Search Results

Search found 362 results on 15 pages for 'signatures'.

Page 13/15 | < Previous Page | 9 10 11 12 13 14 15  | Next Page >

  • Maximize/Minimize is causing Close Button to be re-enabled after disabling it -- Why?

    - by Brainsick
    I have used P/Invoke to call GetSystemMenu and EnableMenuItem (win32api) to disable the close functionality. However, after minimizing or maximizing my Windows Forms application the button is re-enabled. Obviously minimizing or maximizing is causing the behavior, but how? I'm not sure where to look to prevent this behavior. Should I be preventing the maximize and minimize behavior or is there something particularly wrong with the way in which I P/Invoked the calls? Once the application (main form) has loaded, I call the static method from a button click. class PInvoke { // P/Invoke signatures [DllImport("user32.dll")] static extern IntPtr GetSystemMenu(IntPtr hWnd, bool bRevert); [DllImport("user32.dll")] static extern bool EnableMenuItem(IntPtr hMenu, uint uIDEnableItem, uint uEnable); // SysCommand (WM_SYSCOMMAND) constant internal const UInt32 SC_CLOSE = 0xF060; // Constants used with Add/Check/EnableMenuItem internal const UInt32 MF_BYCOMMAND = 0x00000000; internal const UInt32 MF_ENABLED = 0x00000000; internal const UInt32 MF_GRAYED = 0x00000001; internal const UInt32 MF_DISABLED = 0x00000002; /// <summary> /// Sets the state of the Close (X) button and the System Menu close functionality. /// </summary> /// <param name="window">Window or Form</param> /// <param name="bEnabled">Enabled state</param> public static void EnableCloseButton(IWin32Window window, bool bEnabled) { IntPtr hSystemMenu = GetSystemMenu(window.Handle, false); EnableMenuItem(hSystemMenu, SC_CLOSE, MF_BYCOMMAND | (bEnabled ? MF_ENABLED : MF_GRAYED)); } }

    Read the article

  • Dynamic WebService implementation

    - by chardex
    I have a set of different interfaces and I need to give them access via web services. I have implemented this task in .NET as follows: dynamically generated interface implementation on the IL, marked methods with WebMethod annotation, and in *.asmx handler called generated stub. More needs to be able to change the method signatures (eg change the type of certain argument or add new arguments), ie not always explicitly implement an interface, and use it as a decorator pattern. Example: interface ISomeService { void simpleMetod (String arg1); void customMetod (CusomType arg1, Integer arg2); } // Need to dynamically generate such class @WebService class SomeWebService { private ISomeService someService = new SomeServiceImpl (); @WebMethod public void simpleMethod (String arg1) { someService.simpleMethod (arg1); } @WebMethod public void customMethod (String arg1, Integer arg2) { someService.customMethod (CusomType.fromString (arg1), arg2); } } Interfaces such as ISomeService quite a lot. And manually write code like this I don't want. I work with Java recently, what technology/libraries should be used to solve such task. Thanks.

    Read the article

  • How the clients (client sockets) are identified?

    - by Roman
    To my understanding by serverSocket = new ServerSocket(portNumber) we create an object which potentially can "listen" to the indicated port. By clientSocket = serverSocket.accept() we force the server socket to "listen" to its port and to "accept" a connection from any client which tries to connect to the server through the port associated with the server. When I say "client tries to connect to the server" I mean that client program executes "nameSocket = new Socket(serverIP,serverPort)". If client is trying to connect to the server, the server "accepts" this client (i.e. creates a "client socket" associated with this client). If a new client tries to connect to the server, the server creates another client socket (associated with the new client). But how the server knows if it is a "new" client or an "old" one which has already its socket? Or, in other words, how the clients are identified? By their IP? By their IP and port? By some "signatures"? What happens if an "old" client tries to use Socket(serverIP,serverIP) again? Will server create the second socket associated with this client?

    Read the article

  • Windows 7 x64 "upgrade" repair fails

    - by Polynomial
    I've been running into issues with Windows Update, which I can't seem to fix. The hotfixes don't work, nor does the Windows update readyness tool, or the manual SP1 upgrade. I get various esoteric errors which nobody seems to have a fix for. Looks like some of the update cache is corrupt and digital signatures seem to be broken on some packages / Windows Update components. Long story short, I have discovered the only option is to do a repair operation on the OS, to repair everything. It's so corrupt that only a complete replacement will fix it. According to various sources (including MSKB) one can perform a repair by running an in-place upgrade. I've got the Windows 7 Ultimate retail disc, which I've inserted into my machine. I ran setup.exe and went through in the following order: Install now Go online to get latest updates (I've also tried not getting updates) Wait for updates to be downloaded Select Windows 7 Ultimate (x64 architecture) and click next Accept the T&Cs, click next Click Upgrade At this point it spends a minute on the "checking compatibility" screen, after which I get the following error: The following issues are preventing Windows from upgrading. Cancel the upgrade, complete each task, and then restart the upgrade to continue. You can’t upgrade 64-bit Windows to a 32-bit version of Windows. To upgrade, obtain a 64-bit version of the installation disc, or go online to see how to install Windows 7 and keep your files and settings. 32-bit Windows cannot be upgraded to a 64-bit version of Windows. To upgrade, obtain a 32-bit version of the Windows installation disc. It also mentions a warning about potential conflicts with a storage driver and VS2010, but that doesn't seem to be the blocking issue. My currently installed version of Windows is Ultimate 64-bit (absolutely sure of this) and the disc is definitely a x86 / x64 combined Ultimate retail disc. There seem to be a few people who have run into this (e.g. this question), but I've not seen any answers. I've checked the event viewer, but can't spot anything in there that's related. Any idea how I can get this working? P.S: Just to pre-empt the inevitable "are you suuuuuuuuuuuuure it's x64 Ultimate?" questions:

    Read the article

  • Followup: Python 2.6, 3 abstract base class misunderstanding

    - by Aaron
    I asked a question at Python 2.6, 3 abstract base class misunderstanding. My problem was that python abstract base classes didn't work quite the way I expected them to. There was some discussion in the comments about why I would want to use ABCs at all, and Alex Martelli provided an excellent answer on why my use didn't work and how to accomplish what I wanted. Here I'd like to address why one might want to use ABCs, and show my test code implementation based on Alex's answer. tl;dr: Code after the 16th paragraph. In the discussion on the original post, statements were made along the lines that you don't need ABCs in Python, and that ABCs don't do anything and are therefore not real classes; they're merely interface definitions. An abstract base class is just a tool in your tool box. It's a design tool that's been around for many years, and a programming tool that is explicitly available in many programming languages. It can be implemented manually in languages that don't provide it. An ABC is always a real class, even when it doesn't do anything but define an interface, because specifying the interface is what an ABC does. If that was all an ABC could do, that would be enough reason to have it in your toolbox, but in Python and some other languages they can do more. The basic reason to use an ABC is when you have a number of classes that all do the same thing (have the same interface) but do it differently, and you want to guarantee that that complete interface is implemented in all objects. A user of your classes can rely on the interface being completely implemented in all classes. You can maintain this guarantee manually. Over time you may succeed. Or you might forget something. Before Python had ABCs you could guarantee it semi-manually, by throwing NotImplementedError in all the base class's interface methods; you must implement these methods in derived classes. This is only a partial solution, because you can still instantiate such a base class. A more complete solution is to use ABCs as provided in Python 2.6 and above. Template methods and other wrinkles and patterns are ideas whose implementation can be made easier with full-citizen ABCs. Another idea in the comments was that Python doesn't need ABCs (understood as a class that only defines an interface) because it has multiple inheritance. The implied reference there seems to be Java and its single inheritance. In Java you "get around" single inheritance by inheriting from one or more interfaces. Java uses the word "interface" in two ways. A "Java interface" is a class with method signatures but no implementations. The methods are the interface's "interface" in the more general, non-Java sense of the word. Yes, Python has multiple inheritance, so you don't need Java-like "interfaces" (ABCs) merely to provide sets of interface methods to a class. But that's not the only reason in software development to use ABCs. Most generally, you use an ABC to specify an interface (set of methods) that will likely be implemented differently in different derived classes, yet that all derived classes must have. Additionally, there may be no sensible default implementation for the base class to provide. Finally, even an ABC with almost no interface is still useful. We use something like it when we have multiple except clauses for a try. Many exceptions have exactly the same interface, with only two differences: the exception's string value, and the actual class of the exception. In many exception clauses we use nothing about the exception except its class to decide what to do; catching one type of exception we do one thing, and another except clause catching a different exception does another thing. According to the exception module's doc page, BaseException is not intended to be derived by any user defined exceptions. If ABCs had been a first class Python concept from the beginning, it's easy to imagine BaseException being specified as an ABC. But enough of that. Here's some 2.6 code that demonstrates how to use ABCs, and how to specify a list-like ABC. Examples are run in ipython, which I like much better than the python shell for day to day work; I only wish it was available for python3. Your basic 2.6 ABC: from abc import ABCMeta, abstractmethod class Super(): __metaclass__ = ABCMeta @abstractmethod def method1(self): pass Test it (in ipython, python shell would be similar): In [2]: a = Super() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Super with abstract methods method1 Notice the end of the last line, where the TypeError exception tells us that method1 has not been implemented ("abstract methods method1"). That was the method designated as @abstractmethod in the preceding code. Create a subclass that inherits Super, implement method1 in the subclass and you're done. My problem, which caused me to ask the original question, was how to specify an ABC that itself defines a list interface. My naive solution was to make an ABC as above, and in the inheritance parentheses say (list). My assumption was that the class would still be abstract (can't instantiate it), and would be a list. That was wrong; inheriting from list made the class concrete, despite the abstract bits in the class definition. Alex suggested inheriting from collections.MutableSequence, which is abstract (and so doesn't make the class concrete) and list-like. I used collections.Sequence, which is also abstract but has a shorter interface and so was quicker to implement. First, Super derived from Sequence, with nothing extra: from abc import abstractmethod from collections import Sequence class Super(Sequence): pass Test it: In [6]: a = Super() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Super with abstract methods __getitem__, __len__ We can't instantiate it. A list-like full-citizen ABC; yea! Again, notice in the last line that TypeError tells us why we can't instantiate it: __getitem__ and __len__ are abstract methods. They come from collections.Sequence. But, I want a bunch of subclasses that all act like immutable lists (which collections.Sequence essentially is), and that have their own implementations of my added interface methods. In particular, I don't want to implement my own list code, Python already did that for me. So first, let's implement the missing Sequence methods, in terms of Python's list type, so that all subclasses act as lists (Sequences). First let's see the signatures of the missing abstract methods: In [12]: help(Sequence.__getitem__) Help on method __getitem__ in module _abcoll: __getitem__(self, index) unbound _abcoll.Sequence method (END) In [14]: help(Sequence.__len__) Help on method __len__ in module _abcoll: __len__(self) unbound _abcoll.Sequence method (END) __getitem__ takes an index, and __len__ takes nothing. And the implementation (so far) is: from abc import abstractmethod from collections import Sequence class Super(Sequence): # Gives us a list member for ABC methods to use. def __init__(self): self._list = [] # Abstract method in Sequence, implemented in terms of list. def __getitem__(self, index): return self._list.__getitem__(index) # Abstract method in Sequence, implemented in terms of list. def __len__(self): return self._list.__len__() # Not required. Makes printing behave like a list. def __repr__(self): return self._list.__repr__() Test it: In [34]: a = Super() In [35]: a Out[35]: [] In [36]: print a [] In [37]: len(a) Out[37]: 0 In [38]: a[0] --------------------------------------------------------------------------- IndexError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() /home/aaron/projects/test/test.py in __getitem__(self, index) 10 # Abstract method in Sequence, implemented in terms of list. 11 def __getitem__(self, index): ---> 12 return self._list.__getitem__(index) 13 14 # Abstract method in Sequence, implemented in terms of list. IndexError: list index out of range Just like a list. It's not abstract (for the moment) because we implemented both of Sequence's abstract methods. Now I want to add my bit of interface, which will be abstract in Super and therefore required to implement in any subclasses. And we'll cut to the chase and add subclasses that inherit from our ABC Super. from abc import abstractmethod from collections import Sequence class Super(Sequence): # Gives us a list member for ABC methods to use. def __init__(self): self._list = [] # Abstract method in Sequence, implemented in terms of list. def __getitem__(self, index): return self._list.__getitem__(index) # Abstract method in Sequence, implemented in terms of list. def __len__(self): return self._list.__len__() # Not required. Makes printing behave like a list. def __repr__(self): return self._list.__repr__() @abstractmethod def method1(): pass class Sub0(Super): pass class Sub1(Super): def __init__(self): self._list = [1, 2, 3] def method1(self): return [x**2 for x in self._list] def method2(self): return [x/2.0 for x in self._list] class Sub2(Super): def __init__(self): self._list = [10, 20, 30, 40] def method1(self): return [x+2 for x in self._list] We've added a new abstract method to Super, method1. This makes Super abstract again. A new class Sub0 which inherits from Super but does not implement method1, so it's also an ABC. Two new classes Sub1 and Sub2, which both inherit from Super. They both implement method1 from Super, so they're not abstract. Both implementations of method1 are different. Sub1 and Sub2 also both initialize themselves differently; in real life they might initialize themselves wildly differently. So you have two subclasses which both "is a" Super (they both implement Super's required interface) although their implementations are different. Also remember that Super, although an ABC, provides four non-abstract methods. So Super provides two things to subclasses: an implementation of collections.Sequence, and an additional abstract interface (the one abstract method) that subclasses must implement. Also, class Sub1 implements an additional method, method2, which is not part of Super's interface. Sub1 "is a" Super, but it also has additional capabilities. Test it: In [52]: a = Super() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Super with abstract methods method1 In [53]: a = Sub0() --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: Can't instantiate abstract class Sub0 with abstract methods method1 In [54]: a = Sub1() In [55]: a Out[55]: [1, 2, 3] In [56]: b = Sub2() In [57]: b Out[57]: [10, 20, 30, 40] In [58]: print a, b [1, 2, 3] [10, 20, 30, 40] In [59]: a, b Out[59]: ([1, 2, 3], [10, 20, 30, 40]) In [60]: a.method1() Out[60]: [1, 4, 9] In [61]: b.method1() Out[61]: [12, 22, 32, 42] In [62]: a.method2() Out[62]: [0.5, 1.0, 1.5] [63]: a[:2] Out[63]: [1, 2] In [64]: a[0] = 5 --------------------------------------------------------------------------- TypeError Traceback (most recent call last) /home/aaron/projects/test/<ipython console> in <module>() TypeError: 'Sub1' object does not support item assignment Super and Sub0 are abstract and can't be instantiated (lines 52 and 53). Sub1 and Sub2 are concrete and have an immutable Sequence interface (54 through 59). Sub1 and Sub2 are instantiated differently, and their method1 implementations are different (60, 61). Sub1 includes an additional method2, beyond what's required by Super (62). Any concrete Super acts like a list/Sequence (63). A collections.Sequence is immutable (64). Finally, a wart: In [65]: a._list Out[65]: [1, 2, 3] In [66]: a._list = [] In [67]: a Out[67]: [] Super._list is spelled with a single underscore. Double underscore would have protected it from this last bit, but would have broken the implementation of methods in subclasses. Not sure why; I think because double underscore is private, and private means private. So ultimately this whole scheme relies on a gentleman's agreement not to reach in and muck with Super._list directly, as in line 65 above. Would love to know if there's a safer way to do that.

    Read the article

  • Create an iTunes Account without a credit card

    - by Matthew Guay
    iTunes Store offers a large variety of free content, but to download it you have to have an account. Usually you have to enter your credit card information to sign up, but here’s an easy way to get an iTunes account for free downloads without entering any payment info. Although iTunes Store is known for paid downloads of movies, music, and more, it also has a treasure trove of free media.  Some of it, including Podcasts and iTunes U educational content do not require an account to download.  However, any other free content, including free iPhone/iPod Touch apps and free or promotional music, videos, and TV Shows all require an account to download.  If you try to download a free movie or music download, you will be required to enter payment information. Even though your card will not be charged, it will be kept on file so you can be charged if you download a for-pay item.  However, if you only plan to download free items, it may be preferable to not have your account linked to a credit card. The following steps will get you an account without entering your credit card info. Getting Started First, make sure you have iTunes installed.  If you don’t already have it, download and install it (link below) with the default settings. Now open iTunes, and click the iTunes Store link on the left. Click the App Store link on the top of this page. Select a free app to download.  A simple way to do this is to scroll down to the Top Free Apps box on the right side, hover your mouse over the first item, and click on the Free button that appears when you hover over it. A popup will open asking you to sign in with your Apple ID.  Click “Create New Account”. Click Continue to create your account. Check the box to accept the Store Terms and Conditions, and click Continue.   Enter your email address, password, security question, and date of birth, and uncheck the boxes to get email if you don’t want it…then click Continue. Now, you will be asked to provide a payment method.  Notice now that the last option says None!  Click that bullet option… Then enter your billing address.  Simply enter your normal billing address, even though you are not entering a payment method.  Click Continue and your account will be created! If you get the Address Verification screen just verify your county and click Done. An email will be sent to you to verify your account… Click on the link in your email to verify your account, iTunes will launch and you’re prompted to enter in the Apple ID and Password you just created. Your account is successfully created! Now you can easily download any free media from iTunes.  Keep an eye on the Free on iTunes box on the bottom of the iTunes Store page for interesting downloads, or if you have an iPhone or iPod Touch, watch the popular Free downloads on the Apps page. And of course there is always great content on iTunes U to grab free as well. Purchasing for-pay media If you want to purchase an item on the iTunes store later, simply click on the item to download as normal.  Click Buy to proceed with the purchase. iTunes will prompt you that you need to enter payment information to complete the purchase.  Enter your Apple ID email and password, and then add the payment information as prompted.   Remove Payment Information from an iTunes Account If you’ve already entered payment information into your iTunes account, and would like to remove it, click Store in the top iTunes menu, and select View My Account. Enter your Apple ID email and password, and click View Account.   This will open your account information.  Click the Edit Payment Information button.   Now, click the None button to remove your payment information.  Click Done to save the changes. Your account will now prompt you to enter payment information if you try to make a purchase.  You could repeat these steps after making a purchase if you do not want iTunes to keep your payment info on file. Conclusion This is a great way to make an iTunes account without entering your credit card, or to remove your credit card info from your account.  Parents may especially enjoy this tip, as they can have an iTunes account on their kids computer or iPod Touch without worrying about them spending money with it. Links Download iTunes Similar Articles Productive Geek Tips Quick Tip: Switch Between Signatures in Outlook 2007 the Easy WayRedeem Pre-paid Zune Card Points for Zune Marketplace MediaCreate An Electronic Business Card In Outlook 2007Understanding Windows Vista Aero Glass RequirementsSpeed up Your Windows Vista Computer with ReadyBoost TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional Draw Online using Harmony How to Browse Privately in Firefox Kill Processes Quickly with Process Assassin Need to Come Up with a Good Name? Try Wordoid StockFox puts a Lightweight Stock Ticker in your Statusbar Explore Google Public Data Visually

    Read the article

  • Building InstallShield based Installers using Team Build 2010

    - by jehan
    Last few weeks, I have been working on Application Packaging stuff using all the widely used tools like InstallShield, WISE, WiX and Visual Studio Installer. So, I thought it would be good to post about how to Build the Installers developed using these tools with Team Build 2010. This post will focus on how to build the InstallShield generated packages using Team Build 2010. For the release of VS2010, Microsoft has partnered with Flexera who are the makers of InstallShield to create InstallShield Limited Edition, especially for the customers of Visual Studio. First Microsoft planned to release WiX (Windows Installer Xml) with VS2010, but later Microsoft dropped  WiX from VS2010 due to reasons which are best known to them and partnered with InstallShield for Limited Edition. It disappointed lot of people because InstallShield Limited Edition provides only few features of InstallShield and it may not feasable to build complex installer packages using this and it also requires License, where as WiX is an open source with no license costs and it has proved efficient in building most complex packages. Only the last three features are available in InstallShield Limited Edition from the total features offered by InstallShield as shown in below list.                                                                                            Feature Limited Edition for Visual Studio 2010 Standalone Build System Maintain a clean build machine by using only the part of InstallShield that compiles the installations. InstallShield Best Practices Validation Suite Avoid common installation issues. Try and Die Functionality RCreate a fully functional trial version of your product. InstallShield Repackager Create Windows Installer setups from any legacy installation. Multilingual Support Present installation text in up to 35 languages. Microsoft App-V™ Support Deploy your applications as App-V virtual packages that run without conflict. Industry-Standard InstallScript Achieve maximum flexibility in your installations. Dialog Editor Modify the layout of existing end-user dialogs, create new custom dialogs, and more. Patch Creation Build updates and patches for your products. Setup Prerequisite Editor Easily control prerequisite restart behavior and source locations. String Editor View Control the localizable text strings displayed at run time with this spreadsheet-like table. Text File Changes View Configure search-and-replace actions for content in text files to be modified at run time. Virtual Machine Detection Block your installations from running on virtual machines. Unicode Support Improve multi-language installation development. Support for 64-Bit COM Extraction Extract COM data from a 64-bit COM server. Windows Installer Installation Chaining Add MSI packages to your main installation and chain them together. XML Support Save time by quickly testing XML configuration changes to installation projects. Billboard Support for Custom Branding Display Adobe Flash billboards and other graphic files during the install process. SaaS Support (IIS 7 and SSL Technologies) Easily deploy Windows-based Web applications. Project Assistant Jumpstart a project by using a simplified set of views. Support for Digital Signatures Save time by digitally signing all your files at build time. Easily Run Custom Actions Schedule a custom action to run at precisely the right moment in your installation. Installation Prerequisites Check for and install prerequisites before your installation is executed. To create a InstallShield project in Visual Studio and Build it using Team Build 2010, first you have to add the InstallShield Project template  to your Solution file. If you want to use InstallShield Limited edition you can add it from FileàNewà project àother Project Types àSetup and Deploymentà InstallShield LE and if you are using other versions of InstallShield, then you have to add it from  from FileàNewà project àInstallShield Projects. Here, I’m using  InstallShield 2011 Premier edition as I already have it Installed. I have created a simple package for TailSpin Application which has a Feature called Web, few components and a IIS Web Site for  TailSpin application.   Before started working on this, I thought I may need to build the package by calling invoke process activity in build process template or have to create a new custom activity. But, it got build without any changes to build process template. But, it was failing with below error message. C:\Program Files (x86)\MSBuild\InstallShield\2011\InstallShield.targets (68): The "InstallShield.Tasks.InstallShield" task could not be loaded from the assembly C:\Program Files (x86)\MSBuild\InstallShield\2010Limited\InstallShield.Tasks.dll. Could not load file or assembly 'file:///C:\Program Files(x86)\MSBuild\InstallShield\2011\InstallShield.Tasks.dll' or one of its dependencies. An attempt was made to load a program with an incorrect format. Confirm that the <UsingTask> declaration is correct, that the assembly and all its dependencies are available, and that the task contains a public class that implements Microsoft.Build.Framework.ITask. This error is due to 64-bit build machine which I’m using. This issue will be replicable if you are queuing a build on a 64-bit build machine. To avoid this you have to ensure that you configured the build definition for your InstallShield project to load the InstallShield.Tasks.dll file (which is a 32-bit file); otherwise, you will encounter this build error informing you that the InstallShield.Tasks.dll file could not be loaded. To select the 32-bit version of MSBuild, click the Process tab of your build definition in Team Explorer. Then, under the Advanced node, find the MSBuild Platform setting, and select x86. Note that if you are using a 32-bit build machine, you can select either Auto or x86 for the MSBuild Platform setting.  Once I did above changes, the build got successful.

