Search Results

Search found 5080 results on 204 pages for 'json deserialization'.

Page 131/204 | < Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >

  • JQuery Pure Template

    - by cem
    I cant figure out whats wrong. Its working when i tried to refresh only topics but it doesnt works when tried to refresh topics and page-links. ie. topics table's refreshing, and 'pagelinks' disappearing, i thought pure cannot reach - read second template node. By the way, i tested their code, first message box show up all of nodes - includes 'pagelinks' node, but second one - in function only show up topic rows. Its look like a bug. Anyone knows how can i solve this? ps. I'm using latest version of pure. Thanks. Test Code - pure.js line: 189 function dataselectfn(sel) { // ... m = sel.split('.'); alert(m.toSource()); return function (ctxt) { var data = ctxt.context; if (!data) { return ''; } alert('in function: ' + m.toSource()); // ... Json: {"topics":[{"name":"foo"}],"pagelinks":[{"Page":1},{"Page":2}]} HTML - before pure rendering: <table> <tbody> <tr> <td class="pagelinks"> <a page="1" href="/Topics/IndexForAreas?page=1" class="p Page@page">1</a> </td> <td class="pagelinks"> <a page="2" href="/Topics/IndexForAreas?page=2" class="p Page@page">2</a> </td> </tr> </tbody> </table> HTML - after pure rendering: <table> <tbody> <tr> </tr> </tbody> </table> Controller: [Transaction] public ActionResult IndexForAreas(int? page) { TopicService topicService = new TopicService(); PagedList<Topic> topics = topicService.GetPaged(page); if (Request.IsAjaxRequest()) { return Json(new { topics = topics.Select(t => new { name = t.Name, }), pagelinks = PagingHelper.AsPager(topics, 1) }); } return View(topics); } ASP.NET - View: <div class="topiccontainer"> <table> <% foreach (Topic topic in ViewData.Model) { %> <tr class="topics"> <td> <%= Html.ActionLink<ForumPostsController>(ec => ec.Index(topic.Name, null), topic.Name, new { @class="name viewlink@href" })%> </td> //bla bla... </tr> <%} %> </table> <table> <tr> <% Html.Pager(Model, 1, p => { %> <td class="pagelinks"> <%= Html.ActionLink<TopicsController>(c => c.IndexForAreas(p.Page), p.Page.ToString(), new { page = p.Page, @class = "Page@page" })%> </td> <% }); %> </tr> </table> </div> Master Page: <% Html.RenderAction("IndexForAreas", "Topics", new { area = "" }); %> <script type="text/javascript"> $.post("<%= Html.BuildUrlFromExpressionForAreas<TopicsController>(c => c.IndexForAreas(null)) %>", { page: page }, function (data) { $(".topiccontainer").autoRender(data); }, "json" ); </script>

    Read the article

  • What's wrong with Bundler working with RubyGems to push a Git repo to Heroku?

    - by stanigator
    I've made sure that all the files are in the root of the repository as recommended in this discussion. However, as I follow the instructions in this section of the book, I can't get through the section without the problems. What do you think is happening with my system that's causing the error? I have no clue at the moment of what the problem means despite reading the following in the log. Thanks in advance for your help! stanley@ubuntu:~/rails_sample/first_app$ git push heroku master Warning: Permanently added the RSA host key for IP address '50.19.85.156' to the list of known hosts. Counting objects: 96, done. Compressing objects: 100% (79/79), done. Writing objects: 100% (96/96), 28.81 KiB, done. Total 96 (delta 22), reused 0 (delta 0) -----> Heroku receiving push -----> Ruby/Rails app detected -----> Installing dependencies using Bundler version 1.2.0.pre Running: bundle install --without development:test --path vendor/bundle --binstubs bin/ --deployment Fetching gem metadata from https://rubygems.org/....... Installing rake (0.9.2.2) Installing i18n (0.6.0) Installing multi_json (1.3.5) Installing activesupport (3.2.3) Installing builder (3.0.0) Installing activemodel (3.2.3) Installing erubis (2.7.0) Installing journey (1.0.3) Installing rack (1.4.1) Installing rack-cache (1.2) Installing rack-test (0.6.1) Installing hike (1.2.1) Installing tilt (1.3.3) Installing sprockets (2.1.3) Installing actionpack (3.2.3) Installing mime-types (1.18) Installing polyglot (0.3.3) Installing treetop (1.4.10) Installing mail (2.4.4) Installing actionmailer (3.2.3) Installing arel (3.0.2) Installing tzinfo (0.3.33) Installing activerecord (3.2.3) Installing activeresource (3.2.3) Installing coffee-script-source (1.3.3) Installing execjs (1.3.2) Installing coffee-script (2.2.0) Installing rack-ssl (1.3.2) Installing json (1.7.3) with native extensions Installing rdoc (3.12) Installing thor (0.14.6) Installing railties (3.2.3) Installing coffee-rails (3.2.2) Installing jquery-rails (2.0.2) Using bundler (1.2.0.pre) Installing rails (3.2.3) Installing sass (3.1.18) Installing sass-rails (3.2.5) Installing sqlite3 (1.3.6) with native extensions Gem::Installer::ExtensionBuildError: ERROR: Failed to build gem native extension. /usr/local/bin/ruby extconf.rb checking for sqlite3.h... no sqlite3.h is missing. Try 'port install sqlite3 +universal' or 'yum install sqlite-devel' and check your shared library search path (the location where your sqlite3 shared library is located). *** extconf.rb failed *** Could not create Makefile due to some reason, probably lack of necessary libraries and/or headers. Check the mkmf.log file for more details. You may need configuration options. Provided configuration options: --with-opt-dir --without-opt-dir --with-opt-include --without-opt-include=${opt-dir}/include --with-opt-lib --without-opt-lib=${opt-dir}/lib --with-make-prog --without-make-prog --srcdir=. --curdir --ruby=/usr/local/bin/ruby --with-sqlite3-dir --without-sqlite3-dir --with-sqlite3-include --without-sqlite3-include=${sqlite3-dir}/include --with-sqlite3-lib --without-sqlite3-lib=${sqlite3-dir}/lib --enable-local --disable-local Gem files will remain installed in /tmp/build_3tplrxvj7qa81/vendor/bundle/ruby/1.9.1/gems/sqlite3-1.3.6 for inspection. Results logged to /tmp/build_3tplrxvj7qa81/vendor/bundle/ruby/1.9.1/gems/sqlite3-1.3.6/ext/sqlite3/gem_make.out An error occurred while installing sqlite3 (1.3.6), and Bundler cannot continue. Make sure that `gem install sqlite3 -v '1.3.6'` succeeds before bundling. ! ! Failed to install gems via Bundler. ! ! Heroku push rejected, failed to compile Ruby/rails app To [email protected]:growing-mountain-2788.git ! [remote rejected] master -> master (pre-receive hook declined) error: failed to push some refs to '[email protected]:growing-mountain-2788.git' ------Gemfile------------------------ As requested, here's the auto-generated gemfile: source 'https://rubygems.org' gem 'rails', '3.2.3' # Bundle edge Rails instead: # gem 'rails', :git => 'git://github.com/rails/rails.git' gem 'sqlite3' gem 'json' # Gems used only for assets and not required # in production environments by default. group :assets do gem 'sass-rails', '~> 3.2.3' gem 'coffee-rails', '~> 3.2.1' # See https://github.com/sstephenson/execjs#readme for more supported runtimes # gem 'therubyracer', :platform => :ruby gem 'uglifier', '>= 1.0.3' end gem 'jquery-rails' # To use ActiveModel has_secure_password # gem 'bcrypt-ruby', '~> 3.0.0' # To use Jbuilder templates for JSON # gem 'jbuilder' # Use unicorn as the app server # gem 'unicorn' # Deploy with Capistrano # gem 'capistrano' # To use debugger # gem 'ruby-debug'

    Read the article

  • Suds array of arrays not nesting

    - by joshcartme
    Let me preface this by saying that I am still pretty new to SOAP and how things should work. I'm working with the Vertical Response API. I'm having trouble getting suds to construct the xml correctly for a request. Here is some code: from suds.client import Client url = 'https://api.verticalresponse.com/wsdl/1.0/VRAPI.wsdl' client = Client(url) vr = client.service ... test_list = ( ( { 'name' : 'email_address', 'value' : login['username'], }, { 'name' : 'First_Name', 'value' : 'VR_User', } ), ( { 'name' : 'email_address', 'value' : '[email protected]', }, { 'name' : 'First_Name', 'value' : login['username'], }, ), ) # sid and cid are correctly retrieved prior to this point print "Sending test message..." vr.sendEmailCampaignTest({ 'session_id' : sid, 'campaign_id' : cid, 'recipients' : test_list, }) In this context login['username'] is just an email address. That code raises this error: suds.WebFault: Server raised fault: 'Application failed during request deserialization: Too many elements in array. 4 instead of claimed 2 (2) Here is the the definition of sendEmailCampaignTest: http://developers.verticalresponse.com/api/soap/methods/campaigns/sendemailcampaigntest/ Here is the xml that logging outputs (I removed the session_id and list_id for display here): DEBUG:suds.client:headers = {'SOAPAction': u'"VR/API/1_0#sendEmailCampaignTest"', 'Content-Type': 'text/xml; charset=utf-8'} ERROR:suds.client:<?xml version="1.0" encoding="UTF-8"?> <SOAP-ENV:Envelope xmlns:ns3="http://api.verticalresponse.com/1.0/VRAPI.xsd" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:ns0="http://schemas.xmlsoap.org/soap/envelope/" xmlns:ns1="http://www.w3.org/2001/XMLSchema" xmlns:ns2="http://schemas.xmlsoap.org/soap/encoding/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:ns4="VR/API/1_0" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <SOAP-ENV:Header/> <ns0:Body> <ns4:sendEmailCampaignTest> <args xsi:type="ns3:sendEmailCampaignTestArgs"> <session_id xsi:type="ns1:string">redacted</session_id> <campaign_id xsi:type="ns1:int">redacted</campaign_id> <recipients xsi:type="ns3:ArrayOfNVDictionary" ns2:arrayType="ns3:NVDictionary[2]"> <item> <name xsi:type="ns1:string">email_address</name> <value xsi:type="ns1:string">[email protected]</value> </item> <item> <name xsi:type="ns1:string">First_Name</name> <value xsi:type="ns1:string">VR_User</value> </item> <item> <name xsi:type="ns1:string">email_address</name> <value xsi:type="ns1:string">[email protected]</value> </item> <item> <name xsi:type="ns1:string">First_Name</name> <value xsi:type="ns1:string">[email protected]</value> </item> </recipients> </args> </ns4:sendEmailCampaignTest> </ns0:Body> </SOAP-ENV:Envelope> DEBUG:suds.client:http failed: <?xml version="1.0" encoding="UTF-8"?><SOAP-ENV:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:SOAP-ENC="http://schemas.xmlsoap.org/soap/encoding/" xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsd="http://www.w3.org/2001/XMLSchema" SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"><SOAP-ENV:Body><SOAP-ENV:Fault><faultcode>SOAP-ENV:Client</faultcode><faultstring>Application failed during request deserialization: Too many elements in array. 4 instead of claimed 2 (2) </faultstring></SOAP-ENV:Fault></SOAP-ENV:Body></SOAP-ENV:Envelope> a ruby script (provided by Vertical Response) that does the same things as the script I am working on in python outputs the following xml (I removed the session_id and list_id): <?xml version="1.0" encoding="utf-8" ?> <env:Envelope xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:env="http://schemas.xmlsoap.org/soap/envelope/" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> <env:Body> <n1:sendEmailCampaignTest xmlns:n1="VR/API/1_0" env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"> <args xmlns:n2="http://api.verticalresponse.com/1.0/VRAPI.xsd" xsi:type="n2:sendEmailCampaignTestArgs"> <session_id xsi:type="xsd:string">redacted</session_id> <campaign_id xsi:type="xsd:int">redacted</campaign_id> <recipients xmlns:n3="http://schemas.xmlsoap.org/soap/encoding/" xsi:type="n3:Array" n3:arrayType="n2:NVDictionary[2]"> <item xsi:type="n3:Array" n3:arrayType="n2:NVPair[2]"> <item> <name xsi:type="xsd:string">email_address</name> <value href="#id9496430"></value> </item> <item> <name xsi:type="xsd:string">First_Name</name> <value xsi:type="xsd:string">VR_User</value> </item> </item> <item xsi:type="n3:Array" n3:arrayType="n2:NVPair[2]"> <item> <name xsi:type="xsd:string">email_address</name> <value xsi:type="xsd:string">[email protected]</value> </item> <item> <name xsi:type="xsd:string">First_Name</name> <value href="#id9496430"></value> </item> </item> </recipients> </args> </n1:sendEmailCampaignTest> <value id="id9496430" xsi:type="xsd:string" env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">[email protected]</value> </env:Body> </env:Envelope> I understand that the error is in the construction of recipients. It should contain two items, each that contain two items but my python script using suds is setting it up to contain four unnested items. So my question is how can I get suds to correctly construct the xml?

    Read the article

  • why i am getting popup message when I am tryiing to update user.

