Exception of type 'Antlr.Runtime.NoViableAltException' was thrown. near line 1, column 459 On this hql, which worked fine before the upgrade. SELECT s.StudId, s.StudLname, s.StudFname, s.StudMi, s.Ssn, s.Sex, s.Dob, et.EnrtypeId, et.Active, et.EnrId, sss.StaffLname, sss.StaffFname, sss.StaffMi,vas.CurrentAge FROM CIS3G.Jcdc.EO.StudentEO s , CIS3G.Jcdc.EO.EnrollmentEO e , CIS3G.Jcdc.EO.EnrollmentTypeEO et , CIS3G.Jcdc.EO.VwStaffStudentStaffEO sss, CIS3G.Jcdc.EO.VwAgeStudentEO vas WHERE ( e.EnrId = et.EnrId ) AND ( s.StudId = vas.StudId ) AND ( s.StudId = e.StudId ) AND ( et.EnrtypeId *= sss.EnrtypeId ) AND ( Isnull ( sss.StudStaffRoleCd , 1044 ) = 1044 ) AND ( s.StudId = 4000 ) Clearly it does nto like the *= syntax, I tried rewritign is as ansi sql outer join and no joy. Can anyone tell me what ineed to change the sql to so I can get the outer join to work correctly? Thanks, Eric-

    Read the article

  • System.Security.VerificationException: Operation could destabilize the runtime

    - by Rigobert Song
    I have a web service which is queried using linq to sql but returns an array of objects. I keep getting the following error: System.Security.VerificationException: Operation could destabilize the runtime When I run a method that uses a linq statement to return an array I get this error, but only on my test server, which is windows server 2008. Everything works fine in my win 7 machine. The project is a .net 3.5. Any ideas what the problem might be? Thanks UPDATE: My linq queries return IQueryable.

    Read the article

  • Unknown runtime error number: -2146827687

    - by Simone Vellei
    I have an error in my GXT code on Internet Explorer (both Development Mode and not) when i try to attach a label to a panel. The error is "Unknown runtime error number: -2146827687" but this error in a GWT module is throws always, in other gwt modules with a label attached to the panel the error there isn't. The layout of panel is a GridFormLayout developed by me. The error is thrown when the renderComponentInCell is called (the method is called on doLayout) and the component is not rendered (else condition). private void renderComponentInCell(Component component, Element cell) { if (component.isRendered()) { cell.appendChild(component.getElement()); } else { component.render(cell); } } What can I do?

    Read the article

  • Cygwin compiling error: "this application has requested the runtime to terminate it in an unusual wa

    - by naspinski
    I am trying to run Cygwin, and I am running into some problems. I tried to compile a program that works both on Windows with mingw and on a Unix system, but when I go to compile it through Cygwin: gcc threads.c -o threads I get the error: this application has requested the runtime to terminate it in an unusual way And that's it... any ideas what I am forgetting or screwing up? I haven't touched this stuff in about 5 years so I am beyond rusty; thanks!

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >