Search Results

Search found 2156 results on 87 pages for 'weighted average'.

Page 13/87 | < Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >

  • How do you blend multiple colors in HSV (polar) color-space?

    - by Toxikman
    In RGB color space, you can do a weighted multiple-color blend by just doing: Start with R = G = B = 0. Then we perform a blend at index i using a set of colors C, and a set of normalized weights w like so: R += w[i] * C[i].r G += w[i] * C[i].g B += w[i] * C[i].b But I'd like to interpolate the colors in the HSV color-space instead, so that saturation and brightness are uniform across the interpolation. I know I can blend saturation and brightness in the same way as above, but the HUE component is an angle around a continuous circle, since HSV is essentially a polar coordinate system. Blending only two HSV colors makes sense to me, you just find the shortest arc around the circle and interpolate between the two hues. But when you attempt to blend more than 2 colors, it becomes a bit of a puzzle. You have to handle anomalous cases, like 4 equally-weighted colors with a hue at 0, 90, 180, and 270 degrees. They basically cancel each other out, so any hue will do. Any ideas would be greatly appreciated.

    Read the article

  • Averaging initial values for rolling series

    - by Dave Jarvis
    Question Given a maximum sliding window size of 40 (i.e., the set of numbers in the list cannot exceed 40), what is the calculation to ensure a smooth averaging transition as the set size grows from 1 to 40? Problem Description Creating a trend line for a set of data has skewed initial values. The complete set of values is unknown at runtime: they are provided one at a time. It seems like a reverse-weighted average is required so that the initial values are averaged differently. In the image below the leftmost data for the trend line are incorrectly averaged. Current Solution Created a new type of ArrayList subclass that calculates the appropriate values and ensures its size never goes beyond the bounds of the sliding window: /** * A list of Double values that has a maximum capacity enforced by a sliding * window. Can calculate the average of its values. */ public class AveragingList extends ArrayList<Double> { private float slidingWindowSize = 0.0f; /** * The initial capacity is used for the sliding window size. * @param slidingWindowSize */ public AveragingList( int slidingWindowSize ) { super( slidingWindowSize ); setSlidingWindowSize( ( float )slidingWindowSize ); } public boolean add( Double d ) { boolean result = super.add( d ); // Prevent the list from exceeding the maximum sliding window size. // if( size() > getSlidingWindowSize() ) { remove( 0 ); } return result; } /** * Calculate the average. * * @return The average of the values stored in this list. */ public double average() { double result = 0.0; int size = size(); for( Double d: this ) { result += d.doubleValue(); } return (double)result / (double)size; } /** * Changes the maximum number of numbers stored in this list. * * @param slidingWindowSize New maximum number of values to remember. */ public void setSlidingWindowSize( float slidingWindowSize ) { this.slidingWindowSize = slidingWindowSize; } /** * Returns the number used to determine the maximum values this list can * store before it removes the first entry upon adding another value. * @return The maximum number of numbers stored in this list. */ public float getSlidingWindowSize() { return slidingWindowSize; } } Resulting Image Example Input The data comes into the function one value at a time. For example, data points (Data) and calculated averages (Avg) typically look as follows: Data: 17.0 Avg : 17.0 Data: 17.0 Avg : 17.0 Data: 5.0 Avg : 13.0 Data: 5.0 Avg : 11.0  Related Sites The following pages describe moving averages, but typically when all (or sufficient) data is known: http://www.cs.princeton.edu/introcs/15inout/MovingAverage.java.html http://stackoverflow.com/questions/2161815/r-zoo-series-sliding-window-calculation http://taragana.blogspot.com/ http://www.dreamincode.net/forums/index.php?showtopic=92508 http://blogs.sun.com/nickstephen/entry/dtrace_and_moving_rolling_averages

    Read the article

  • Help with bugs in a C code

    - by Yanki Twizzy
    This C code is giving me some unpredictable results. The program is meant to collect 6 nos and print out the max, position of the max no and the average. It's supposed to have only 3 functions - input, max_avr_pos and output for doing what the code is supposed to do but I am getting unpredictable results. Please what could be the problem #include <stdio.h> #include <stdlib.h> #include <conio.h> void input_vals(int arrnum[]); void max_ave_val(int arrnum1[],double *average,int *maxval,int *position); void print_output(double *average1,int *maxval1,int *position1); int main(void) { int arrnum[6],maxval2,position2; double average2; input_vals(arrnum); max_ave_val(arrnum,&average2,&maxval2,&position2); print_output(&average2,&maxval2,&position2); _getche(); return 0; } void input_vals(int arrnum[]) { int count; printf("\n Please enter six numbers\n"); for(count=0;count<6;count++) { scanf("%d",&arrnum[count]); } } void max_ave_val(int arrnum1[],double *average,int *maxval,int *position) { int total=0; int cnt,cnt1,cnt2,limit,maxval2,post; limit=6; /* finding the max value*/ for(cnt=0;cnt<limit-1;cnt++) for(cnt1=limit-1;cnt1>cnt;--cnt1) { if(arrnum1[cnt1-1]>arrnum1[cnt1]) { maxval2=arrnum1[cnt-1]; post=(cnt-1)+1; } else { maxval2=arrnum1[cnt1]; post=cnt1+1; } } *maxval=maxval2; *position=post; /* solving for total */ for(cnt2=0;cnt2<limit;cnt2++); { total=total+arrnum1[cnt2]; } *average=total/limit; } void print_output(double *average1,int *maxval1,int *position1) { printf("\n value of the highest of the numbers is %d\n",*maxval1); printf("\n the average of all the numbers is %g\n",*average1); printf("\n the postion of the highest number in the list is %d\n",*position1); }

    Read the article

  • mySQL Efficiency Issue - How to find the right balance of normalization...?

    - by Foo
    I'm fairly new to working with relational databases, but have read a few books and know the basics of good design. I'm facing a design decision, and I'm not sure how to continue. Here's a very over simplified version of what I'm building: People can rate photos 1-5, and I need to display the average votes on the picture while keeping track of the individual votes. For example, 12 people voted 1, 7 people voted 2, etc. etc. The normalization freak of me initially designed the table structure like this: Table pictures id* | picture | userID | Table ratings id* | pictureID | userID | rating With all the foreign key constraints and everything set as they shoudl be. Every time someone rates a picture, I just insert a new record into ratings and be done with it. To find the average rating of a picture, I'd just run something like this: SELECT AVG(rating) FROM ratings WHERE pictureID = '5' GROUP by pictureID Having it setup this way lets me run my fancy statistics to. I can easily find who rated a certain picture a 3, and what not. Now I'm thinking if there's a crapload of ratings (which is very possible in what I'm really designing), finding the average will became very expensive and painful. Using a non-normalized version would seem to be more efficient. e.g.: Table picture id | picture | userID | ratingOne | ratingTwo | ratingThree | ratingFour | ratingFive To calculate the average, I'd just have to select a single row. It seems so much more efficient, but so much more uglier. Can someone point me in the right direction of what to do? My initial research shows that I have to "find the right balance", but how do I go about finding that balance? Any articles or additional reading information would be appreciated as well. Thanks.

    Read the article

  • How to get levels for Fry Graph readability formula?

    - by Vic
    Hi, I'm working in an application (C#) that applies some readability formulas to a text, like Gunning-Fog, Precise SMOG, Flesh-Kincaid. Now, I need to implement the Fry-based Grade formula in my program, I understand the formula's logic, pretty much you take 3 100-words samples and calculate the average on sentences per 100-words and syllables per 100-words, and then, you use a graph to plot the values. Here is a more detailed explanation on how this formula works. I already have the averages, but I have no idea on how can I tell my program to "go check the graph and plot the values and give me a level." I don't have to show the graph to the user, I only have to show him the level. I was thinking that maybe I can have all the values in memory, divided into levels, for example: Level 1: values whose sentence average are between 10.0 and 25+, and whose syllables average are between 108 and 132. Level 2: values whose sentence average are between 7.7 and 10.0, and .... so on But the problem is that so far, the only place in which I have found the values that define a level, are in the graph itself, and they aren't too much accurate, so if I apply the approach commented above, trying to take the values from the graph, my level estimations would be too much imprecise, thus, the Fry-based Grade will not be accurate. So, maybe any of you knows about some place where I can find exact values for the different levels of the Fry-based Grade, or maybe any of you can help me think in a way to workaround this. Thanks

    Read the article

  • error C2512 in precompiled header file?

    - by SoloMael
    I'm having a ridiculously strange problem. When I try to run the program below, there's an error message that says: "error C2512: 'Record' : no appropriate default constructor available". And when I double-click it, it directs me to a precompiled read-only header file named "xmemory0". Do they expect me to change a read-only file? Here's the segment of code in the file it directs me to: void construct(_Ty *_Ptr) { // default construct object at _Ptr ::new ((void *)_Ptr) _Ty(); // directs me to this line } Here's the program: #include <iostream> #include <vector> #include <string> using namespace std; const int NG = 4; // number of scores struct Record { string name; // student name int scores[NG]; double average; // Calculate the average // when the scores are known Record(int s[], double a) { double sum = 0; for(int count = 0; count != NG; count++) { scores[count] = s[count]; sum += scores[count]; } average = a; average = sum / NG; } }; int main() { // Names of the class string names[] = {"Amy Adams", "Bob Barr", "Carla Carr", "Dan Dobbs", "Elena Evans"}; // exam scores according to each student int exams[][NG]= { {98, 87, 93, 88}, {78, 86, 82, 91}, {66, 71, 85, 94}, {72, 63, 77, 69}, {91, 83, 76, 60}}; vector<Record> records(5); return 0; }

    Read the article

  • Usage of Assert.Inconclusive

    - by Johannes Rudolph
    Hi, Im wondering how someone should use Assert.Inconclusive(). I'm using it if my Unit test would be about to fail for a reason other than what it is for. E.g. i have a method on a class that calculates the sum of an array of ints. On the same class there is also a method to calculate the average of the element. It is implemented by calling sum and dividing it by the length of the array. Writing a Unit test for Sum() is simple. However, when i write a test for Average() and Sum() fails, Average() is likely to fail also. The failure of Average is not explicit about the reason it failed, it failed for a reason other than what it should test for. That's why i would check if Sum() returns the correct result, otherwise i Assert.Inconclusive(). Is this to be considered good practice? What is Assert.Inconclusive intended for? Or should i rather solve the previous example by means of an Isolation Framework?

    Read the article

  • How can I show print statements in debug mode of OPNET Modeler?

    - by Here now
    I'm writing C++ code in OPNET Modeler. I try to simulate my scenario in debugger mode & I need to trace the function that I wrote it. I need to show print statements which I put it in my code. I used in debugger mode: ***ltr function_name()*** then ***c*** But the result looks like: Type 'help' for Command Summary ODB> ltr enqueue_packet() Added trace #0: trace on label (enqueue_packet()) ODB> c |-----------------------------------------------------------------------------| | Progress: Time (1 min. 52 sec.); Events (500,002) | | Speed: Average (82,575 events/sec.); Current (82,575 events/sec.) | | Time : Elapsed (6.1 sec.) | | DES Log: 28 entries | |-----------------------------------------------------------------------------| |-----------------------------------------------------------------------------| | Progress: Time (1 min. 55 sec.); Events (1,000,002) | | Speed: Average (69,027 events/sec.); Current (59,298 events/sec.) | | Time : Elapsed (14 sec.) | | DES Log: 28 entries | |-----------------------------------------------------------------------------| |-----------------------------------------------------------------------------| | Progress: Time (1 min. 59 sec.); Events (1,500,002) | | Speed: Average (51,464 events/sec.); Current (34,108 events/sec.) | | Time : Elapsed (29 sec.) | | DES Log: 28 entries | |-----------------------------------------------------------------------------| |-----------------------------------------------------------------------------| | Simulation Completed - Collating Results. | | Events: Total (1,591,301); Average Speed (48,803 events/sec.) | | Time : Elapsed (33 sec.); Simulated (2 min. 0 sec.) | | DES Log: 29 entries | |-----------------------------------------------------------------------------| |-----------------------------------------------------------------------------| | Reading network model. | |-----------------------------------------------------------------------------| I need to show the print statements in my code. Where it has to be appeared? Is there any step before run the simulation to insure that OPNET debugger using Visual Studio & go through my code??

    Read the article

  • Simplifying for-if messes with better structure?

    - by HH
    # Description: you are given a bitwise pattern and a string # you need to find the number of times the pattern matches in the string # any one liner or simple pythonic solution? import random def matchIt(yourString, yourPattern): """find the number of times yourPattern occurs in yourString""" count = 0 matchTimes = 0 # How can you simplify the for-if structures? for coin in yourString: #return to base if count == len(pattern): matchTimes = matchTimes + 1 count = 0 #special case to return to 2, there could be more this type of conditions #so this type of if-conditionals are screaming for a havoc if count == 2 and pattern[count] == 1: count = count - 1 #the work horse #it could be simpler by breaking the intial string of lenght 'l' #to blocks of pattern-length, the number of them is 'l - len(pattern)-1' if coin == pattern[count]: count=count+1 average = len(yourString)/matchTimes return [average, matchTimes] # Generates the list myString =[] for x in range(10000): myString= myString + [int(random.random()*2)] pattern = [1,0,0] result = matchIt(myString, pattern) print("The sample had "+str(result[1])+" matches and its size was "+str(len(myString))+".\n" + "So it took "+str(result[0])+" steps in average.\n" + "RESULT: "+str([a for a in "FAILURE" if result[0] != 8])) # Sample Output # # The sample had 1656 matches and its size was 10000. # So it took 6 steps in average. # RESULT: ['F', 'A', 'I', 'L', 'U', 'R', 'E']

    Read the article

  • give feedback on this pointer program

    - by JohnWong
    This is relatively simple program. But I want to get some feedback about how I can improve this program (if any), for example, unnecessary statements? #include<iostream> #include<fstream> using namespace std; double Average(double*,int); int main() { ifstream inFile("data2.txt"); const int SIZE = 4; double *array = new double(SIZE); double *temp; temp = array; for (int i = 0; i < SIZE; i++) { inFile >> *array++; } cout << "Average is: " << Average(temp, SIZE) << endl; } double Average(double *pointer, int x) { double sum = 0; for (int i = 0; i < x; i++) { sum += *pointer++; } return (sum/x); } The codes are valid and the program is working fine. But I just want to hear what you guys think, since most of you have more experience than I do (well I am only a freshman ... lol) Thanks.

    Read the article

  • Summary statistics in visual basic

    - by ben
    Below I am trying to write a script the goal of which is to calculate some summary statistics for a few different columns of numbers. I have gotten some help on it up to the "Need help below" mark. But beyond that I am flabergasted as to how to calculate the simple stats (sum, mean, standard deviation, coefficient of variation). I know VB has scripts for these stats, which I have included in my code, but I guess I need to do some extra declaring or something. Advice much appreciated. Thanks. Sub TOAinput() Const n As Integer = 648 Dim stratum(n), hybrid(n), acres(n), hhsz(n), offinc(n) Dim s1 As Integer Dim s2 As Integer Dim i As Integer For i = 1 To n stratum(i) = Worksheets("hhid level").Cells(i + 1, 2).Value Next i s1 = 0 s2 = 0 For i = 1 To n If stratum(i) = 1 Then s1 = s1 + 1 Else: s2 = s2 + 1 End If Next i Dim acres1(), hhsz1(), offinc1(), acres2(), hhsz2(), offinc2() ReDim acres1(s1), hhsz1(s1), offinc1(s1), acres2(s2), hhsz2(s2), offinc2(s2) 'data infiles: acres, hh size, off-farm income, For i = 1 To n acres(i) = Worksheets("hhid level").Cells(i + 1, 4).Value hhsz(i) = Worksheets("hhid level").Cells(i + 1, 5).Value offinc(i) = Worksheets("hhid level").Cells(i + 1, 6).Value Next i s1 = 0 s2 = 0 For i = 1 To n If stratum(i) = 1 Then s1 = s1 + 1 acres1(s1) = acres(i) hhsz1(s1) = hhsz(i) offinc1(s1) = offinc(i) Else: s2 = s2 + 1 acres2(s2) = acres(i) hhsz2(s2) = hhsz(i) offinc2(s2) = offinc(i) End If Next i '**************************** 'Need help below '**************************** Dim sumac1, sumac2, mhhsz1, mhhsz2, cvhhsz1, cvhhsz2 sumac1 = Sum(acres1) sumac2 = Sum(acres2) mhhsz1 = Average(hhsz1) mhhsz2 = Average(hhsz2) cvhhsz1 = StDev(hhsz1) / Average(hhsz1) cvhhsz2 = StDev(hhsz2) / Average(hhsz2) End Sub

    Read the article

  • HTG Explains: Should You Build Your Own PC?

    - by Chris Hoffman
    There was a time when every geek seemed to build their own PC. While the masses bought eMachines and Compaqs, geeks built their own more powerful and reliable desktop machines for cheaper. But does this still make sense? Building your own PC still offers as much flexibility in component choice as it ever did, but prebuilt computers are available at extremely competitive prices. Building your own PC will no longer save you money in most cases. The Rise of Laptops It’s impossible to look at the decline of geeks building their own PCs without considering the rise of laptops. There was a time when everyone seemed to use desktops — laptops were more expensive and significantly slower in day-to-day tasks. With the diminishing importance of computing power — nearly every modern computer has more than enough power to surf the web and use typical programs like Microsoft Office without any trouble — and the rise of laptop availability at nearly every price point, most people are buying laptops instead of desktops. And, if you’re buying a laptop, you can’t really build your own. You can’t just buy a laptop case and start plugging components into it — even if you could, you would end up with an extremely bulky device. Ultimately, to consider building your own desktop PC, you have to actually want a desktop PC. Most people are better served by laptops. Benefits to PC Building The two main reasons to build your own PC have been component choice and saving money. Building your own PC allows you to choose all the specific components you want rather than have them chosen for you. You get to choose everything, including the PC’s case and cooling system. Want a huge case with room for a fancy water-cooling system? You probably want to build your own PC. In the past, this often allowed you to save money — you could get better deals by buying the components yourself and combining them, avoiding the PC manufacturer markup. You’d often even end up with better components — you could pick up a more powerful CPU that was easier to overclock and choose more reliable components so you wouldn’t have to put up with an unstable eMachine that crashed every day. PCs you build yourself are also likely more upgradable — a prebuilt PC may have a sealed case and be constructed in such a way to discourage you from tampering with the insides, while swapping components in and out is generally easier with a computer you’ve built on your own. If you want to upgrade your CPU or replace your graphics card, it’s a definite benefit. Downsides to Building Your Own PC It’s important to remember there are downsides to building your own PC, too. For one thing, it’s just more work — sure, if you know what you’re doing, building your own PC isn’t that hard. Even for a geek, researching the best components, price-matching, waiting for them all to arrive, and building the PC just takes longer. Warranty is a more pernicious problem. If you buy a prebuilt PC and it starts malfunctioning, you can contact the computer’s manufacturer and have them deal with it. You don’t need to worry about what’s wrong. If you build your own PC and it starts malfunctioning, you have to diagnose the problem yourself. What’s malfunctioning, the motherboard, CPU, RAM, graphics card, or power supply? Each component has a separate warranty through its manufacturer, so you’ll have to determine which component is malfunctioning before you can send it off for replacement. Should You Still Build Your Own PC? Let’s say you do want a desktop and are willing to consider building your own PC. First, bear in mind that PC manufacturers are buying in bulk and getting a better deal on each component. They also have to pay much less for a Windows license than the $120 or so it would cost you to to buy your own Windows license. This is all going to wipe out the cost savings you’ll see — with everything all told, you’ll probably spend more money building your own average desktop PC than you would picking one up from Amazon or the local electronics store. If you’re an average PC user that uses your desktop for the typical things, there’s no money to be saved from building your own PC. But maybe you’re looking for something higher end. Perhaps you want a high-end gaming PC with the fastest graphics card and CPU available. Perhaps you want to pick out each individual component and choose the exact components for your gaming rig. In this case, building your own PC may be a good option. As you start to look at more expensive, high-end PCs, you may start to see a price gap — but you may not. Let’s say you wanted to blow thousands of dollars on a gaming PC. If you’re looking at spending this kind of money, it would be worth comparing the cost of individual components versus a prebuilt gaming system. Still, the actual prices may surprise you. For example, if you wanted to upgrade Dell’s $2293 Alienware Aurora to include a second NVIDIA GeForce GTX 780 graphics card, you’d pay an additional $600 on Alienware’s website. The same graphics card costs $650 on Amazon or Newegg, so you’d be spending more money building the system yourself. Why? Dell’s Alienware gets bulk discounts you can’t get — and this is Alienware, which was once regarded as selling ridiculously overpriced gaming PCs to people who wouldn’t build their own. Building your own PC still allows you to get the most freedom when choosing and combining components, but this is only valuable to a small niche of gamers and professional users — most people, even average gamers, would be fine going with a prebuilt system. If you’re an average person or even an average gamer, you’ll likely find that it’s cheaper to purchase a prebuilt PC rather than assemble your own. Even at the very high end, components may be more expensive separately than they are in a prebuilt PC. Enthusiasts who want to choose all the individual components for their dream gaming PC and want maximum flexibility may want to build their own PCs. Even then, building your own PC these days is more about flexibility and component choice than it is about saving money. In summary, you probably shouldn’t build your own PC. If you’re an enthusiast, you may want to — but only a small minority of people would actually benefit from building their own systems. Feel free to compare prices, but you may be surprised which is cheaper. Image Credit: Richard Jones on Flickr, elPadawan on Flickr, Richard Jones on Flickr     

    Read the article

  • Squid + Dans Guardian (simple configuration)

    - by The Digital Ninja
    I just built a new proxy server and compiled the latest versions of squid and dansguardian. We use basic authentication to select what users are allowed outside of our network. It seems squid is working just fine and accepts my username and password and lets me out. But if i connect to dans guardian, it prompts for username and password and then displays a message saying my username is not allowed to access the internet. Its pulling my username for the error message so i know it knows who i am. The part i get confused on is i thought that part was handled all by squid, and squid is working flawlessly. Can someone please double check my config files and tell me if i'm missing something or there is some new option i must set to get this to work. dansguardian.conf # Web Access Denied Reporting (does not affect logging) # # -1 = log, but do not block - Stealth mode # 0 = just say 'Access Denied' # 1 = report why but not what denied phrase # 2 = report fully # 3 = use HTML template file (accessdeniedaddress ignored) - recommended # reportinglevel = 3 # Language dir where languages are stored for internationalisation. # The HTML template within this dir is only used when reportinglevel # is set to 3. When used, DansGuardian will display the HTML file instead of # using the perl cgi script. This option is faster, cleaner # and easier to customise the access denied page. # The language file is used no matter what setting however. # languagedir = '/etc/dansguardian/languages' # language to use from languagedir. language = 'ukenglish' # Logging Settings # # 0 = none 1 = just denied 2 = all text based 3 = all requests loglevel = 3 # Log Exception Hits # Log if an exception (user, ip, URL, phrase) is matched and so # the page gets let through. Can be useful for diagnosing # why a site gets through the filter. on | off logexceptionhits = on # Log File Format # 1 = DansGuardian format 2 = CSV-style format # 3 = Squid Log File Format 4 = Tab delimited logfileformat = 1 # Log file location # # Defines the log directory and filename. #loglocation = '/var/log/dansguardian/access.log' # Network Settings # # the IP that DansGuardian listens on. If left blank DansGuardian will # listen on all IPs. That would include all NICs, loopback, modem, etc. # Normally you would have your firewall protecting this, but if you want # you can limit it to only 1 IP. Yes only one. filterip = # the port that DansGuardian listens to. filterport = 8080 # the ip of the proxy (default is the loopback - i.e. this server) proxyip = 127.0.0.1 # the port DansGuardian connects to proxy on proxyport = 3128 # accessdeniedaddress is the address of your web server to which the cgi # dansguardian reporting script was copied # Do NOT change from the default if you are not using the cgi. # accessdeniedaddress = 'http://YOURSERVER.YOURDOMAIN/cgi-bin/dansguardian.pl' # Non standard delimiter (only used with accessdeniedaddress) # Default is enabled but to go back to the original standard mode dissable it. nonstandarddelimiter = on # Banned image replacement # Images that are banned due to domain/url/etc reasons including those # in the adverts blacklists can be replaced by an image. This will, # for example, hide images from advert sites and remove broken image # icons from banned domains. # 0 = off # 1 = on (default) usecustombannedimage = 1 custombannedimagefile = '/etc/dansguardian/transparent1x1.gif' # Filter groups options # filtergroups sets the number of filter groups. A filter group is a set of content # filtering options you can apply to a group of users. The value must be 1 or more. # DansGuardian will automatically look for dansguardianfN.conf where N is the filter # group. To assign users to groups use the filtergroupslist option. All users default # to filter group 1. You must have some sort of authentication to be able to map users # to a group. The more filter groups the more copies of the lists will be in RAM so # use as few as possible. filtergroups = 1 filtergroupslist = '/etc/dansguardian/filtergroupslist' # Authentication files location bannediplist = '/etc/dansguardian/bannediplist' exceptioniplist = '/etc/dansguardian/exceptioniplist' banneduserlist = '/etc/dansguardian/banneduserlist' exceptionuserlist = '/etc/dansguardian/exceptionuserlist' # Show weighted phrases found # If enabled then the phrases found that made up the total which excedes # the naughtyness limit will be logged and, if the reporting level is # high enough, reported. on | off showweightedfound = on # Weighted phrase mode # There are 3 possible modes of operation: # 0 = off = do not use the weighted phrase feature. # 1 = on, normal = normal weighted phrase operation. # 2 = on, singular = each weighted phrase found only counts once on a page. # weightedphrasemode = 2 # Positive result caching for text URLs # Caches good pages so they don't need to be scanned again # 0 = off (recommended for ISPs with users with disimilar browsing) # 1000 = recommended for most users # 5000 = suggested max upper limit urlcachenumber = # # Age before they are stale and should be ignored in seconds # 0 = never # 900 = recommended = 15 mins urlcacheage = # Smart and Raw phrase content filtering options # Smart is where the multiple spaces and HTML are removed before phrase filtering # Raw is where the raw HTML including meta tags are phrase filtered # CPU usage can be effectively halved by using setting 0 or 1 # 0 = raw only # 1 = smart only # 2 = both (default) phrasefiltermode = 2 # Lower casing options # When a document is scanned the uppercase letters are converted to lower case # in order to compare them with the phrases. However this can break Big5 and # other 16-bit texts. If needed preserve the case. As of version 2.7.0 accented # characters are supported. # 0 = force lower case (default) # 1 = do not change case preservecase = 0 # Hex decoding options # When a document is scanned it can optionally convert %XX to chars. # If you find documents are getting past the phrase filtering due to encoding # then enable. However this can break Big5 and other 16-bit texts. # 0 = disabled (default) # 1 = enabled hexdecodecontent = 0 # Force Quick Search rather than DFA search algorithm # The current DFA implementation is not totally 16-bit character compatible # but is used by default as it handles large phrase lists much faster. # If you wish to use a large number of 16-bit character phrases then # enable this option. # 0 = off (default) # 1 = on (Big5 compatible) forcequicksearch = 0 # Reverse lookups for banned site and URLs. # If set to on, DansGuardian will look up the forward DNS for an IP URL # address and search for both in the banned site and URL lists. This would # prevent a user from simply entering the IP for a banned address. # It will reduce searching speed somewhat so unless you have a local caching # DNS server, leave it off and use the Blanket IP Block option in the # bannedsitelist file instead. reverseaddresslookups = off # Reverse lookups for banned and exception IP lists. # If set to on, DansGuardian will look up the forward DNS for the IP # of the connecting computer. This means you can put in hostnames in # the exceptioniplist and bannediplist. # It will reduce searching speed somewhat so unless you have a local DNS server, # leave it off. reverseclientiplookups = off # Build bannedsitelist and bannedurllist cache files. # This will compare the date stamp of the list file with the date stamp of # the cache file and will recreate as needed. # If a bsl or bul .processed file exists, then that will be used instead. # It will increase process start speed by 300%. On slow computers this will # be significant. Fast computers do not need this option. on | off createlistcachefiles = on # POST protection (web upload and forms) # does not block forms without any file upload, i.e. this is just for # blocking or limiting uploads # measured in kibibytes after MIME encoding and header bumph # use 0 for a complete block # use higher (e.g. 512 = 512Kbytes) for limiting # use -1 for no blocking #maxuploadsize = 512 #maxuploadsize = 0 maxuploadsize = -1 # Max content filter page size # Sometimes web servers label binary files as text which can be very # large which causes a huge drain on memory and cpu resources. # To counter this, you can limit the size of the document to be # filtered and get it to just pass it straight through. # This setting also applies to content regular expression modification. # The size is in Kibibytes - eg 2048 = 2Mb # use 0 for no limit maxcontentfiltersize = # Username identification methods (used in logging) # You can have as many methods as you want and not just one. The first one # will be used then if no username is found, the next will be used. # * proxyauth is for when basic proxy authentication is used (no good for # transparent proxying). # * ntlm is for when the proxy supports the MS NTLM authentication # protocol. (Only works with IE5.5 sp1 and later). **NOT IMPLEMENTED** # * ident is for when the others don't work. It will contact the computer # that the connection came from and try to connect to an identd server # and query it for the user owner of the connection. usernameidmethodproxyauth = on usernameidmethodntlm = off # **NOT IMPLEMENTED** usernameidmethodident = off # Preemptive banning - this means that if you have proxy auth enabled and a user accesses # a site banned by URL for example they will be denied straight away without a request # for their user and pass. This has the effect of requiring the user to visit a clean # site first before it knows who they are and thus maybe an admin user. # This is how DansGuardian has always worked but in some situations it is less than # ideal. So you can optionally disable it. Default is on. # As a side effect disabling this makes AD image replacement work better as the mime # type is know. preemptivebanning = on # Misc settings # if on it adds an X-Forwarded-For: <clientip> to the HTTP request # header. This may help solve some problem sites that need to know the # source ip. on | off forwardedfor = on # if on it uses the X-Forwarded-For: <clientip> to determine the client # IP. This is for when you have squid between the clients and DansGuardian. # Warning - headers are easily spoofed. on | off usexforwardedfor = off # if on it logs some debug info regarding fork()ing and accept()ing which # can usually be ignored. These are logged by syslog. It is safe to leave # it on or off logconnectionhandlingerrors = on # Fork pool options # sets the maximum number of processes to sporn to handle the incomming # connections. Max value usually 250 depending on OS. # On large sites you might want to try 180. maxchildren = 180 # sets the minimum number of processes to sporn to handle the incomming connections. # On large sites you might want to try 32. minchildren = 32 # sets the minimum number of processes to be kept ready to handle connections. # On large sites you might want to try 8. minsparechildren = 8 # sets the minimum number of processes to sporn when it runs out # On large sites you might want to try 10. preforkchildren = 10 # sets the maximum number of processes to have doing nothing. # When this many are spare it will cull some of them. # On large sites you might want to try 64. maxsparechildren = 64 # sets the maximum age of a child process before it croaks it. # This is the number of connections they handle before exiting. # On large sites you might want to try 10000. maxagechildren = 5000 # Process options # (Change these only if you really know what you are doing). # These options allow you to run multiple instances of DansGuardian on a single machine. # Remember to edit the log file path above also if that is your intention. # IPC filename # # Defines IPC server directory and filename used to communicate with the log process. ipcfilename = '/tmp/.dguardianipc' # URL list IPC filename # # Defines URL list IPC server directory and filename used to communicate with the URL # cache process. urlipcfilename = '/tmp/.dguardianurlipc' # PID filename # # Defines process id directory and filename. #pidfilename = '/var/run/dansguardian.pid' # Disable daemoning # If enabled the process will not fork into the background. # It is not usually advantageous to do this. # on|off ( defaults to off ) nodaemon = off # Disable logging process # on|off ( defaults to off ) nologger = off # Daemon runas user and group # This is the user that DansGuardian runs as. Normally the user/group nobody. # Uncomment to use. Defaults to the user set at compile time. # daemonuser = 'nobody' # daemongroup = 'nobody' # Soft restart # When on this disables the forced killing off all processes in the process group. # This is not to be confused with the -g run time option - they are not related. # on|off ( defaults to off ) softrestart = off maxcontentramcachescansize = 2000 maxcontentfilecachescansize = 20000 downloadmanager = '/etc/dansguardian/downloadmanagers/default.conf' authplugin = '/etc/dansguardian/authplugins/proxy-basic.conf' Squid.conf http_port 3128 hierarchy_stoplist cgi-bin ? acl QUERY urlpath_regex cgi-bin \? cache deny QUERY acl apache rep_header Server ^Apache #broken_vary_encoding allow apache access_log /squid/var/logs/access.log squid hosts_file /etc/hosts auth_param basic program /squid/libexec/ncsa_auth /squid/etc/userbasic.auth auth_param basic children 5 auth_param basic realm proxy auth_param basic credentialsttl 2 hours auth_param basic casesensitive off refresh_pattern ^ftp: 1440 20% 10080 refresh_pattern ^gopher: 1440 0% 1440 refresh_pattern . 0 20% 4320 acl NoAuthNec src <HIDDEN FOR SECURITY> acl BrkRm src <HIDDEN FOR SECURITY> acl Dials src <HIDDEN FOR SECURITY> acl Comps src <HIDDEN FOR SECURITY> acl whsws dstdom_regex -i .opensuse.org .novell.com .suse.com mirror.mcs.an1.gov mirrors.kernerl.org www.suse.de suse.mirrors.tds.net mirrros.usc.edu ftp.ale.org suse.cs.utah.edu mirrors.usc.edu mirror.usc.an1.gov linux.nssl.noaa.gov noaa.gov .kernel.org ftp.ale.org ftp.gwdg.de .medibuntu.org mirrors.xmission.com .canonical.com .ubuntu. acl opensites dstdom_regex -i .mbsbooks.com .bowker.com .usps.com .usps.gov .ups.com .fedex.com go.microsoft.com .microsoft.com .apple.com toolbar.msn.com .contacts.msn.com update.services.openoffice.org fms2.pointroll.speedera.net services.wmdrm.windowsmedia.com windowsupdate.com .adobe.com .symantec.com .vitalbook.com vxn1.datawire.net vxn.datawire.net download.lavasoft.de .download.lavasoft.com .lavasoft.com updates.ls-servers.com .canadapost. .myyellow.com minirick symantecliveupdate.com wm.overdrive.com www.overdrive.com productactivation.one.microsoft.com www.update.microsoft.com testdrive.whoson.com www.columbia.k12.mo.us banners.wunderground.com .kofax.com .gotomeeting.com tools.google.com .dl.google.com .cache.googlevideo.com .gpdl.google.com .clients.google.com cache.pack.google.com kh.google.com maps.google.com auth.keyhole.com .contacts.msn.com .hrblock.com .taxcut.com .merchantadvantage.com .jtv.com .malwarebytes.org www.google-analytics.com dcs.support.xerox.com .dhl.com .webtrendslive.com javadl-esd.sun.com javadl-alt.sun.com .excelsior.edu .dhlglobalmail.com .nessus.org .foxitsoftware.com foxit.vo.llnwd.net installshield.com .mindjet.com .mediascouter.com media.us.elsevierhealth.com .xplana.com .govtrack.us sa.tulsacc.edu .omniture.com fpdownload.macromedia.com webservices.amazon.com acl password proxy_auth REQUIRED acl all src all acl manager proto cache_object acl localhost src 127.0.0.1/255.255.255.255 acl to_localhost dst 127.0.0.0/8 acl SSL_ports port 443 563 631 2001 2005 8731 9001 9080 10000 acl Safe_ports port 80 # http acl Safe_ports port 21 # ftp acl Safe_ports port # https, snews 443 563 acl Safe_ports port 70 # gopher acl Safe_ports port 210 # wais acl Safe_ports port # unregistered ports 1936-65535 acl Safe_ports port 280 # http-mgmt acl Safe_ports port 488 # gss-http acl Safe_ports port 10000 acl Safe_ports port 631 acl Safe_ports port 901 # SWAT acl purge method PURGE acl CONNECT method CONNECT acl UTubeUsers proxy_auth "/squid/etc/utubeusers.list" acl RestrictUTube dstdom_regex -i youtube.com acl RestrictFacebook dstdom_regex -i facebook.com acl FacebookUsers proxy_auth "/squid/etc/facebookusers.list" acl BuemerKEC src 10.10.128.0/24 acl MBSsortnet src 10.10.128.0/26 acl MSNExplorer browser -i MSN acl Printers src <HIDDEN FOR SECURITY> acl SpecialFolks src <HIDDEN FOR SECURITY> # streaming download acl fails rep_mime_type ^.*mms.* acl fails rep_mime_type ^.*ms-hdr.* acl fails rep_mime_type ^.*x-fcs.* acl fails rep_mime_type ^.*x-ms-asf.* acl fails2 urlpath_regex dvrplayer mediastream mms:// acl fails2 urlpath_regex \.asf$ \.afx$ \.flv$ \.swf$ acl deny_rep_mime_flashvideo rep_mime_type -i video/flv acl deny_rep_mime_shockwave rep_mime_type -i ^application/x-shockwave-flash$ acl x-type req_mime_type -i ^application/octet-stream$ acl x-type req_mime_type -i application/octet-stream acl x-type req_mime_type -i ^application/x-mplayer2$ acl x-type req_mime_type -i application/x-mplayer2 acl x-type req_mime_type -i ^application/x-oleobject$ acl x-type req_mime_type -i application/x-oleobject acl x-type req_mime_type -i application/x-pncmd acl x-type req_mime_type -i ^video/x-ms-asf$ acl x-type2 rep_mime_type -i ^application/octet-stream$ acl x-type2 rep_mime_type -i application/octet-stream acl x-type2 rep_mime_type -i ^application/x-mplayer2$ acl x-type2 rep_mime_type -i application/x-mplayer2 acl x-type2 rep_mime_type -i ^application/x-oleobject$ acl x-type2 rep_mime_type -i application/x-oleobject acl x-type2 rep_mime_type -i application/x-pncmd acl x-type2 rep_mime_type -i ^video/x-ms-asf$ acl RestrictHulu dstdom_regex -i hulu.com acl broken dstdomain cms.montgomerycollege.edu events.columbiamochamber.com members.columbiamochamber.com public.genexusserver.com acl RestrictVimeo dstdom_regex -i vimeo.com acl http_port port 80 #http_reply_access deny deny_rep_mime_flashvideo #http_reply_access deny deny_rep_mime_shockwave #streaming files #http_access deny fails #http_reply_access deny fails #http_access deny fails2 #http_reply_access deny fails2 #http_access deny x-type #http_reply_access deny x-type #http_access deny x-type2 #http_reply_access deny x-type2 follow_x_forwarded_for allow localhost acl_uses_indirect_client on log_uses_indirect_client on http_access allow manager localhost http_access deny manager http_access allow purge localhost http_access deny purge http_access allow SpecialFolks http_access deny CONNECT !SSL_ports http_access allow whsws http_access allow opensites http_access deny BuemerKEC !MBSsortnet http_access deny BrkRm RestrictUTube RestrictFacebook RestrictVimeo http_access allow RestrictUTube UTubeUsers http_access deny RestrictUTube http_access allow RestrictFacebook FacebookUsers http_access deny RestrictFacebook http_access deny RestrictHulu http_access allow NoAuthNec http_access allow BrkRm http_access allow FacebookUsers RestrictVimeo http_access deny RestrictVimeo http_access allow Comps http_access allow Dials http_access allow Printers http_access allow password http_access deny !Safe_ports http_access deny SSL_ports !CONNECT http_access allow http_port http_access deny all http_reply_access allow all icp_access allow all access_log /squid/var/logs/access.log squid visible_hostname proxy.site.com forwarded_for off coredump_dir /squid/cache/ #header_access Accept-Encoding deny broken #acl snmppublic snmp_community mysecretcommunity #snmp_port 3401 #snmp_access allow snmppublic all cache_mem 3 GB #acl snmppublic snmp_community mbssquid #snmp_port 3401 #snmp_access allow snmppublic all

    Read the article

  • C#/.NET Little Wonders: Interlocked CompareExchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Two posts ago, I discussed the Interlocked Add(), Increment(), and Decrement() methods (here) for adding and subtracting values in a thread-safe, lightweight manner.  Then, last post I talked about the Interlocked Read() and Exchange() methods (here) for safely and efficiently reading and setting 32 or 64 bit values (or references).  This week, we’ll round out the discussion by talking about the Interlocked CompareExchange() method and how it can be put to use to exchange a value if the current value is what you expected it to be. Dirty reads can lead to bad results Many of the uses of Interlocked that we’ve explored so far have centered around either reading, setting, or adding values.  But what happens if you want to do something more complex such as setting a value based on the previous value in some manner? Perhaps you were creating an application that reads a current balance, applies a deposit, and then saves the new modified balance, where of course you’d want that to happen atomically.  If you read the balance, then go to save the new balance and between that time the previous balance has already changed, you’ll have an issue!  Think about it, if we read the current balance as $400, and we are applying a new deposit of $50.75, but meanwhile someone else deposits $200 and sets the total to $600, but then we write a total of $450.75 we’ve lost $200! Now, certainly for int and long values we can use Interlocked.Add() to handles these cases, and it works well for that.  But what if we want to work with doubles, for example?  Let’s say we wanted to add the numbers from 0 to 99,999 in parallel.  We could do this by spawning several parallel tasks to continuously add to a total: 1: double total = 0; 2:  3: Parallel.For(0, 10000, next => 4: { 5: total += next; 6: }); Were this run on one thread using a standard for loop, we’d expect an answer of 4,999,950,000 (the sum of all numbers from 0 to 99,999).  But when we run this in parallel as written above, we’ll likely get something far off.  The result of one of my runs, for example, was 1,281,880,740.  That is way off!  If this were banking software we’d be in big trouble with our clients.  So what happened?  The += operator is not atomic, it will read in the current value, add the result, then store it back into the total.  At any point in all of this another thread could read a “dirty” current total and accidentally “skip” our add.   So, to clean this up, we could use a lock to guarantee concurrency: 1: double total = 0.0; 2: object locker = new object(); 3:  4: Parallel.For(0, count, next => 5: { 6: lock (locker) 7: { 8: total += next; 9: } 10: }); Which will give us the correct result of 4,999,950,000.  One thing to note is that locking can be heavy, especially if the operation being locked over is trivial, or the life of the lock is a high percentage of the work being performed concurrently.  In the case above, the lock consumes pretty much all of the time of each parallel task – and the task being locked on is relatively trivial. Now, let me put in a disclaimer here before we go further: For most uses, lock is more than sufficient for your needs, and is often the simplest solution!    So, if lock is sufficient for most needs, why would we ever consider another solution?  The problem with locking is that it can suspend execution of your thread while it waits for the signal that the lock is free.  Moreover, if the operation being locked over is trivial, the lock can add a very high level of overhead.  This is why things like Interlocked.Increment() perform so well, instead of locking just to perform an increment, we perform the increment with an atomic, lockless method. As with all things performance related, it’s important to profile before jumping to the conclusion that you should optimize everything in your path.  If your profiling shows that locking is causing a high level of waiting in your application, then it’s time to consider lighter alternatives such as Interlocked. CompareExchange() – Exchange existing value if equal some value So let’s look at how we could use CompareExchange() to solve our problem above.  The general syntax of CompareExchange() is: T CompareExchange<T>(ref T location, T newValue, T expectedValue) If the value in location == expectedValue, then newValue is exchanged.  Either way, the value in location (before exchange) is returned. Actually, CompareExchange() is not one method, but a family of overloaded methods that can take int, long, float, double, pointers, or references.  It cannot take other value types (that is, can’t CompareExchange() two DateTime instances directly).  Also keep in mind that the version that takes any reference type (the generic overload) only checks for reference equality, it does not call any overridden Equals(). So how does this help us?  Well, we can grab the current total, and exchange the new value if total hasn’t changed.  This would look like this: 1: // grab the snapshot 2: double current = total; 3:  4: // if the total hasn’t changed since I grabbed the snapshot, then 5: // set it to the new total 6: Interlocked.CompareExchange(ref total, current + next, current); So what the code above says is: if the amount in total (1st arg) is the same as the amount in current (3rd arg), then set total to current + next (2nd arg).  This check and exchange pair is atomic (and thus thread-safe). This works if total is the same as our snapshot in current, but the problem, is what happens if they aren’t the same?  Well, we know that in either case we will get the previous value of total (before the exchange), back as a result.  Thus, we can test this against our snapshot to see if it was the value we expected: 1: // if the value returned is != current, then our snapshot must be out of date 2: // which means we didn't (and shouldn't) apply current + next 3: if (Interlocked.CompareExchange(ref total, current + next, current) != current) 4: { 5: // ooops, total was not equal to our snapshot in current, what should we do??? 6: } So what do we do if we fail?  That’s up to you and the problem you are trying to solve.  It’s possible you would decide to abort the whole transaction, or perhaps do a lightweight spin and try again.  Let’s try that: 1: double current = total; 2:  3: // make first attempt... 4: if (Interlocked.CompareExchange(ref total, current + i, current) != current) 5: { 6: // if we fail, go into a spin wait, spin, and try again until succeed 7: var spinner = new SpinWait(); 8:  9: do 10: { 11: spinner.SpinOnce(); 12: current = total; 13: } 14: while (Interlocked.CompareExchange(ref total, current + i, current) != current); 15: } 16:  This is not trivial code, but it illustrates a possible use of CompareExchange().  What we are doing is first checking to see if we succeed on the first try, and if so great!  If not, we create a SpinWait and then repeat the process of SpinOnce(), grab a fresh snapshot, and repeat until CompareExchnage() succeeds.  You may wonder why not a simple do-while here, and the reason it’s more efficient to only create the SpinWait until we absolutely know we need one, for optimal efficiency. Though not as simple (or maintainable) as a simple lock, this will perform better in many situations.  Comparing an unlocked (and wrong) version, a version using lock, and the Interlocked of the code, we get the following average times for multiple iterations of adding the sum of 100,000 numbers: 1: Unlocked money average time: 2.1 ms 2: Locked money average time: 5.1 ms 3: Interlocked money average time: 3 ms So the Interlocked.CompareExchange(), while heavier to code, came in lighter than the lock, offering a good compromise of safety and performance when we need to reduce contention. CompareExchange() - it’s not just for adding stuff… So that was one simple use of CompareExchange() in the context of adding double values -- which meant we couldn’t have used the simpler Interlocked.Add() -- but it has other uses as well. If you think about it, this really works anytime you want to create something new based on a current value without using a full lock.  For example, you could use it to create a simple lazy instantiation implementation.  In this case, we want to set the lazy instance only if the previous value was null: 1: public static class Lazy<T> where T : class, new() 2: { 3: private static T _instance; 4:  5: public static T Instance 6: { 7: get 8: { 9: // if current is null, we need to create new instance 10: if (_instance == null) 11: { 12: // attempt create, it will only set if previous was null 13: Interlocked.CompareExchange(ref _instance, new T(), (T)null); 14: } 15:  16: return _instance; 17: } 18: } 19: } So, if _instance == null, this will create a new T() and attempt to exchange it with _instance.  If _instance is not null, then it does nothing and we discard the new T() we created. This is a way to create lazy instances of a type where we are more concerned about locking overhead than creating an accidental duplicate which is not used.  In fact, the BCL implementation of Lazy<T> offers a similar thread-safety choice for Publication thread safety, where it will not guarantee only one instance was created, but it will guarantee that all readers get the same instance.  Another possible use would be in concurrent collections.  Let’s say, for example, that you are creating your own brand new super stack that uses a linked list paradigm and is “lock free”.  We could use Interlocked.CompareExchange() to be able to do a lockless Push() which could be more efficient in multi-threaded applications where several threads are pushing and popping on the stack concurrently. Yes, there are already concurrent collections in the BCL (in .NET 4.0 as part of the TPL), but it’s a fun exercise!  So let’s assume we have a node like this: 1: public sealed class Node<T> 2: { 3: // the data for this node 4: public T Data { get; set; } 5:  6: // the link to the next instance 7: internal Node<T> Next { get; set; } 8: } Then, perhaps, our stack’s Push() operation might look something like: 1: public sealed class SuperStack<T> 2: { 3: private volatile T _head; 4:  5: public void Push(T value) 6: { 7: var newNode = new Node<int> { Data = value, Next = _head }; 8:  9: if (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next) 10: { 11: var spinner = new SpinWait(); 12:  13: do 14: { 15: spinner.SpinOnce(); 16: newNode.Next = _head; 17: } 18: while (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next); 19: } 20: } 21:  22: // ... 23: } Notice a similar paradigm here as with adding our doubles before.  What we are doing is creating the new Node with the data to push, and with a Next value being the original node referenced by _head.  This will create our stack behavior (LIFO – Last In, First Out).  Now, we have to set _head to now refer to the newNode, but we must first make sure it hasn’t changed! So we check to see if _head has the same value we saved in our snapshot as newNode.Next, and if so, we set _head to newNode.  This is all done atomically, and the result is _head’s original value, as long as the original value was what we assumed it was with newNode.Next, then we are good and we set it without a lock!  If not, we SpinWait and try again. Once again, this is much lighter than locking in highly parallelized code with lots of contention.  If I compare the method above with a similar class using lock, I get the following results for pushing 100,000 items: 1: Locked SuperStack average time: 6 ms 2: Interlocked SuperStack average time: 4.5 ms So, once again, we can get more efficient than a lock, though there is the cost of added code complexity.  Fortunately for you, most of the concurrent collection you’d ever need are already created for you in the System.Collections.Concurrent (here) namespace – for more information, see my Little Wonders – The Concurent Collections Part 1 (here), Part 2 (here), and Part 3 (here). Summary We’ve seen before how the Interlocked class can be used to safely and efficiently add, increment, decrement, read, and exchange values in a multi-threaded environment.  In addition to these, Interlocked CompareExchange() can be used to perform more complex logic without the need of a lock when lock contention is a concern. The added efficiency, though, comes at the cost of more complex code.  As such, the standard lock is often sufficient for most thread-safety needs.  But if profiling indicates you spend a lot of time waiting for locks, or if you just need a lock for something simple such as an increment, decrement, read, exchange, etc., then consider using the Interlocked class’s methods to reduce wait. Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked,CompareExchange,threading,concurrency

    Read the article

  • How to monitor the total number of SQL Server logins

    - by Shiraz Bhaiji
    We have an SQL Server 2005 that is the backend of a web application. The application is partly SharePoint and partly web services accessing the database via Entity Framework. In the performance monitor I am seeing average SQL Logins is ca, 60 per second (max 170), but the average logouts is less than 1. Where can I see the total number of SQL Server logins? Anyone have an idea what could be causing this?

    Read the article

  • My internet speed became slow at night

    - by FrozenKing
    My internet plan is 512kbps unlimited and I get speed of average 64kbps but at night I used to get speed of 112kbps ..but recently my speed got normal like day time ...as per my view usually at night their is less traffic so I should get good speed like before ... Due to good speed I download and upload at night and my average download+upload per month is 60gb or 70gb... Is it that my ISP people putting restriction on my download and uploads.. I am confused.

    Read the article

  • BitTorrent Myth

    - by Moon .
    In BitTorent Statistics there is a field "Total Ratio" that is the ratio between total downloads and uploads. i have heard that this ratio affects BitTorrent'ss performance. If the ratio is better then BitTorrent Network provides you services on priority. And If the ratio is down (less uploads) then the BitTorrent provides you services on average or below average priorities. Is there something like that.....

    Read the article

  • custom video icon for a single video file in windows 7 file explorer

    - by MrBrody
    recently I found a video on the net ( a .mp4 file), and when I had it on my computer with Windows7, I noticed its thumbnail was not the average windows 7 video thumbnail (which looks like a piece of video film with a random picture from the movie), but a custom thumbnail! Looking in the file properties did not help find the correct button to change the thumbnail...so I just wonder how he did it! Here is a picture: left: the custom thumbnail, right: the average thumbnail...

    Read the article

  • Possible reasons for high CPU load of taskmgr.exe process on VM?

    - by mjn
    On a VMware virtual machine which has severe performance problems I can see a constant average of 20+ percent CPU load for the TASKMGR.EXE (task manager) process. The apps running on this server have lower load, around 4 to 10 percent average. The VM is running Windows 2003 Server Standard with 3.75 GB assigned RAM. I suspect that the task manager CPU load has something to do with other VM instances on the VMWare server but could not see a similar value on internal ESXi systems (the problematic VM runs in the customers IT).

    Read the article

  • [C++] Write connected components of a graph using Boost Graph

    - by conradlee
    I have an file that is a long list of weighted edges, in the following form node1_id node2_id weight node1_id node3_id weight and so on. So one weighted edge per line. I want to load this file into boost graph and find the connected components in the graph. Each of these connected components is a subgraph. For each of these component subgraphs, I want to write the edges in the above-described format. I want to do all this using boost graph. This problem is in principle simple, it's just I'm not sure how to implement it neatly because I don't know my way around Boost Graph. I have already spent some hours and have code that will find the connected components, but my version is surely much longer and more complicated that necessary---I'm hoping there's a boost-graph ninja out there that can show me the right, easy way.

    Read the article

  • Incorrect value for sum of two NSIntegers

    - by Antonio
    Hi everybody: I'm sure I'm missing something and the answer is very simple, but I can't seem to understand why this is happening. I'm trying to make an average of dates: NSInteger runningSum =0; NSInteger count=0; for (EventoData *event in self.events) { NSDate *dateFromString = [[NSDate alloc] init]; if (event.date != nil) { dateFromString = [dateFormatter dateFromString:event.date]; runningSum += (NSInteger)[dateFromString timeIntervalSince1970]; count += 1; } } if (count>0) { NSLog(@"average is: %@",[NSDate dateWithTimeIntervalSince1970:(NSInteger)((CGFloat)runningAverage/count)]); } Everything seems to work OK, except for runningSum += (NSInteger)[dateFromString timeIntervalSince1970], which gives an incorrect result. If I put a breakpoint when taking the average of two equal dates (2009-10-10, for example, which is a timeInterval of 1255125600), runningSum is -1784716096, instead of the expected 2510251200. I've tried using NSNumber and I get the same result. Can anybody point me in the right direction? Thanks! Antonio

    Read the article

  • C# Memoization of functions with arbitrary number of arguments

    - by Lirik
    I'm trying to create a memoization interface for functions with arbitrary number of arguments, but I'm failing miserably. The first thing I tried is to define an interface for a function which gets memoized automatically upon execution: class EMAFunction:IFunction { Dictionary<List<object>, List<object>> map; class EMAComparer : IEqualityComparer<List<object>> { private int _multiplier = 97; public bool Equals(List<object> a, List<object> b) { List<object> aVals = (List<object>)a[0]; int aPeriod = (int)a[1]; List<object> bVals = (List<object>)b[0]; int bPeriod = (int)b[1]; return (aVals.Count == bVals.Count) && (aPeriod == bPeriod); } public int GetHashCode(List<object> obj) { // Don't compute hash code on null object. if (obj == null) { return 0; } // Get length. int length = obj.Count; List<object> vals = (List<object>) obj[0]; int period = (int) obj[1]; return (_multiplier * vals.GetHashCode() * period.GetHashCode()) + length;; } } public EMAFunction() { NumParams = 2; Name = "EMA"; map = new Dictionary<List<object>, List<object>>(new EMAComparer()); } #region IFunction Members public int NumParams { get; set; } public string Name { get; set; } public object Execute(List<object> parameters) { if (parameters.Count != NumParams) throw new ArgumentException("The num params doesn't match!"); if (!map.ContainsKey(parameters)) { //map.Add(parameters, List<double> values = new List<double>(); List<object> asObj = (List<object>)parameters[0]; foreach (object val in asObj) { values.Add((double)val); } int period = (int)parameters[1]; asObj.Clear(); List<double> ema = TechFunctions.ExponentialMovingAverage(values, period); foreach (double val in ema) { asObj.Add(val); } map.Add(parameters, asObj); } return map[parameters]; } public void ClearMap() { map.Clear(); } #endregion } Here are my tests of the function: private void MemoizeTest() { DataSet dataSet = DataLoader.LoadData(DataLoader.DataSource.FROM_WEB, 1024); List<String> labels = dataSet.DataLabels; Stopwatch sw = new Stopwatch(); IFunction emaFunc = new EMAFunction(); List<object> parameters = new List<object>(); int numRuns = 1000; long sumTicks = 0; parameters.Add(dataSet.GetValues("open")); parameters.Add(12); // First call for(int i = 0; i < numRuns; ++i) { emaFunc.ClearMap();// remove any memoization mappings sw.Start(); emaFunc.Execute(parameters); sw.Stop(); sumTicks += sw.ElapsedTicks; } Console.WriteLine("Average ticks not-memoized " + (sumTicks/numRuns)); sumTicks = 0; // Repeat call for (int i = 0; i < numRuns; ++i) { sw.Start(); emaFunc.Execute(parameters); sw.Stop(); sumTicks += sw.ElapsedTicks; } Console.WriteLine("Average ticks memoized " + (sumTicks/numRuns)); } The performance is confusing me... I expected the memoized function to be faster, but it didn't work out that way: Average ticks not-memoized 106,182 Average ticks memoized 198,854 I tried doubling the data instances to 2048, but the results were about the same: Average ticks not-memoized 232,579 Average ticks memoized 446,280 I did notice that it was correctly finding the parameters in the map and it going directly to the map, but the performance was still slow... I'm either open for troubleshooting help with this example, or if you have a better solution to the problem then please let me know what it is.

    Read the article

  • add Constraint on database with trigger

    - by Am1rr3zA
    Hi, I have 3 tables (Student, Course, student_course_choose(have field grade)) I defined a view on these 3 tables that get me an Average of the each student. I want to have constraint(with trigger) on these view(or on the table that need it) to limit the average of each student between 13 and 18. I somewhere read that I must use foreach statement(instead of foreach row) on trigger because when I decrease some grade of special student and his/her average become less than 13 they don't give me error (because later I increase grade of another his/her course ). how must I wrote this Trigger? (I want to implement aprh for testing trigger) note:I can write it in SQL server, oracle or Mysql no diff for me.

    Read the article

  • How do I handle a low job offer for an entry level position?

    - by user229269
    Hi guys! I recently graduated with MS in CS and I am excited because I just received a job offer from a company I really like for an entry-level sw engineer position. The thing is that, although the salary is not my priority and I care way more about gaining experience, their offer unfortunately is way below of what I expected. Actually after I did some research I realized that, comparing to the average salary range for the entry-level sw engineering positions in my area (one of the most expensive areas in the US) supposedly [X - Y]$ (where X is the lowest average and Y the highest), their offer is 20% below X! I wouldnt have a problem accepting an offer around X but this one is even lower than the lowest. Can I counter offer the X which is 20% more than what they offered me but at the same time is the minimum average? -- And mind you that I didnt even take under consideration the fact that I hold a MS degree which in many cases yields to a 5-10% more pay.

    Read the article

  • how to solve nested list programs [closed]

    - by riya
    write a function to get most popular car that accepts a car detail as input and returns the most popular car name along with its average rating .Each element of car details list is a sublist that provides the below information about a car (a)name of a car(b)car price (c) list of ratings obtained by car from various agencies.Incase two cars have the same average rating then the car with the lesser price qualifies as most popular car? here's my solution-: (define-struct cardetails ("name" price list of '(ratings)) (define car1 (make-cardetails "toyota" 123 '( 1 2 3))) (define car2 (make-cardetails "santro" 321 '( 2 2 3))) (define car3 (make-cardetails "toyota" 100 '( 1 2 3))) (define cardetailslist(list(car1) (car2)(car 3))) (let loop ((count 0)) (let (len (length cardetailslist)) (if(< count len) (string-ref (string-ref n)0) now please tell me how to find maximum average and display car name.it's not a homework question tomorrow is my test and we have not been taught this concept in class although it is very important from test point of view

    Read the article

< Previous Page | 9 10 11 12 13 14 15 16 17 18 19 20  | Next Page >