    - by kumar
    I am getting Popup mesage something like You have chosen to open Update which is a:application/json From : http://localhost:1234 which ok cancel buttons.. I am using this code to run.. [HttpPost] public JsonResult MEdit(ExpenseBE e) { var cache = CacheFactory.GetCacheManager(); string F_ACTION = "U"; string F_DEBUG = "Y"; var excUpdateStatus = false; for (int i = 0; i <= cache.Count; i++) { var x = (ExpenseBE)cache.GetData("a" + i); if (x != null) { string Resolutioncode = e.Exception.ResolutionCode; string reasoncode = e.Exception.ReasonCode; string actioncode = e.Exception.ActionCode; e.Exception.ExceptionID = x.Exception.ExceptionID; e.Exception.ReasonCode = reasoncode; e.Exception.ReasonCode = Resolutioncode; e.Exception.ActionCode = actioncode; e.Exception.Sequence = x.Exception.Sequence; e.Exception.FollowupDate = x.Exception.FollowupDate; e.Exception.IOL = x.Exception.IOL; e.Exception.LastUpdateUser = User.Identity.Name.ToUpper().Remove(0, 4); excUpdateStatus = common.UpdateException(e.Exception, F_ACTION, F_DEBUG); } } return Json(excUpdateStatus.ToString()); } and my view is <%@ Control Language="C#" Inherits="System.Web.Mvc.ViewUserControl<NorthernTrust.ATP.iTool.Core.Business.Entities.Specialist.ExpenseBE>" %> <% using (Html.BeginForm("MEdit", "expense", FormMethod.Post)) { %> <%= Html.ValidationSummary(true)%> <fieldset class="clearfix" id="fieldset-exception"> <legend>Mass Edit Exception Information</legend> <div class="fiveper"> <label for="ExceptionStatus"> Status: <span> </span> </label> <label for="ResolutionCode"> Resolution: <span> <%=Html.DropDownListFor(model=>model.Exception.ResolutionCode,new SelectList(Model.LookupCodes["C_EXCPT_RESL"], "Key", "Value"))%> </span> </label> <label for="ReasonCode"> Reason: <span><%=Html.DropDownListFor(model => model.Exception.ReasonCode, new SelectList(Model.LookupCodes["C_EXCPT_RSN"], "Key", "Value"))%></span> </label> <label for="ExceptionStatus"> Action Taken: <span><%=Html.DropDownListFor(model => model.Exception.ActionCode, new SelectList(Model.LookupCodes["C_EXCPT_ACT"], "Key", "Value"))%></span> </label> </div> <div class="fiveper"> <label for="FollowupDate"> Follow-up: <span><input type="text" id="exc-flwup-" /></span> <%--<%=Html.EditorFor(model=>model.Exception.FollowupDate) %>--%> </label> <label for="IOL"> Inquiry #: <%=Html.TextBox("Inquiery", ViewData["inq"] ?? "")%> </label> <label>Comment</label> <span> <%=Html.TextArea("value") %> <%=Html.ValidationMessage("value")%> </span> </div> <br /> <br /> <div> <button id="btnSelect" class="button">Select All</button> <button id="btnCancel" class="button">Cancel</button> <input type="submit" class="button" value="Save" /> </div> </fieldset> <% } %> <script type="text/javascript"> $(document).ready(function() { $('#btnSelectAll').click(function() { function validate_excpt(formData, jqForm, options) { var form = jqForm[0]; } $('#btnSelect').click(function() { $('#input [type=checkbox]').attr('checked', 'checked'); }); // post-submit callback function showResponse(responseText, statusText, xhr, $form) { if ('success' == statusText) { $('#error-msg span:last').html('<strong>Update successful.</strong>'); } else { $('#error-msg span:last').html('<strong>Update failed.</strong> ' + responseText); } $('#error-msg').removeClass('hide'); } $('#exc').ajaxForm({ target: '#error-msg', beforeSubmit: validate_excpt, success: showResponse, dataType: 'json' }); $('.button').button(); }); $('.button').button(); $("input[id^='exc-flwup-']").datepicker({ duration: '', showTime: true, constrainInput: true, stepMinutes: 30, stepHours: 1, altTimeField: '', time24h: true, minDate: 0 }); $('#ui-timepicker-div').bgiframe(); }); </script> please correct me if i am doing somwhere wrong? thanks

    Read the article

  • why my application sometimes got error in early launch?

    - by Hendra
    I have some problem. sometimes when I just try to run my application, it is going to be force close. I don't know why it is going to be happened. here are my source code. AlertDialog.Builder alert = new AlertDialog.Builder(this); alert.setCancelable(false); //AlertDialog.Builder alert = new AlertDialog.Builder(this); ..... alert.setPositiveButton("Ok", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int whichButton) { no_pasien = no_pas.getText().toString(); new LoginProses().execute(); ..... alert.show(); class LoginProses extends AsyncTask<String, String, String> { protected void onPreExecute() { super.onPreExecute(); ...... } protected String doInBackground(String... args) { List<NameValuePair> params = new ArrayList<NameValuePair>(); params.add(new BasicNameValuePair("no_pasien", no)); JSONObject json = jsonParser.makeHttpRequest(url_login, "POST", params); try { int success = json.getInt(TAG_SUCCESS); if (success == 1) { // successfully created product pasien = json.getJSONArray("pasien"); JSONObject c = pasien.getJSONObject(0); int id = c.getInt("id"); new Temporary().setIdPasien(id); Intent goMainAct = new Intent(); // goMainAct.putExtra("id", id); goMainAct.setClass(Login.this, MainActivity.class); finish(); startActivity(goMainAct); } else { // failed to create product Intent getReload = getIntent(); getReload.putExtra("status", 1); finish(); startActivity(getReload); } } catch (JSONException e) { if(pDialog.isShowing()){ pDialog.dismiss(); } } return null; } protected void onPostExecute(String file_url) { // dismiss the dialog once done pDialog.dismiss(); } } here is the log error for my problem: //HERE IS THE LOG: 06-25 22:57:23.836: E/WindowManager(7630): Activity com.iteadstudio.Login has leaked window com.android.internal.policy.impl.PhoneWindow$DecorView@41939850 that was originally added here 06-25 22:57:23.836: E/WindowManager(7630): android.view.WindowLeaked: Activity com.iteadstudio.Login has leaked window com.android.internal.policy.impl.PhoneWindow$DecorView@41939850 that was originally added here 06-25 22:57:23.836: E/WindowManager(7630): at android.view.ViewRootImpl.<init>(ViewRootImpl.java:344) 06-25 22:57:23.836: E/WindowManager(7630): at android.view.WindowManagerImpl.addView(WindowManagerImpl.java:267) 06-25 22:57:23.836: E/WindowManager(7630): at android.view.WindowManagerImpl.addView(WindowManagerImpl.java:215) 06-25 22:57:23.836: E/WindowManager(7630): at android.view.WindowManagerImpl$CompatModeWrapper.addView(WindowManagerImpl.java:140) 06-25 22:57:23.836: E/WindowManager(7630): at android.view.Window$LocalWindowManager.addView(Window.java:537) 06-25 22:57:23.836: E/WindowManager(7630): at android.app.Dialog.show(Dialog.java:278) 06-25 22:57:23.836: E/WindowManager(7630): at com.iteadstudio.Login$LoginProses.onPreExecute(Login.java:122) 06-25 22:57:23.836: E/WindowManager(7630): at android.os.AsyncTask.executeOnExecutor(AsyncTask.java:561) 06-25 22:57:23.836: E/WindowManager(7630): at android.os.AsyncTask.execute(AsyncTask.java:511) 06-25 22:57:23.836: E/WindowManager(7630): at com.iteadstudio.Login$3.onClick(Login.java:95) 06-25 22:57:23.836: E/WindowManager(7630): at com.android.internal.app.AlertController$ButtonHandler.handleMessage(AlertController.java:166) 06-25 22:57:23.836: E/WindowManager(7630): at android.os.Handler.dispatchMessage(Handler.java:99) 06-25 22:57:23.836: E/WindowManager(7630): at android.os.Looper.loop(Looper.java:137) 06-25 22:57:23.836: E/WindowManager(7630): at android.app.ActivityThread.main(ActivityThread.java:4441) 06-25 22:57:23.836: E/WindowManager(7630): at java.lang.reflect.Method.invokeNative(Native Method) 06-25 22:57:23.836: E/WindowManager(7630): at java.lang.reflect.Method.invoke(Method.java:511) 06-25 22:57:23.836: E/WindowManager(7630): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:823) 06-25 22:57:23.836: E/WindowManager(7630): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:590) 06-25 22:57:23.836: E/WindowManager(7630): at dalvik.system.NativeStart.main(Native Method) 06-25 22:57:23.946: D/dalvikvm(7630): GC_CONCURRENT freed 782K, 6% free 14319K/15203K, paused 4ms+3ms 06-25 22:57:23.976: D/AndroidRuntime(7630): Shutting down VM 06-25 22:57:23.976: W/dalvikvm(7630): threadid=1: thread exiting with uncaught exception (group=0x40ab4210) 06-25 22:57:23.986: E/AndroidRuntime(7630): FATAL EXCEPTION: main 06-25 22:57:23.986: E/AndroidRuntime(7630): java.lang.IllegalArgumentException: View not attached to window manager 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.view.WindowManagerImpl.findViewLocked(WindowManagerImpl.java:587) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.view.WindowManagerImpl.removeView(WindowManagerImpl.java:324) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.view.WindowManagerImpl$CompatModeWrapper.removeView(WindowManagerImpl.java:151) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.app.Dialog.dismissDialog(Dialog.java:321) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.app.Dialog$1.run(Dialog.java:119) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.app.Dialog.dismiss(Dialog.java:306) 06-25 22:57:23.986: E/AndroidRuntime(7630): at com.iteadstudio.Login$LoginProses.onPostExecute(Login.java:177) 06-25 22:57:23.986: E/AndroidRuntime(7630): at com.iteadstudio.Login$LoginProses.onPostExecute(Login.java:1) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.os.AsyncTask.finish(AsyncTask.java:602) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.os.AsyncTask.access$600(AsyncTask.java:156) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.os.AsyncTask$InternalHandler.handleMessage(AsyncTask.java:615) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.os.Handler.dispatchMessage(Handler.java:99) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.os.Looper.loop(Looper.java:137) 06-25 22:57:23.986: E/AndroidRuntime(7630): at android.app.ActivityThread.main(ActivityThread.java:4441) 06-25 22:57:23.986: E/AndroidRuntime(7630): at java.lang.reflect.Method.invokeNative(Native Method) 06-25 22:57:23.986: E/AndroidRuntime(7630): at java.lang.reflect.Method.invoke(Method.java:511) 06-25 22:57:23.986: E/AndroidRuntime(7630): at com.android.internal.os.ZygoteInit$MethodAndArgsCaller.run(ZygoteInit.java:823) 06-25 22:57:23.986: E/AndroidRuntime(7630): at com.android.internal.os.ZygoteInit.main(ZygoteInit.java:590) 06-25 22:57:23.986: E/AndroidRuntime(7630): at dalvik.system.NativeStart.main(Native Method)

