Search Results

Search found 48797 results on 1952 pages for 'read write'.

Page 130/1952 | < Previous Page | 126 127 128 129 130 131 132 133 134 135 136 137  | Next Page >

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • flashcache with mdadm and LVM

    - by Backtogeek
    I am having trouble setting up flashcache on a system with LVM and mdadm, I suspect I am either just missing an obvious step or getting some mapping wrong and hoped someone could point me in the right direction? system info: CentOS 6.4 64 bit mdadm config md0 : active raid1 sdd3[2] sde3[3] sdf3[4] sdg3[5] sdh3[1] sda3[0] 204736 blocks super 1.0 [6/6] [UUUUUU] md2 : active raid6 sdd5[2] sde5[3] sdf5[4] sdg5[5] sdh5[1] sda5[0] 3794905088 blocks super 1.1 level 6, 512k chunk, algorithm 2 [6/6] [UUUUUU] md3 : active raid0 sdc1[1] sdb1[0] 250065920 blocks super 1.1 512k chunks md1 : active raid10 sdh1[1] sda1[0] sdd1[2] sdf1[4] sdg1[5] sde1[3] 76749312 blocks super 1.1 512K chunks 2 near-copies [6/6] [UUUUUU] pcsvan PV /dev/mapper/ssdcache VG Xenvol lvm2 [3.53 TiB / 3.53 TiB free] Total: 1 [3.53 TiB] / in use: 1 [3.53 TiB] / in no VG: 0 [0 ] flashcache create command used: flashcache_create -p back ssdcache /dev/md3 /dev/md2 pvdisplay --- Physical volume --- PV Name /dev/mapper/ssdcache VG Name Xenvol PV Size 3.53 TiB / not usable 106.00 MiB Allocatable yes PE Size 128.00 MiB Total PE 28952 Free PE 28912 Allocated PE 40 PV UUID w0ENVR-EjvO-gAZ8-TQA1-5wYu-ISOk-pJv7LV vgdisplay --- Volume group --- VG Name Xenvol System ID Format lvm2 Metadata Areas 1 Metadata Sequence No 2 VG Access read/write VG Status resizable MAX LV 0 Cur LV 1 Open LV 1 Max PV 0 Cur PV 1 Act PV 1 VG Size 3.53 TiB PE Size 128.00 MiB Total PE 28952 Alloc PE / Size 40 / 5.00 GiB Free PE / Size 28912 / 3.53 TiB VG UUID 7vfKWh-ENPb-P8dV-jVlb-kP0o-1dDd-N8zzYj So that is where I am at, I thought that was the job done however when creating a logical volume called test and mounting it is /mnt/test the sequential write is pathetic, 60 ish MB/s /dev/md3 has 2 x SSD's in Raid0 which alone is performing at around 800 MB/s sequential write and I am trying to cache /dev/md2 which is 6 x 1TB drives in raid6 I have read a number of pages through the day and some of them here, it is obvious from the results that the cache is not functioning but I am unsure why. I have added the filter line in the lvm.conf filter = [ "r|/dev/sdb|", "r|/dev/sdc|", "r|/dev/md3|" ] It is probably something silly but the cache is clearly performing no writes so I suspect I am not mapping it or have not mounted the cache correctly. dmsetup status ssdcache: 0 7589810176 flashcache stats: reads(142), writes(0) read hits(133), read hit percent(93) write hits(0) write hit percent(0) dirty write hits(0) dirty write hit percent(0) replacement(0), write replacement(0) write invalidates(0), read invalidates(0) pending enqueues(0), pending inval(0) metadata dirties(0), metadata cleans(0) metadata batch(0) metadata ssd writes(0) cleanings(0) fallow cleanings(0) no room(0) front merge(0) back merge(0) force_clean_block(0) disk reads(9), disk writes(0) ssd reads(133) ssd writes(9) uncached reads(0), uncached writes(0), uncached IO requeue(0) disk read errors(0), disk write errors(0) ssd read errors(0) ssd write errors(0) uncached sequential reads(0), uncached sequential writes(0) pid_adds(0), pid_dels(0), pid_drops(0) pid_expiry(0) lru hot blocks(31136000), lru warm blocks(31136000) lru promotions(0), lru demotions(0) Xenvol-test: 0 10485760 linear I have included as much info as I can think of, look forward to any replies.

    Read the article

  • Why does my Sax Parser produce no results after using InputStream Read?

    - by Andy Barlow
    Hello, I have this piece of code which I'm hoping will be able to tell me how much data I have downloaded (and soon put it in a progress bar), and then parse the results through my Sax Parser. If I comment out basically everything above the //xr.parse(new InputSource(request.getInputStream())); line and swap the xr.parse's over, it works fine. But at the moment, my Sax parser tells me I have nothing. Is it something to do with is.read (buffer) section? Also, just as a note, request is a HttpURLConnection with various signatures. /*Input stream to read from our connection*/ InputStream is = request.getInputStream(); /*we make a 2 Kb buffer to accelerate the download, instead of reading the file a byte at once*/ byte [ ] buffer = new byte [ 2048 ] ; /*How many bytes do we have already downloaded*/ int totBytes,bytes,sumBytes = 0; totBytes = request.getContentLength () ; while ( true ) { /*How many bytes we got*/ bytes = is.read (buffer); /*If no more byte, we're done with the download*/ if ( bytes <= 0 ) break; sumBytes+= bytes; Log.v("XML", sumBytes + " of " + totBytes + " " + ( ( float ) sumBytes/ ( float ) totBytes ) *100 + "% done" ); } /* Parse the xml-data from our URL. */ // OLD, and works if comment all the above //xr.parse(new InputSource(request.getInputStream())); xr.parse(new InputSource(is)) /* Parsing has finished. */; Can anyone help me at all?? Kind regards, Andy

    Read the article

  • Data in linux FIFO seems lost

    - by Utoah
    Hi, I have a bash script which wants to do some work in parallel, I did this by putting each job in an subshell which is run in the background. While the number of job running simultaneously should under some limit, I achieve this by first put some lines in a FIFO, then just before forking the subshell, the parent script is required to read a line from this FIFO. Only after it gets a line can it fork the subshell. Up to now, everything works fine. But when I tried to read a line from the FIFO in the subshell, it seems that only one subshell can get a line, even if there are apparently more lines in the FIFO. So I wonder why cannot other subshell(s) read a line even when there are more lines in the FIFO. My testing code looks something like this: #!/bin/sh fifo_path="/tmp/fy_u_test2.fifo" mkfifo $fifo_path #open fifo for r/w at fd 6 exec 6 $fifo_path process_num=5 #put $process_num lines in the FIFO for ((i=0; i<${process_num}; i++)); do echo "$i" done &6 delay_some(){ local index="$1" echo "This is what u can see. $index \n" sleep 20; } #In each iteration, try to read 2 lines from FIFO, one from this shell, #the other from the subshell for i in 1 2 do date /tmp/fy_date #If a line can be read from FIFO, run a subshell in bk, otherwise, block. read -u6 echo " $$ Read --- $REPLY --- from 6 \n" /tmp/fy_date { delay_some $i #Try to read a line from FIFO read -u6 echo " $$ This is in child # $i, read --- $REPLY --- from 6 \n" /tmp/fy_date } & done And the output file /tmp/fy_date has content of: Mon Apr 26 16:02:18 CST 2010 32561 Read --- 0 --- from 6 \n Mon Apr 26 16:02:18 CST 2010 32561 Read --- 1 --- from 6 \n 32561 This is in child # 1, read --- 2 --- from 6 \n

    Read the article

  • Unable to aquire image through ImageIO.read(url) because of connection timed out.

    - by Jake Frederix
    Following code always fails URL url = new URL("http://userserve-ak.last.fm/serve/126/8636005.jpg"); Image img = ImageIO.read(url); System.out.println(img); I've manually checked the url, and it is valid, and contains a valid jpg image. The problem I get is; Exception in thread "main" javax.imageio.IIOException: Can't get input stream from URL! at javax.imageio.ImageIO.read(ImageIO.java:1385) at maestro.Main2.main(Main2.java:25) Caused by: java.net.ConnectException: Connection timed out at java.net.PlainSocketImpl.socketConnect(Native Method) at java.net.AbstractPlainSocketImpl.doConnect(AbstractPlainSocketImpl.java:310) at java.net.AbstractPlainSocketImpl.connectToAddress(AbstractPlainSocketImpl.java:176) at java.net.AbstractPlainSocketImpl.connect(AbstractPlainSocketImpl.java:163) at java.net.Socket.connect(Socket.java:546) at java.net.Socket.connect(Socket.java:495) at sun.net.NetworkClient.doConnect(NetworkClient.java:174) at sun.net.www.http.HttpClient.openServer(HttpClient.java:409) at sun.net.www.http.HttpClient.openServer(HttpClient.java:530) at sun.net.www.http.HttpClient.(HttpClient.java:240) at sun.net.www.http.HttpClient.New(HttpClient.java:321) at sun.net.www.http.HttpClient.New(HttpClient.java:338) at sun.net.www.protocol.http.HttpURLConnection.getNewHttpClient(HttpURLConnection.java:814) at sun.net.www.protocol.http.HttpURLConnection.plainConnect(HttpURLConnection.java:755) at sun.net.www.protocol.http.HttpURLConnection.connect(HttpURLConnection.java:680) at sun.net.www.protocol.http.HttpURLConnection.getInputStream(HttpURLConnection.java:1005) at java.net.URL.openStream(URL.java:1029) at javax.imageio.ImageIO.read(ImageIO.java:1383) ... 1 more Java Result: 1 What does this mean? Funny thing is, if I change my internet-connection to that of the neighbour's wireless, it suddenly does work.

    Read the article

  • Why do my Sax Parser produce no results after using InputStream Read?

    - by Andy Barlow
    Hello, I have this piece of code which I'm hoping will be able to tell me how much data I have downloaded (and soon put it in a progress bar), and then parse the results through my Sax Parser. If I comment out basically everything above the //xr.parse(new InputSource(request.getInputStream())); line and swap the xr.parse's over, it works fine. But at the moment, my Sax parser tells me I have nothing. Is it something to do with is.read (buffer) section? Also, just as a note, request is a HttpURLConnection with various signatures. /*Input stream to read from our connection*/ InputStream is = request.getInputStream(); /*we make a 2 Kb buffer to accelerate the download, instead of reading the file a byte at once*/ byte [ ] buffer = new byte [ 2048 ] ; /*How many bytes do we have already downloaded*/ int totBytes,bytes,sumBytes = 0; totBytes = request.getContentLength () ; while ( true ) { /*How many bytes we got*/ bytes = is.read (buffer); /*If no more byte, we're done with the download*/ if ( bytes <= 0 ) break; sumBytes+= bytes; Log.v("XML", sumBytes + " of " + totBytes + " " + ( ( float ) sumBytes/ ( float ) totBytes ) *100 + "% done" ); } /* Parse the xml-data from our URL. */ // OLD, and works if comment all the above //xr.parse(new InputSource(request.getInputStream())); xr.parse(new InputSource(is)) /* Parsing has finished. */; Can anyone help me at all?? Kind regards, Andy

    Read the article

  • HttpURLConnection: What's the deal with having to read the whole response?

    - by stormin986
    My current problem is very similar to this one. I have a downloadFile(URL) function that creates a new HttpURLConnection, opens it, reads it, returns the results. When I call this function on the same URL multiple times, the second time around it almost always returns a response code of -1 (But throws no exception!!!). The top answer in that question is very helpful, but there are a few things I'm trying to understand. So, if setting http.keepAlive to false solves the problem, it indicates what exactly? That the server is responding in a way that violates the http protocol? Or more likely, my code is violating the protocol in some way? What will the trace tell me? What should I look for? And what's the deal with this: You need to read everything from error stream. Otherwise, it's going to confuse next connection and that's the cause of -1. Does this mean if the response is some type of error (which would be what response code(s)?), the stream HAS to be fully read? Also, every time I am attempting an http request I am basically creating a new connection, and then disconnect()ing it at the end. However, in my case I'm not getting a 401 or whatever. It's always a 200. But my second connection almost always fails. Does this mean there's some other data I should be reading that I'm not (in a similar manner that the error stream must be fully read)? Please help shed some light on this? I feel like there's some fundamental http protocol understanding I'm missing.

    Read the article

  • What does the subversion error "Could not read status line" mean?

    - by Jergason
    Exact duplicate: SVN: Could not read status line: connection was closed by server This is not an exact duplicate. The other question was asking about getting the error in a specific situation, and the answer was vauge at best. This is a fairly basic question, but it is driving me nuts. I have set up a brand new repository at beanstalk.com. They give me the url, http://.svn.beanstalkapp.com/blog. They also automatically create the tag, trunk and branches folder in the repository. I have checked out the trunk folder and used svn add to add the new file. I am trying to do my first commit, but I get this error: Commit failed (details follow): CHECKOUT of '/foo/!svn/bln/1': Could not read status line: connection was closed by server. (http://user_name@my_name.svn.beanstalkapp.com) What does this mean, and what causes it? I have googled for a definition of what "Could not read status line" means, but was unable to find anything explaining it. edit: I was getting this error while trying to manipulate my repository from behind a firewall. I still don't know what was causing it, but I don't have this problem at home. Strangeness.

    Read the article

  • How do I read binary C++ protobuf data using Python protobuf?

    - by nbolton
    The Python version of Google protobuf gives us only: SerializeAsString() Where as the C++ version gives us both: SerializeToArray(...) SerializeAsString() We're writing to our C++ file in binary format, and we'd like to keep it this way. That said, is there a way of reading the binary data into Python and parsing it as if it were a string? Is this the correct way of doing it? binary = get_binary_data() binary_size = get_binary_size() string = None for i in range(len(binary_size)): string += i message = new MyMessage() message.ParseFromString(string) Update: Here's a new example, and a problem: message_length = 512 file = open('foobars.bin', 'rb') eof = False while not eof: data = file.read(message_length) eof = not data if not eof: foo_bar = FooBar() foo_bar.ParseFromString(data) When we get to the foo_bar.ParseFromString(data) line, I get this error: Exception Type: DecodeError Exception Value: Too many bytes when decoding varint. Update 2: It turns out, that the padding on the binary data was throwing protobuf off; too many bytes were being sent in, as the message suggests (in this case it was referring to the padding). This padding comes from using the C++ protobuf function, SerializeToArray on a fixed-length buffer. To eliminate this, I have used this temproary code: message_length = 512 file = open('foobars.bin', 'rb') eof = False while not eof: data = file.read(message_length) eof = not data string = '' for i in range(0, len(data)): byte = data[i] if byte != '\xcc': # yuck! string += data[i] if not eof: foo_bar = FooBar() foo_bar.ParseFromString(string) There is a design flaw here I think. I will re-implement my C++ code so that it writes variable length arrays to the binary file. As advised by the protobuf documentation, I will prefix each message with it's binary size so that I know how much to read when I'm opening the file with Python.

    Read the article

  • how to read an arraylist from a txt file in java?

    - by lox
    how to read an arraylist from a txt file in java? my arraylist is the form of: public class Account { String username; String password; } i managed to put some "Accounts" in the a txt file, but now i don't know how to read them. this is how my arraylist look in the txt file: username1 password1 | username2 password2 | etc this is a part of the code i came up with, but it doesn't work. it looks logic to me though... :) . public static void RdAc(String args[]) { ArrayList<Account> peoplelist = new ArrayList<Account>(50); int i,i2,i3; String[] theword = null; try { FileReader fr = new FileReader("myfile.txt"); BufferedReader br = new BufferedReader(fr); String line = ""; while ((line = br.readLine()) != null) { String[] theline = line.split(" | "); for (i = 0; i < theline.length; i++) { theword = theline[i].split(" "); } for(i3=0;i3<theline.length;i3++) { Account people = new Account(); for (i2 = 0; i2 < theword.length; i2++) { people.username = theword[i2]; people.password = theword[i2+1]; peoplelist.add(people); } } } } catch (IOException ex) { System.out.println("Could not read from file"); } }

    Read the article

  • Can threads safely read variables set by VCL events?

    - by Tom1952
    Is it safe for a thread to READ a variable set by a Delphi VCL event? When a user clicks on a VCL TCheckbox, the main thread sets a boolean to the checkbox's Checked state. CheckboxState := CheckBox1.Checked; At any time, a thread reads that variable if CheckBoxState then ... It doesn't matter if the thread "misses" a change to the boolean, because the thread checks the variable in a loop as it does other things. So it will see the state change eventually... Is this safe? Or do I need special code? Is surrounding the read and write of the variable (in the thread and main thread respectively) with critical code calls necessary and sufficient? As I said, it doesn't matter if the thread gets the "wrong" value, but I keep thinking that there might be a low-level problem if one thread tries to read a variable while the main thread is in the middle of writing it, or vice versa. My question is similar to this one: http://stackoverflow.com/questions/1353096/cross-thread-reading-of-a-variable. (Also related to my previous question: http://stackoverflow.com/questions/2449183/using-entercriticalsection-in-thread-to-update-vcl-label)

    Read the article

  • What is the proper way to code a read-while loop in Scala?

    - by ARKBAN
    What is the "proper" of writing the standard read-while loop in Scala? By proper I mean written in a Scala-like way as opposed to a Java-like way. Here is the code I have in Java: MessageDigest md = MessageDigest.getInstance( "MD5" ); InputStream input = new FileInputStream( "file" ); byte[] buffer = new byte[1024]; int readLen; while( ( readLen = input.read( buffer ) ) != -1 ) md.update( buffer, 0, readLen ); return md.digest(); Here is the code I have in Scala: val md = MessageDigest.getInstance( hashInfo.algorithm ) val input = new FileInputStream( "file" ) val buffer = new Array[ Byte ]( 1024 ) var readLen = 0 while( readLen != -1 ) { readLen = input.read( buffer ) if( readLen != -1 ) md.update( buffer, 0, readLen ) } md.digest The Scala code is correct and works, but feels very un-Scala-ish. For one it is a literal translation of the Java code, taking advantage of none of the advantages of Scala. Further it is actually longer than the Java code! I really feel like I'm missing something, but I can't figure out what. I'm fairly new to Scala, and so I'm asking the question to avoid falling into the pitfall of writing Java-style code in Scala. I'm more interested in the Scala way to solve this kind of problem than in any specific helper method that might be provided by the Scala API to hash a file. (I apologize in advance for my ad hoc Scala adjectives throughout this question.)

    Read the article

  • How to proceed jpeg Image file size after read--rotate-write operations in Java?

    - by zamska
    Im trying to read a JPEG image as BufferedImage, rotate and save it as another jpeg image from file system. But there is a problem : after these operations I cannot proceed same file size. Here the code //read Image BufferedImage img = ImageIO.read(new File(path)); //rotate Image BufferedImage rotatedImage = new BufferedImage(image.getHeight(), image.getWidth(), BufferedImage.TYPE_3BYTE_BGR); Graphics2D g2d = (Graphics2D) rotatedImage.getGraphics(); g2d.rotate(Math.toRadians(PhotoConstants.ROTATE_LEFT)); int height=-rotatedImage.getHeight(null); g2d.drawImage(image, height, 0, null); g2d.dispose(); //Write Image Iterator iter = ImageIO.getImageWritersByFormatName("jpeg"); ImageWriter writer = (ImageWriter)iter.next(); // instantiate an ImageWriteParam object with default compression options ImageWriteParam iwp = writer.getDefaultWriteParam(); try { FileImageOutputStream output = null; iwp.setCompressionMode(ImageWriteParam.MODE_EXPLICIT); iwp.setCompressionQuality(0.98f); // an integer between 0 and 1 // 1 specifies minimum compression and maximum quality File file = new File(path); output = new FileImageOutputStream(file); writer.setOutput(output); IIOImage iioImage = new IIOImage(image, null, null); writer.write(null, iioImage, iwp); output.flush(); output.close(); writer.dispose(); Is it possible to access compressionQuality parameter of original jpeg image in the beginning. when I set 1 to compression quality, the image gets bigger size. Otherwise I set 0.9 or less the image gets smaller size. How can i proceed the image size after these operations? Thank you,

    Read the article

  • UI - How I can make users effectively read what my program says?

    - by Magnetic_dud
    I have a simple form that searches through the 2000+ issues of a 3rd party webcomic. (Easy, it's like xkcd: http://url/number That form is as easy as possible, is like this: What number do you want? User writes a number, clicks ok, and goes on the 3rd party website on a new tab Then, my form asks a question: "Did you find that issue memorable? Enter the name here, and we will add it to the "best issues" in home page" When the user will write the name of the issue, it is added to the database (pending moderation by me) So, I supposed this design is the easiest and convenient that users can find. Unfortunately, NONE of the users (maybe a 2% behaved correctly) will actually read what I asked. Some of the issues are offline, and gives a 404. On that issues users will write in the textbox a completely wrong title, and correctly capitalized! It's like if i would name http://xkcd.com/627/ as "The Great Adventures of Jack Smith" Users are from around all over the country, with different browsers, and have a different cookie. I cannot believe that my users will not read what I ask, it is a WHITE PAGE with a button that disappears when clicked and a textbox.... easier than that??? Maybe i should put a checkbox with "I acknowledge that this form is for submitting memorable issues, not for fun"? Oh, who will read that? Or maybe i could enable the textbox only if the user has effectively clicked the link?

    Read the article

  • Doesn't this defeat the whole purpose of having read-only properties?

    - by flockofcode
    I know how to use properties and I understand that they implicitly call underlying get and set accessors, depending on whether we are writing to or reading from a property. static void Main(string[] args) { A a = new A(); (a.b).i = 100; } class A { private B _b = new B(); public B b { get { return _b; } } } class B { public int i; } What code (a.b).i = 100; essentially does is that first property’s get accessor returns a reference to an object _b, and once we have this reference, we are able to access _b’s members and change their values. Thus, in our example, having read only property only prevents outside code from changing the value of a reference variable _b, but it doesn’t prevent outside code from accessing _b’s members. So it seems that property can only detect whether we are trying to read from or write to a variable ( in our case variable _b ) located on the stack, while it’s not able to detect whether we’re trying to also write to members of an object to which the variable on the stack ( assuming this variable is of reference type ) points to. a) But doesn’t that defeat the whole purpose of having read-only properties? Wouldn’t it be more effective if properties had the ability to also detect whether we’re trying to access members of an object returned by get accessor( assuming backing field is of a reference type )? thank you

    Read the article

  • why does vector.size() read in one line too little?

    - by ace
    when running the following code, the amount of lines will read on less then there actually is (if the input file is main itself, or otherwise) why is this and how can i change that fact (besides for just adding 1)? #include <fstream> #include <iostream> #include <string> #include <vector> using namespace std; int main() { // open text file for input string file_name; cout << "please enter file name: "; cin >> file_name; // associate the input file stream with a text file ifstream infile(file_name.c_str()); // error checking for a valid filename if ( !infile ) { cerr << "Unable to open file " << file_name << " -- quitting!\n"; return( -1 ); } else cout << "\n"; // some data structures to perform the function vector<string> lines_of_text; string textline; // read in text file, line by line while (getline( infile, textline, '\n' )) { // add the new element to the vector lines_of_text.push_back( textline ); // print the 'back' vector element - see the STL documentation cout << "line read: " << lines_of_text.back() << "\n"; } cout<<lines_of_text.size(); return 0; }

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • I'm doing hobby programming; what programming methodologies (e.g. XP, Agile...) do you recommend me to read up on?

    - by Anto
    Most of you would probably just call me a kid (I'm 15). I'm doing hobby programming (I started fiddling around with ActionScript 2.0 in Flash 8 when I was 11, now I do mostly C, Python and Java). As I'm 15, I won't get a job for a long period of time (I'm going to spend years in academia before that) and thus this question is not about which programming methodologies you recommend me to read up on for a software engineering job, but instead which methodologies should a hobby programmer read about? What will a hobby developer learn from reading about your recommendation(s)?

    Read the article

  • What's the best way to read mailing lists in 2011?

    - by Avdi
    I used to use Emacs/GNUS for reading mailing lists, but that feels very 1990. Plus, it doesn't sync my scoring across PCs. GMail is wonderful, but it kind of sucks for mailing lists. The essential "mute" feature doesn't even work unless the mail is in the Inbox. I'd read my mailing lists on the Google Groups site, but not all of them are Google Groups. Basically, I'm looking for the "Google Reader" of mailing lists. Any suggestions?

    Read the article

  • How can I grant read-only access to my SQL Server 2008 database?

    - by Adrian Grigore
    Hi, I'm trying to grant read-only access (in other words: select queries only) to a user account on my SQL Server 2008 R2 database. Which rights do I have to grant to the user to make this work? I've tried several kinds of combinations of permissions on the server and the database itself, but in all cases the user could still run update queries or he could not run any queries (not even select) at all. The error message I always got was The server principal "foo" is not able to access the database "bar" under the current security context. Thanks for your help, Adrian

    Read the article

  • using sed, how to change the text on line seven to read seventh?

    - by Steve
    using sed, how to change the text on line seven to read seventh? Steve Blenheim:238-923-7366:95 Latham Lane, Easton, PA 83755:11/12/56:20300 Betty Boop:245-836-8357:635 Cutesy Lane, Hollywood, CA 91464:6/23/23:14500 Igor Chevsky:385-375-8395:3567 Populus Place, Caldwell, NJ 23875:6/18/68:23400 Norma Corder:397-857-2735:74 Pine Street, Dearborn, MI 23874:3/28/45:245700 Jennifer Cowan:548-834-2348:583 Laurel Ave., Kingsville, TX 83745:10/1/35:58900 Jon DeLoach:408-253-3122:123 Park St., San Jose, CA 04086:7/25/53:85100 Karen Evich:284-758-2857:23 Edgecliff Place, Lincoln, NB 92743:7/25/53:85100 Fred Fardbarkle:674-843-1385:20 Parak Lane, Duluth, MN 23850:4/12/23:780900 Lori Gortz:327-832-5728:3465 Mirlo Street, Peabody, MA 34756:10/2/65:35200 Paco Gutierrez:835-365-1284:454 Easy Street, Decatur, IL 75732:2/28/53:123500 Ephram Hardy:293-259-5395:235 CarltonLane, Joliet, IL 73858:8/12/20:56700

    Read the article

  • Hard Disk Space Changes

    - by Write.
    I am currently running on Windows 7 x64, and have observe that my hard disk space is acting a little weird. Currently, my harddisk has 3 partitions, C:, D:, E:. Previously, before I delete a huge folder (30gb of data) from my D: drive, my C: drive has about 1gb left, while my E: drive has about 5 gb left. After deleting the 30gb of data (from D: drive), my space in D: drive has been recovered (but not sure if it's fully recovered), my C: drive which only had about 1gb left increased to 3. While my E: drive which had 5gb left dropped to 1. I was wondering if it has something to do with the fragmentations and whatsoever I always hear about in harddisk. Has anyone encountered similar issues or have an explanation to why it could be happening?

    Read the article

  • Which is faster for read access on EC2; local drive or EBS?

    - by Phillip Oldham
    Which is faster for read access on an EC2 instance; the "local" drive or an attached EBS volume? I have some data that needs to be persisted so have placed this on an EBS volume. I'm using OpenSolaris, so this volume has been attached as a ZFS pool. However, I have a large chunk of EC2 disk space that's going to go unused, so I'm considering re-purposing this as a ZFS cache volume but I don't want to do this if the disk access is going to be slower than that of the EBS volume as it would potentially have a detrimental effect.

    Read the article

  • nc or socat: How to read data from remote:/dev/ttyACM0 ?

    - by AndreasT
    I have a device running at a remote computer on /dev/ttyACM0 Now I want to read that data on my computer. I can connect to it over ssh. Unfortunately I am a nc/socat rookie and no howto covered this. Semantically like this: cat remote:/dev/ttyACM0 The remote system has a limited linux on it, and I can't install packages. (socat is not available there, nc is) Super cool would be to have some forwarded device: local:/dev/ttySOCK0 pointing to remote:/dev/ttyACM0 Thanks for any help.

    Read the article

  • Is there an easy way to read blu-rays on Windows?

    - by ereOn
    Some time ago, I bought my parents a computer dedicated to medias (mostly photographs and movies trough DLNA). My father asked me if he could read blu-ray on it, so I bought a blu-ray reader but I can't find a software to do the playback. I installed PowerDVD (a free version we got with a Blu-Ray) but it seems it now requires a (non-free) upgrade. Even if it were free, I hardly see my parent do the upgrade by themselves as they barely understand how computers work. I thought I would find a free software (something like VLC, but for blu-rays) but so far had no luck. Do you guys have a software to suggest that would solve my issues ? It should run on Windows Vista, shouldn't require an update every monday, or at least a free one. Thank you very much.

    Read the article

< Previous Page | 126 127 128 129 130 131 132 133 134 135 136 137  | Next Page >