    Read the article

  • Extreme Optimization – Numerical Algorithm Support

    - by JoshReuben
    Function Delegates Many calculations involve the repeated evaluation of one or more user-supplied functions eg Numerical integration. The EO MathLib provides delegate types for common function signatures and the FunctionFactory class can generate new delegates from existing ones. RealFunction delegate - takes one Double parameter – can encapsulate most of the static methods of the System.Math class, as well as the classes in the Extreme.Mathematics.SpecialFunctions namespace: var sin = new RealFunction(Math.Sin); var result = sin(1); BivariateRealFunction delegate - takes two Double parameters: var atan2 = new BivariateRealFunction (Math.Atan2); var result = atan2(1, 2); TrivariateRealFunction delegate – represents a function takes three Double arguments ParameterizedRealFunction delegate - represents a function taking one Integer and one Double argument that returns a real number. The Pow method implements such a function, but the arguments need order re-arrangement: static double Power(int exponent, double x) { return ElementaryFunctions.Pow(x, exponent); } ... var power = new ParameterizedRealFunction(Power); var result = power(6, 3.2); A ComplexFunction delegate - represents a function that takes an Extreme.Mathematics.DoubleComplex argument and also returns a complex number. MultivariateRealFunction delegate - represents a function that takes an Extreme.Mathematics.LinearAlgebra.Vector argument and returns a real number. MultivariateVectorFunction delegate - represents a function that takes a Vector argument and returns a Vector. FastMultivariateVectorFunction delegate - represents a function that takes an input Vector argument and an output Matrix argument – avoiding object construction  The FunctionFactory class RealFromBivariateRealFunction and RealFromParameterizedRealFunction helper methods - transform BivariateRealFunction or a ParameterizedRealFunction into a RealFunction delegate by fixing one of the arguments, and treating this as a new function of a single argument. var tenthPower = FunctionFactory.RealFromParameterizedRealFunction(power, 10); var result = tenthPower(x); Note: There is no direct way to do this programmatically in C# - in F# you have partial value functions where you supply a subset of the arguments (as a travelling closure) that the function expects. When you omit arguments, F# generates a new function that holds onto/remembers the arguments you passed in and "waits" for the other parameters to be supplied. let sumVals x y = x + y     let sumX = sumVals 10     // Note: no 2nd param supplied.     // sumX is a new function generated from partially applied sumVals.     // ie "sumX is a partial application of sumVals." let sum = sumX 20     // Invokes sumX, passing in expected int (parameter y from original)  val sumVals : int -> int -> int val sumX : (int -> int) val sum : int = 30 RealFunctionsToVectorFunction and RealFunctionsToFastVectorFunction helper methods - combines an array of delegates returning a real number or a vector into vector or matrix functions. The resulting vector function returns a vector whose components are the function values of the delegates in the array. var funcVector = FunctionFactory.RealFunctionsToVectorFunction(     new MultivariateRealFunction(myFunc1),     new MultivariateRealFunction(myFunc2));  The IterativeAlgorithm<T> abstract base class Iterative algorithms are common in numerical computing - a method is executed repeatedly until a certain condition is reached, approximating the result of a calculation with increasing accuracy until a certain threshold is reached. If the desired accuracy is achieved, the algorithm is said to converge. This base class is derived by many classes in the Extreme.Mathematics.EquationSolvers and Extreme.Mathematics.Optimization namespaces, as well as the ManagedIterativeAlgorithm class which contains a driver method that manages the iteration process.  The ConvergenceTest abstract base class This class is used to specify algorithm Termination , convergence and results - calculates an estimate for the error, and signals termination of the algorithm when the error is below a specified tolerance. Termination Criteria - specify the success condition as the difference between some quantity and its actual value is within a certain tolerance – 2 ways: absolute error - difference between the result and the actual value. relative error is the difference between the result and the actual value relative to the size of the result. Tolerance property - specify trade-off between accuracy and execution time. The lower the tolerance, the longer it will take for the algorithm to obtain a result within that tolerance. Most algorithms in the EO NumLib have a default value of MachineConstants.SqrtEpsilon - gives slightly less than 8 digits of accuracy. ConvergenceCriterion property - specify under what condition the algorithm is assumed to converge. Using the ConvergenceCriterion enum: WithinAbsoluteTolerance / WithinRelativeTolerance / WithinAnyTolerance / NumberOfIterations Active property - selectively ignore certain convergence tests Error property - returns the estimated error after a run MaxIterations / MaxEvaluations properties - Other Termination Criteria - If the algorithm cannot achieve the desired accuracy, the algorithm still has to end – according to an absolute boundary. Status property - indicates how the algorithm terminated - the AlgorithmStatus enum values:NoResult / Busy / Converged (ended normally - The desired accuracy has been achieved) / IterationLimitExceeded / EvaluationLimitExceeded / RoundOffError / BadFunction / Divergent / ConvergedToFalseSolution. After the iteration terminates, the Status should be inspected to verify that the algorithm terminated normally. Alternatively, you can set the ThrowExceptionOnFailure to true. Result property - returns the result of the algorithm. This property contains the best available estimate, even if the desired accuracy was not obtained. IterationsNeeded / EvaluationsNeeded properties - returns the number of iterations required to obtain the result, number of function evaluations.  Concrete Types of Convergence Test classes SimpleConvergenceTest class - test if a value is close to zero or very small compared to another value. VectorConvergenceTest class - test convergence of vectors. This class has two additional properties. The Norm property specifies which norm is to be used when calculating the size of the vector - the VectorConvergenceNorm enum values: EuclidianNorm / Maximum / SumOfAbsoluteValues. The ErrorMeasure property specifies how the error is to be measured – VectorConvergenceErrorMeasure enum values: Norm / Componentwise ConvergenceTestCollection class - represent a combination of tests. The Quantifier property is a ConvergenceTestQuantifier enum that specifies how the tests in the collection are to be combined: Any / All  The AlgorithmHelper Class inherits from IterativeAlgorithm<T> and exposes two methods for convergence testing. IsValueWithinTolerance<T> method - determines whether a value is close to another value to within an algorithm's requested tolerance. IsIntervalWithinTolerance<T> method - determines whether an interval is within an algorithm's requested tolerance.

    Read the article

  • Functional Adaptation

    - by Charles Courchaine
    In real life and OO programming we’re often faced with using adapters, DVI to VGA, 1/4” to 1/8” audio connections, 110V to 220V, wrapping an incompatible interface with a new one, and so on.  Where the adapter pattern is generally considered for interfaces and classes a similar technique can be applied to method signatures.  To be fair, this adaptation is generally used to reduce the number of parameters but I’m sure there are other clever possibilities to be had.  As Jan questioned in the last post, how can we use a common method to execute an action if the action has a differing number of parameters, going back to the greeting example it was suggested having an AddName method that takes a first and last name as parameters.  This is exactly what we’ll address in this post. Let’s set the stage with some review and some code changes.  First, our method that handles the setup/tear-down infrastructure for our WCF service: 1: private static TResult ExecuteGreetingFunc<TResult>(Func<IGreeting, TResult> theGreetingFunc) 2: { 3: IGreeting aGreetingService = null; 4: try 5: { 6: aGreetingService = GetGreetingChannel(); 7: return theGreetingFunc(aGreetingService); 8: } 9: finally 10: { 11: CloseWCFChannel((IChannel)aGreetingService); 12: } 13: } Our original AddName method: 1: private static string AddName(string theName) 2: { 3: return ExecuteGreetingFunc<string>(theGreetingService => theGreetingService.AddName(theName)); 4: } Our new AddName method: 1: private static int AddName(string firstName, string lastName) 2: { 3: return ExecuteGreetingFunc<int>(theGreetingService => theGreetingService.AddName(firstName, lastName)); 4: } Let’s change the AddName method, just a little bit more for this example and have it take the greeting service as a parameter. 1: private static int AddName(IGreeting greetingService, string firstName, string lastName) 2: { 3: return greetingService.AddName(firstName, lastName); 4: } The new signature of AddName using the Func delegate is now Func<IGreeting, string, string, int>, which can’t be used with ExecuteGreetingFunc as is because it expects Func<IGreeting, TResult>.  Somehow we have to eliminate the two string parameters before we can use this with our existing method.  This is where we need to adapt AddName to match what ExecuteGreetingFunc expects, and we’ll do so in the following progression. 1: Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 2: Func<IGreeting, string, int> -> Func<IGreeting, int>   For the first step, we’ll create a method using the lambda syntax that will “eliminate” the last name parameter: 1: string lastNameToAdd = "Smith"; 2: //Func<IGreeting, string, string, int> -> Func<IGreeting, string, int> 3: Func<IGreeting, string, int> addName = (greetingService, firstName) => AddName(greetingService, firstName, lastNameToAdd); The new addName method gets us one step close to the signature we need.  Let’s say we’re going to call this in a loop to add several names, we’ll take the final step from Func<IGreeting, string, int> -> Func<IGreeting, int> in line as a lambda passed to ExecuteGreetingFunc like so: 1: List<string> firstNames = new List<string>() { "Bob", "John" }; 2: int aID; 3: foreach (string firstName in firstNames) 4: { 5: //Func<IGreeting, string, int> -> Func<IGreeting, int> 6: aID = ExecuteGreetingFunc<int>(greetingService => addName(greetingService, firstName)); 7: Console.WriteLine(GetGreeting(aID)); 8: } If for some reason you needed to break out the lambda on line 6 you could replace it with 1: aID = ExecuteGreetingFunc<int>(ApplyAddName(addName, firstName)); and use this method: 1: private static Func<IGreeting, int> ApplyAddName(Func<IGreeting, string, int> addName, string lastName) 2: { 3: return greetingService => addName(greetingService, lastName); 4: } Splitting out a lambda into its own method is useful both in this style of coding as well as LINQ queries to improve the debugging experience.  It is not strictly necessary to break apart the steps & functions as was shown above; the lambda in line 6 (of the foreach example) could include both the last name and first name instead of being composed of two functions.  The process demonstrated above is one of partially applying functions, this could have also been done with Currying (also see Dustin Campbell’s excellent post on Currying for the canonical curried add example).  Matthew Podwysocki also has some good posts explaining both Currying and partial application and a follow up post that further clarifies the difference between Currying and partial application.  In either technique the ultimate goal is to reduce the number of parameters passed to a function.  Currying makes it a single parameter passed at each step, where partial application allows one to use multiple parameters at a time as we’ve done here.  This technique isn’t for everyone or every problem, but can be extremely handy when you need to adapt a call to something you don’t control.

    Read the article

  • Is this how dynamic language copes with dynamic requirement?

    - by Amumu
    The question is in the title. I want to have my thinking verified by experienced people. You can add more or disregard my opinion, but give me a reason. Here is an example requirement: Suppose you are required to implement a fighting game. Initially, the game only includes fighters, who can attack each other. Each fighter can punch, kick or block incoming attacks. Fighters can have various fighting styles: Karate, Judo, Kung Fu... That's it for the simple universe of the game. In an OO like Java, it can be implemented similar to this way: abstract class Fighter { int hp, attack; void punch(Fighter otherFighter); void kick(Fighter otherFighter); void block(Figther otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; This is fine if the game stays like this forever. But, somehow the game designers decide to change the theme of the game: instead of a simple fighting game, the game evolves to become a RPG, in which characters can not only fight but perform other activities, i.e. the character can be a priest, an accountant, a scientist etc... At this point, to make it more generic, we have to change the structure of our original design: Fighter is not used to refer to a person anymore; it refers to a profession. The specialized classes of Fighter (KaraterFighter, JudoFighter, KungFuFighter) . Now we have to create a generic class named Person. However, to adapt this change, I have to change the method signatures of the original operations: class Person { int hp, attack; List<Profession> skillSet; }; abstract class Profession {}; class Fighter extends Profession { void punch(Person otherFighter); void kick(Person otherFighter); void block(Person otherFighter); }; class KarateFighter extends Fighter { //...implementation...}; class JudoFighter extends Fighter { //...implementation... }; class KungFuFighter extends Fighter { //...implementation ... }; class Accountant extends Profession { void calculateTax(Person p) { //...implementation...}; void calculateTax(Company c) { //...implementation...}; }; //... more professions... Here are the problems: To adapt to the method changes, I have to fix the places where the changed methods are called (refactoring). Every time a new requirement is introduced, the current structural design has to be broken to adapt the changes. This leads to the first problem. Rigid structure makes it hard for code reuse. A function can only accept the predefined types, but it cannot accept future unknown types. A written function is bound to its current universe and has no way to accommodate to the new types, without modifications or rewrite from scratch. I see Java has a lot of deprecated methods. OO is an extreme case because it has inheritance to add up the complexity, but in general for statically typed language, types are very strict. In contrast, a dynamic language can handle the above case as follow: ;;fighter1 punch fighter2 (defun perform-punch (fighter1 fighter2) ...implementation... ) ;;fighter1 kick fighter2 (defun perform-kick (fighter1 fighter2) ...implementation... ) ;;fighter1 blocks attacks from fighter2 (defun perform-block (fighter1 fighter2) ...implementation... ) fighter1 and fighter2 can be anything as long as it has the required data for calculation; or methods (duck typing). You don't have to change from the type Fighter to Person. In the case of Lisp, because Lisp only has a single data structure: list, it's even easier to adapt to changes. However, other dynamic languages can have similar behaviors as well. I work primarily with static languages (mainly C and Java, but working with Java was a long time ago). I started learning Lisp and some other dynamic languages this year. I can see how it helps improving my productivity.

    Read the article

  • Usage of IcmpSendEcho2 with an asynchronous callback

    - by Ben Voigt
    I've been reading the MSDN documentation for IcmpSendEcho2 and it raises more questions than it answers. I'm familiar with asynchronous callbacks from other Win32 APIs such as ReadFileEx... I provide a buffer which I guarantee will be reserved for the driver's use until the operation completes with any result other than IO_PENDING, I get my callback in case of either success or failure (and call GetCompletionStatus to find out which). Timeouts are my responsibility and I can call CancelIo to abort processing, but the buffer is still reserved until the driver cancels the operation and calls my completion routine with a status of CANCELLED. And there's an OVERLAPPED structure which uniquely identifies the request through all of this. IcmpSendEcho2 doesn't use an OVERLAPPED context structure for asynchronous requests. And the documentation is unclear excessively minimalist about what happens if the ping times out or fails (failure would be lack of a network connection, a missing ARP entry for local peers, ICMP destination unreachable response from an intervening router for remote peers, etc). Does anyone know whether the callback occurs on timeout and/or failure? And especially, if no response comes, can I reuse the buffer for another call to IcmpSendEcho2 or is it forever reserved in case a reply comes in late? I'm wanting to use this function from a Win32 service, which means I have to get the error-handling cases right and I can't just leak buffers (or if the API does leak buffers, I have to use a helper process so I have a way to abandon requests). There's also an ugly incompatibility in the way the callback is made. It looks like the first parameter is consistent between the two signatures, so I should be able to use the newer PIO_APC_ROUTINE as long as I only use the second parameter if an OS version check returns Vista or newer? Although MSDN says "don't do a Windows version check", it seems like I need to, because the set of versions with the new argument aren't the same as the set of versions where the function exists in iphlpapi.dll. Pointers to additional documentation or working code which uses this function and an APC would be much appreciated. Please also let me know if this is completely the wrong approach -- i.e. if either using raw sockets or some combination of IcmpCreateFile+WriteFileEx+ReadFileEx would be more robust.

    Read the article

  • WinVerifyTrust API problem

    - by Shayan
    I'm using WinVerifyTrust API in windows XP and I don't want any kind of user interaction. But when I set the WTD_UI_NONE attribute, although it doesn't show any dialog boxes, but it waits for a long time on the files that in fact wanted user interaction (I mean files which without mentioning the NO UI it will ask the user for that file). This is my code: WINTRUST_FILE_INFO FileData; memset(&FileData, 0, sizeof(FileData)); FileData.cbStruct = sizeof(WINTRUST_FILE_INFO); wchar_t fileName[32769]; FileData.pcwszFilePath = fileName; FileData.hFile = NULL; FileData.pgKnownSubject = NULL; /* WVTPolicyGUID specifies the policy to apply on the file WINTRUST_ACTION_GENERIC_VERIFY_V2 policy checks: 1) The certificate used to sign the file chains up to a root certificate located in the trusted root certificate store. This implies that the identity of the publisher has been verified by a certification authority. 2) In cases where user interface is displayed (which this example does not do), WinVerifyTrust will check for whether the end entity certificate is stored in the trusted publisher store, implying that the user trusts content from this publisher. 3) The end entity certificate has sufficient permission to sign code, as indicated by the presence of a code signing EKU or no EKU. */ GUID WVTPolicyGUID = WINTRUST_ACTION_GENERIC_VERIFY_V2; WINTRUST_DATA WinTrustData; // Initialize the WinVerifyTrust input data structure. // Default all fields to 0. memset(&WinTrustData, 0, sizeof(WinTrustData)); WinTrustData.cbStruct = sizeof(WinTrustData); // Use default code signing EKU. WinTrustData.pPolicyCallbackData = NULL; // No data to pass to SIP. WinTrustData.pSIPClientData = NULL; // Disable WVT UI. WinTrustData.dwUIChoice = WTD_UI_NONE; // No revocation checking. WinTrustData.fdwRevocationChecks = WTD_REVOKE_NONE; // Verify an embedded signature on a file. WinTrustData.dwUnionChoice = WTD_CHOICE_FILE; // Default verification. WinTrustData.dwStateAction = 0; // Not applicable for default verification of embedded signature. WinTrustData.hWVTStateData = NULL; // Not used. WinTrustData.pwszURLReference = NULL; // Default. WinTrustData.dwProvFlags = WTD_REVOCATION_CHECK_END_CERT; // This is not applicable if there is no UI because it changes // the UI to accommodate running applications instead of // installing applications. WinTrustData.dwUIContext = 0; // Set pFile. WinTrustData.pFile = &FileData; // WinVerifyTrust verifies signatures as specified by the GUID // and Wintrust_Data. lStatus = WinVerifyTrust( (HWND)INVALID_HANDLE_VALUE, &WVTPolicyGUID, &WinTrustData); printf("%x\n", lStatus);

    Read the article

  • What might cause this ExecutionEngineException?

    - by Qwertie
    I am trying to use Reflection.Emit to generate a wrapper class in a dynamic assembly. Automatic wrapper generation is part of a new open-source library I'm writing called "GoInterfaces". The wrapper class implements IEnumerable<string> and wraps List<string>. In C# terms, all it does is this: class List1_7931B0B4_79328AA0 : IEnumerable<string> { private readonly List<string> _obj; public List1_7931B0B4_79328AA0(List<string> obj) { this._obj = obj; } IEnumerator IEnumerable.GetEnumerator() { return this._obj.GetEnumerator(); } public sealed IEnumerator<string> GetEnumerator() { return this._obj.GetEnumerator(); } } However, when I try to call the GetEnumerator() method on my wrapper class, I get ExecutionEngineException. So I saved my dynamic assembly to a DLL and used ildasm on it. Is there anything wrong with the following code? .class public auto ansi sealed List`1_7931B0B4_79328AA0 extends [mscorlib]System.Object implements [mscorlib]System.Collections.Generic.IEnumerable`1<string>, [Loyc.Runtime]Loyc.Runtime.IGoInterfaceWrapper { .field private initonly class [mscorlib]System.Collections.Generic.List`1<string> _obj .method public hidebysig virtual final instance class [mscorlib]System.Collections.Generic.IEnumerator`1<string> GetEnumerator() cil managed { // Code size 12 (0xc) .maxstack 1 IL_0000: ldarg.0 IL_0001: ldfld class [mscorlib]System.Collections.Generic.List`1<string> List`1_7931B0B4_79328AA0::_obj IL_0006: call instance valuetype [mscorlib]System.Collections.Generic.List`1/Enumerator<!0> class [mscorlib]System.Collections.Generic.List`1<string>::GetEnumerator() IL_000b: ret } // end of method List`1_7931B0B4_79328AA0::GetEnumerator .method public hidebysig virtual final instance class [mscorlib]System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator() cil managed { .override [mscorlib]System.Collections.IEnumerable::GetEnumerator // Code size 12 (0xc) .maxstack 1 IL_0000: ldarg.0 IL_0001: ldfld class [mscorlib]System.Collections.Generic.List`1<string> List`1_7931B0B4_79328AA0::_obj IL_0006: call instance valuetype [mscorlib]System.Collections.Generic.List`1/Enumerator<!0> class [mscorlib]System.Collections.Generic.List`1<string>::GetEnumerator() IL_000b: ret } // end of method List`1_7931B0B4_79328AA0::System.Collections.IEnumerable.GetEnumerator ... I have a test suite that wraps all sorts of different things, including interfaces derived from other interfaces, and multiple interface methods with identical signatures. It's only when I try to wrap IEnumerable<T> that this problem occurs. I'd be happy to send the source code (2 *.cs files, no dependencies) if anyone would like.

    Read the article

  • How do I verify a DKIM signature in PHP?

    - by angrychimp
    I'll admit I'm not very adept at key verification. What I have is a script that downloads messages from a POP3 server, and I'm attempting to verify the DKIM signatures in PHP. I've already figured out the body hash (bh) validation check, but I can't figure out the header validation. http://www.dkim.org/specs/rfc4871-dkimbase.html#rfc.section.6.1.3 Below is an example of my message headers. I've been able to use the Mail::DKIM package to validate the signature in Perl, so I know it's good. I just can't seem to figure out the instructions in the RFC and translate them into PHP code. DomainKey-Signature: q=dns; a=rsa-sha1; c=nofws; s=angrychimp-1.bh; d=angrychimp.net; h=From:X-Outgoing; b=RVkenibHQ7GwO5Y3tun2CNn5wSnooBSXPHA1Kmxsw6miJDnVp4XKmA9cUELwftf9 nGiRCd3rLc6eswAcVyNhQ6mRSsF55OkGJgDNHiwte/pP5Z47Lo/fd6m7rfCnYxq3 DKIM-Signature: v=1; a=rsa-sha1; d=angrychimp.net; s=angrychimp-1.bh; c=relaxed/simple; q=dns/txt; [email protected]; t=1268436255; h=From:Subject:X-Outgoing:Date; bh=gqhC2GEWbg1t7T3IfGMUKzt1NCc=; b=ZmeavryIfp5jNDIwbpifsy1UcavMnMwRL6Fy6axocQFDOBd2KjnjXpCkHxs6yBZn Wu+UCFeAP+1xwN80JW+4yOdAiK5+6IS8fiVa7TxdkFDKa0AhmJ1DTHXIlPjGE4n5; To: [email protected] Message-ID: From: DKIM Tester Reply-To: [email protected] Subject: Automated DKIM Testing (angrychimp.net) X-Outgoing: dhaka Date: Fri, 12 Mar 2010 15:24:15 -0800 Content-Type: text/plain; charset=iso-8859-1 Content-Transfer-Encoding: quoted-printable Content-Disposition: inline MIME-Version: 1.0 Return-Path: [email protected] X-OriginalArrivalTime: 12 Mar 2010 23:25:50.0326 (UTC) FILETIME=[5A0ED160:01CAC23B] I can extract the public key from my DNS just fine, and I believe I'm canonicalizing the headers correctly, but I just can't get the signature validated. I don't think I'm preparing my key or computing the signature validation correctly. Is this something that's possible (do I need pear extensions or something?) or is manually validating a DKIM signature in PHP just not feasible?

    Read the article

  • Is the Scala 2.8 collections library a case of "the longest suicide note in history" ?

    - by oxbow_lakes
    First note the inflammatory subject title is a quotation made about the manifesto of a UK political party in the early 1980s. This question is subjective but it is a genuine question, I've made it CW and I'd like some opinions on the matter. Despite whatever my wife and coworkers keep telling me, I don't think I'm an idiot: I have a good degree in mathematics from the University of Oxford and I've been programming commercially for almost 12 years and in Scala for about a year (also commercially). I have just started to look at the Scala collections library re-implementation which is coming in the imminent 2.8 release. Those familiar with the library from 2.7 will notice that the library, from a usage perspective, has changed little. For example... > List("Paris", "London").map(_.length) res0: List[Int] List(5, 6) ...would work in either versions. The library is eminently useable: in fact it's fantastic. However, those previously unfamiliar with Scala and poking around to get a feel for the language now have to make sense of method signatures like: def map[B, That](f: A => B)(implicit bf: CanBuildFrom[Repr, B, That]): That For such simple functionality, this is a daunting signature and one which I find myself struggling to understand. Not that I think Scala was ever likely to be the next Java (or /C/C++/C#) - I don't believe its creators were aiming it at that market - but I think it is/was certainly feasible for Scala to become the next Ruby or Python (i.e. to gain a significant commercial user-base) Is this going to put people off coming to Scala? Is this going to give Scala a bad name in the commercial world as an academic plaything that only dedicated PhD students can understand? Are CTOs and heads of software going to get scared off? Was the library re-design a sensible idea? If you're using Scala commercially, are you worried about this? Are you planning to adopt 2.8 immediately or wait to see what happens? Steve Yegge once attacked Scala (mistakenly in my opinion) for what he saw as its overcomplicated type-system. I worry that someone is going to have a field day spreading fud with this API (similarly to how Josh Bloch scared the JCP out of adding closures to Java). Note - I should be clear that, whilst I believe that Josh Bloch was influential in the rejection of the BGGA closures proposal, I don't ascribe this to anything other than his honestly-held beliefs that the proposal represented a mistake.

    Read the article

  • Verify Authenticode signature as being from our company for automatic updater

    - by James Johnston
    I am implementing an automatic update feature and need some advice on how to do this securely using best practices. I would like to use the downloaded file's Authenticode signature to verify that it is safe to run (i.e. originates from our company and hasn't been tampered with). My question is very similar to question #2008519. The bottom-line question: what's the best, most secure way to check Authenticode signatures for an automatic update feature? What fields in the certificate should be checked? Requirements being: (1) check signature is valid, (2) check it's my signature, (3) old clients can still update when my certificate expires and I get a new one. Here's some background information / ideas from my research: I believe this could be broken into two steps: Verify that the signature is valid. I believe this should be easy using WinVerifyTrust as outlined in http://msdn.microsoft.com/en-us/library/aa382384(VS.85).aspx - I don't expect problems here. Verify that the signature corresponds to our company, and not another company. This seems to be a more difficult question to answer: One possibility is to check some of the strings in the signature. Could be obtained via code at MS KB article #323809, but this article doesn't make recommendations on what fields should be checked for this type of application (or any other, for that matter). Question #1072540 also illustrates how to get some certificate info, but again doesn't recommend what fields to actually check. My concern is that the strings might not be the best check: what if another person is able to obtain a certificate with the same name, for example? Or if there's a valid reason for us to change the strings in the future? The person at question #2008519 has a very similar requirement. His need for a "TrustedByUs" function is identical to mine. However, he goes about doing the check by comparing public keys. While this would work in the short-term, it seems like it won't work for an automatic update feature. This is because code signing certificates are only valid for 2 - 3 years max. Therefore, in the future, when we buy a new certificate in 2 years, the old clients wouldn't be able to update any more due to the change in public key.

    Read the article

  • Finding what makes strings unique in a list, can you improve on brute force?

    - by Ed Guiness
    Suppose I have a list of strings where each string is exactly 4 characters long and unique within the list. For each of these strings I want to identify the position of the characters within the string that make the string unique. So for a list of three strings abcd abcc bbcb For the first string I want to identify the character in 4th position d since d does not appear in the 4th position in any other string. For the second string I want to identify the character in 4th position c. For the third string it I want to identify the character in 1st position b AND the character in 4th position, also b. This could be concisely represented as abcd -> ...d abcc -> ...c bbcb -> b..b If you consider the same problem but with a list of binary numbers 0101 0011 1111 Then the result I want would be 0101 -> ..0. 0011 -> .0.. 1111 -> 1... Staying with the binary theme I can use XOR to identify which bits are unique within two binary numbers since 0101 ^ 0011 = 0110 which I can interpret as meaning that in this case the 2nd and 3rd bits (reading left to right) are unique between these two binary numbers. This technique might be a red herring unless somehow it can be extended to the larger list. A brute-force approach would be to look at each string in turn, and for each string to iterate through vertical slices of the remainder of the strings in the list. So for the list abcd abcc bbcb I would start with abcd and iterate through vertical slices of abcc bbcb where these vertical slices would be a | b | c | c b | b | c | b or in list form, "ab", "bb", "cc", "cb". This would result in four comparisons a : ab -> . (a is not unique) b : bb -> . (b is not unique) c : cc -> . (c is not unique) d : cb -> d (d is unique) or concisely abcd -> ...d Maybe it's wishful thinking, but I have a feeling that there should be an elegant and general solution that would apply to an arbitrarily large list of strings (or binary numbers). But if there is I haven't yet been able to see it. I hope to use this algorithm to to derive minimal signatures from a collection of unique images (bitmaps) in order to efficiently identify those images at a future time. If future efficiency wasn't a concern I would use a simple hash of each image. Can you improve on brute force?

    Read the article

  • Where can I find information on the Get, Set and Address methods for multidimensional System.Array i

    - by Rob Smallshire
    System.Array serves as the base class for all arrays in the Common Language Runtime (CLR). According to this article, For each concrete array type, [the] runtime adds three special methods: Get/Set/Address. and indeed if I disassemble this C# code, int[,] x = new int[1024,1024]; x[0,0] = 1; x[1,1] = 2; x[2,2] = 3; Console.WriteLine(x[0,0]); Console.WriteLine(x[1,1]); Console.WriteLine(x[2,2]); into CIL I get, IL_0000: ldc.i4 0x400 IL_0005: ldc.i4 0x400 IL_000a: newobj instance void int32[0...,0...]::.ctor(int32, int32) IL_000f: stloc.0 IL_0010: ldloc.0 IL_0011: ldc.i4.0 IL_0012: ldc.i4.0 IL_0013: ldc.i4.1 IL_0014: call instance void int32[0...,0...]::Set(int32, int32, int32) IL_0019: ldloc.0 IL_001a: ldc.i4.1 IL_001b: ldc.i4.1 IL_001c: ldc.i4.2 IL_001d: call instance void int32[0...,0...]::Set(int32, int32, int32) IL_0022: ldloc.0 IL_0023: ldc.i4.2 IL_0024: ldc.i4.2 IL_0025: ldc.i4.3 IL_0026: call instance void int32[0...,0...]::Set(int32, int32, int32) IL_002b: ldloc.0 IL_002c: ldc.i4.0 IL_002d: ldc.i4.0 IL_002e: call instance int32 int32[0...,0...]::Get(int32, int32) IL_0033: call void [mscorlib]System.Console::WriteLine(int32) IL_0038: ldloc.0 IL_0039: ldc.i4.1 IL_003a: ldc.i4.1 IL_003b: call instance int32 int32[0...,0...]::Get(int32, int32) IL_0040: call void [mscorlib]System.Console::WriteLine(int32) IL_0045: ldloc.0 IL_0046: ldc.i4.2 IL_0047: ldc.i4.2 IL_0048: call instance int32 int32[0...,0...]::Get(int32, int32) IL_004d: call void [mscorlib]System.Console::WriteLine(int32) where the calls to the aforementioned Get and Set methods can be clearly seen. It seems the arity of these methods is related to the dimensionality of the array, which is presumably why they are created by the runtime and are not pre-declared. I couldn't locate any information about these methods on MSDN and their simple names makes them resistant to Googling. I'm writing a compiler for a language which supports multidimensional arrays, so I'd like to find some official documentation about these methods, under what conditions I can expect them to exist and what I can expect their signatures to be. In particular, I'd like to know whether its possible to get a MethodInfo object for Get or Set for use with Reflection.Emit without having to create an instance of the array with correct type and dimensionality on which to reflect, as is done in the linked example.

    Read the article

  • multiple puppet masters

    - by Oli
    I would like to set up an additional puppet master but have the CA server handled by only 1 puppet master. I have set this up as per the documentation here: http://docs.puppetlabs.com/guides/scaling_multiple_masters.html I have configured my second puppet master as follows: [main] ... ca = false ca_server = puppet-master1.test.net I am using passenger so I am a bit confused how the virtual-host.conf file should look for my second puppet-master2.test.net. Here is mine (updated as per Shane Maddens answer): LoadModule passenger_module /usr/lib/ruby/gems/1.8/gems/passenger-3.0.18/ext/apache2/mod_passenger.so PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-3.0.18 PassengerRuby /usr/bin/ruby Listen 8140 <VirtualHost *:8140> ProxyPassMatch ^/([^/]+/certificate.*)$ https://puppet-master1.test.net:8140/$1 SSLEngine on SSLProtocol -ALL +SSLv3 +TLSv1 SSLCipherSuite ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:-LOW:-SSLv2:-EXP SSLCertificateFile /var/lib/puppet/ssl/certs/puppet-master2.test.net.pem SSLCertificateKeyFile /var/lib/puppet/ssl/private_keys/puppet-master2.test.net.pem #SSLCertificateChainFile /var/lib/puppet/ssl/ca/ca_crt.pem #SSLCACertificateFile /var/lib/puppet/ssl/ca/ca_crt.pem # If Apache complains about invalid signatures on the CRL, you can try disabling # CRL checking by commenting the next line, but this is not recommended. #SSLCARevocationFile /var/lib/puppet/ssl/ca/ca_crl.pem SSLVerifyClient optional SSLVerifyDepth 1 # The `ExportCertData` option is needed for agent certificate expiration warnings SSLOptions +StdEnvVars +ExportCertData # This header needs to be set if using a loadbalancer or proxy RequestHeader unset X-Forwarded-For RequestHeader set X-SSL-Subject %{SSL_CLIENT_S_DN}e RequestHeader set X-Client-DN %{SSL_CLIENT_S_DN}e RequestHeader set X-Client-Verify %{SSL_CLIENT_VERIFY}e DocumentRoot /etc/puppet/rack/public/ RackBaseURI / <Directory /etc/puppet/rack/> Options None AllowOverride None Order allow,deny allow from all </Directory> </VirtualHost> I have commented out the #SSLCertificateChainFile, #SSLCACertificateFile & #SSLCARevocationFile - this is not a CA server so not sure I need this. How would I get passenger to work with these? I would like to use ProxyPassMatch which I have configured as per the documentation. I don't want to specify a ca server in every puppet.conf file. I am getting this error when trying to get create a cert from a puppet client pointing to the second puppet master server (puppet-master2.test.net): [root@puppet-client2 ~]# puppet agent --test Error: Could not request certificate: Could not intern from s: nested asn1 error Exiting; failed to retrieve certificate and waitforcert is disabled On the puppet client I have this [main] server = puppet-master2.test.net What have I missed? -- update Here is a new virtual host file on my secondary puppet master. Is this correct? I have SSL turned off? LoadModule passenger_module /usr/lib/ruby/gems/1.8/gems/passenger-3.0.18/ext/apache2/mod_passenger.so PassengerRoot /usr/lib/ruby/gems/1.8/gems/passenger-3.0.18 PassengerRuby /usr/bin/ruby # you probably want to tune these settings PassengerHighPerformance on PassengerMaxPoolSize 12 PassengerPoolIdleTime 1500 # PassengerMaxRequests 1000 PassengerStatThrottleRate 120 RackAutoDetect Off RailsAutoDetect Off Listen 8140 <VirtualHost *:8140> SSLEngine off ProxyPassMatch ^/([^/]+/certificate.*)$ https://puppet-master1.test.net:8140/$1 # Obtain Authentication Information from Client Request Headers SetEnvIf X-Client-Verify "(.*)" SSL_CLIENT_VERIFY=$1 SetEnvIf X-SSL-Client-DN "(.*)" SSL_CLIENT_S_DN=$1 DocumentRoot /etc/puppet/rack/public/ RackBaseURI / <Directory /etc/puppet/rack/> Options None AllowOverride None Order allow,deny allow from all </Directory> </VirtualHost> Cheers, Oli

    Read the article

  • DKIMPROXY signing wrong domain

    - by user64566
    Just.... wont sign a thing... The dkimproxy_out.conf: # specify what address/port DKIMproxy should listen on listen 127.0.0.1:10028 # specify what address/port DKIMproxy forwards mail to relay 127.0.0.1:10029 # specify what domains DKIMproxy can sign for (comma-separated, no spaces) domain tinymagnet.com,hypnoenterprises.com # specify what signatures to add signature dkim(c=relaxed) signature domainkeys(c=nofws) # specify location of the private key keyfile /etc/postfix/dkim/private.key # specify the selector (i.e. the name of the key record put in DNS) selector mail The direct connection straight to the server, making it clear that this is a problem with dkimproxy and not postfix... mmxbass@hypno1:~$ telnet localhost 10028 Trying 127.0.0.1... Connected to localhost.localdomain. Escape character is '^]'. 220 hypno1.hypnoenterprises.com ESMTP Postfix (Debian/GNU) EHLO hypno1.hypnoenterprises.com 250-hypno1.hypnoenterprises.com 250-PIPELINING 250-SIZE 250-ETRN 250-STARTTLS 250-AUTH PLAIN LOGIN 250-AUTH=PLAIN LOGIN 250-ENHANCEDSTATUSCODES 250-8BITMIME 250 DSN MAIL FROM:<[email protected]> 250 2.1.0 Ok RCPT TO:<[email protected]> 250 2.1.5 Ok DATA 354 End data with <CR><LF>.<CR><LF> SUBJECT:test . 250 2.0.0 Ok: queued as B62A78D94F QUIT 221 2.0.0 Bye Now lets look at the mail headers as reported by myiptest.com: From [email protected] Thu Dec 23 18:57:14 2010 Return-path: Envelope-to: [email protected] Delivery-date: Thu, 23 Dec 2010 18:57:14 +0000 Received: from [184.82.95.154] (helo=hypno1.hypnoenterprises.com) by myiptest.com with esmtp (Exim 4.69) (envelope-from ) id 1PVqLi-0004YR-5f for [email protected]; Thu, 23 Dec 2010 18:57:14 +0000 Received: from hypno1.hypnoenterprises.com (localhost.localdomain [127.0.0.1]) by hypno1.hypnoenterprises.com (Postfix) with ESMTP id 878418D902 for ; Thu, 23 Dec 2010 13:57:26 -0500 (EST) DKIM-Signature: v=1; a=rsa-sha1; c=simple; d=hypnoenterprises.com; h= from:to:subject:date:mime-version:content-type :content-transfer-encoding:message-id; s=mail; bh=uoq1oCgLlTqpdD X/iUbLy7J1Wic=; b=HxBKTGjzTpZSZU8xkICtARCKxqriqZK+qHkY1U8qQlOw+S S1wlZxzTeDGIOgeiTviGDpcKWkLLTMlUvx8dY4FuT8K1/raO9nMC7xjG2uLayPX0 zLzm4Srs44jlfRQIjrQd9tNnp35Wkry6dHPv1u21WUvnDWaKARzGGHRLfAzW4= Received: from localhost (localhost.localdomain [127.0.0.1]) by hypno1.hypnoenterprises.com (Postfix) with ESMTP id 2A04A8D945 for ; Thu, 23 Dec 2010 13:57:26 -0500 (EST) X-Virus-Scanned: Debian amavisd-new at hypno1.hypnoenterprises.com Received: from hypno1.hypnoenterprises.com ([127.0.0.1]) by localhost (hypno1.hypnoenterprises.com [127.0.0.1]) (amavisd-new, port 10024) with ESMTP id Ua7BnnzmIaUO for ; Thu, 23 Dec 2010 13:57:25 -0500 (EST) Received: from phoenix.localnet (c-76-23-245-211.hsd1.ma.comcast.net [76.23.245.211]) (using TLSv1 with cipher DHE-RSA-AES256-SHA (256/256 bits)) (No client certificate requested) by hypno1.hypnoenterprises.com (Postfix) with ESMTPSA id 48A0D8D90D for ; Thu, 23 Dec 2010 13:57:25 -0500 (EST) From: Joshua Pech To: [email protected] Subject: test Date: Thu, 23 Dec 2010 13:57:25 -0500 User-Agent: KMail/1.13.5 (Linux/2.6.32-5-amd64; KDE/4.4.5; x86_64; ; ) MIME-Version: 1.0 Content-Type: Text/Plain; charset="us-ascii" Content-Transfer-Encoding: 7bit Message-Id: DomainKey-Status: no signature Received-SPF: pass (myiptest.com: domain of tinymagnet.com designates 184.82.95.154 as permitted sender) Notice how the dkim signature specifies the d=hypnoenterprises.com.... why?

    Read the article

  • Creating an ASP.NET report using Visual Studio 2010 - Part 1

    - by rajbk
    This tutorial walks you through creating an report based on the Northwind sample database. You will add a client report definition file (RDLC), create a dataset for the RDLC, define queries using LINQ to Entities, design the report and add a ReportViewer web control to render the report in a ASP.NET web page. The report will have a chart control. Different results will be generated by changing filter criteria. At the end of the walkthrough, you should have a UI like the following.  From the UI below, a user is able to view the product list and can see a chart with the sum of Unit price for a given category. They can filter by Category and Supplier. The drop downs will auto post back when the selection is changed.  This demo uses Visual Studio 2010 RTM. This post is split into three parts. The last part has the sample code attached. Creating an ASP.NET report using Visual Studio 2010 - Part 2 Creating an ASP.NET report using Visual Studio 2010 - Part 3   Lets start by creating a new ASP.NET empty web application called “NorthwindReports” Creating the Data Access Layer (DAL) Add a web form called index.aspx to the root directory. You do this by right clicking on the NorthwindReports web project and selecting “Add item..” . Create a folder called “DAL”. We will store all our data access methods and any data transfer objects in here.   Right click on the DAL folder and add a ADO.NET Entity data model called Northwind. Select “Generate from database” and click Next. Create a connection to your database containing the Northwind sample database and click Next.   From the table list, select Categories, Products and Suppliers and click next. Our Entity data model gets created and looks like this:    Adding data transfer objects Right click on the DAL folder and add a ProductViewModel. Add the following code. This class contains properties we need to render our report. public class ProductViewModel { public int? ProductID { get; set; } public string ProductName { get; set; } public System.Nullable<decimal> UnitPrice { get; set; } public string CategoryName { get; set; } public int? CategoryID { get; set; } public int? SupplierID { get; set; } public bool Discontinued { get; set; } } Add a SupplierViewModel class. This will be used to render the supplier DropDownlist. public class SupplierViewModel { public string CompanyName { get; set; } public int SupplierID { get; set; } } Add a CategoryViewModel class. public class CategoryViewModel { public string CategoryName { get; set; } public int CategoryID { get; set; } } Create an IProductRepository interface. This will contain the signatures of all the methods we need when accessing the entity model.  This step is not needed but follows the repository pattern. interface IProductRepository { IQueryable<Product> GetProducts(); IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID); IQueryable<SupplierViewModel> GetSuppliers(); IQueryable<CategoryViewModel> GetCategories(); } Create a ProductRepository class that implements the IProductReposity above. The methods available in this class are as follows: GetProducts – returns an IQueryable of all products. GetProductsProjected – returns an IQueryable of ProductViewModel. The method filters all the products based on SupplierId and CategoryId if any. It then projects the result into the ProductViewModel. GetSuppliers() – returns an IQueryable of all suppliers projected into a SupplierViewModel GetCategories() – returns an IQueryable of all categories projected into a CategoryViewModel  public class ProductRepository : IProductRepository { /// <summary> /// IQueryable of all Products /// </summary> /// <returns></returns> public IQueryable<Product> GetProducts() { var dataContext = new NorthwindEntities(); var products = from p in dataContext.Products select p; return products; }   /// <summary> /// IQueryable of Projects projected /// into the ProductViewModel class /// </summary> /// <returns></returns> public IQueryable<ProductViewModel> GetProductsProjected(int? supplierID, int? categoryID) { var projectedProducts = from p in GetProducts() select new ProductViewModel { ProductID = p.ProductID, ProductName = p.ProductName, UnitPrice = p.UnitPrice, CategoryName = p.Category.CategoryName, CategoryID = p.CategoryID, SupplierID = p.SupplierID, Discontinued = p.Discontinued }; // Filter on SupplierID if (supplierID.HasValue) { projectedProducts = projectedProducts.Where(a => a.SupplierID == supplierID); }   // Filter on CategoryID if (categoryID.HasValue) { projectedProducts = projectedProducts.Where(a => a.CategoryID == categoryID); }   return projectedProducts; }     public IQueryable<SupplierViewModel> GetSuppliers() { var dataContext = new NorthwindEntities(); var suppliers = from s in dataContext.Suppliers select new SupplierViewModel { SupplierID = s.SupplierID, CompanyName = s.CompanyName }; return suppliers; }   public IQueryable<CategoryViewModel> GetCategories() { var dataContext = new NorthwindEntities(); var categories = from c in dataContext.Categories select new CategoryViewModel { CategoryID = c.CategoryID, CategoryName = c.CategoryName }; return categories; } } Your solution explorer should look like the following. Build your project and make sure you don’t get any errors. In the next part, we will see how to create the client report definition file using the Report Wizard.   Creating an ASP.NET report using Visual Studio 2010 - Part 2

    Read the article

  • The last MVVM you'll ever need?