    Read the article

  • Microsoft and jQuery

    - by Rick Strahl
    The jQuery JavaScript library has been steadily getting more popular and with recent developments from Microsoft, jQuery is also getting ever more exposure on the ASP.NET platform including now directly from Microsoft. jQuery is a light weight, open source DOM manipulation library for JavaScript that has changed how many developers think about JavaScript. You can download it and find more information on jQuery on www.jquery.com. For me jQuery has had a huge impact on how I develop Web applications and was probably the main reason I went from dreading to do JavaScript development to actually looking forward to implementing client side JavaScript functionality. It has also had a profound impact on my JavaScript skill level for me by seeing how the library accomplishes things (and often reviewing the terse but excellent source code). jQuery made an uncomfortable development platform (JavaScript + DOM) a joy to work on. Although jQuery is by no means the only JavaScript library out there, its ease of use, small size, huge community of plug-ins and pure usefulness has made it easily the most popular JavaScript library available today. As a long time jQuery user, I’ve been excited to see the developments from Microsoft that are bringing jQuery to more ASP.NET developers and providing more integration with jQuery for ASP.NET’s core features rather than relying on the ASP.NET AJAX library. Microsoft and jQuery – making Friends jQuery is an open source project but in the last couple of years Microsoft has really thrown its weight behind supporting this open source library as a supported component on the Microsoft platform. When I say supported I literally mean supported: Microsoft now offers actual tech support for jQuery as part of their Product Support Services (PSS) as jQuery integration has become part of several of the ASP.NET toolkits and ships in several of the default Web project templates in Visual Studio 2010. The ASP.NET MVC 3 framework (still in Beta) also uses jQuery for a variety of client side support features including client side validation and we can look forward toward more integration of client side functionality via jQuery in both MVC and WebForms in the future. In other words jQuery is becoming an optional but included component of the ASP.NET platform. PSS support means that support staff will answer jQuery related support questions as part of any support incidents related to ASP.NET which provides some piece of mind to some corporate development shops that require end to end support from Microsoft. In addition to including jQuery and supporting it, Microsoft has also been getting involved in providing development resources for extending jQuery’s functionality via plug-ins. Microsoft’s last version of the Microsoft Ajax Library – which is the successor to the native ASP.NET AJAX Library – included some really cool functionality for client templates, databinding and localization. As it turns out Microsoft has rebuilt most of that functionality using jQuery as the base API and provided jQuery plug-ins of these components. Very recently these three plug-ins were submitted and have been approved for inclusion in the official jQuery plug-in repository and been taken over by the jQuery team for further improvements and maintenance. Even more surprising: The jQuery-templates component has actually been approved for inclusion in the next major update of the jQuery core in jQuery V1.5, which means it will become a native feature that doesn’t require additional script files to be loaded. Imagine this – an open source contribution from Microsoft that has been accepted into a major open source project for a core feature improvement. Microsoft has come a long way indeed! What the Microsoft Involvement with jQuery means to you For Microsoft jQuery support is a strategic decision that affects their direction in client side development, but nothing stopped you from using jQuery in your applications prior to Microsoft’s official backing and in fact a large chunk of developers did so readily prior to Microsoft’s announcement. Official support from Microsoft brings a few benefits to developers however. jQuery support in Visual Studio 2010 means built-in support for jQuery IntelliSense, automatically added jQuery scripts in many projects types and a common base for client side functionality that actually uses what most developers are already using. If you have already been using jQuery and were worried about straying from the Microsoft line and their internal Microsoft Ajax Library – worry no more. With official support and the change in direction towards jQuery Microsoft is now following along what most in the ASP.NET community had already been doing by using jQuery, which is likely the reason for Microsoft’s shift in direction in the first place. ASP.NET AJAX and the Microsoft AJAX Library weren’t bad technology – there was tons of useful functionality buried in these libraries. However, these libraries never got off the ground, mainly because early incarnations were squarely aimed at control/component developers rather than application developers. For all the functionality that these controls provided for control developers they lacked in useful and easily usable application developer functionality that was easily accessible in day to day client side development. The result was that even though Microsoft shipped support for these tools in the box (in .NET 3.5 and 4.0), other than for the internal support in ASP.NET for things like the UpdatePanel and the ASP.NET AJAX Control Toolkit as well as some third party vendors, the Microsoft client libraries were largely ignored by the developer community opening the door for other client side solutions. Microsoft seems to be acknowledging developer choice in this case: Many more developers were going down the jQuery path rather than using the Microsoft built libraries and there seems to be little sense in continuing development of a technology that largely goes unused by the majority of developers. Kudos for Microsoft for recognizing this and gracefully changing directions. Note that even though there will be no further development in the Microsoft client libraries they will continue to be supported so if you’re using them in your applications there’s no reason to start running for the exit in a panic and start re-writing everything with jQuery. Although that might be a reasonable choice in some cases, jQuery and the Microsoft libraries work well side by side so that you can leave existing solutions untouched even as you enhance them with jQuery. The Microsoft jQuery Plug-ins – Solid Core Features One of the most interesting developments in Microsoft’s embracing of jQuery is that Microsoft has started contributing to jQuery via standard mechanism set for jQuery developers: By submitting plug-ins. Microsoft took some of the nicest new features of the unpublished Microsoft Ajax Client Library and re-wrote these components for jQuery and then submitted them as plug-ins to the jQuery plug-in repository. Accepted plug-ins get taken over by the jQuery team and that’s exactly what happened with the three plug-ins submitted by Microsoft with the templating plug-in even getting slated to be published as part of the jQuery core in the next major release (1.5). The following plug-ins are provided by Microsoft: jQuery Templates – a client side template rendering engine jQuery Data Link – a client side databinder that can synchronize changes without code jQuery Globalization – provides formatting and conversion features for dates and numbers The first two are ports of functionality that was slated for the Microsoft Ajax Library while functionality for the globalization library provides functionality that was already found in the original ASP.NET AJAX library. To me all three plug-ins address a pressing need in client side applications and provide functionality I’ve previously used in other incarnations, but with more complete implementations. Let’s take a close look at these plug-ins. jQuery Templates http://api.jquery.com/category/plugins/templates/ Client side templating is a key component for building rich JavaScript applications in the browser. Templating on the client lets you avoid from manually creating markup by creating DOM nodes and injecting them individually into the document via code. Rather you can create markup templates – similar to the way you create classic ASP server markup – and merge data into these templates to render HTML which you can then inject into the document or replace existing content with. Output from templates are rendered as a jQuery matched set and can then be easily inserted into the document as needed. Templating is key to minimize client side code and reduce repeated code for rendering logic. Instead a single template can be used in many places for updating and adding content to existing pages. Further if you build pure AJAX interfaces that rely entirely on client rendering of the initial page content, templates allow you to a use a single markup template to handle all rendering of each specific HTML section/element. I’ve used a number of different client rendering template engines with jQuery in the past including jTemplates (a PHP style templating engine) and a modified version of John Resig’s MicroTemplating engine which I built into my own set of libraries because it’s such a commonly used feature in my client side applications. jQuery templates adds a much richer templating model that allows for sub-templates and access to the data items. Like John Resig’s original Micro Template engine, the core basics of the templating engine create JavaScript code which means that templates can include JavaScript code. To give you a basic idea of how templates work imagine I have an application that downloads a set of stock quotes based on a symbol list then displays them in the document. To do this you can create an ‘item’ template that describes how each of the quotes is renderd as a template inside of the document: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div><div>${LastPrice}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div><div>${LastQuoteTimeString}</div> </div> </script> The ‘template’ is little more than HTML with some markup expressions inside of it that define the template language. Notice the embedded ${} expressions which reference data from the quote objects returned from an AJAX call on the server. You can embed any JavaScript or value expression in these template expressions. There are also a number of structural commands like {{if}} and {{each}} that provide for rudimentary logic inside of your templates as well as commands ({{tmpl}} and {{wrap}}) for nesting templates. You can find more about the full set of markup expressions available in the documentation. To load up this data you can use code like the following: <script type="text/javascript"> //var Proxy = new ServiceProxy("../PageMethods/PageMethodsService.asmx/"); $(document).ready(function () { $("#btnGetQuotes").click(GetQuotes); }); function GetQuotes() { var symbols = $("#txtSymbols").val().split(","); $.ajax({ url: "../PageMethods/PageMethodsService.asmx/GetStockQuotes", data: JSON.stringify({ symbols: symbols }), // parameter map type: "POST", // data has to be POSTed contentType: "application/json", timeout: 10000, dataType: "json", success: function (result) { var quotes = result.d; var jEl = $("#stockTemplate").tmpl(quotes); $("#quoteDisplay").empty().append(jEl); }, error: function (xhr, status) { alert(status + "\r\n" + xhr.responseText); } }); }; </script> In this case an ASMX AJAX service is called to retrieve the stock quotes. The service returns an array of quote objects. The result is returned as an object with the .d property (in Microsoft service style) that returns the actual array of quotes. The template is applied with: var jEl = $("#stockTemplate").tmpl(quotes); which selects the template script tag and uses the .tmpl() function to apply the data to it. The result is a jQuery matched set of elements that can then be appended to the quote display element in the page. The template is merged against an array in this example. When the result is an array the template is automatically applied to each each array item. If you pass a single data item – like say a stock quote – the template works exactly the same way but is applied only once. Templates also have access to a $data item which provides the current data item and information about the tempalte that is currently executing. This makes it possible to keep context within the context of the template itself and also to pass context from a parent template to a child template which is very powerful. Templates can be evaluated by using the template selector and calling the .tmpl() function on the jQuery matched set as shown above or you can use the static $.tmpl() function to provide a template as a string. This allows you to dynamically create templates in code or – more likely – to load templates from the server via AJAX calls. In short there are options The above shows off some of the basics, but there’s much for functionality available in the template engine. Check the documentation link for more information and links to additional examples. The plug-in download also comes with a number of examples that demonstrate functionality. jQuery templates will become a native component in jQuery Core 1.5, so it’s definitely worthwhile checking out the engine today and get familiar with this interface. As much as I’m stoked about templating becoming part of the jQuery core because it’s such an integral part of many applications, there are also a couple shortcomings in the current incarnation: Lack of Error Handling Currently if you embed an expression that is invalid it’s simply not rendered. There’s no error rendered into the template nor do the various  template functions throw errors which leaves finding of bugs as a runtime exercise. I would like some mechanism – optional if possible – to be able to get error info of what is failing in a template when it’s rendered. No String Output Templates are always rendered into a jQuery matched set and there’s no way that I can see to directly render to a string. String output can be useful for debugging as well as opening up templating for creating non-HTML string output. Limited JavaScript Access Unlike John Resig’s original MicroTemplating Engine which was entirely based on JavaScript code generation these templates are limited to a few structured commands that can ‘execute’. There’s no code execution inside of script code which means you’re limited to calling expressions available in global objects or the data item passed in. This may or may not be a big deal depending on the complexity of your template logic. Error handling has been discussed quite a bit and it’s likely there will be some solution to that particualar issue by the time jQuery templates ship. The others are relatively minor issues but something to think about anyway. jQuery Data Link http://api.jquery.com/category/plugins/data-link/ jQuery Data Link provides the ability to do two-way data binding between input controls and an underlying object’s properties. The typical scenario is linking a textbox to a property of an object and have the object updated when the text in the textbox is changed and have the textbox change when the value in the object or the entire object changes. The plug-in also supports converter functions that can be applied to provide the conversion logic from string to some other value typically necessary for mapping things like textbox string input to say a number property and potentially applying additional formatting and calculations. In theory this sounds great, however in reality this plug-in has some serious usability issues. Using the plug-in you can do things like the following to bind data: person = { firstName: "rick", lastName: "strahl"}; $(document).ready( function() { // provide for two-way linking of inputs $("form").link(person); // bind to non-input elements explicitly $("#objFirst").link(person, { firstName: { name: "objFirst", convertBack: function (value, source, target) { $(target).text(value); } } }); $("#objLast").link(person, { lastName: { name: "objLast", convertBack: function (value, source, target) { $(target).text(value); } } }); }); This code hooks up two-way linking between a couple of textboxes on the page and the person object. The first line in the .ready() handler provides mapping of object to form field with the same field names as properties on the object. Note that .link() does NOT bind items into the textboxes when you call .link() – changes are mapped only when values change and you move out of the field. Strike one. The two following commands allow manual binding of values to specific DOM elements which is effectively a one-way bind. You specify the object and a then an explicit mapping where name is an ID in the document. The converter is required to explicitly assign the value to the element. Strike two. You can also detect changes to the underlying object and cause updates to the input elements bound. Unfortunately the syntax to do this is not very natural as you have to rely on the jQuery data object. To update an object’s properties and get change notification looks like this: function updateFirstName() { $(person).data("firstName", person.firstName + " (code updated)"); } This works fine in causing any linked fields to be updated. In the bindings above both the firstName input field and objFirst DOM element gets updated. But the syntax requires you to use a jQuery .data() call for each property change to ensure that the changes are tracked properly. Really? Sure you’re binding through multiple layers of abstraction now but how is that better than just manually assigning values? The code savings (if any) are going to be minimal. As much as I would like to have a WPF/Silverlight/Observable-like binding mechanism in client script, this plug-in doesn’t help much towards that goal in its current incarnation. While you can bind values, the ‘binder’ is too limited to be really useful. If initial values can’t be assigned from the mappings you’re going to end up duplicating work loading the data using some other mechanism. There’s no easy way to re-bind data with a different object altogether since updates trigger only through the .data members. Finally, any non-input elements have to be bound via code that’s fairly verbose and frankly may be more voluminous than what you might write by hand for manual binding and unbinding. Two way binding can be very useful but it has to be easy and most importantly natural. If it’s more work to hook up a binding than writing a couple of lines to do binding/unbinding this sort of thing helps very little in most scenarios. In talking to some of the developers the feature set for Data Link is not complete and they are still soliciting input for features and functionality. If you have ideas on how you want this feature to be more useful get involved and post your recommendations. As it stands, it looks to me like this component needs a lot of love to become useful. For this component to really provide value, bindings need to be able to be refreshed easily and work at the object level, not just the property level. It seems to me we would be much better served by a model binder object that can perform these binding/unbinding tasks in bulk rather than a tool where each link has to be mapped first. I also find the choice of creating a jQuery plug-in questionable – it seems a standalone object – albeit one that relies on the jQuery library – would provide a more intuitive interface than the current forcing of options onto a plug-in style interface. Out of the three Microsoft created components this is by far the least useful and least polished implementation at this point. jQuery Globalization http://github.com/jquery/jquery-global Globalization in JavaScript applications often gets short shrift and part of the reason for this is that natively in JavaScript there’s little support for formatting and parsing of numbers and dates. There are a number of JavaScript libraries out there that provide some support for globalization, but most are limited to a particular portion of globalization. As .NET developers we’re fairly spoiled by the richness of APIs provided in the framework and when dealing with client development one really notices the lack of these features. While you may not necessarily need to localize your application the globalization plug-in also helps with some basic tasks for non-localized applications: Dealing with formatting and parsing of dates and time values. Dates in particular are problematic in JavaScript as there are no formatters whatsoever except the .toString() method which outputs a verbose and next to useless long string. With the globalization plug-in you get a good chunk of the formatting and parsing functionality that the .NET framework provides on the server. You can write code like the following for example to format numbers and dates: var date = new Date(); var output = $.format(date, "MMM. dd, yy") + "\r\n" + $.format(date, "d") + "\r\n" + // 10/25/2010 $.format(1222.32213, "N2") + "\r\n" + $.format(1222.33, "c") + "\r\n"; alert(output); This becomes even more useful if you combine it with templates which can also include any JavaScript expressions. Assuming the globalization plug-in is loaded you can create template expressions that use the $.format function. Here’s the template I used earlier for the stock quote again with a couple of formats applied: <script id="stockTemplate" type="text/x-jquery-tmpl"> <div id="divStockQuote" class="errordisplay" style="width: 500px;"> <div class="label">Company:</div><div><b>${Company}(${Symbol})</b></div> <div class="label">Last Price:</div> <div>${$.format(LastPrice,"N2")}</div> <div class="label">Net Change:</div><div> {{if NetChange > 0}} <b style="color:green" >${NetChange}</b> {{else}} <b style="color:red" >${NetChange}</b> {{/if}} </div> <div class="label">Last Update:</div> <div>${$.format(LastQuoteTime,"MMM dd, yyyy")}</div> </div> </script> There are also parsing methods that can parse dates and numbers from strings into numbers easily: alert($.parseDate("25.10.2010")); alert($.parseInt("12.222")); // de-DE uses . for thousands separators As you can see culture specific options are taken into account when parsing. The globalization plugin provides rich support for a variety of locales: Get a list of all available cultures Query cultures for culture items (like currency symbol, separators etc.) Localized string names for all calendar related items (days of week, months) Generated off of .NET’s supported locales In short you get much of the same functionality that you already might be using in .NET on the server side. The plugin includes a huge number of locales and an Globalization.all.min.js file that contains the text defaults for each of these locales as well as small locale specific script files that define each of the locale specific settings. It’s highly recommended that you NOT use the huge globalization file that includes all locales, but rather add script references to only those languages you explicitly care about. Overall this plug-in is a welcome helper. Even if you use it with a single locale (like en-US) and do no other localization, you’ll gain solid support for number and date formatting which is a vital feature of many applications. Changes for Microsoft It’s good to see Microsoft coming out of its shell and away from the ‘not-built-here’ mentality that has been so pervasive in the past. It’s especially good to see it applied to jQuery – a technology that has stood in drastic contrast to Microsoft’s own internal efforts in terms of design, usage model and… popularity. It’s great to see that Microsoft is paying attention to what customers prefer to use and supporting the customer sentiment – even if it meant drastically changing course of policy and moving into a more open and sharing environment in the process. The additional jQuery support that has been introduced in the last two years certainly has made lives easier for many developers on the ASP.NET platform. It’s also nice to see Microsoft submitting proposals through the standard jQuery process of plug-ins and getting accepted for various very useful projects. Certainly the jQuery Templates plug-in is going to be very useful to many especially since it will be baked into the jQuery core in jQuery 1.5. I hope we see more of this type of involvement from Microsoft in the future. Kudos!© Rick Strahl, West Wind Technologies, 2005-2010Posted in jQuery  ASP.NET  

    Read the article

  • Creating a dynamic, extensible C# Expando Object

    - by Rick Strahl
    I love dynamic functionality in a strongly typed language because it offers us the best of both worlds. In C# (or any of the main .NET languages) we now have the dynamic type that provides a host of dynamic features for the static C# language. One place where I've found dynamic to be incredibly useful is in building extensible types or types that expose traditionally non-object data (like dictionaries) in easier to use and more readable syntax. I wrote about a couple of these for accessing old school ADO.NET DataRows and DataReaders more easily for example. These classes are dynamic wrappers that provide easier syntax and auto-type conversions which greatly simplifies code clutter and increases clarity in existing code. ExpandoObject in .NET 4.0 Another great use case for dynamic objects is the ability to create extensible objects - objects that start out with a set of static members and then can add additional properties and even methods dynamically. The .NET 4.0 framework actually includes an ExpandoObject class which provides a very dynamic object that allows you to add properties and methods on the fly and then access them again. For example with ExpandoObject you can do stuff like this:dynamic expand = new ExpandoObject(); expand.Name = "Rick"; expand.HelloWorld = (Func<string, string>) ((string name) => { return "Hello " + name; }); Console.WriteLine(expand.Name); Console.WriteLine(expand.HelloWorld("Dufus")); Internally ExpandoObject uses a Dictionary like structure and interface to store properties and methods and then allows you to add and access properties and methods easily. As cool as ExpandoObject is it has a few shortcomings too: It's a sealed type so you can't use it as a base class It only works off 'properties' in the internal Dictionary - you can't expose existing type data It doesn't serialize to XML or with DataContractSerializer/DataContractJsonSerializer Expando - A truly extensible Object ExpandoObject is nice if you just need a dynamic container for a dictionary like structure. However, if you want to build an extensible object that starts out with a set of strongly typed properties and then allows you to extend it, ExpandoObject does not work because it's a sealed class that can't be inherited. I started thinking about this very scenario for one of my applications I'm building for a customer. In this system we are connecting to various different user stores. Each user store has the same basic requirements for username, password, name etc. But then each store also has a number of extended properties that is available to each application. In the real world scenario the data is loaded from the database in a data reader and the known properties are assigned from the known fields in the database. All unknown fields are then 'added' to the expando object dynamically. In the past I've done this very thing with a separate property - Properties - just like I do for this class. But the property and dictionary syntax is not ideal and tedious to work with. I started thinking about how to represent these extra property structures. One way certainly would be to add a Dictionary, or an ExpandoObject to hold all those extra properties. But wouldn't it be nice if the application could actually extend an existing object that looks something like this as you can with the Expando object:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } } and then simply start extending the properties of this object dynamically? Using the Expando object I describe later you can now do the following:[TestMethod] public void UserExampleTest() { var user = new User(); // Set strongly typed properties user.Email = "[email protected]"; user.Password = "nonya123"; user.Name = "Rickochet"; user.Active = true; // Now add dynamic properties dynamic duser = user; duser.Entered = DateTime.Now; duser.Accesses = 1; // you can also add dynamic props via indexer user["NickName"] = "AntiSocialX"; duser["WebSite"] = "http://www.west-wind.com/weblog"; // Access strong type through dynamic ref Assert.AreEqual(user.Name,duser.Name); // Access strong type through indexer Assert.AreEqual(user.Password,user["Password"]); // access dyanmically added value through indexer Assert.AreEqual(duser.Entered,user["Entered"]); // access index added value through dynamic Assert.AreEqual(user["NickName"],duser.NickName); // loop through all properties dynamic AND strong type properties (true) foreach (var prop in user.GetProperties(true)) { object val = prop.Value; if (val == null) val = "null"; Console.WriteLine(prop.Key + ": " + val.ToString()); } } As you can see this code somewhat blurs the line between a static and dynamic type. You start with a strongly typed object that has a fixed set of properties. You can then cast the object to dynamic (as I discussed in my last post) and add additional properties to the object. You can also use an indexer to add dynamic properties to the object. To access the strongly typed properties you can use either the strongly typed instance, the indexer or the dynamic cast of the object. Personally I think it's kinda cool to have an easy way to access strongly typed properties by string which can make some data scenarios much easier. To access the 'dynamically added' properties you can use either the indexer on the strongly typed object, or property syntax on the dynamic cast. Using the dynamic type allows all three modes to work on both strongly typed and dynamic properties. Finally you can iterate over all properties, both dynamic and strongly typed if you chose. Lots of flexibility. Note also that by default the Expando object works against the (this) instance meaning it extends the current object. You can also pass in a separate instance to the constructor in which case that object will be used to iterate over to find properties rather than this. Using this approach provides some really interesting functionality when use the dynamic type. To use this we have to add an explicit constructor to the Expando subclass:public class User : Westwind.Utilities.Dynamic.Expando { public string Email { get; set; } public string Password { get; set; } public string Name { get; set; } public bool Active { get; set; } public DateTime? ExpiresOn { get; set; } public User() : base() { } // only required if you want to mix in seperate instance public User(object instance) : base(instance) { } } to allow the instance to be passed. When you do you can now do:[TestMethod] public void ExpandoMixinTest() { // have Expando work on Addresses var user = new User( new Address() ); // cast to dynamicAccessToPropertyTest dynamic duser = user; // Set strongly typed properties duser.Email = "[email protected]"; user.Password = "nonya123"; // Set properties on address object duser.Address = "32 Kaiea"; //duser.Phone = "808-123-2131"; // set dynamic properties duser.NonExistantProperty = "This works too"; // shows default value Address.Phone value Console.WriteLine(duser.Phone); } Using the dynamic cast in this case allows you to access *three* different 'objects': The strong type properties, the dynamically added properties in the dictionary and the properties of the instance passed in! Effectively this gives you a way to simulate multiple inheritance (which is scary - so be very careful with this, but you can do it). How Expando works Behind the scenes Expando is a DynamicObject subclass as I discussed in my last post. By implementing a few of DynamicObject's methods you can basically create a type that can trap 'property missing' and 'method missing' operations. When you access a non-existant property a known method is fired that our code can intercept and provide a value for. Internally Expando uses a custom dictionary implementation to hold the dynamic properties you might add to your expandable object. Let's look at code first. The code for the Expando type is straight forward and given what it provides relatively short. Here it is.using System; using System.Collections.Generic; using System.Linq; using System.Dynamic; using System.Reflection; namespace Westwind.Utilities.Dynamic { /// <summary> /// Class that provides extensible properties and methods. This /// dynamic object stores 'extra' properties in a dictionary or /// checks the actual properties of the instance. /// /// This means you can subclass this expando and retrieve either /// native properties or properties from values in the dictionary. /// /// This type allows you three ways to access its properties: /// /// Directly: any explicitly declared properties are accessible /// Dynamic: dynamic cast allows access to dictionary and native properties/methods /// Dictionary: Any of the extended properties are accessible via IDictionary interface /// </summary> [Serializable] public class Expando : DynamicObject, IDynamicMetaObjectProvider { /// <summary> /// Instance of object passed in /// </summary> object Instance; /// <summary> /// Cached type of the instance /// </summary> Type InstanceType; PropertyInfo[] InstancePropertyInfo { get { if (_InstancePropertyInfo == null && Instance != null) _InstancePropertyInfo = Instance.GetType().GetProperties(BindingFlags.Instance | BindingFlags.Public | BindingFlags.DeclaredOnly); return _InstancePropertyInfo; } } PropertyInfo[] _InstancePropertyInfo; /// <summary> /// String Dictionary that contains the extra dynamic values /// stored on this object/instance /// </summary> /// <remarks>Using PropertyBag to support XML Serialization of the dictionary</remarks> public PropertyBag Properties = new PropertyBag(); //public Dictionary<string,object> Properties = new Dictionary<string, object>(); /// <summary> /// This constructor just works off the internal dictionary and any /// public properties of this object. /// /// Note you can subclass Expando. /// </summary> public Expando() { Initialize(this); } /// <summary> /// Allows passing in an existing instance variable to 'extend'. /// </summary> /// <remarks> /// You can pass in null here if you don't want to /// check native properties and only check the Dictionary! /// </remarks> /// <param name="instance"></param> public Expando(object instance) { Initialize(instance); } protected virtual void Initialize(object instance) { Instance = instance; if (instance != null) InstanceType = instance.GetType(); } /// <summary> /// Try to retrieve a member by name first from instance properties /// followed by the collection entries. /// </summary> /// <param name="binder"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryGetMember(GetMemberBinder binder, out object result) { result = null; // first check the Properties collection for member if (Properties.Keys.Contains(binder.Name)) { result = Properties[binder.Name]; return true; } // Next check for Public properties via Reflection if (Instance != null) { try { return GetProperty(Instance, binder.Name, out result); } catch { } } // failed to retrieve a property result = null; return false; } /// <summary> /// Property setter implementation tries to retrieve value from instance /// first then into this object /// </summary> /// <param name="binder"></param> /// <param name="value"></param> /// <returns></returns> public override bool TrySetMember(SetMemberBinder binder, object value) { // first check to see if there's a native property to set if (Instance != null) { try { bool result = SetProperty(Instance, binder.Name, value); if (result) return true; } catch { } } // no match - set or add to dictionary Properties[binder.Name] = value; return true; } /// <summary> /// Dynamic invocation method. Currently allows only for Reflection based /// operation (no ability to add methods dynamically). /// </summary> /// <param name="binder"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> public override bool TryInvokeMember(InvokeMemberBinder binder, object[] args, out object result) { if (Instance != null) { try { // check instance passed in for methods to invoke if (InvokeMethod(Instance, binder.Name, args, out result)) return true; } catch { } } result = null; return false; } /// <summary> /// Reflection Helper method to retrieve a property /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="result"></param> /// <returns></returns> protected bool GetProperty(object instance, string name, out object result) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.GetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { result = ((PropertyInfo)mi).GetValue(instance,null); return true; } } result = null; return false; } /// <summary> /// Reflection helper method to set a property value /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="value"></param> /// <returns></returns> protected bool SetProperty(object instance, string name, object value) { if (instance == null) instance = this; var miArray = InstanceType.GetMember(name, BindingFlags.Public | BindingFlags.SetProperty | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0]; if (mi.MemberType == MemberTypes.Property) { ((PropertyInfo)mi).SetValue(Instance, value, null); return true; } } return false; } /// <summary> /// Reflection helper method to invoke a method /// </summary> /// <param name="instance"></param> /// <param name="name"></param> /// <param name="args"></param> /// <param name="result"></param> /// <returns></returns> protected bool InvokeMethod(object instance, string name, object[] args, out object result) { if (instance == null) instance = this; // Look at the instanceType var miArray = InstanceType.GetMember(name, BindingFlags.InvokeMethod | BindingFlags.Public | BindingFlags.Instance); if (miArray != null && miArray.Length > 0) { var mi = miArray[0] as MethodInfo; result = mi.Invoke(Instance, args); return true; } result = null; return false; } /// <summary> /// Convenience method that provides a string Indexer /// to the Properties collection AND the strongly typed /// properties of the object by name. /// /// // dynamic /// exp["Address"] = "112 nowhere lane"; /// // strong /// var name = exp["StronglyTypedProperty"] as string; /// </summary> /// <remarks> /// The getter checks the Properties dictionary first /// then looks in PropertyInfo for properties. /// The setter checks the instance properties before /// checking the Properties dictionary. /// </remarks> /// <param name="key"></param> /// /// <returns></returns> public object this[string key] { get { try { // try to get from properties collection first return Properties[key]; } catch (KeyNotFoundException ex) { // try reflection on instanceType object result = null; if (GetProperty(Instance, key, out result)) return result; // nope doesn't exist throw; } } set { if (Properties.ContainsKey(key)) { Properties[key] = value; return; } // check instance for existance of type first var miArray = InstanceType.GetMember(key, BindingFlags.Public | BindingFlags.GetProperty); if (miArray != null && miArray.Length > 0) SetProperty(Instance, key, value); else Properties[key] = value; } } /// <summary> /// Returns and the properties of /// </summary> /// <param name="includeProperties"></param> /// <returns></returns> public IEnumerable<KeyValuePair<string,object>> GetProperties(bool includeInstanceProperties = false) { if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) yield return new KeyValuePair<string, object>(prop.Name, prop.GetValue(Instance, null)); } foreach (var key in this.Properties.Keys) yield return new KeyValuePair<string, object>(key, this.Properties[key]); } /// <summary> /// Checks whether a property exists in the Property collection /// or as a property on the instance /// </summary> /// <param name="item"></param> /// <returns></returns> public bool Contains(KeyValuePair<string, object> item, bool includeInstanceProperties = false) { bool res = Properties.ContainsKey(item.Key); if (res) return true; if (includeInstanceProperties && Instance != null) { foreach (var prop in this.InstancePropertyInfo) { if (prop.Name == item.Key) return true; } } return false; } } } Although the Expando class supports an indexer, it doesn't actually implement IDictionary or even IEnumerable. It only provides the indexer and Contains() and GetProperties() methods, that work against the Properties dictionary AND the internal instance. The reason for not implementing IDictionary is that a) it doesn't add much value since you can access the Properties dictionary directly and that b) I wanted to keep the interface to class very lean so that it can serve as an entity type if desired. Implementing these IDictionary (or even IEnumerable) causes LINQ extension methods to pop up on the type which obscures the property interface and would only confuse the purpose of the type. IDictionary and IEnumerable are also problematic for XML and JSON Serialization - the XML Serializer doesn't serialize IDictionary<string,object>, nor does the DataContractSerializer. The JavaScriptSerializer does serialize, but it treats the entire object like a dictionary and doesn't serialize the strongly typed properties of the type, only the dictionary values which is also not desirable. Hence the decision to stick with only implementing the indexer to support the user["CustomProperty"] functionality and leaving iteration functions to the publicly exposed Properties dictionary. Note that the Dictionary used here is a custom PropertyBag class I created to allow for serialization to work. One important aspect for my apps is that whatever custom properties get added they have to be accessible to AJAX clients since the particular app I'm working on is a SIngle Page Web app where most of the Web access is through JSON AJAX calls. PropertyBag can serialize to XML and one way serialize to JSON using the JavaScript serializer (not the DCS serializers though). The key components that make Expando work in this code are the Properties Dictionary and the TryGetMember() and TrySetMember() methods. The Properties collection is public so if you choose you can explicitly access the collection to get better performance or to manipulate the members in internal code (like loading up dynamic values form a database). Notice that TryGetMember() and TrySetMember() both work against the dictionary AND the internal instance to retrieve and set properties. This means that user["Name"] works against native properties of the object as does user["Name"] = "RogaDugDog". What's your Use Case? This is still an early prototype but I've plugged it into one of my customer's applications and so far it's working very well. The key features for me were the ability to easily extend the type with values coming from a database and exposing those values in a nice and easy to use manner. I'm also finding that using this type of object for ViewModels works very well to add custom properties to view models. I suspect there will be lots of uses for this - I've been using the extra dictionary approach to extensibility for years - using a dynamic type to make the syntax cleaner is just a bonus here. What can you think of to use this for? Resources Source Code and Tests (GitHub) Also integrated in Westwind.Utilities of the West Wind Web Toolkit West Wind Utilities NuGet© Rick Strahl, West Wind Technologies, 2005-2012Posted in CSharp  .NET  Dynamic Types   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ASP.NET Web API Exception Handling

    - by Fredrik N
    When I talk about exceptions in my product team I often talk about two kind of exceptions, business and critical exceptions. Business exceptions are exceptions thrown based on “business rules”, for example if you aren’t allowed to do a purchase. Business exceptions in most case aren’t important to log into a log file, they can directly be shown to the user. An example of a business exception could be "DeniedToPurchaseException”, or some validation exceptions such as “FirstNameIsMissingException” etc. Critical Exceptions are all other kind of exceptions such as the SQL server is down etc. Those kind of exception message need to be logged and should not reach the user, because they can contain information that can be harmful if it reach out to wrong kind of users. I often distinguish business exceptions from critical exceptions by creating a base class called BusinessException, then in my error handling code I catch on the type BusinessException and all other exceptions will be handled as critical exceptions. This blog post will be about different ways to handle exceptions and how Business and Critical Exceptions could be handled. Web API and Exceptions the basics When an exception is thrown in a ApiController a response message will be returned with a status code set to 500 and a response formatted by the formatters based on the “Accept” or “Content-Type” HTTP header, for example JSON or XML. Here is an example:   public IEnumerable<string> Get() { throw new ApplicationException("Error!!!!!"); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response message will be: HTTP/1.1 500 Internal Server Error Content-Length: 860 Content-Type: application/json; charset=utf-8 { "ExceptionType":"System.ApplicationException","Message":"Error!!!!!","StackTrace":" at ..."} .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The stack trace will be returned to the client, this is because of making it easier to debug. Be careful so you don’t leak out some sensitive information to the client. So as long as you are developing your API, this is not harmful. In a production environment it can be better to log exceptions and return a user friendly exception instead of the original exception. There is a specific exception shipped with ASP.NET Web API that will not use the formatters based on the “Accept” or “Content-Type” HTTP header, it is the exception is the HttpResponseException class. Here is an example where the HttpReponseExcetpion is used: // GET api/values [ExceptionHandling] public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError)); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response will not contain any content, only header information and the status code based on the HttpStatusCode passed as an argument to the HttpResponseMessage. Because the HttpResponsException takes a HttpResponseMessage as an argument, we can give the response a content: public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("My Error Message"), ReasonPhrase = "Critical Exception" }); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The code above will have the following response:   HTTP/1.1 500 Critical Exception Content-Length: 5 Content-Type: text/plain; charset=utf-8 My Error Message .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The Content property of the HttpResponseMessage doesn’t need to be just plain text, it can also be other formats, for example JSON, XML etc. By using the HttpResponseException we can for example catch an exception and throw a user friendly exception instead: public IEnumerable<string> Get() { try { DoSomething(); return new string[] { "value1", "value2" }; } catch (Exception e) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Adding a try catch to every ApiController methods will only end in duplication of code, by using a custom ExceptionFilterAttribute or our own custom ApiController base class we can reduce code duplicationof code and also have a more general exception handler for our ApiControllers . By creating a custom ApiController’s and override the ExecuteAsync method, we can add a try catch around the base.ExecuteAsync method, but I prefer to skip the creation of a own custom ApiController, better to use a solution that require few files to be modified. The ExceptionFilterAttribute has a OnException method that we can override and add our exception handling. Here is an example: using System; using System.Diagnostics; using System.Net; using System.Net.Http; using System.Web.Http; using System.Web.Http.Filters; public class ExceptionHandlingAttribute : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { if (context.Exception is BusinessException) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(context.Exception.Message), ReasonPhrase = "Exception" }); } //Log Critical errors Debug.WriteLine(context.Exception); throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: Something to have in mind is that the ExceptionFilterAttribute will be ignored if the ApiController action method throws a HttpResponseException. The code above will always make sure a HttpResponseExceptions will be returned, it will also make sure the critical exceptions will show a more user friendly message. The OnException method can also be used to log exceptions. By using a ExceptionFilterAttribute the Get() method in the previous example can now look like this: public IEnumerable<string> Get() { DoSomething(); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To use the an ExceptionFilterAttribute, we can for example add the ExceptionFilterAttribute to our ApiControllers methods or to the ApiController class definition, or register it globally for all ApiControllers. You can read more about is here. Note: If something goes wrong in the ExceptionFilterAttribute and an exception is thrown that is not of type HttpResponseException, a formatted exception will be thrown with stack trace etc to the client. How about using a custom IHttpActionInvoker? We can create our own IHTTPActionInvoker and add Exception handling to the invoker. The IHttpActionInvoker will be used to invoke the ApiController’s ExecuteAsync method. Here is an example where the default IHttpActionInvoker, ApiControllerActionInvoker, is used to add exception handling: public class MyApiControllerActionInvoker : ApiControllerActionInvoker { public override Task<HttpResponseMessage> InvokeActionAsync(HttpActionContext actionContext, System.Threading.CancellationToken cancellationToken) { var result = base.InvokeActionAsync(actionContext, cancellationToken); if (result.Exception != null && result.Exception.GetBaseException() != null) { var baseException = result.Exception.GetBaseException(); if (baseException is BusinessException) { return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Error" }); } else { //Log critical error Debug.WriteLine(baseException); return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Critical Error" }); } } return result; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can register the IHttpActionInvoker with your own IoC to resolve the MyApiContollerActionInvoker, or add it in the Global.asax: GlobalConfiguration.Configuration.Services.Remove(typeof(IHttpActionInvoker), GlobalConfiguration.Configuration.Services.GetActionInvoker()); GlobalConfiguration.Configuration.Services.Add(typeof(IHttpActionInvoker), new MyApiControllerActionInvoker()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   How about using a Message Handler for Exception Handling? By creating a custom Message Handler, we can handle error after the ApiController and the ExceptionFilterAttribute is invoked and in that way create a global exception handler, BUT, the only thing we can take a look at is the HttpResponseMessage, we can’t add a try catch around the Message Handler’s SendAsync method. The last Message Handler that will be used in the Wep API pipe-line is the HttpControllerDispatcher and this Message Handler is added to the HttpServer in an early stage. The HttpControllerDispatcher will use the IHttpActionInvoker to invoke the ApiController method. The HttpControllerDipatcher has a try catch that will turn ALL exceptions into a HttpResponseMessage, so that is the reason why a try catch around the SendAsync in a custom Message Handler want help us. If we create our own Host for the Wep API we could create our own custom HttpControllerDispatcher and add or exception handler to that class, but that would be little tricky but is possible. We can in a Message Handler take a look at the HttpResponseMessage’s IsSuccessStatusCode property to see if the request has failed and if we throw the HttpResponseException in our ApiControllers, we could use the HttpResponseException and give it a Reason Phrase and use that to identify business exceptions or critical exceptions. I wouldn’t add an exception handler into a Message Handler, instead I should use the ExceptionFilterAttribute and register it globally for all ApiControllers. BUT, now to another interesting issue. What will happen if we have a Message Handler that throws an exception?  Those exceptions will not be catch and handled by the ExceptionFilterAttribute. I found a  bug in my previews blog post about “Log message Request and Response in ASP.NET WebAPI” in the MessageHandler I use to log incoming and outgoing messages. Here is the code from my blog before I fixed the bug:   public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); var responseMessage = await response.Content.ReadAsByteArrayAsync(); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If a ApiController throws a HttpResponseException, the Content property of the HttpResponseMessage from the SendAsync will be NULL. So a null reference exception is thrown within the MessageHandler. The yellow screen of death will be returned to the client, and the content is HTML and the Http status code is 500. The bug in the MessageHandler was solved by adding a check against the HttpResponseMessage’s IsSuccessStatusCode property: public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); byte[] responseMessage; if (response.IsSuccessStatusCode) responseMessage = await response.Content.ReadAsByteArrayAsync(); else responseMessage = Encoding.UTF8.GetBytes(response.ReasonPhrase); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we don’t handle the exceptions that can occur in a custom Message Handler, we can have a hard time to find the problem causing the exception. The savior in this case is the Global.asax’s Application_Error: protected void Application_Error() { var exception = Server.GetLastError(); Debug.WriteLine(exception); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I would recommend you to add the Application_Error to the Global.asax and log all exceptions to make sure all kind of exception is handled. Summary There are different ways we could add Exception Handling to the Wep API, we can use a custom ApiController, ExceptionFilterAttribute, IHttpActionInvoker or Message Handler. The ExceptionFilterAttribute would be a good place to add a global exception handling, require very few modification, just register it globally for all ApiControllers, even the IHttpActionInvoker can be used to minimize the modifications of files. Adding the Application_Error to the global.asax is a good way to catch all unhandled exception that can occur, for example exception thrown in a Message Handler.   If you want to know when I have posted a blog post, you can follow me on twitter @fredrikn

    Read the article

  • BSON Serialization

    BSON is a binary-encoded serialization of JSON-like documents, which essentially means its an efficient way of transfering information. Part of my work on the MongoDB NoRM drivers, discussed in more details by Rob Conery, is to write an efficient and maintainable BSON serializer and deserializer. The goal of the serializer is that you give it a .NET object and you get a byte array out of it which represents valid BSON. The deserializer does the opposite - give it a byte array and out pops your object....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Getting the innermost .NET Exception

    - by Rick Strahl
    Here's a trivial but quite useful function that I frequently need in dynamic execution of code: Finding the innermost exception when an exception occurs, because for many operations (for example Reflection invocations or Web Service calls) the top level errors returned can be rather generic. A good example - common with errors in Reflection making a method invocation - is this generic error: Exception has been thrown by the target of an invocation In the debugger it looks like this: In this case this is an AJAX callback, which dynamically executes a method (ExecuteMethod code) which in turn calls into an Amazon Web Service using the old Amazon WSE101 Web service extensions for .NET. An error occurs in the Web Service call and the innermost exception holds the useful error information which in this case points at an invalid web.config key value related to the System.Net connection APIs. The "Exception has been thrown by the target of an invocation" error is the Reflection APIs generic error message that gets fired when you execute a method dynamically and that method fails internally. The messages basically says: "Your code blew up in my face when I tried to run it!". Which of course is not very useful to tell you what actually happened. If you drill down the InnerExceptions eventually you'll get a more detailed exception that points at the original error and code that caused the exception. In the code above the actually useful exception is two innerExceptions down. In most (but not all) cases when inner exceptions are returned, it's the innermost exception that has the information that is really useful. It's of course a fairly trivial task to do this in code, but I do it so frequently that I use a small helper method for this: /// <summary> /// Returns the innermost Exception for an object /// </summary> /// <param name="ex"></param> /// <returns></returns> public static Exception GetInnerMostException(Exception ex) { Exception currentEx = ex; while (currentEx.InnerException != null) { currentEx = currentEx.InnerException; } return currentEx; } This code just loops through all the inner exceptions (if any) and assigns them to a temporary variable until there are no more inner exceptions. The end result is that you get the innermost exception returned from the original exception. It's easy to use this code then in a try/catch handler like this (from the example above) to retrieve the more important innermost exception: object result = null; string stringResult = null; try { if (parameterList != null) // use the supplied parameter list result = helper.ExecuteMethod(methodToCall,target, parameterList.ToArray(), CallbackMethodParameterType.Json,ref attr); else // grab the info out of QueryString Values or POST buffer during parameter parsing // for optimization result = helper.ExecuteMethod(methodToCall, target, null, CallbackMethodParameterType.Json, ref attr); } catch (Exception ex) { Exception activeException = DebugUtils.GetInnerMostException(ex); WriteErrorResponse(activeException.Message, ( HttpContext.Current.IsDebuggingEnabled ? ex.StackTrace : null ) ); return; } Another function that is useful to me from time to time is one that returns all inner exceptions and the original exception as an array: /// <summary> /// Returns an array of the entire exception list in reverse order /// (innermost to outermost exception) /// </summary> /// <param name="ex">The original exception to work off</param> /// <returns>Array of Exceptions from innermost to outermost</returns> public static Exception[] GetInnerExceptions(Exception ex) {     List<Exception> exceptions = new List<Exception>();     exceptions.Add(ex);       Exception currentEx = ex;     while (currentEx.InnerException != null)     {         exceptions.Add(ex);     }       // Reverse the order to the innermost is first     exceptions.Reverse();       return exceptions.ToArray(); } This function loops through all the InnerExceptions and returns them and then reverses the order of the array returning the innermost exception first. This can be useful in certain error scenarios where exceptions stack and you need to display information from more than one of the exceptions in order to create a useful error message. This is rare but certain database exceptions bury their exception info in mutliple inner exceptions and it's easier to parse through them in an array then to manually walk the exception stack. It's also useful if you need to log errors and want to see the all of the error detail from all exceptions. None of this is rocket science, but it's useful to have some helpers that make retrieval of the critical exception info trivial. Resources DebugUtils.cs utility class in the West Wind Web Toolkit© Rick Strahl, West Wind Technologies, 2005-2011Posted in CSharp  .NET  

    Read the article

  • Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 2

    - by rajbk
    In the previous post, you saw how to create an OData feed and pre-filter the data. In this post, we will see how to shape the data. A sample project is attached at the bottom of this post. Pre-filtering and shaping OData feeds using WCF Data Services and the Entity Framework - Part 1 Shaping the feed The Product feed we created earlier returns too much information about our products. Let’s change this so that only the following properties are returned – ProductID, ProductName, QuantityPerUnit, UnitPrice, UnitsInStock. We also want to return only Products that are not discontinued.  Splitting the Entity To shape our data according to the requirements above, we are going to split our Product Entity into two and expose one through the feed. The exposed entity will contain only the properties listed above. We will use the other Entity in our Query Interceptor to pre-filter the data so that discontinued products are not returned. Go to the design surface for the Entity Model and make a copy of the Product entity. A “Product1” Entity gets created.   Rename Product1 to ProductDetail. Right click on the Product entity and select “Add Association” Make a one to one association between Product and ProductDetails.   Keep only the properties we wish to expose on the Product entity and delete all other properties on it (see diagram below). You delete a property on an Entity by right clicking on the property and selecting “delete”. Keep the ProductID on the ProductDetail. Delete any other property on the ProductDetail entity that is already present in the Product entity. Your design surface should look like below:    Mapping Entity to Database Tables Right click on “ProductDetail” and go to “Table Mapping”   Add a mapping to the “Products” table in the Mapping Details.   After mapping ProductDetail, you should see the following.   Add a referential constraint. Lets add a referential constraint which is similar to a referential integrity constraint in SQL. Double click on the Association between the Entities and add the constraint with “Principal” set to “Product”. Let us review what we did so far. We made a copy of the Product entity and called it ProductDetail We created a one to one association between these entities Excluding the ProductID, we made sure properties were not duplicated between these entities  We added a ProductDetail entity to Products table mapping (Entity to Database). We added a referential constraint between the entities. Lets build our project. We get the following error: ”'NortwindODataFeed.Product' does not contain a definition for 'Discontinued' and no extension method 'Discontinued' accepting a first argument of type 'NortwindODataFeed.Product' could be found …" The reason for this error is because our Product Entity no longer has a “Discontinued” property. We “moved” it to the ProductDetail entity since we want our Product Entity to contain only properties that will be exposed by our feed. Since we have a one to one association between the entities, we can easily rewrite our Query Interceptor like so: [QueryInterceptor("Products")] public Expression<Func<Product, bool>> OnReadProducts() { return o => o.ProductDetail.Discontinued == false; } Similarly, all “hidden” properties of the Product table are available to us internally (through the ProductDetail Entity) for any additional logic we wish to implement. Compile the project and view the feed. We see that the feed returns only the properties that were part of the requirement.   To see the data in JSON format, you have to create a request with the following request header Accept: application/json, text/javascript, */* (easy to do in jQuery) The result should look like this: { "d" : { "results": [ { "__metadata": { "uri": "http://localhost.:2576/DataService.svc/Products(1)", "type": "NorthwindModel.Product" }, "ProductID": 1, "ProductName": "Chai", "QuantityPerUnit": "10 boxes x 20 bags", "UnitPrice": "18.0000", "UnitsInStock": 39 }, { "__metadata": { "uri": "http://localhost.:2576/DataService.svc/Products(2)", "type": "NorthwindModel.Product" }, "ProductID": 2, "ProductName": "Chang", "QuantityPerUnit": "24 - 12 oz bottles", "UnitPrice": "19.0000", "UnitsInStock": 17 }, { ... ... If anyone has the $format operation working, please post a comment. It was not working for me at the time of writing this.  We have successfully pre-filtered our data to expose only products that have not been discontinued and shaped our data so that only certain properties of the Entity are exposed. Note that there are several other ways you could implement this like creating a QueryView, Stored Procedure or DefiningQuery. You have seen how easy it is to create an OData feed, shape the data and pre-filter it by hardly writing any code of your own. For more details on OData, Google it with your favorite search engine :-) Also check out the one of the most passionate persons I have ever met, Pablo Castro – the Architect of Aristoria WCF Data Services. Watch his MIX 2010 presentation titled “OData: There's a Feed for That” here. Download Sample Project for VS 2010 RTM NortwindODataFeed.zip

    Read the article

  • New .NET Library for Accessing the Survey Monkey API

    - by Ben Emmett
    I’ve used Survey Monkey’s API for a while, and though it’s pretty powerful, there’s a lot of boilerplate each time it’s used in a new project, and the json it returns needs a bunch of processing to be able to use the raw information. So I’ve finally got around to releasing a .NET library you can use to consume the API more easily. The main advantages are: Only ever deal with strongly-typed .NET objects, making everything much more robust and a lot faster to get going Automatically handles things like rate-limiting and paging through results Uses combinations of endpoints to get all relevant data for you, and processes raw response data to map responses to questions To start, either install it using NuGet with PM> Install-Package SurveyMonkeyApi (easier option), or grab the source from https://github.com/bcemmett/SurveyMonkeyApi if you prefer to build it yourself. You’ll also need to have signed up for a developer account with Survey Monkey, and have both your API key and an OAuth token. A simple usage would be something like: string apiKey = "KEY"; string token = "TOKEN"; var sm = new SurveyMonkeyApi(apiKey, token); List<Survey> surveys = sm.GetSurveyList(); The surveys object is now a list of surveys with all the information available from the /surveys/get_survey_list API endpoint, including the title, id, date it was created and last modified, language, number of questions / responses, and relevant urls. If there are more than 1000 surveys in your account, the library pages through the results for you, making multiple requests to get a complete list of surveys. All the filtering available in the API can be controlled using .NET objects. For example you might only want surveys created in the last year and containing “pineapple” in the title: var settings = new GetSurveyListSettings { Title = "pineapple", StartDate = DateTime.Now.AddYears(-1) }; List<Survey> surveys = sm.GetSurveyList(settings); By default, whenever optional fields can be requested with a response, they will all be fetched for you. You can change this behaviour if for some reason you explicitly don’t want the information, using var settings = new GetSurveyListSettings { OptionalData = new GetSurveyListSettingsOptionalData { DateCreated = false, AnalysisUrl = false } }; Survey Monkey’s 7 read-only endpoints are supported, and the other 4 which make modifications to data might be supported in the future. The endpoints are: Endpoint Method Object returned /surveys/get_survey_list GetSurveyList() List<Survey> /surveys/get_survey_details GetSurveyDetails() Survey /surveys/get_collector_list GetCollectorList() List<Collector> /surveys/get_respondent_list GetRespondentList() List<Respondent> /surveys/get_responses GetResponses() List<Response> /surveys/get_response_counts GetResponseCounts() Collector /user/get_user_details GetUserDetails() UserDetails /batch/create_flow Not supported Not supported /batch/send_flow Not supported Not supported /templates/get_template_list Not supported Not supported /collectors/create_collector Not supported Not supported The hierarchy of objects the library can return is Survey List<Page> List<Question> QuestionType List<Answer> List<Item> List<Collector> List<Response> Respondent List<ResponseQuestion> List<ResponseAnswer> Each of these classes has properties which map directly to the names of properties returned by the API itself (though using PascalCasing which is more natural for .NET, rather than the snake_casing used by SurveyMonkey). For most users, Survey Monkey imposes a rate limit of 2 requests per second, so by default the library leaves at least 500ms between requests. You can request higher limits from them, so if you want to change the delay between requests just use a different constructor: var sm = new SurveyMonkeyApi(apiKey, token, 200); //200ms delay = 5 reqs per sec There’s a separate cap of 1000 requests per day for each API key, which the library doesn’t currently enforce, so if you think you’ll be in danger of exceeding that you’ll need to handle it yourself for now.  To help, you can see how many requests the current instance of the SurveyMonkeyApi object has made by reading its RequestsMade property. If the library encounters any errors, including communicating with the API, it will throw a SurveyMonkeyException, so be sure to handle that sensibly any time you use it to make calls. Finally, if you have a survey (or list of surveys) obtained using GetSurveyList(), the library can automatically fill in all available information using sm.FillMissingSurveyInformation(surveys); For each survey in the list, it uses the other endpoints to fill in the missing information about the survey’s question structure, respondents, and responses. This results in at least 5 API calls being made per survey, so be careful before passing it a large list. It also joins up the raw response information to the survey’s question structure, so that for each question in a respondent’s set of replies, you can access a ProcessedAnswer object. For example, a response to a dropdown question (from the /surveys/get_responses endpoint) might be represented in json as { "answers": [ { "row": "9384627365", } ], "question_id": "615487516" } Separately, the question’s structure (from the /surveys/get_survey_details endpoint) might have several possible answers, one of which might look like { "text": "Fourth item in dropdown list", "visible": true, "position": 4, "type": "row", "answer_id": "9384627365" } The library understands how this mapping works, and uses that to give you the following ProcessedAnswer object, which first describes the family and type of question, and secondly gives you the respondent’s answers as they relate to the question. Survey Monkey has many different question types, with 11 distinct data structures, each of which are supported by the library. If you have suggestions or spot any bugs, let me know in the comments, or even better submit a pull request .

    Read the article

  • Improving the state of the art in API documentation sites

    - by Daniel Cazzulino
    Go straight to the site if you want: http://nudoq.org. You can then come back and continue reading :) Compare some of the most popular NuGet packages API documentation sites: Json.NET EntityFramework NLog Autofac You see the pattern? Huge navigation tree views, static content with no comments/community content, very hard (if not impossible) to search/filter, etc. These are the product of automated tools that have been developed years ago, in a time where CHM help files were common and even expected from libraries. Nowadays, most of the top packages in NuGet.org don’t even provide an online documentation site at all: it’s such a hassle for such a crappy user experience in the end! Good news is that it doesn’t have to be that way. Introducing NuDoq A lot has changed since those early days of .NET. We now have NuGet packages and the awesome channel that is ...Read full article

    Read the article

  • Accessing Server-Side Data from Client Script: Using WCF Services with jQuery and the ASP.NET Ajax Library

    Today's websites commonly exchange information between the browser and the web server using Ajax techniques - the browser executes JavaScript code typically in response to the page loading or some user action. This JavaScript makes an asynchronous HTTP request to the server. which then processes the request and, perhaps, returns data that the browser can then seamlessly integrate into the web page. Two earlier articles - Accessing JSON Data From an ASP.NET Page Using jQuery and Using Ajax Web Services, Script References, and jQuery, looked at using both jQuery and the ASP.NET Ajax Library on the browser to initiate an Ajax request and both ASP.NET pages and Ajax Web Services as the entities on the web server responsible for servicing such Ajax requests. This article continues our examination of techniques for implementing lightweight Ajax scenarios in an ASP.NET website. Specifically, it examines how to use the Windows Communication Foundation, or WCF, to serve data from the web server and how to use both the ASP.NET Ajax Library and jQuery to consume such services from the client-side. Read on to learn more! Read More >

    Read the article

  • Doug Crockford: Geek of the Week

    Doug Crockford is the man behind JavaScript Object Notation (JSON). He is a well-known critic of XML and guides the development of Javascript on the ECMA Standards Committee, as well as being the senior JavaScript architect at Yahoo! He is also the author of the popular 'JavaScript: The Good Parts'. Richard Morris was dispatched to ask him which the good parts were....Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Java EE 7 interview @ InfoQ

    - by alexismp
    Anil Gaur, the head of JavaEE and GlassFish at Oracle, was recently interviewed by InfoQ on the progress and scope of Java EE 7. Make sure you read this for an up-to-date status. It turns out that the final release of Java EE 7 in now slated for late Q1, early Q2, 2013 with most specs expected t be at the Public Review stage by this summer. In addition to the improvements to the JMS, JAX-RS, JPA and JSF specifications Anil also covers the new JSON and WebSockets JSRs and gives a complete overview of the Java EE platform at it is shaping up with PaaS as its main theme.

    Read the article

  • Web-based CMS for mobile app

    - by JWood
    I'm just about to start developing a mobile app which needs to be fed from a CMS. I started designing the tables when I thought there must be something out there which could save me a load of time and let me concentrate on the mobile side of things. So, I'm looking for a CMS that will let me create hierarchical "pages" which will just be 4-5 database fields with a simple front-end to allow to edit and update them. I don't mind having to write some code to layout the database and forms etc, any saving on starting from scratch would be good. The only requirement is that I be able to access the data via some sort of web service, REST, JSON, XML, anything really... Can anyone suggest anything that might help? Thanks, J

    Read the article

  • ASP.NET Web API - Screencast series Part 4: Paging and Querying

    - by Jon Galloway
    We're continuing a six part series on ASP.NET Web API that accompanies the getting started screencast series. This is an introductory screencast series that walks through from File / New Project to some more advanced scenarios like Custom Validation and Authorization. The screencast videos are all short (3-5 minutes) and the sample code for the series is both available for download and browsable online. I did the screencasts, but the samples were written by the ASP.NET Web API team. In Part 1 we looked at what ASP.NET Web API is, why you'd care, did the File / New Project thing, and did some basic HTTP testing using browser F12 developer tools. In Part 2 we started to build up a sample that returns data from a repository in JSON format via GET methods. In Part 3, we modified data on the server using DELETE and POST methods. In Part 4, we'll extend on our simple querying methods form Part 2, adding in support for paging and querying. This part shows two approaches to querying data (paging really just being a specific querying case) - you can do it yourself using parameters passed in via querystring (as well as headers, other route parameters, cookies, etc.). You're welcome to do that if you'd like. What I think is more interesting here is that Web API actions that return IQueryable automatically support OData query syntax, making it really easy to support some common query use cases like paging and filtering. A few important things to note: This is just support for OData query syntax - you're not getting back data in OData format. The screencast demonstrates this by showing the GET methods are continuing to return the same JSON they did previously. So you don't have to "buy in" to the whole OData thing, you're just able to use the query syntax if you'd like. This isn't full OData query support - full OData query syntax includes a lot of operations and features - but it is a pretty good subset: filter, orderby, skip, and top. All you have to do to enable this OData query syntax is return an IQueryable rather than an IEnumerable. Often, that could be as simple as using the AsQueryable() extension method on your IEnumerable. Query composition support lets you layer queries intelligently. If, for instance, you had an action that showed products by category using a query in your repository, you could also support paging on top of that. The result is an expression tree that's evaluated on-demand and includes both the Web API query and the underlying query. So with all those bullet points and big words, you'd think this would be hard to hook up. Nope, all I did was change the return type from IEnumerable<Comment> to IQueryable<Comment> and convert the Get() method's IEnumerable result using the .AsQueryable() extension method. public IQueryable<Comment> GetComments() { return repository.Get().AsQueryable(); } You still need to build up the query to provide the $top and $skip on the client, but you'd need to do that regardless. Here's how that looks: $(function () { //--------------------------------------------------------- // Using Queryable to page //--------------------------------------------------------- $("#getCommentsQueryable").click(function () { viewModel.comments([]); var pageSize = $('#pageSize').val(); var pageIndex = $('#pageIndex').val(); var url = "/api/comments?$top=" + pageSize + '&$skip=' + (pageIndex * pageSize); $.getJSON(url, function (data) { // Update the Knockout model (and thus the UI) with the comments received back // from the Web API call. viewModel.comments(data); }); return false; }); }); And the neat thing is that - without any modification to our server-side code - we can modify the above jQuery call to request the comments be sorted by author: $(function () { //--------------------------------------------------------- // Using Queryable to page //--------------------------------------------------------- $("#getCommentsQueryable").click(function () { viewModel.comments([]); var pageSize = $('#pageSize').val(); var pageIndex = $('#pageIndex').val(); var url = "/api/comments?$top=" + pageSize + '&$skip=' + (pageIndex * pageSize) + '&$orderby=Author'; $.getJSON(url, function (data) { // Update the Knockout model (and thus the UI) with the comments received back // from the Web API call. viewModel.comments(data); }); return false; }); }); So if you want to make use of OData query syntax, you can. If you don't like it, you're free to hook up your filtering and paging however you think is best. Neat. In Part 5, we'll add on support for Data Annotation based validation using an Action Filter.

    Read the article

  • Access Control Service: Passive/Active Transition Sample

    - by Your DisplayName here!
    Here you can find my updated ACS2 sample. In addition to the existing front ends (web [WS-Federation], console [SOAP & REST], Silverlight [REST]) and error handling, it now also includes a WPF client that shows the passive/active transition with a SOAP service as illustrated here. All the ACS interaction is encapsulated in a WPF user control that: retrieves the JSON feed displays a list of supported identity providers triggers the sign in via a browser control retrieves the token response packages the token as a GenericXmlSecurityToken (to be used directly with the WIF ChannelFactory extensions methods) All you need to supply is the ACS namespace and the realm. Have fun!

    Read the article

  • Security Issues with Single Page Apps

    - by Stephen.Walther
    Last week, I was asked to do a code review of a Single Page App built using the ASP.NET Web API, Durandal, and Knockout (good stuff!). In particular, I was asked to investigate whether there any special security issues associated with building a Single Page App which are not present in the case of a traditional server-side ASP.NET application. In this blog entry, I discuss two areas in which you need to exercise extra caution when building a Single Page App. I discuss how Single Page Apps are extra vulnerable to both Cross-Site Scripting (XSS) attacks and Cross-Site Request Forgery (CSRF) attacks. This goal of this blog post is NOT to persuade you to avoid writing Single Page Apps. I’m a big fan of Single Page Apps. Instead, the goal is to ensure that you are fully aware of some of the security issues related to Single Page Apps and ensure that you know how to guard against them. Cross-Site Scripting (XSS) Attacks According to WhiteHat Security, over 65% of public websites are open to XSS attacks. That’s bad. By taking advantage of XSS holes in a website, a hacker can steal your credit cards, passwords, or bank account information. Any website that redisplays untrusted information is open to XSS attacks. Let me give you a simple example. Imagine that you want to display the name of the current user on a page. To do this, you create the following server-side ASP.NET page located at http://MajorBank.com/SomePage.aspx: <%@Page Language="C#" %> <html> <head> <title>Some Page</title> </head> <body> Welcome <%= Request["username"] %> </body> </html> Nothing fancy here. Notice that the page displays the current username by using Request[“username”]. Using Request[“username”] displays the username regardless of whether the username is present in a cookie, a form field, or a query string variable. Unfortunately, by using Request[“username”] to redisplay untrusted information, you have now opened your website to XSS attacks. Here’s how. Imagine that an evil hacker creates the following link on another website (hackers.com): <a href="/SomePage.aspx?username=<script src=Evil.js></script>">Visit MajorBank</a> Notice that the link includes a query string variable named username and the value of the username variable is an HTML <SCRIPT> tag which points to a JavaScript file named Evil.js. When anyone clicks on the link, the <SCRIPT> tag will be injected into SomePage.aspx and the Evil.js script will be loaded and executed. What can a hacker do in the Evil.js script? Anything the hacker wants. For example, the hacker could display a popup dialog on the MajorBank.com site which asks the user to enter their password. The script could then post the password back to hackers.com and now the evil hacker has your secret password. ASP.NET Web Forms and ASP.NET MVC have two automatic safeguards against this type of attack: Request Validation and Automatic HTML Encoding. Protecting Coming In (Request Validation) In a server-side ASP.NET app, you are protected against the XSS attack described above by a feature named Request Validation. If you attempt to submit “potentially dangerous” content — such as a JavaScript <SCRIPT> tag — in a form field or query string variable then you get an exception. Unfortunately, Request Validation only applies to server-side apps. Request Validation does not help in the case of a Single Page App. In particular, the ASP.NET Web API does not pay attention to Request Validation. You can post any content you want – including <SCRIPT> tags – to an ASP.NET Web API action. For example, the following HTML page contains a form. When you submit the form, the form data is submitted to an ASP.NET Web API controller on the server using an Ajax request: <!DOCTYPE html> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <title></title> </head> <body> <form data-bind="submit:submit"> <div> <label> User Name: <input data-bind="value:user.userName" /> </label> </div> <div> <label> Email: <input data-bind="value:user.email" /> </label> </div> <div> <input type="submit" value="Submit" /> </div> </form> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { user: { userName: ko.observable(), email: ko.observable() }, submit: function () { $.post("/api/users", ko.toJS(this.user)); } }; ko.applyBindings(viewModel); </script> </body> </html> The form above is using Knockout to bind the form fields to a view model. When you submit the form, the view model is submitted to an ASP.NET Web API action on the server. Here’s the server-side ASP.NET Web API controller and model class: public class UsersController : ApiController { public HttpResponseMessage Post(UserViewModel user) { var userName = user.UserName; return Request.CreateResponse(HttpStatusCode.OK); } } public class UserViewModel { public string UserName { get; set; } public string Email { get; set; } } If you submit the HTML form, you don’t get an error. The “potentially dangerous” content is passed to the server without any exception being thrown. In the screenshot below, you can see that I was able to post a username form field with the value “<script>alert(‘boo’)</script”. So what this means is that you do not get automatic Request Validation in the case of a Single Page App. You need to be extra careful in a Single Page App about ensuring that you do not display untrusted content because you don’t have the Request Validation safety net which you have in a traditional server-side ASP.NET app. Protecting Going Out (Automatic HTML Encoding) Server-side ASP.NET also protects you from XSS attacks when you render content. By default, all content rendered by the razor view engine is HTML encoded. For example, the following razor view displays the text “<b>Hello!</b>” instead of the text “Hello!” in bold: @{ var message = "<b>Hello!</b>"; } @message   If you don’t want to render content as HTML encoded in razor then you need to take the extra step of using the @Html.Raw() helper. In a Web Form page, if you use <%: %> instead of <%= %> then you get automatic HTML Encoding: <%@ Page Language="C#" %> <% var message = "<b>Hello!</b>"; %> <%: message %> This automatic HTML Encoding will prevent many types of XSS attacks. It prevents <script> tags from being rendered and only allows &lt;script&gt; tags to be rendered which are useless for executing JavaScript. (This automatic HTML encoding does not protect you from all forms of XSS attacks. For example, you can assign the value “javascript:alert(‘evil’)” to the Hyperlink control’s NavigateUrl property and execute the JavaScript). The situation with Knockout is more complicated. If you use the Knockout TEXT binding then you get HTML encoded content. On the other hand, if you use the HTML binding then you do not: <!-- This JavaScript DOES NOT execute --> <div data-bind="text:someProp"></div> <!-- This Javacript DOES execute --> <div data-bind="html:someProp"></div> <script src="Scripts/jquery-1.7.1.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { someProp : "<script>alert('Evil!')<" + "/script>" }; ko.applyBindings(viewModel); </script>   So, in the page above, the DIV element which uses the TEXT binding is safe from XSS attacks. According to the Knockout documentation: “Since this binding sets your text value using a text node, it’s safe to set any string value without risking HTML or script injection.” Just like server-side HTML encoding, Knockout does not protect you from all types of XSS attacks. For example, there is nothing in Knockout which prevents you from binding JavaScript to a hyperlink like this: <a data-bind="attr:{href:homePageUrl}">Go</a> <script src="Scripts/jquery-1.7.1.min.js"></script> <script src="Scripts/knockout-2.1.0.js"></script> <script> var viewModel = { homePageUrl: "javascript:alert('evil!')" }; ko.applyBindings(viewModel); </script> In the page above, the value “javascript:alert(‘evil’)” is bound to the HREF attribute using Knockout. When you click the link, the JavaScript executes. Cross-Site Request Forgery (CSRF) Attacks Cross-Site Request Forgery (CSRF) attacks rely on the fact that a session cookie does not expire until you close your browser. In particular, if you visit and login to MajorBank.com and then you navigate to Hackers.com then you will still be authenticated against MajorBank.com even after you navigate to Hackers.com. Because MajorBank.com cannot tell whether a request is coming from MajorBank.com or Hackers.com, Hackers.com can submit requests to MajorBank.com pretending to be you. For example, Hackers.com can post an HTML form from Hackers.com to MajorBank.com and change your email address at MajorBank.com. Hackers.com can post a form to MajorBank.com using your authentication cookie. After your email address has been changed, by using a password reset page at MajorBank.com, a hacker can access your bank account. To prevent CSRF attacks, you need some mechanism for detecting whether a request is coming from a page loaded from your website or whether the request is coming from some other website. The recommended way of preventing Cross-Site Request Forgery attacks is to use the “Synchronizer Token Pattern” as described here: https://www.owasp.org/index.php/Cross-Site_Request_Forgery_%28CSRF%29_Prevention_Cheat_Sheet When using the Synchronizer Token Pattern, you include a hidden input field which contains a random token whenever you display an HTML form. When the user opens the form, you add a cookie to the user’s browser with the same random token. When the user posts the form, you verify that the hidden form token and the cookie token match. Preventing Cross-Site Request Forgery Attacks with ASP.NET MVC ASP.NET gives you a helper and an action filter which you can use to thwart Cross-Site Request Forgery attacks. For example, the following razor form for creating a product shows how you use the @Html.AntiForgeryToken() helper: @model MvcApplication2.Models.Product <h2>Create Product</h2> @using (Html.BeginForm()) { @Html.AntiForgeryToken(); <div> @Html.LabelFor( p => p.Name, "Product Name:") @Html.TextBoxFor( p => p.Name) </div> <div> @Html.LabelFor( p => p.Price, "Product Price:") @Html.TextBoxFor( p => p.Price) </div> <input type="submit" /> } The @Html.AntiForgeryToken() helper generates a random token and assigns a serialized version of the same random token to both a cookie and a hidden form field. (Actually, if you dive into the source code, the AntiForgeryToken() does something a little more complex because it takes advantage of a user’s identity when generating the token). Here’s what the hidden form field looks like: <input name=”__RequestVerificationToken” type=”hidden” value=”NqqZGAmlDHh6fPTNR_mti3nYGUDgpIkCiJHnEEL59S7FNToyyeSo7v4AfzF2i67Cv0qTB1TgmZcqiVtgdkW2NnXgEcBc-iBts0x6WAIShtM1″ /> And here’s what the cookie looks like using the Google Chrome developer toolbar: You use the [ValidateAntiForgeryToken] action filter on the controller action which is the recipient of the form post to validate that the token in the hidden form field matches the token in the cookie. If the tokens don’t match then validation fails and you can’t post the form: public ActionResult Create() { return View(); } [ValidateAntiForgeryToken] [HttpPost] public ActionResult Create(Product productToCreate) { if (ModelState.IsValid) { // save product to db return RedirectToAction("Index"); } return View(); } How does this all work? Let’s imagine that a hacker has copied the Create Product page from MajorBank.com to Hackers.com – the hacker grabs the HTML source and places it at Hackers.com. Now, imagine that the hacker trick you into submitting the Create Product form from Hackers.com to MajorBank.com. You’ll get the following exception: The Cross-Site Request Forgery attack is blocked because the anti-forgery token included in the Create Product form at Hackers.com won’t match the anti-forgery token stored in the cookie in your browser. The tokens were generated at different times for different users so the attack fails. Preventing Cross-Site Request Forgery Attacks with a Single Page App In a Single Page App, you can’t prevent Cross-Site Request Forgery attacks using the same method as a server-side ASP.NET MVC app. In a Single Page App, HTML forms are not generated on the server. Instead, in a Single Page App, forms are loaded dynamically in the browser. Phil Haack has a blog post on this topic where he discusses passing the anti-forgery token in an Ajax header instead of a hidden form field. He also describes how you can create a custom anti-forgery token attribute to compare the token in the Ajax header and the token in the cookie. See: http://haacked.com/archive/2011/10/10/preventing-csrf-with-ajax.aspx Also, take a look at Johan’s update to Phil Haack’s original post: http://johan.driessen.se/posts/Updated-Anti-XSRF-Validation-for-ASP.NET-MVC-4-RC (Other server frameworks such as Rails and Django do something similar. For example, Rails uses an X-CSRF-Token to prevent CSRF attacks which you generate on the server – see http://excid3.com/blog/rails-tip-2-include-csrf-token-with-every-ajax-request/#.UTFtgDDkvL8 ). For example, if you are creating a Durandal app, then you can use the following razor view for your one and only server-side page: @{ Layout = null; } <!DOCTYPE html> <html> <head> <title>Index</title> </head> <body> @Html.AntiForgeryToken() <div id="applicationHost"> Loading app.... </div> @Scripts.Render("~/scripts/vendor") <script type="text/javascript" src="~/App/durandal/amd/require.js" data-main="/App/main"></script> </body> </html> Notice that this page includes a call to @Html.AntiForgeryToken() to generate the anti-forgery token. Then, whenever you make an Ajax request in the Durandal app, you can retrieve the anti-forgery token from the razor view and pass the token as a header: var csrfToken = $("input[name='__RequestVerificationToken']").val(); $.ajax({ headers: { __RequestVerificationToken: csrfToken }, type: "POST", dataType: "json", contentType: 'application/json; charset=utf-8', url: "/api/products", data: JSON.stringify({ name: "Milk", price: 2.33 }), statusCode: { 200: function () { alert("Success!"); } } }); Use the following code to create an action filter which you can use to match the header and cookie tokens: using System.Linq; using System.Net.Http; using System.Web.Helpers; using System.Web.Http.Controllers; namespace MvcApplication2.Infrastructure { public class ValidateAjaxAntiForgeryToken : System.Web.Http.AuthorizeAttribute { protected override bool IsAuthorized(HttpActionContext actionContext) { var headerToken = actionContext .Request .Headers .GetValues("__RequestVerificationToken") .FirstOrDefault(); ; var cookieToken = actionContext .Request .Headers .GetCookies() .Select(c => c[AntiForgeryConfig.CookieName]) .FirstOrDefault(); // check for missing cookie or header if (cookieToken == null || headerToken == null) { return false; } // ensure that the cookie matches the header try { AntiForgery.Validate(cookieToken.Value, headerToken); } catch { return false; } return base.IsAuthorized(actionContext); } } } Notice that the action filter derives from the base AuthorizeAttribute. The ValidateAjaxAntiForgeryToken only works when the user is authenticated and it will not work for anonymous requests. Add the action filter to your ASP.NET Web API controller actions like this: [ValidateAjaxAntiForgeryToken] public HttpResponseMessage PostProduct(Product productToCreate) { // add product to db return Request.CreateResponse(HttpStatusCode.OK); } After you complete these steps, it won’t be possible for a hacker to pretend to be you at Hackers.com and submit a form to MajorBank.com. The header token used in the Ajax request won’t travel to Hackers.com. This approach works, but I am not entirely happy with it. The one thing that I don’t like about this approach is that it creates a hard dependency on using razor. Your single page in your Single Page App must be generated from a server-side razor view. A better solution would be to generate the anti-forgery token in JavaScript. Unfortunately, until all browsers support a way to generate cryptographically strong random numbers – for example, by supporting the window.crypto.getRandomValues() method — there is no good way to generate anti-forgery tokens in JavaScript. So, at least right now, the best solution for generating the tokens is the server-side solution with the (regrettable) dependency on razor. Conclusion The goal of this blog entry was to explore some ways in which you need to handle security differently in the case of a Single Page App than in the case of a traditional server app. In particular, I focused on how to prevent Cross-Site Scripting and Cross-Site Request Forgery attacks in the case of a Single Page App. I want to emphasize that I am not suggesting that Single Page Apps are inherently less secure than server-side apps. Whatever type of web application you build – regardless of whether it is a Single Page App, an ASP.NET MVC app, an ASP.NET Web Forms app, or a Rails app – you must constantly guard against security vulnerabilities.

    Read the article

  • Why do we keep using CSV?

    - by Stephen
    Why do we keep using CSV? I recently made a shift to working the health domain and despite the wonderful work in data transfer standards, all data transfer is in CSV, both for reporting to external organisations, and for data migrations when implementing new systems. Unfortunately the use of CSV is the cause of the endless repetition of the same stupid errors, with the same waste of developer time. (bad escaping, failing to handle null fields etc.) I know we can do better, and anything between JSON and XML (depending on the instance) would be fine. (Most of the time this is data going from one MS SQLserver 2005 to another!) I feel as if each time I see this happening I am literally watching one developer waste anothers time. So why do we keep shafting each other? When will we stop?

    Read the article

  • Problem importing Firefox bookmarks to Chromium

    - by RPi Awesomeness
    I would like to switch from Firefox to Chromium (it seems to be faster for my system) and I have a large number of bookmarks I would like to import into Chromium. I looked at this question: Can I sync bookmarks between Firefox and Chromium? but that seemed to be specific to Firefox Sync, which I don't have. I just want to import my bookmarks from Firefox into Chromium. However, when I go to the Customize and Control button and then choose the option Import Bookmarks and Settings under the Bookmarks menu item, it gives me this: I have Firefox and Chromium as up to date as the official repositories (I believe), so I really have no clue what is going on. I have attempted to import directly from HTML, but it only imports the first set of bookmarks, nothing beyond that (where all of the bookmarks I really want are.) Can I import the JSON Firefox backup file into Chromium, or am I stuck manually entering all of these bookmarks into Chromium? Thanks!

    Read the article

  • Securely sending data from shared hosted PHP script to local MSSQL

    - by user329488
    I'm trying to add data from a webhook (from a web cart) to a local Microsoft SQL Server. It seems like the best route for me is to use a PHP script to listen for new data (POST as json), parse it, then query to add to MSSQL. I'm not familiar with security concerning the connection between the PHP script (which would sit on a shared-host website) and the local MSSQL database. I would just keep the PHP script running on the same localhost (have Apache running on Windows), but the URI for the webhook needs to be publicly accessible. Alternately, I assume that I could just schedule a script from the localhost to check periodically for updates through the web carts API, though the webhooks seem to be more fool-proof for an amateur programmer like myself. What steps can I take to ensure security when using a PHP on a remote, shared-host to connect to MSSQL on my local machine?

    Read the article

  • Find odd and even rows using $.inArray() function when using jQuery Templates

    - by hajan
    In the past period I made series of blogs on ‘jQuery Templates in ASP.NET’ topic. In one of these blogs dealing with jQuery Templates supported tags, I’ve got a question how to create alternating row background. When rendering the template, there is no direct access to the item index. One way is if there is an incremental index in the JSON string, we can use it to solve this. If there is not, then one of the ways to do this is by using the jQuery’s $.inArray() function. - $.inArray(value, array) – similar to JavaScript indexOf() Here is an complete example how to use this in context of jQuery Templates: <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml" > <head runat="server">     <style type="text/css">         #myList { cursor:pointer; }                  .speakerOdd { background-color:Gray; color:White;}         .speaker { background-color:#443344; color:White;}                  .speaker:hover { background-color:White; color:Black;}         .speakerOdd:hover { background-color:White; color:Black;}     </style>     <title>jQuery ASP.NET</title>     <script src="http://ajax.aspnetcdn.com/ajax/jQuery/jquery-1.4.4.min.js" type="text/javascript"></script>     <script src="http://ajax.aspnetcdn.com/ajax/jquery.templates/beta1/jquery.tmpl.min.js" type="text/javascript"></script>     <script language="javascript" type="text/javascript">         var speakers = [             { Name: "Hajan1" },             { Name: "Hajan2" },             { Name: "Hajan3" },             { Name: "Hajan4" },             { Name: "Hajan5" }         ];         $(function () {             $("#myTemplate").tmpl(speakers).appendTo("#myList");         });         function oddOrEven() {             return ($.inArray(this.data, speakers) % 2) ? "speaker" : "speakerOdd";         }     </script>     <script id="myTemplate" type="text/x-jquery-tmpl">         <tr class="${oddOrEven()}">             <td> ${Name}</td>         </tr>     </script> </head> <body>     <table id="myList"></table> </body> </html> So, I have defined stylesheet classes speakerOdd and speaker as well as corresponding :hover styles. Then, you have speakers JSON string containing five items. And what is most important in our case is the oddOrEven function where $.inArray(value, data) is implemented. function oddOrEven() {     return ($.inArray(this.data, speakers) % 2) ? "speaker" : "speakerOdd"; } Remark: The $.inArray() method is similar to JavaScript's native .indexOf() method in that it returns -1 when it doesn't find a match. If the first element within the array matches value, $.inArray() returns 0. From http://api.jquery.com/jQuery.inArray/ So, now we can call oddOrEven function from inside our jQuery Template in the following way: <script id="myTemplate" type="text/x-jquery-tmpl">     <tr class="${oddOrEven()}">         <td> ${Name}</td>     </tr> </script> And the result is I hope you like it. Regards, Hajan

    Read the article

  • What can i use as a 3d Tile map editor?

    - by alfa64
    I need to make grid based levels with 3d models for a dungeon crawler ( as a recent example Legend of Grimrock), but i need to have several layers and place entities with properties and position, angle, etc. I was considering Tiled, using layers as height for each level, but it's very hard to work with and visualize. What can i use for this pourpose? The output format needs to be json, xml, or something i can use on my engine. Ideally i'd want something like Tiled with a 3d visualization/edit mode and support for loading models or at least some visual representation of them.

    Read the article

< Previous Page | 127 128 129 130 131 132 133 134 135 136 137 138  | Next Page >