Search Results

Search found 9032 results on 362 pages for 'fast math'.

Page 131/362 | < Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >

  • Instant Rename and Rename Refactoring

    - by Petr
    During the last weeks I have got  a few questions about rename refactoring and some users also complain to me that the refactoring in NetBeans 6.x was much faster. So I would like to explain the situation. For some people, who don't know, Instant Rename action and Rename Refactoring  can look like one action. But it's not true, even if  both actions use the same shortcut (CTRL + R). NetBeans 6.x contained only Instant Rename action (speaking about PHP support), which we can mark as very simple rename refactoring through one file. From NetBeans 7.0 the Instant Rename action works only in "non public" context. It means that this action is used for fast renaming variables that has local context like inside a method, or for renaming private methods and fields that can not be used outside of the scope, where they are declared. From user point of view these two action can be simply recognized. When is after CTRL+R called Instant Rename action, then the identifier is surrounded with rectangle and you can rename it directly in the file. It's fast and simple, also the usages of this identifier are renamed in the same time as you write. The picture below shows Instant Rename action for $message identifier, that is visible only in the print_test method and due this after CTRL+R is called Instant Rename. In NetBeans 7.0, there was added Rename Refactoring that is called for public identifiers. It means for identifiers that could be used in other files. If you press CTRL+R shortcut when the caret is inside $hello identifier from the picture above, NetBeans recognizes that $hello is declared / used in a global context and calls the Rename Refactoring that brings a dialog to change the name of the identifier. From this dialog you have to preview suggested changes, through pressing Preview button and then execute the refactoring through Do Refactoring button. Yes, it's more complicated from user point of view than Instant Rename, but in Rename Refactoring NetBeans can change more files at once. It should be  the developer responsibility to decide whether the suggested changes are right and the refactoring can be executed or in some files original name should be kept. Someone can argue that he doesn't use $hello variable in any other file so Instant Rename could be used in such case. Yes it's true, but in such case NetBeans has to know all usages of all identifiers and keep this informations up to date during editing a file. I'm sure that this is not possible due to the performance problems, mainly for big projects. So the usages are computed after pressing the Preview button. And why is the Refactor button always disabled in the Rename dialog and user has to always go through the preview phase? NetBeans has API and SPI for implementing refactoring actions and this dialog is a part of this infrastructure. If you rename an identifier for example in Java, the Refactor buttons is enabled, but Java is strongly type language and you can be almost in 99% sure that the IDE will suggest the right results. In PHP as a dynamic language, we can not be sure, what NetBeans finds is only a "guess". This is why NetBeans pushes developers to preview the changes for PHP rename. I hope that I have explain it clearly. I'm open to any discussion. What I have described above is situation in NetBeans 7.0, 7.0.1 and probably it will be also in NetBeans 7.1, because there is no plan to change it. Please write your opinion here.

    Read the article

  • What are the pros and cons of Coffeescript?

    - by Philip
    Of course one big pro is the amount of syntactic sugar leading to shorter code in a lot of cases. On http://jashkenas.github.com/coffee-script/ there are impressive examples. On the other hand I have doubts that these examples represent code of complex real world applications. In my code for instance I never add functions to bare objects but rather to their prototypes. Moreover the prototype feature is hidden from the user, suggesting classical OOP rather than idiomatic Javascript. The array comprehension example would look in my code probably like this: cubes = $.map(list, math.cube); // which is 8 characters less using jQuery...

    Read the article

  • Triangle - Rectangle Intersection in 2D

    - by Kevin Boyd
    I had previously asked this for 3D but now I changed my strategy and would like to do the intersection in 2D. The Rectangle is axis aligned and will always be in a fixed position, and has a constant shape and size, basically I want to clip the red areas of the triangles that extend outside the bounds of the rectangle The triangles could be in any position, shape or size, I my code I have a loop where I check the triangles one by one however I am still clueless about the math. I have identified 5 cases of triangle rectangle intersection as shown here. How do I find the intersection points of the triangle and the rectangle?

    Read the article

  • Computer Science or Computer Engineering for Data Science and Machine Learning

    - by ATMathew
    I'm a 25 year old data consultant who is considering returning to school to get a second bachelors degree in computer science or engineering. My interest is data science and machine learning. I use programming as a means to an end, and use languages like Python, R, C, Java, and Hadoop to find meaning in large data sets. Would a computer science or computer engineering degree be better for this? I realize that a statistics degree may be even more beneficial, but I'll be at a school which dosn't have a stats department or a computational math department.

    Read the article

  • Why do you need float/double?

    - by acidzombie24
    I was watching http://www.joelonsoftware.com/items/2011/06/27.html and laughed at Jon Skeet joke about 0.3 not being 0.3. I personally never had problems with floats/decimals/doubles but then I remember I learned 6502 very early and never needed floats in most of my programs. The only time I used it was for graphics and math where inaccurate numbers were ok and the output was for the screen and not to be stored (in a db, file) or dependent on. My question is, where are places were you typically use floats/decimals/double? So I know to watch out for these gotchas. With money I use longs and store values by the cent, for speed of an object in a game I add ints and divide (or bitshift) the value to know if I need to move a pixel or not. (I made object move in the 6502 days, we had no divide nor floats but had shifts). So I was mostly curious.

    Read the article

  • Mathematica 8 crashes Ubuntu 13.10

    - by Georgy Ivanov
    I have Mathematica 8 installed on my Ubuntu laptop since 2011. I updated Ubuntu several times, and experienced no problems with Mathematica. It also worked smoothly after I updated Ubuntu to 13.10 (it worked for sure for a week after update). When I tried to start Mathematica today by executing a .sh-file, the screen went black, I was logged out from the session and thrown back to the login screen. Typing mathematica in the terminal produced the same effect. Typing mathematica -cleanstart or mathematica -mesa did not help. Starting Gnome session with or without effects did not help Launching mathematica under another user account did not help. I still can run text-only version of mathematica by typing math in the terminal. I don't remember making any changes to my configuration except for installing updates. Is there any quick way to fix this behavior? How can I know which component exactly crashed? Where should I look for crash logs?

    Read the article

  • how do i fix this: the networking and wireless are enabled. but list of networks under wireless networks not available

    - by Ayesha Ahmad
    i started working with ubuntu 11.10 last year. i upgraded to 12.04 a week back. since then i have had all sorts of problems with network connection. first had to install the new driver. the hardware switch somehow got disabled then the above problem arrived. even tho the options are all enabled, the OS is not able to detect scan available network connections. also i have to bring to notice that once in a while it does get connected, can not explain how it happens. I want to fix this problem once and for all. please help. ifconfig: eth0 Link encap:Ethernet HWaddr f0:4d:a2:51:b3:c8 UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:0 TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:44 eth1 Link encap:Ethernet HWaddr 1c:65:9d:67:d5:e1 inet6 addr: fe80::1e65:9dff:fe67:d5e1/64 Scope:Link UP BROADCAST MULTICAST MTU:1500 Metric:1 RX packets:0 errors:0 dropped:0 overruns:0 frame:170 TX packets:0 errors:27 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:1000 RX bytes:0 (0.0 B) TX bytes:0 (0.0 B) Interrupt:17 lo Link encap:Local Loopback inet addr:127.0.0.1 Mask:255.0.0.0 inet6 addr: ::1/128 Scope:Host UP LOOPBACK RUNNING MTU:16436 Metric:1 RX packets:344 errors:0 dropped:0 overruns:0 frame:0 TX packets:344 errors:0 dropped:0 overruns:0 carrier:0 collisions:0 txqueuelen:0 RX bytes:20336 (20.3 KB) TX bytes:20336 (20.3 KB) lshw -c network *-network description: Wireless interface product: BCM4313 802.11b/g/n Wireless LAN Controller vendor: Broadcom Corporation physical id: 0 bus info: pci@0000:03:00.0 logical name: eth1 version: 01 serial: 1c:65:9d:67:d5:e1 width: 64 bits clock: 33MHz capabilities: bus_master cap_list ethernet physical wireless configuration: broadcast=yes driver=wl0 driverversion=5.100.82.38 latency=0 multicast=yes wireless=IEEE 802.11 resources: irq:17 memory:f0500000-f0503fff *-network description: Ethernet interface product: AR8152 v1.1 Fast Ethernet vendor: Atheros Communications Inc. physical id: 0 bus info: pci@0000:04:00.0 logical name: eth0 version: c1 serial: f0:4d:a2:51:b3:c8 capacity: 100Mbit/s width: 64 bits clock: 33MHz capabilities: bus_master cap_list ethernet physical tp 10bt 10bt-fd 100bt 100bt-fd autonegotiation configuration: autonegotiation=on broadcast=yes driver=atl1c driverversion=1.0.1.0-NAPI firmware=N/A latency=0 multicast=yes port=twisted pair resources: irq:44 memory:f0400000-f043ffff ioport:2000(size=128) iwconfig lo no wireless extensions. eth1 IEEE 802.11 Access Point: Not-Associated Link Quality:5 Signal level:0 Noise level:196 Rx invalid nwid:0 invalid crypt:0 invalid misc:0 eth0 no wireless extensions. lspci 00:00.0 Host bridge: Intel Corporation Core Processor DRAM Controller (rev 18) 00:02.0 VGA compatible controller: Intel Corporation Core Processor Integrated Graphics Controller (rev 18) 00:16.0 Communication controller: Intel Corporation 5 Series/3400 Series Chipset HECI Controller (rev 06) 00:1a.0 USB controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 06) 00:1b.0 Audio device: Intel Corporation 5 Series/3400 Series Chipset High Definition Audio (rev 06) 00:1c.0 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 1 (rev 06) 00:1c.1 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 2 (rev 06) 00:1c.5 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 6 (rev 06) 00:1d.0 USB controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 06) 00:1e.0 PCI bridge: Intel Corporation 82801 Mobile PCI Bridge (rev a6) 00:1f.0 ISA bridge: Intel Corporation Mobile 5 Series Chipset LPC Interface Controller (rev 06) 00:1f.2 SATA controller: Intel Corporation 5 Series/3400 Series Chipset 6 port SATA AHCI Controller (rev 06) 00:1f.3 SMBus: Intel Corporation 5 Series/3400 Series Chipset SMBus Controller (rev 06) 00:1f.6 Signal processing controller: Intel Corporation 5 Series/3400 Series Chipset Thermal Subsystem (rev 06) 03:00.0 Network controller: Broadcom Corporation BCM4313 802.11b/g/n Wireless LAN Controller (rev 01) 04:00.0 Ethernet controller: Atheros Communications Inc. AR8152 v1.1 Fast Ethernet (rev c1) ff:00.0 Host bridge: Intel Corporation Core Processor QuickPath Architecture Generic Non-core Registers (rev 05) ff:00.1 Host bridge: Intel Corporation Core Processor QuickPath Architecture System Address Decoder (rev 05) ff:02.0 Host bridge: Intel Corporation Core Processor QPI Link 0 (rev 05) ff:02.1 Host bridge: Intel Corporation Core Processor QPI Physical 0 (rev 05) ff:02.2 Host bridge: Intel Corporation Core Processor Reserved (rev 05) ff:02.3 Host bridge: Intel Corporation Core Processor Reserved (rev 05) I hope this information is of some help.

    Read the article

  • Easy to use cross-platform 3D engines for C++ game development?

    - by davr
    I want to try my hand at writing a 3D game. However I don't want to start at such a low level of drawing individual triangles and writing my own 3D object loader and so on. I've heard of things like Irrlicht, Crystal Space 3D, and Cafu, but I don't have any experience with any of them. I'm looking for suggestions from people who have experience with these or other engines on which ones are well written, and are easy to get started using, without having to learn a ton of 3D math theory and how GPU's work internally.

    Read the article

  • What's the standard location of a 3D clipping box?

    - by Kendall Frey
    The way I understand 3D rendering, polygons are transformed using several matrices, and they are then clipped if they are not inside a certain box, before projecting the box onto the screen. Before transformation, the visible area is typically a frustum, and after transformation, I am guessing it's a cube. This cube makes the clipping math easier than a frustum would. My question is, what's the 'standard' location/size for this clipping box? I can think of 3 possibilities: (0,0,0)-(1,1,1), (-0.5,-0.5,-0.5)-(0.5,0.5,0.5), (-1,-1,-1)-(1,1,1) Or is there no standard?

    Read the article

  • How to set default xrandr settings?

    - by echo-flow
    I'm trying to enable dual monitors in Ubuntu. This is working fine, but every time I do it, desktop effects is disabled. I think I've found the reason why, though: https://wiki.ubuntu.com/X/Config/Multihead/ As with the GNOME XRandR configuration method, setting Virtual to too large a value may result in a loss of hardware acceleration, and thus an inability to use Compiz and its desktop effects. When I use the GNOME monitor applet, or the Monitors configuration in the System menu, the default xrandr settings puts the second monitor to the right of the first, and, as I found with this bug, for most monitors this creates a virtual desktop larger than the maximum 2048 horizontal resolution needed for hardware acceleration on my netbook hardware. So, it seems like if I can modify xrandr's default settings so that it places the new desktop above or below (north or south of) the main LVDS display, then hardware acceleration, and therefore compiz will continue to work. Can anyone tell me, what is the easiest way to achieve this? UPDATE: I have confirmed that multihead support with desktop effects and hardware acceleration works when I move the external monitor display north of the main LVDS display. Right now this involves the following process: plugging in the external monitor, starting the Monitors configuration menu, desktop effects are disabled automatically (and all of the windows on my workspaces are moved to the first workspace), repositioning the external display so that it is north of LVDS display and clicking apply, and then navigating to the Appearance menu and telling it to reenable desktop effects. Is there a simpler way do this? UPDATE 2: OK, so I thought that perhaps the GNOME Monitors configuration screen was trying to be clever, and might be disbling desktop effects. So, I just tried using the xrandr command-line client instead, as follows: xrandr --output VGA1 --above LVDS1 When I do that, desktop effects are still disabled, and I need to manually reenable them. This, despite the fact that hardware acceleration works, and there is never a point where hardware acceleration stops working because the horizontal dimension of the virtual display is too large. So what program is trying to be clever, and is turning off desktop effects when it doesn't need to? And how do I make it stop? If there were a way to re-enable desktop effects from the command line, which I could then put into a script along with the proper xrandr invocation, I would accept that as a workaround. UPDATE 3: OK, here's my script to enable a second monitor with desktop effects. It might be evil, I'm not sure: second-monitor.sh xrandr --output VGA1 --above LVDS1 sleep 3 compiz --replace & The sleep statement might not be necessary. If there's a better way to do this, please let me know. UPDATE 4: This is a Dell Mini Inspiron 1012. Here are my system specifications: lspci -vv 00:02.0 VGA compatible controller: Intel Corporation N10 Family Integrated Graphics Controller Subsystem: Dell Device 041a Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx+ Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Interrupt: pin A routed to IRQ 29 Region 0: Memory at f0b00000 (32-bit, non-prefetchable) [size=512K] Region 1: I/O ports at 18d0 [size=8] Region 2: Memory at d0000000 (32-bit, prefetchable) [size=256M] Region 3: Memory at f0900000 (32-bit, non-prefetchable) [size=1M] Capabilities: <access denied> Kernel driver in use: i915 Kernel modules: i915 00:02.1 Display controller: Intel Corporation N10 Family Integrated Graphics Controller Subsystem: Dell Device 041a Control: I/O+ Mem+ BusMaster+ SpecCycle- MemWINV- VGASnoop- ParErr- Stepping- SERR- FastB2B- DisINTx- Status: Cap+ 66MHz- UDF- FastB2B+ ParErr- DEVSEL=fast >TAbort- <TAbort- <MAbort- >SERR- <PERR- INTx- Latency: 0 Region 0: Memory at f0b80000 (32-bit, non-prefetchable) [size=512K] Capabilities: <access denied> lsmod | grep i915 i915 287458 2 drm_kms_helper 29329 1 i915 drm 162409 3 i915,drm_kms_helper intel_agp 24375 2 i915 i2c_algo_bit 5028 1 i915 video 17375 1 i915

    Read the article

  • What is wrong with my Dot Product?

    - by Clay Ellis Murray
    I am trying to make a pong game but I wanted to use dot products to do the collisions with the paddles, however whenever I make a dot product objects it never changes much from .9 this is my code to make vectors vector = { make:function(object){ return [object.x + object.width/2,object.y + object.height/2] }, normalize:function(v){ var length = Math.sqrt(v[0] * v[0] + v[1] * v[1]) v[0] = v[0]/length v[1] = v[1]/length return v }, dot:function(v1,v2){ return v1[0] * v2[0] + v1[1] * v2[1] } } and this is where I am calculating the dot in my code vector1 = vector.normalize(vector.make(ball)) vector2 = vector.normalize(vector.make(object)) dot = vector.dot(vector1,vector2) Here is a JsFiddle of my code currently the paddles don't move. Any help would be greatly appreciated

    Read the article

  • Is this simple XOR encrypted communication absolutely secure?