    - by Nuri Halperin
    As my MVC projects mature and grow, the need to have some omnipresent, ambient model properties quickly emerge. The application no longer has only one dynamic pieced of data on the page: A sidebar with a shopping cart, some news flash on the side – pretty common stuff. The rub is that a controller is invoked in context of a single intended request. The rest of the data, even though it could be just as dynamic, is expected to appear on it's own. There are many solutions to this scenario. MVVM prescribes creating elaborate objects which expose your new data as a property on some uber-object with more properties exposing the "side show" ambient data. The reason I don't love this approach is because it forces fairly acute awareness of the view, and soon enough you have many MVVM objects laying around, and views have to start doing null-checks in order to ensure you really supplied all the values before binding to them. Ick. Just as unattractive is the ViewData dictionary. It's not strongly typed, and in both this and the MVVM approach someone has to populate these properties – n'est pas? Where does that live? With MVC2, we get the formerly-futures  feature Html.RenderAction(). The feature allows you plant a line in a view, of the format: <% Html.RenderAction("SessionInterest", "Session"); %> While this syntax looks very clean, I can't help being bothered by it. MVC was touting a very strong separation of concerns, the Model taking on the role of the business logic, the controller handling route and performing minimal view-choosing operations and the views strictly focused on rendering out angled-bracket tags. The RenderAction() syntax has the view calling some controller and invoking it inline with it's runtime rendering. This – to my taste – embeds too much  knowledge of controllers into the view's code – which was allegedly forbidden.  The one way flow "Controller Receive Data –> Controller invoke Model –> Controller select view –> Controller Hand data to view" now gets a "View calls controller and gets it's own data" which is not so one-way anymore. Ick. I toyed with some other solutions a bit, including some base controllers, special view classes etc. My current favorite though is making use of the ExpandoObject and dynamic features with C# 4.0. If you follow Phil Haack or read a bit from David Heyden you can see the general picture emerging. The game changer is that using the new dynamic syntax, one can sprout properties on an object and make use of them in the view. Well that beats having a bunch of uni-purpose MVVM's any day! Rather than statically exposed properties, we'll just use the capability of adding members at runtime. Armed with new ideas and syntax, I went to work: First, I created a factory method to enrich the focuse object: public static class ModelExtension { public static dynamic Decorate(this Controller controller, object mainValue) { dynamic result = new ExpandoObject(); result.Value = mainValue; result.SessionInterest = CodeCampBL.SessoinInterest(); result.TagUsage = CodeCampBL.TagUsage(); return result; } } This gives me a nice fluent way to have the controller add the rest of the ambient "side show" items (SessionInterest, TagUsage in this demo) and expose them all as the Model: public ActionResult Index() { var data = SyndicationBL.Refresh(TWEET_SOURCE_URL); dynamic result = this.Decorate(data); return View(result); } So now what remains is that my view knows to expect a dynamic object (rather than statically typed) so that the ASP.NET page compiler won't barf: <%@ Page Language="C#" Title="Ambient Demo" MasterPageFile="~/Views/Shared/Ambient.Master" Inherits="System.Web.Mvc.ViewPage<dynamic>" %> Notice the generic ViewPage<dynamic>. It doesn't work otherwise. In the page itself, Model.Value property contains the main data returned from the controller. The nice thing about this, is that the master page (Ambient.Master) also inherits from the generic ViewMasterPage<dynamic>. So rather than the page worrying about all this ambient stuff, the side bars and panels for ambient data all reside in a master page, and can be rendered using the RenderPartial() syntax: <% Html.RenderPartial("TagCloud", Model.SessionInterest as Dictionary<string, int>); %> Note here that a cast is necessary. This is because although dynamic is magic, it can't figure out what type this property is, and wants you to give it a type so its binder can figure out the right property to bind to at runtime. I use as, you can cast if you like. So there we go – no violation of MVC, no explosion of MVVM models and voila – right? Well, I could not let this go without a tweak or two more. The first thing to improve, is that some views may not need all the properties. In that case, it would be a waste of resources to populate every property. The solution to this is simple: rather than exposing properties, I change d the factory method to expose lambdas - Func<T> really. So only if and when a view accesses a member of the dynamic object does it load the data. public static class ModelExtension { // take two.. lazy loading! public static dynamic LazyDecorate(this Controller c, object mainValue) { dynamic result = new ExpandoObject(); result.Value = mainValue; result.SessionInterest = new Func<Dictionary<string, int>>(() => CodeCampBL.SessoinInterest()); result.TagUsage = new Func<Dictionary<string, int>>(() => CodeCampBL.TagUsage()); return result; } } Now that lazy loading is in place, there's really no reason not to hook up all and any possible ambient property. Go nuts! Add them all in – they won't get invoked unless used. This now requires changing the signature of usage on the ambient properties methods –adding some parenthesis to the master view: <% Html.RenderPartial("TagCloud", Model.SessionInterest() as Dictionary<string, int>); %> And, of course, the controller needs to call LazyDecorate() rather than the old Decorate(). The final touch is to introduce a convenience method to the my Controller class , so that the tedium of calling Decorate() everywhere goes away. This is done quite simply by adding a bunch of methods, matching View(object), View(string,object) signatures of the Controller class: public ActionResult Index() { var data = SyndicationBL.Refresh(TWEET_SOURCE_URL); return AmbientView(data); } //these methods can reside in a base controller for the solution: public ViewResult AmbientView(dynamic data) { dynamic result = ModelExtension.LazyDecorate(this, data); return View(result); } public ViewResult AmbientView(string viewName, dynamic data) { dynamic result = ModelExtension.LazyDecorate(this, data); return View(viewName, result); } The call to AmbientView now replaces any call the View() that requires the ambient data. DRY sattisfied, lazy loading and no need to replace core pieces of the MVC pipeline. I call this a good MVC day. Enjoy!

    Read the article

  • Anatomy of a .NET Assembly - CLR metadata 1

    - by Simon Cooper
    Before we look at the bytes comprising the CLR-specific data inside an assembly, we first need to understand the logical format of the metadata (For this post I only be looking at simple pure-IL assemblies; mixed-mode assemblies & other things complicates things quite a bit). Metadata streams Most of the CLR-specific data inside an assembly is inside one of 5 streams, which are analogous to the sections in a PE file. The name of each section in a PE file starts with a ., and the name of each stream in the CLR metadata starts with a #. All but one of the streams are heaps, which store unstructured binary data. The predefined streams are: #~ Also called the metadata stream, this stream stores all the information on the types, methods, fields, properties and events in the assembly. Unlike the other streams, the metadata stream has predefined contents & structure. #Strings This heap is where all the namespace, type & member names are stored. It is referenced extensively from the #~ stream, as we'll be looking at later. #US Also known as the user string heap, this stream stores all the strings used in code directly. All the strings you embed in your source code end up in here. This stream is only referenced from method bodies. #GUID This heap exclusively stores GUIDs used throughout the assembly. #Blob This heap is for storing pure binary data - method signatures, generic instantiations, that sort of thing. Items inside the heaps (#Strings, #US, #GUID and #Blob) are indexed using a simple binary offset from the start of the heap. At that offset is a coded integer giving the length of that item, then the item's bytes immediately follow. The #GUID stream is slightly different, in that GUIDs are all 16 bytes long, so a length isn't required. Metadata tables The #~ stream contains all the assembly metadata. The metadata is organised into 45 tables, which are binary arrays of predefined structures containing information on various aspects of the metadata. Each entry in a table is called a row, and the rows are simply concatentated together in the file on disk. For example, each row in the TypeRef table contains: A reference to where the type is defined (most of the time, a row in the AssemblyRef table). An offset into the #Strings heap with the name of the type An offset into the #Strings heap with the namespace of the type. in that order. The important tables are (with their table number in hex): 0x2: TypeDef 0x4: FieldDef 0x6: MethodDef 0x14: EventDef 0x17: PropertyDef Contains basic information on all the types, fields, methods, events and properties defined in the assembly. 0x1: TypeRef The details of all the referenced types defined in other assemblies. 0xa: MemberRef The details of all the referenced members of types defined in other assemblies. 0x9: InterfaceImpl Links the types defined in the assembly with the interfaces that type implements. 0xc: CustomAttribute Contains information on all the attributes applied to elements in this assembly, from method parameters to the assembly itself. 0x18: MethodSemantics Links properties and events with the methods that comprise the get/set or add/remove methods of the property or method. 0x1b: TypeSpec 0x2b: MethodSpec These tables provide instantiations of generic types and methods for each usage within the assembly. There are several ways to reference a single row within a table. The simplest is to simply specify the 1-based row index (RID). The indexes are 1-based so a value of 0 can represent 'null'. In this case, which table the row index refers to is inferred from the context. If the table can't be determined from the context, then a particular row is specified using a token. This is a 4-byte value with the most significant byte specifying the table, and the other 3 specifying the 1-based RID within that table. This is generally how a metadata table row is referenced from the instruction stream in method bodies. The third way is to use a coded token, which we will look at in the next post. So, back to the bytes Now we've got a rough idea of how the metadata is logically arranged, we can now look at the bytes comprising the start of the CLR data within an assembly: The first 8 bytes of the .text section are used by the CLR loader stub. After that, the CLR-specific data starts with the CLI header. I've highlighted the important bytes in the diagram. In order, they are: The size of the header. As the header is a fixed size, this is always 0x48. The CLR major version. This is always 2, even for .NET 4 assemblies. The CLR minor version. This is always 5, even for .NET 4 assemblies, and seems to be ignored by the runtime. The RVA and size of the metadata header. In the diagram, the RVA 0x20e4 corresponds to the file offset 0x2e4 Various flags specifying if this assembly is pure-IL, whether it is strong name signed, and whether it should be run as 32-bit (this is how the CLR differentiates between x86 and AnyCPU assemblies). A token pointing to the entrypoint of the assembly. In this case, 06 (the last byte) refers to the MethodDef table, and 01 00 00 refers to to the first row in that table. (after a gap) RVA of the strong name signature hash, which comes straight after the CLI header. The RVA 0x2050 corresponds to file offset 0x250. The rest of the CLI header is mainly used in mixed-mode assemblies, and so is zeroed in this pure-IL assembly. After the CLI header comes the strong name hash, which is a SHA-1 hash of the assembly using the strong name key. After that comes the bodies of all the methods in the assembly concatentated together. Each method body starts off with a header, which I'll be looking at later. As you can see, this is a very small assembly with only 2 methods (an instance constructor and a Main method). After that, near the end of the .text section, comes the metadata, containing a metadata header and the 5 streams discussed above. We'll be looking at this in the next post. Conclusion The CLI header data doesn't have much to it, but we've covered some concepts that will be important in later posts - the logical structure of the CLR metadata and the overall layout of CLR data within the .text section. Next, I'll have a look at the contents of the #~ stream, and how the table data is arranged on disk.