    - by user3123061
    Say Alice have 4GB USB flash memory and Peter also have 4GB USB flash memory. They once meet and save on both of memories two files named alice_to_peter.key (2GB) and peter_to_alice.key (2GB) which is randomly generated bits. Then they never meet again and communicate electronicaly. Alice also maintains variable called alice_pointer and Peter maintains variable called peter_pointer which is both initially set to zero. Then when Alice needs to send message to Peter they do: encrypted_message_to_peter[n] = message_to_peter[n] XOR alice_to_peter.key[alice_pointer + n] Where n i n-th byte of message. Then alice_pointer is attached at begining of the encrypted message and (alice_pointer + encrypted message) is sent to Peter and then alice_pointer is incremented by length of message (and for maximum security can be used part of key erased) Peter receives encrypted_message, reads alice_pointer stored at beginning of message and do this: message_to_peter[n] = encrypted_message_to_peter[n] XOR alice_to_peter.key[alice_pointer + n] And for maximum security after reading of message also erases used part of key. - EDIT: In fact this step with this simple algorithm (without integrity check and authentication) decreases security, see Paulo Ebermann post below. When Peter needs to send message to Alice they do analogical steps with peter_to_alice.key and with peter_pointer. With this trivial schema they can send for next 50 years each day 2GB / (50 * 365) = cca 115kB of encrypted data in both directions. If they need more data to send, they simple use larger memory for keys for example with today 2TB harddiscs (1TB keys) is possible to exchange next 50years 60MB/day ! (thats practicaly lots of data for example with using compression its more than hour of high quality voice communication) It Seems to me there is no way for attacker to read encrypted message without keys even if they have infinitely fast computer. because even with infinitely fast computer with brute force they get ever possible message that can fit to length of message, but this is astronomical amount of messages and attacker dont know which of them is actual message. I am right? Is this communication schema really absolutely secure? And if its secure, has this communication method its own name? (I mean XOR encryption is well-known, but whats name of this concrete practical application with use large memories at both communication sides for keys? I am humbly expecting that this application has been invented someone before me :-) ) Note: If its absolutely secure then its amazing because with today low cost large memories it is practicaly much cheeper way of secure communication than expensive quantum cryptography and with equivalent security! EDIT: I think it will be more and more practical in future with lower a lower cost of memories. It can solve secure communication forever. Today you have no certainty if someone succesfuly atack to existing ciphers one year later and make its often expensive implementations unsecure. In many cases before comunication exist step where communicating sides meets personaly, thats time to generate large keys. I think its perfect for military communication for example for communication with submarines which can have installed harddrive with large keys and military central can have harddrive for each submarine they have. It can be also practical in everyday life for example for control your bank account because when you create your account you meet with bank etc.

    Read the article

  • How can I make an object's hitbox rotate with its texture?

    - by Matthew Optional Meehan
    In XNA, when you have a rectangular sprite that doesnt rotate, it's easy to get its four corners to make a hitbox. However, when you do a rotation, the points get moved and I assume there is some kind of math that I can use to aquire them. I am using the four points to draw a rectangle that visually represents the hitboxes. I have seen some per-pixel collision examples, but I can forsee they would be hard to draw a box/'convex hull' around. I have also seen physics like farseer but I'm not sure if there is a quick tutorial to do what I want.

    Read the article

  • How to rotate a set of points on z = 0 plane in 3-D, preserving pairwise distances?

    - by cagirici
    I have a set of points double n[] on the plane z = 0. And I have another set of points double[] m on the plane ax + by + cz + d = 0. Length of n is equal to length of m. Also, euclidean distance between n[i] and n[j] is equal to euclidean distance between m[i] and m[j]. I want to rotate n[] in 3-D, such that for all i, n[i] = m[i] would be true. In other words, I want to turn a plane into another plane, preserving the pairwise distances. Here's my code in java. But it does not help so much: double[] rotate(double[] point, double[] currentEquation, double[] targetEquation) { double[] currentNormal = new double[]{currentEquation[0], currentEquation[1], currentEquation[2]}; double[] targetNormal = new double[]{targetEquation[0], targetEquation[1], targetEquation[2]}; targetNormal = normalize(targetNormal); double angle = angleBetween(currentNormal, targetNormal); double[] axis = cross(targetNormal, currentNormal); double[][] R = getRotationMatrix(axis, angle); return rotated; } double[][] getRotationMatrix(double[] axis, double angle) { axis = normalize(axis); double cA = (float)Math.cos(angle); double sA = (float)Math.sin(angle); Matrix I = Matrix.identity(3, 3); Matrix a = new Matrix(axis, 3); Matrix aT = a.transpose(); Matrix a2 = a.times(aT); double[][] B = { {0, axis[2], -1*axis[1]}, {-1*axis[2], 0, axis[0]}, {axis[1], -1*axis[0], 0} }; Matrix A = new Matrix(B); Matrix R = I.minus(a2); R = R.times(cA); R = R.plus(a2); R = R.plus(A.times(sA)); return R.getArray(); } This is what I get. The point set on the right side is actually part of a point set on the left side. But they are on another plane. Here's a 2-D representation of what I try to do: There are two lines. The line on the bottom is the line I have. The line on the top is the target line. The distances are preserved (a, b and c). Edit: I have tried both methods written in answers. They both fail (I guess). Method of Martijn Courteaux public static double[][] getRotationMatrix(double[] v0, double[] v1, double[] v2, double[] u0, double[] u1, double[] u2) { RealMatrix M1 = new Array2DRowRealMatrix(new double[][]{ {1,0,0,-1*v0[0]}, {0,1,0,-1*v0[1]}, {0,0,1,0}, {0,0,0,1} }); RealMatrix M2 = new Array2DRowRealMatrix(new double[][]{ {1,0,0,-1*u0[0]}, {0,1,0,-1*u0[1]}, {0,0,1,-1*u0[2]}, {0,0,0,1} }); Vector3D imX = new Vector3D((v0[1] - v1[1])*(u2[0] - u0[0]) - (v0[1] - v2[1])*(u1[0] - u0[0]), (v0[1] - v1[1])*(u2[1] - u0[1]) - (v0[1] - v2[1])*(u1[1] - u0[1]), (v0[1] - v1[1])*(u2[2] - u0[2]) - (v0[1] - v2[1])*(u1[2] - u0[2]) ).scalarMultiply(1/((v0[0]*v1[1])-(v0[0]*v2[1])-(v1[0]*v0[1])+(v1[0]*v2[1])+(v2[0]*v0[1])-(v2[0]*v1[1]))); Vector3D imZ = new Vector3D(findEquation(u0, u1, u2)); Vector3D imY = Vector3D.crossProduct(imZ, imX); double[] imXn = imX.normalize().toArray(); double[] imYn = imY.normalize().toArray(); double[] imZn = imZ.normalize().toArray(); RealMatrix M = new Array2DRowRealMatrix(new double[][]{ {imXn[0], imXn[1], imXn[2], 0}, {imYn[0], imYn[1], imYn[2], 0}, {imZn[0], imZn[1], imZn[2], 0}, {0, 0, 0, 1} }); RealMatrix rotationMatrix = MatrixUtils.inverse(M2).multiply(M).multiply(M1); return rotationMatrix.getData(); } Method of Sam Hocevar static double[][] makeMatrix(double[] p1, double[] p2, double[] p3) { double[] v1 = normalize(difference(p2,p1)); double[] v2 = normalize(cross(difference(p3,p1), difference(p2,p1))); double[] v3 = cross(v1, v2); double[][] M = { { v1[0], v2[0], v3[0], p1[0] }, { v1[1], v2[1], v3[1], p1[1] }, { v1[2], v2[2], v3[2], p1[2] }, { 0.0, 0.0, 0.0, 1.0 } }; return M; } static double[][] createTransform(double[] A, double[] B, double[] C, double[] P, double[] Q, double[] R) { RealMatrix c = new Array2DRowRealMatrix(makeMatrix(A,B,C)); RealMatrix t = new Array2DRowRealMatrix(makeMatrix(P,Q,R)); return MatrixUtils.inverse(c).multiply(t).getData(); } The blue points are the calculated points. The black lines indicate the offset from the real position.

    Read the article

  • Pair programming business logic with a non-IT person

    - by user1598390
    Have you have any experience in which a non-IT person works with a programmer during the coding process? It's like pair programming, but one person is a non-IT person that knows a lot about the business, maybe a process engineer with math background who knows how things are calculated and can understand non-idiomatic, procedural code. I've found that some procedural, domain-specific languages like PL/SQL are quite understandable by non-IT engineers. These person end up being co-authors of the code and guarantee the correctness of formulas, factors etc. I've found this kind of pair programming quite productive, this kind of engineer user feel they are also "owners" and "authors" of the code and help minimize misunderstanding in the communication process. They even help design the test cases. Is this practice common ? Does it have a name ? Have you had similar experiences ?

    Read the article

  • Does XNA 4 support 3D affine transformations for 2D images?

    - by Paul Baker Salt Shaker
    Looooong story short I'm essentially trying to code Mode 7 in XNA. Before I continue bashing my brains out in research and various failed matrix math equations; I just want to make sure that XNA supports this just out-of-the-box (so to speak). I'd prefer not to have to import other libraries, because I want to learn how it works myself that way I understand the whole thing better. However that's all for naught if it won't work at all. So no opengl, directx, etc if possible (will eventually do it just to optimize everything, but not for now). tl;dr: Can I has Mode 7 in XNA?