    Read the article

  • C# Performance Pitfall – Interop Scenarios Change the Rules

    - by Reed
    C# and .NET, overall, really do have fantastic performance in my opinion.  That being said, the performance characteristics dramatically differ from native programming, and take some relearning if you’re used to doing performance optimization in most other languages, especially C, C++, and similar.  However, there are times when revisiting tricks learned in native code play a critical role in performance optimization in C#. I recently ran across a nasty scenario that illustrated to me how dangerous following any fixed rules for optimization can be… The rules in C# when optimizing code are very different than C or C++.  Often, they’re exactly backwards.  For example, in C and C++, lifting a variable out of loops in order to avoid memory allocations often can have huge advantages.  If some function within a call graph is allocating memory dynamically, and that gets called in a loop, it can dramatically slow down a routine. This can be a tricky bottleneck to track down, even with a profiler.  Looking at the memory allocation graph is usually the key for spotting this routine, as it’s often “hidden” deep in call graph.  For example, while optimizing some of my scientific routines, I ran into a situation where I had a loop similar to: for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i]); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } This loop was at a fairly high level in the call graph, and often could take many hours to complete, depending on the input data.  As such, any performance optimization we could achieve would be greatly appreciated by our users. After a fair bit of profiling, I noticed that a couple of function calls down the call graph (inside of ProcessElement), there was some code that effectively was doing: // Allocate some data required DataStructure* data = new DataStructure(num); // Call into a subroutine that passed around and manipulated this data highly CallSubroutine(data); // Read and use some values from here double values = data->Foo; // Cleanup delete data; // ... return bar; Normally, if “DataStructure” was a simple data type, I could just allocate it on the stack.  However, it’s constructor, internally, allocated it’s own memory using new, so this wouldn’t eliminate the problem.  In this case, however, I could change the call signatures to allow the pointer to the data structure to be passed into ProcessElement and through the call graph, allowing the inner routine to reuse the same “data” memory instead of allocating.  At the highest level, my code effectively changed to something like: DataStructure* data = new DataStructure(numberToProcess); for (i=0; i<numberToProcess; ++i) { // Do some work ProcessElement(element[i], data); } delete data; Granted, this dramatically reduced the maintainability of the code, so it wasn’t something I wanted to do unless there was a significant benefit.  In this case, after profiling the new version, I found that it increased the overall performance dramatically – my main test case went from 35 minutes runtime down to 21 minutes.  This was such a significant improvement, I felt it was worth the reduction in maintainability. In C and C++, it’s generally a good idea (for performance) to: Reduce the number of memory allocations as much as possible, Use fewer, larger memory allocations instead of many smaller ones, and Allocate as high up the call stack as possible, and reuse memory I’ve seen many people try to make similar optimizations in C# code.  For good or bad, this is typically not a good idea.  The garbage collector in .NET completely changes the rules here. In C#, reallocating memory in a loop is not always a bad idea.  In this scenario, for example, I may have been much better off leaving the original code alone.  The reason for this is the garbage collector.  The GC in .NET is incredibly effective, and leaving the allocation deep inside the call stack has some huge advantages.  First and foremost, it tends to make the code more maintainable – passing around object references tends to couple the methods together more than necessary, and overall increase the complexity of the code.  This is something that should be avoided unless there is a significant reason.  Second, (unlike C and C++) memory allocation of a single object in C# is normally cheap and fast.  Finally, and most critically, there is a large advantage to having short lived objects.  If you lift a variable out of the loop and reuse the memory, its much more likely that object will get promoted to Gen1 (or worse, Gen2).  This can cause expensive compaction operations to be required, and also lead to (at least temporary) memory fragmentation as well as more costly collections later. As such, I’ve found that it’s often (though not always) faster to leave memory allocations where you’d naturally place them – deep inside of the call graph, inside of the loops.  This causes the objects to stay very short lived, which in turn increases the efficiency of the garbage collector, and can dramatically improve the overall performance of the routine as a whole. In C#, I tend to: Keep variable declarations in the tightest scope possible Declare and allocate objects at usage While this tends to cause some of the same goals (reducing unnecessary allocations, etc), the goal here is a bit different – it’s about keeping the objects rooted for as little time as possible in order to (attempt) to keep them completely in Gen0, or worst case, Gen1.  It also has the huge advantage of keeping the code very maintainable – objects are used and “released” as soon as possible, which keeps the code very clean.  It does, however, often have the side effect of causing more allocations to occur, but keeping the objects rooted for a much shorter time. Now – nowhere here am I suggesting that these rules are hard, fast rules that are always true.  That being said, my time spent optimizing over the years encourages me to naturally write code that follows the above guidelines, then profile and adjust as necessary.  In my current project, however, I ran across one of those nasty little pitfalls that’s something to keep in mind – interop changes the rules. In this case, I was dealing with an API that, internally, used some COM objects.  In this case, these COM objects were leading to native allocations (most likely C++) occurring in a loop deep in my call graph.  Even though I was writing nice, clean managed code, the normal managed code rules for performance no longer apply.  After profiling to find the bottleneck in my code, I realized that my inner loop, a innocuous looking block of C# code, was effectively causing a set of native memory allocations in every iteration.  This required going back to a “native programming” mindset for optimization.  Lifting these variables and reusing them took a 1:10 routine down to 0:20 – again, a very worthwhile improvement. Overall, the lessons here are: Always profile if you suspect a performance problem – don’t assume any rule is correct, or any code is efficient just because it looks like it should be Remember to check memory allocations when profiling, not just CPU cycles Interop scenarios often cause managed code to act very differently than “normal” managed code. Native code can be hidden very cleverly inside of managed wrappers

    Read the article

  • Introduction to Human Workflow 11g

    - by agiovannetti
    Human Workflow is a component of SOA Suite just like BPEL, Mediator, Business Rules, etc. The Human Workflow component allows you to incorporate human intervention in a business process. You can use Human Workflow to create a business process that requires a manager to approve purchase orders greater than $10,000; or a business process that handles article reviews in which a group of reviewers need to vote/approve an article before it gets published. Human Workflow can handle the task assignment and routing as well as the generation of notifications to the participants. There are three common patterns or usages of Human Workflow: 1) Approval Scenarios: manage documents and other transactional data through approval chains . For example: approve expense report, vacation approval, hiring approval, etc. 2) Reviews by multiple users or groups: group collaboration and review of documents or proposals. For example, processing a sales quote which is subject to review by multiple people. 3) Case Management: workflows around work management or case management. For example, processing a service request. This could be routed to various people who all need to modify the task. It may also incorporate ad hoc routing which is unknown at design time. SOA 11g Human Workflow includes the following features: Assignment and routing of tasks to the correct users or groups. Deadlines, escalations, notifications, and other features required for ensuring the timely performance of a task. Presentation of tasks to end users through a variety of mechanisms, including a Worklist application. Organization, filtering, prioritization and other features required for end users to productively perform their tasks. Reports, reassignments, load balancing and other features required by supervisors and business owners to manage the performance of tasks. Human Workflow Architecture The Human Workflow component is divided into 3 modules: the service interface, the task definition and the client interface module. The Service Interface handles the interaction with BPEL and other components. The Client Interface handles the presentation of task data through clients like the Worklist application, portals and notification channels. The task definition module is in charge of managing the lifecycle of a task. Who should get the task assigned? What should happen next with the task? When must the task be completed? Should the task be escalated?, etc Stages and Participants When you create a Human Task you need to specify how the task is assigned and routed. The first step is to define the stages and participants. A stage is just a logical group. A participant can be a user, a group of users or an application role. The participants indicate the type of assignment and routing that will be performed. Stages can be sequential or in parallel. You can combine them to create any usage you require. See diagram below: Assignment and Routing There are different ways a task can be assigned and routed: Single Approver: task is assigned to a single user, group or role. For example, a vacation request is assigned to a manager. If the manager approves or rejects the request, the employee is notified with the decision. If the task is assigned to a group then once one of managers acts on it, the task is completed. Parallel : task is assigned to a set of people that must work in parallel. This is commonly used for voting. For example, a task gets approved once 50% of the participants approve it. You can also set it up to be a unanimous vote. Serial : participants must work in sequence. The most common scenario for this is management chain escalation. FYI (For Your Information) : task is assigned to participants who can view it, add comments and attachments, but can not modify or complete the task. Task Actions The following is the list of actions that can be performed on a task: Claim : if a task is assigned to a group or multiple users, then the task must be claimed first to be able to act on it. Escalate : if the participant is not able to complete a task, he/she can escalate it. The task is reassigned to his/her manager (up one level in a hierarchy). Pushback : the task is sent back to the previous assignee. Reassign :if the participant is a manager, he/she can delegate a task to his/her reports. Release : if a task is assigned to a group or multiple users, it can be released if the user who claimed the task cannot complete the task. Any of the other assignees can claim and complete the task. Request Information and Submit Information : use when the participant needs to supply more information or to request more information from the task creator or any of the previous assignees. Suspend and Resume :if a task is not relevant, it can be suspended. A suspension is indefinite. It does not expire until Resume is used to resume working on the task. Withdraw : if the creator of a task does not want to continue with it, for example, he wants to cancel a vacation request, he can withdraw the task. The business process determines what happens next. Renew : if a task is about to expire, the participant can renew it. The task expiration date is extended one week. Notifications Human Workflow provides a mechanism for sending notifications to participants to alert them of changes on a task. Notifications can be sent via email, telephone voice message, instant messaging (IM) or short message service (SMS). Notifications can be sent when the task status changes to any of the following: Assigned/renewed/delegated/reassigned/escalated Completed Error Expired Request Info Resume Suspended Added/Updated comments and/or attachments Updated Outcome Withdraw Other Actions (e.g. acquiring a task) Here is an example of an email notification: Worklist Application Oracle BPM Worklist application is the default user interface included in SOA Suite. It allows users to access and act on tasks that have been assigned to them. For example, from the Worklist application, a loan agent can review loan applications or a manager can approve employee vacation requests. Through the Worklist Application users can: Perform authorized actions on tasks, acquire and check out shared tasks, define personal to-do tasks and define subtasks. Filter tasks view based on various criteria. Work with standard work queues, such as high priority tasks, tasks due soon and so on. Work queues allow users to create a custom view to group a subset of tasks in the worklist, for example, high priority tasks, tasks due in 24 hours, expense approval tasks and more. Define custom work queues. Gain proxy access to part of another user's tasks. Define custom vacation rules and delegation rules. Enable group owners to define task dispatching rules for shared tasks. Collect a complete workflow history and audit trail. Use digital signatures for tasks. Run reports like Unattended tasks, Tasks productivity, etc. Here is a screenshoot of what the Worklist Application looks like. On the right hand side you can see the tasks that have been assigned to the user and the task's detail. References Introduction to SOA Suite 11g Human Workflow Webcast Note 1452937.2 Human Workflow Information Center Using the Human Workflow Service Component 11.1.1.6 Human Workflow Samples Human Workflow APIs Java Docs

    Read the article

< Previous Page | 9 10 11 12 13 14 15  | Next Page >