    Read the article

  • genetic algorithm for leveling/build test

    - by Renan Malke Stigliani
    I'm starting o build a online PVP (duel like, one-to-one) game, where there is leveling, skill points, special attacks and all the common stuff. Since I never did anything like that, I'm still thinking about the maths behind the level/skill/special balances. So I thought good way of testing the best/combo builds would implement a Genetic Algorith. It'd be like that: Generate a big portion of random characters Make them fight, level them up accordingly to the victories(more XP)/losses(less XP) Mate the winners, crossing their builds, to try to make even best characters Add some more random chars, emulating new players Repeat the process for some time, or util find some chars who can beat everyone butts So I could play with the math and try to find the balance where the top x% chars would be a mix of various build types. So, is it a good idea, or there are some other easier method to do the balance? PS: I like this also, because it sounds funny

    Read the article

  • What is wrong with my Dot Product? [Javascript]

    - by Clay Ellis Murray
    I am trying to make a pong game but I wanted to use dot products to do the collisions with the paddles, however whenever I make a dot product objects it never changes much from .9 this is my code to make vectors vector = { make:function(object){ return [object.x + object.width/2,object.y + object.height/2] }, normalize:function(v){ var length = Math.sqrt(v[0] * v[0] + v[1] * v[1]) v[0] = v[0]/length v[1] = v[1]/length return v }, dot:function(v1,v2){ return v1[0] * v2[0] + v1[1] * v2[1] } } and this is where I am calculating the dot in my code vector1 = vector.normalize(vector.make(ball)) vector2 = vector.normalize(vector.make(object)) dot = vector.dot(vector1,vector2) Here is a JsFiddle of my code currently the paddles don't move. Any help would be greatly appreciated

    Read the article

  • My integer overfloweth

    - by darcy
    While certain classes like java.lang.Integer and java.lang.Math have been in the platform since the beginning, that doesn't mean there aren't more enhancements to be made in such places! For example, earlier in JDK 8, library support was added for unsigned integer arithmetic. More recently, my colleague Roger Riggs pushed a changeset to support integer overflow, that is, to provide methods which throw an ArithmeticException on overflow instead of returning a wrapped result. Besides being helpful for various programming tasks in Java, methods like the those for integer overflow can be used to implement runtimes supporting other languages, as has been requested at a past JVM language summit. This year's language summit is coming up in July and I hope to get some additional suggestions there for helpful library additions as part of the general discussions of the JVM and Java libraries as a platform.

    Read the article

  • Why and when should I make a class 'static'? What is the purpose of 'static' keyword on classes?

    - by Saeed Neamati
    The static keyword on a member in many languages mean that you shouldn't create an instance of that class to be able to have access to that member. However, I don't see any justification to make an entire class static. Why and when should I make a class static? What benefits do I get from making a class static? I mean, after declaring a static class, one should still declare all members which he/she wants to have access to without instantiation, as static too. This means that for example, Math class could be declared normal (not static), without affecting how developers code. In other words, making a class static or normal is kind of transparent to developers.

    Read the article

  • Matrix rotation of a rectangle to "face" a given point in 2d

    - by justin.m.chase
    Suppose you have a rectangle centered at point (0, 0) and now I want to rotate it such that it is facing the point (100, 100), how would I do this purely with matrix math? To give some more specifics I am using javascript and canvas and I may have something like this: var position = {x : 0, y: 0 }; var destination = { x : 100, y: 100 }; var transform = Matrix.identity(); this.update = function(state) { // update transform to rotate to face destination }; this.draw = function(ctx) { ctx.save(); ctx.transform(transform); // a helper that just calls setTransform() ctx.beginPath(); ctx.rect(-5, -5, 10, 10); ctx.fillStyle = 'Blue'; ctx.fill(); ctx.lineWidth = 2; ctx.stroke(); ctx.restore(); } Feel free to assume any matrix function you need is available.

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Multi database link and mix and match email alert

    - by menardmam
    I have a site which is a large database of people that have different knowledge in different domains, such as teaching (maths, french, science etc...) On the site there is a page where you can search people base on different request, such as distance from home, grade, sex. Now, I would like to add a page where people that are looking for mentor will fill a request, and when a tutor in his area of search will match request, a email will be send to this researcher. Because I know for sure, that when in January you look for a math teacher for your 10 year old son, and you find none, you won't go again in February, March... and on and on just to see. Maybe there is one now, you want to be informed when the tutor will get into database automatically (more or less like www.jobboom.com) So the question is, what CMS do I need to be able to do that ? Wordpress, drupal or something custom made?

    Read the article

  • 2D tower defense - A bullet to an enemy

    - by Tashu
    I'm trying to find a good solution for a bullet to hit the enemy. The game is 2D tower defense, the tower is supposed to shoot a bullet and hit the enemy guaranteed. I tried this solution - http://blog.wolfire.com/2009/07/linear-algebra-for-game-developers-part-1/ The link mentioned to subtract the bullet's origin and the enemy as well (vector subtraction). I tried that but a bullet just follows around the enemy. float diffX = enemy.position.x - position.x; float diffY = enemy.position.y - position.y; velocity.x = diffX; velocity.y = diffY; position.add(velocity.x * deltaTime, velocity.y * deltaTime); I'm familiar with vectors but not sure what steps (vector math operations) to be done to get this solution working.

    Read the article

  • Recent improvements in Console Performance

    - by loren.konkus
    Recently, the WebLogic Server development and support organizations have worked with a number of customers to quantify and improve the performance of the Administration Console in large, distributed configurations where there is significant latency in the communications between the administration server and managed servers. These improvements fall into two categories: Constraining the amount of time that the Console stalls waiting for communication Reducing and streamlining the amount of data required for an update A few releases ago, we added support for a configurable domain-wide mbean "Invocation Timeout" value on the Console's configuration: general, advanced section for a domain. The default value for this setting is 0, which means wait indefinitely and was chosen for compatibility with the behavior of previous releases. This configuration setting applies to all mbean communications between the admin server and managed servers, and is the first line of defense against being blocked by a stalled or completely overloaded managed server. Each site should choose an appropriate timeout value for their environment and network latency. In the next release of WebLogic Server, we've added an additional console preference, "Management Operation Timeout", to the Console's shared preference page. This setting further constrains how long certain console pages will wait for slowly responding servers before returning partial results. While not all Console pages support this yet, key pages such as the Servers Configuration and Control table pages and the Deployments Control pages have been updated to support this. For example, if a user requests a Servers Table page and a Management Operation Timeout occurs, the table is displayed with both local configuration and remote runtime information from the responding managed servers and only local configuration information for servers that did not yet respond. This means that a troublesome managed server does not impede your ability to manage your domain using the Console. To support these changes, these Console pages have been re-written to use the Work Management feature of WebLogic Server to interact with each server or deployment concurrently, which further improves the responsiveness of these pages. The basic algorithm for these pages is: For each configuration mbean (ie, Servers) populate rows with configuration attributes from the fast, local mbean server Find a WorkManager For each server, Create a Work instance to obtain runtime mbean attributes for the server Schedule Work instance in the WorkManager Call WorkManager.waitForAll to wait WorkItems to finish, constrained by Management Operation Timeout For each WorkItem, if the runtime information obtained was not complete, add a message indicating which server has incomplete data Display collected data in table In addition to these changes to constrain how long the console waits for communication, a number of other changes have been made to reduce the amount and scope of managed server interactions for key pages. For example, in previous releases the Deployments Control table looked at the status of a deployment on every managed server, even those servers that the deployment was not currently targeted on. (This was done to handle an edge case where a deployment's target configuration was changed while it remained running on previously targeted servers.) We decided supporting that edge case did not warrant the performance impact for all, and instead only look at the status of a deployment on the servers it is targeted to. Comprehensive status continues to be available if a user clicks on the 'status' field for a deployment. Finally, changes have been made to the System Status portlet to reduce its impact on Console page display times. Obtaining health information for this display requires several mbean interactions with managed servers. In previous releases, this mbean interaction occurred with every display, and any delay or impediment in these interactions was reflected in the display time for every page. To reduce this impact, we've made several changes in this portlet: Using Work Management to obtain health concurrently Applying the operation timeout configuration to constrain how long we will wait Caching health information to reduce the cost during rapid navigation from page to page and only obtaining new health information if the previous information is over 30 seconds old. Eliminating heath collection if this portlet is minimized. Together, these Console changes have resulted in significant performance improvements for the customers with large configurations and high latency that we have worked with during their development, and some lesser performance improvements for those with small configurations and very fast networks. These changes will be included in the 11g Rel 1 patch set 2 (10.3.3.0) release of WebLogic Server.

    Read the article

< Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >