Search Results

Search found 4156 results on 167 pages for 'assembly emit'.

Page 134/167 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • Building ATLAS (and later Octave w/ ATLAS)

    - by David Parks
    I'm trying to set up ATLAS (so I can later compile octave with ATLAS support). If I'm correct, I still need to build this manually due to the environment specific optimizations. I do see a package for ATLAS, but it looks like it's using the cross platform generic build options (e.g. "it'll be slow"). So, running the configure script as described in the docs seems to go poorly. As a java developer I never do well at making heads or tails of errors in these build processes. Am I missing dependencies (if so is there any documentation on what I need)? allusers@vbubuntu:~/Downloads/atlas3.10.1/build_vbubuntu$ ../configure -b 64 -D c -DPentiumCPS=3000 --with-netlib-lapack-tarfile=/home/allusers/Downloads/lapack-3.5.0.tgz make: `xconfig' is up to date. ./xconfig -d s /home/allusers/Downloads/atlas3.10.1/build_vbubuntu/../ -d b /home/allusers/Downloads/atlas3.10.1/build_vbubuntu -b 64 -D c -DPentiumCPS=3000 -Si lapackref 1 OS configured as Linux (1) Assembly configured as GAS_x8664 (2) Vector ISA Extension configured as SSE3 (6,448) ERROR: enum fam=3, chip=2, mach=0 make[3]: *** [atlas_run] Error 44 make[2]: *** [IRunArchInfo_x86] Error 2 Architecture configured as Corei1 (25) ERROR: enum fam=3, chip=2, mach=0 make[3]: *** [atlas_run] Error 44 make[2]: *** [IRunArchInfo_x86] Error 2 Clock rate configured as 2350Mhz ERROR: enum fam=3, chip=2, mach=0 make[3]: *** [atlas_run] Error 44 make[2]: *** [IRunArchInfo_x86] Error 2 Maximum number of threads configured as 4 Parallel make command configured as '$(MAKE) -j 4' ERROR: enum fam=3, chip=2, mach=0 make[3]: *** [atlas_run] Error 44 make[2]: *** [IRunArchInfo_x86] Error 2 Cannot detect CPU throttling. rm -f config1.out make atlas_run atldir=/home/allusers/Downloads/atlas3.10.1/build_vbubuntu exe=xprobe_comp redir=config1.out \ args="-v 0 -o atlconf.txt -O 1 -A 25 -Si nof77 0 -V 448 -b 64 -d b /home/allusers/Downloads/atlas3.10.1/build_vbubuntu" make[1]: Entering directory `/home/allusers/Downloads/atlas3.10.1/build_vbubuntu' cd /home/allusers/Downloads/atlas3.10.1/build_vbubuntu ; ./xprobe_comp -v 0 -o atlconf.txt -O 1 -A 25 -Si nof77 0 -V 448 -b 64 -d b /home/allusers/Downloads/atlas3.10.1/build_vbubuntu > config1.out make[2]: gfortran: Command not found make[2]: *** [IRunF77Comp] Error 127 make[2]: g77: Command not found make[2]: *** [IRunF77Comp] Error 127 make[2]: f77: Command not found make[2]: *** [IRunF77Comp] Error 127 Unable to find usable compiler for F77; abortingMake sure compilers are in your path, and specify good compilers to configure (see INSTALL.txt or 'configure --help' for details)make[1]: *** [atlas_run] Error 8 make[1]: Leaving directory `/home/allusers/Downloads/atlas3.10.1/build_vbubuntu' make: *** [IRun_comp] Error 2 ERROR 512 IN SYSCMND: 'make IRun_comp args="-v 0 -o atlconf.txt -O 1 -A 25 -Si nof77 0 -V 448 -b 64"' mkdir src bin tune interfaces mkdir: cannot create directory ‘src’: File exists mkdir: cannot create directory ‘bin’: File exists mkdir: cannot create directory ‘tune’: File exists mkdir: cannot create directory ‘interfaces’: File exists make: *** [make_subdirs] Error 1 make -f Make.top startup make[1]: Entering directory `/home/allusers/Downloads/atlas3.10.1/build_vbubuntu' Make.top:1: Make.inc: No such file or directory Make.top:325: warning: overriding commands for target `/AtlasTest' Make.top:76: warning: ignoring old commands for target `/AtlasTest' make[1]: *** No rule to make target `Make.inc'. Stop. make[1]: Leaving directory `/home/allusers/Downloads/atlas3.10.1/build_vbubuntu' make: *** [startup] Error 2 mv: cannot move ‘lapack-3.5.0’ to ‘../reference/lapack-3.5.0’: Directory not empty mv: cannot stat ‘lib/Makefile’: No such file or directory ../configure: 450: ../configure: cannot create lib/Makefile: Directory nonexistent ../configure: 451: ../configure: cannot create lib/Makefile: Directory nonexistent ../configure: 452: ../configure: cannot create lib/Makefile: Directory nonexistent ../configure: 453: ../configure: cannot create lib/Makefile: Directory nonexistent ../configure: 509: ../configure: cannot create lib/Makefile: Directory nonexistent DONE configure

    Read the article

  • Build-time dependency resolving coming to Entity Framework. Now, how about those BI tools too?

    - by jamiet
    Three months ago I wrote a blog post entitled Some thoughts on Visual Studio database references and how they should be used for SQL Server BI where I shared some thoughts on a feature available to database developers in Visual Studio 2010 that I would love to see added to SQL Server Integration Services (SSIS), Analysis Services (SSAS) and Reporting Services (SSRS). In there I said: Over the past few weeks I have been making heavy use of the Database tools in Visual Studio 2010 and one of the features that has most impressed me has been database references.   Database references allow you to have stored procedures in your database project that refer to objects (tables, views, stored procedures etc…) that exist in other database projects and hence when you build your database project it is able to resolve those references.   It occurred to me that similar functionality would be incredibly useful for SQL Server Integration Services(SSIS), Analysis Services (SSAS) & Reporting Services (SSRS) projects. After all reports, packages and data source views are rife with references to database objects – why shouldn’t we be able to have design-time dependency checking in our BI projects the same way that database and .Net developers do? In that blog post I shared links to three Connect submissions where I requested this feature be added to SSIS, SSAS & SSRS. In addition I also submitted a request that the feature be extended to .Net projects so that any reference to a database object in a .Net assembly can be resolved at build time. That Connect submission is at [Entity FX] Use database references to constrain the EDM and overnight it received this comment from Microsoft: We have been working on this feature for a while and and will be available soon This is really good news - it improves the Microsoft developer ecosystem by ensuring invalid references to database references get caught at build time (ideally as part of a Continuous integration build) rather than run time. [Hopefully it might nip this code-first nonsense in the bud too (Ooo...way to incite flame comments :) ) ]. If you want to see this feature in action then check out a video from Teched Europe last month entitled SQL Server Developer Tools Code-named "Juneau" where it is demo'd by Lance Delano and Tim Laverty.   The point of this blog post though is not just to draw attention to this forthcoming feature for .Net developers, it is to ask you to petition Microsoft to get this feature added to SSIS/SSAS/SSRS too. After all, we already know (from the video above) that the feature is coming to this new code-name Juneau development environment plus we also know that Juneau will be the development environment for SSIS/SSAS/SSRS as well - is it really much of a stretch to expect the BI tools to have access to this great feature too? I don't think so and if you agree with me then I urge you to vote and add a comment to the Connection submissions that are requesting this feature. They are at: [SSAS] Declare Object Dependancies [SSRS] Declare Object Dependancies [SSIS] Declare Object Dependancies (Update, Apparently someone at Microsoft has deemed it necassary to set this to private and I am not able to change it back even though I submitted it. You can still vote on the other two though.) Let's close that SQL Developer Gap!   @Jamiet    

    Read the article

  • 45 minutes to talk about C# [closed]

    - by Philip
    I have the opportunity to give a 45 minute talk on C# in the theory of programming languages class I'm taking. The college teaches Java almost exclusively, so that's what all the students are most familiar with. (There's a little C, assembly, Prolog and LISP as well.) I decide what to talk about. It seems to me the best approach is to focus on a few of the big, obvious differences between C# and Java. I don't intend it to be a recommendation to use C# -- there are reasons to use each, mostly because of their ecosystems. So I want to focus on C# as a language. I don't want to go too fast and end up listing a whole bunch of features without showing their usefulness. My current plan is this: Functions as first class objects. This is, in my opinion, one of the biggest differences between C# and Java. The professor briefly mentioned this notion and showed a LISP example, but many of the students have probably never used it. I can show real world examples where it's made my code more readable. Lambda expressions as concise syntax for anonymous functions. Obviously with examples to show how this is useful. The real hit-home examples will be at the end when it's combined with the rest. I don't see an advantage to first showing the old delegate syntax and then replacing it with lambdas -- most of us won't have ever seen delegates anyway so it would just be confusing. The yield keyword and how it's different from returning an array. I have the impression that a lot of C# developers aren't familiar with how to use this. It will likely be very foreign to Java developers. I have some examples from my own work where it was really useful, such as iterating over a tree traversal, or iterating over neighbors in a graph where the neighbors aren't stored in memory. In both cases, doing it in Java would likely mean returning a complete list -- with yield I can stop iterating if I find what I want early on, without using memory for superfluous lists or arrays. Extension methods as a way to write implementation on interfaces. We'll all be familiar with how interfaces don't allow method implementation, and how this leads to code duplication. I'll show a specific example of this and how the extension method can solve the problem. Demonstrate how the above can be combined by implementing some simple Linq methods and using them. Where, Select, First, maybe more depending on how much time is left. Ideas on which ones might 'hit home' the best? There are other things I could talk about such as generics, value types, properties and more. I haven't yet though of good ways to incorporate these. In the case of generics and value types, the advantages might not be obvious or as relevant. Properties are obviously useful, particularly since we're taught strict JavaBeans here, but I don't know if I could integrate it with the "path to Linq" discussion above without it feeling tacked on. So I'm looking for thoughts on how to talk about C#, and what to talk about. Even minor details. I'm sure there are more experienced C# developers than me here who have good insight about what's really important in the language, and what would miss the point.

    Read the article

  • ArchBeat Link-o-Rama Top 10 for September 9-15, 2012

    - by Bob Rhubart
    The Top 10 most-viewed items shared on the OTN ArchBeat Facebook page for the week of September 9-15, 2017. 15 Lessons from 15 Years as a Software Architect | Ingo Rammer In this presentation from the GOTO Conference in Copenhagen, Ingo Rammer shares 15 tips regarding people, complexity and technology that he learned doing software architecture for 15 years. Attend OTN Architect Day – by Architects, for Architects – October 25 You won't need 3D glasses to take in these live presentations (8 sessions, two tracks) on Cloud computing, SOA, and engineered systems. And the ticket price is: Zero. Nothing. Absolutely free. Register now for Oracle Technology Network Architect Day in Los Angeles. Thursday October 25, 2012, 8:00 a.m. – 5:00 p.m. Sofitel Los Angeles , 8555 Beverly Boulevard , Los Angeles, CA 90048. Cloud API and service designers, stop thinking small | Cloud Computing - InfoWorld "The focus must shift away from fine-grained APIs that provide some type of primitive service, such as pushing data to a block of storage or perhaps making a request to a cloud-rooted database," says InfoWorld's David Linthicum. "To go beyond primitives, you must understand how these services should be used in a much larger architectural context. In other words, you need to understand how businesses will employ these services to form real workplace solutions—inside and outside the enterprise." Adding a runtime picker to a taskflow parameter in WebCenter | Yannick Ongena Oracle ACE Yannick Ongena shows how to create an Oracle WebCenter popup to allow users to "select items or do more complex things." Oracle IAM 11g R2 docs are now available "One of the great things about the new doc set is the inclusion of ePub files," says Fusion Middleware A-Team blogger Chris Johnson. "This means that if you have an iPad you can load up the doc library onto that and read the docs on the couch." Setting up a local Yum Server using the Exalogic ZFS Storage Appliance | Donald A concise technical post from the man named Donald. What's New in Oracle VM VirtualBox 4.2? | The Fat Bloke Sings "One of the trends we've seen is that as the average host platform becomes more powerful, our users are consistently running more and more vm's," says The Fat Bloke. "Some of our users have large libraries of vm's of various vintages, whilst others have groups of vm's that are run together as an assembly of the various tiers in a multi-tiered software solution, for example, a database tier, middleware tier, and front-ends." The new VirtualBox release, a year in the making, addresses the needs of these users, he explains. Configuring Oracle Business Intelligence 11g MDS XML Source Control Management with Git Version Control | Christian Screen Oracle ACE Christian Screen developed this tutorial for those interested in learning how to configure the Oracle Business Intelligence 11g (11.1.1.6) metadata repository for development using the new MDS XML source control management functionality. Identity and Access Management at Oracle Open World 2012 | Brian Eidelman Fusion Middleware A-Team blogger Brian Eideleman highlights three Oracle Openworld sessions that will put Identity and Access Management in the spotlight, and shares a link to the "Focus On: Identity Management" document, a comprehensive listing of Openworld activities also dealing with IM. Starting and stopping WebLogic automatically using Upstart | Chris Johnson "In Ubuntu, RedHat and Oracle Linux there's a new flavor of init called Upstart that all the kids are using," says Oracle Fusion Middleware A-Team member Chris Johnson. "It's the new hotness when it comes to making programs into daemons and wiring them to start and stop at appropriate times." Thought for the Day "The purpose of software engineering is to control complexity, not to create it." — Pamela Zave Source: SoftwareQuotes.com

    Read the article

  • Orchestrating the Virtual Enterprise, Part I

    - by Kathryn Perry
    A guest post by Jon Chorley, Oracle's Chief Sustainability Officer & Vice President, SCM Product Strategy During the American Industrial Revolution, the Ford Motor Company did it all. It turned raw materials into a showroom full of Model Ts. It owned a steel mill, a glass factory, and an automobile assembly line. The company was both self-sufficient and innovative and went on to become one of the largest and most profitable companies in the world. Nowadays, it's unusual for any business to follow this vertical integration model because its much harder to be best in class across such a wide a range of capabilities and services. Instead, businesses focus on their core competencies and outsource other business functions to specialized suppliers. They exchange vertical integration for collaboration. When done well, all parties benefit from this arrangement and the collaboration leads to the creation of an agile, lean and successful "virtual enterprise." Case in point: For Sun hardware, Oracle outsources most of its manufacturing and all of its logistics to third parties. These are vital activities, but ones where Oracle doesn't have a core competency, so we shift them to business partners who do. Within our enterprise, we always retain the core functions of product development, support, and most of the sales function, because that's what constitutes our core value to our customers. This is a perfect example of a virtual enterprise.  What are the implications of this? It means that we must exchange direct internal control for indirect external collaboration. This fundamentally changes the relative importance of different business processes, the boundaries of security and information sharing, and the relationship of the supply chain systems to the ERP. The challenge is that the systems required to support this virtual paradigm are still mired in "island enterprise" thinking. But help is at hand. Developments such as the Web, social networks, collaboration, and rules-based orchestration offer great potential to fundamentally re-architect supply chain systems to better support the virtual enterprise.  Supply Chain Management Systems in a Virtual Enterprise Historically enterprise software was constructed to automate the ERP - and then the supply chain systems extended the ERP. They were joined at the hip. In virtual enterprises, the supply chain system needs to be ERP agnostic, sitting above each of the ERPs that are distributed across the virtual enterprise - most of which are operating in other businesses. This is vital so that the supply chain system can manage the flow of material and the related information through the multiple enterprises. It has to have strong collaboration tools. It needs to be highly flexible. Users need to be able to see information that's coming from multiple sources and be able to react and respond to events across those sources.  Oracle Fusion Distributed Order Orchestration (DOO) is a perfect example of a supply chain system designed to operate in this virtual way. DOO embraces the idea that a company's fulfillment challenge is a distributed, multi-enterprise problem. It enables users to manage the process and the trading partners in a uniform way and deliver a consistent user experience while operating over a heterogeneous, virtual enterprise. This is a fundamental shift at the core of managing supply chains. It forces virtual enterprises to think architecturally about how best to construct their supply chain systems. In my next post, I will share examples of companies that have made that shift and talk more about the distributed orchestration process.

    Read the article

  • Clever memory usage through the years

    - by Ben Emmett
    A friend and I were recently talking about the really clever tricks people have used to get the most out of memory. I thought I’d share my favorites, and would love to hear yours too! Interleaving on drum memory Back in the ye olde days before I’d been born (we’re talking the 50s / 60s here), working memory commonly took the form of rotating magnetic drums. These would spin at a constant speed, and a fixed head would read from memory when the correct part of the drum passed it by, a bit like a primitive platter disk. Because each revolution took a few milliseconds, programmers took to manually arranging information non-sequentially on the drum, timing when an instruction or memory address would need to be accessed, then spacing information accordingly around the edge of the drum, thus reducing the access delay. Similar techniques were still used on hard disks and floppy disks into the 90s, but have become irrelevant with modern disk technologies. The Hashlife algorithm Conway’s Game of Life has attracted numerous implementations over the years, but Bill Gosper’s Hashlife algorithm is particularly impressive. Taking advantage of the repetitive nature of many cellular automata, it uses a quadtree structure to store the hashes of pieces of the overall grid. Over time there are fewer and fewer new structures which need to be evaluated, so it starts to run faster with larger grids, drastically outperforming other algorithms both in terms of speed and the size of grid which can be simulated. The actual amount of memory used is huge, but it’s used in a clever way, so makes the list . Elite’s procedural generation Ok, so this isn’t exactly a memory optimization – more a storage optimization – but it gets an honorable mention anyway. When writing Elite, David Braben and Ian Bell wanted to build a rich world which gamers could explore, but their 22K memory was something of a limitation (for comparison that’s about the size of my avatar picture at the top of this page). They procedurally generated all the characteristics of the 2048 planets in their virtual universe, including the names, which were stitched together using a lookup table of parts of names. In fact the original plans were for 2^52 planets, but it was decided that that was probably too many. Oh, and they did that all in assembly language. Other games of the time used similar techniques too – The Sentinel’s landscape generation algorithm being another example. Modern Garbage Collectors Garbage collection in managed languages like Java and .NET ensures that most of the time, developers stop needing to care about how they use and clean up memory as the garbage collector handles it automatically. Achieving this without killing performance is a near-miraculous feet of software engineering. Much like when learning chemistry, you find that every time you think you understand how the garbage collector works, it turns out to be a mere simplification; that there are yet more complexities and heuristics to help it run efficiently. Of course introducing memory problems is still possible (and there are tools like our memory profiler to help if that happens to you) but they’re much, much rarer. A cautionary note In the examples above, there were good and well understood reasons for the optimizations, but cunningly optimized code has usually had to trade away readability and maintainability to achieve its gains. Trying to optimize memory usage without being pretty confident that there’s actually a problem is doing it wrong. So what have I missed? Tell me about the ingenious (or stupid) tricks you’ve seen people use. Ben

    Read the article

  • what differs a computer scientist/software engineer to regular people who learn programming language and APIs?

    - by Amumu
    In University, we learn and reinvent the wheel a lot to truly learn the programming concepts. For example, we may learn assembly language to understand, what happens inside the box, and how the system operates, when we execute our code. This helps understanding higher level concepts deeper. For example, memory management like in C is just an abstraction of manually managed memory contents and addresses. The problem is, when we're going to work, usually productivity is required more. I could program my own containers, or string class, or date/time (using POSIX with C system call) to do the job, but then, it would take much longer time to use existing STL or Boost library, which abstract all of those thing and very easy to use. This leads to an issue, that a regular person doesn't need to get through all the low level/under the hood stuffs, who learns only one programming language and using language-related APIs. These people may eventually compete with the mainstream graduates from computer science or software engineer and call themselves programmers. At first, I don't think it's valid to call them programmers. I used to think, a real programmer needs to understand the computer deeply (but not at the electronic level). But then I changed my mind. After all, they get the job done and satisfy all the test criteria (logic, performance, security...), and in business environment, who cares if you're an expert and understand how computer works or not. You may get behind the "amateurs" if you spend to much time learning about how things work inside. It is totally valid for those people to call themselves programmers. This makes me confuse. So, after all, programming should be considered an universal skill? Does programming language and concepts matter or the problems we solve matter? For example, many C/C++ vs Java and other high level language, one of the main reason is because C/C++ features performance, as well as accessing low level facility. One of the main reason (in my opinion), is coding in C/C++ seems complex, so people feel good about it (not trolling anyone, just my observation, and my experience as well. Try to google "C hacker syndrome"). While Java on the other hand, made for simplifying programming tasks to help developers concentrate on solving their problems. Based on Java rationale, if the programing language keeps evolve, one day everyone can map their logic directly with natural language. Everyone can program. On that day, maybe real programmers are mathematicians, who could perform most complex logic (including business logic and academic logic) without worrying about installing/configuring compiler, IDEs? What's our job as a computer scientist/software engineer? To solve computer specific problems or to solve problems in general? For example, take a look at this exame: http://cm.baylor.edu/ICPCWiki/attach/Problem%20Resources/2010WorldFinalProblemSet.pdf . The example requires only basic knowledge about the programming language, but focus more on problem solving with the language. In sum, what differs a computer scientist/software engineer to regular people who learn programming language and APIs? A mathematician can be considered a programmer, if he is good enough to use programming language to implement his formula. Can we programmer do this? Probably not for most of us, since we specialize about computer, not math. An electronic engineer, who learns how to use C to program for his devices, can be considered a programmer. If the programming languages keep being simplified, may one day the software engineers, who implements business logic and create softwares, be obsolete? (Not for computer scientist though, since many of the CS topics are scientific, and science won't change, but technology will).

    Read the article

  • How the SPARC T4 Processor Optimizes Throughput Capacity: A Case Study

    - by Ruud
    This white paper demonstrates the architected latency hiding features of Oracle’s UltraSPARC T2+ and SPARC T4 processors That is the first sentence from this technical white paper, but what does it exactly mean? Let's consider a very simple example, the computation of a = b + c. This boils down to the following (pseudo-assembler) instructions that need to be executed: load @b, r1 load @c, r2 add r1,r2,r3 store r3, @a The first two instructions load variables b and c from an address in memory (here symbolized by @b and @c respectively). These values go into registers r1 and r2. The third instruction adds the values in r1 and r2. The result goes into register r3. The fourth instruction stores the contents of r3 into the memory address symbolized by @a. If we're lucky, both b and c are in a nearby cache and the load instructions only take a few processor cycles to execute. That is the good case, but what if b or c, or both, have to come from very far away? Perhaps both of them are in the main memory and then it easily takes hundreds of cycles for the values to arrive in the registers. Meanwhile the processor is doing nothing and simply waits for the data to arrive. Actually, it does something. It burns cycles while waiting. That is a waste of time and energy. Why not use these cycles to execute instructions from another application or thread in case of a parallel program? That is exactly what latency hiding on the SPARC T-Series processors does. It is a hardware feature totally transparent to the user and application. As soon as there is a delay in the execution, the hardware uses these otherwise idle cycles to execute instructions from another process. As a result, the throughput capacity of the system improves because idle cycles are no longer wasted and therefore more jobs can be run per unit of time. This feature has been in the SPARC T-series from the beginning, so why this paper? The difference with previous publications on this topic is in the amount of detail given. How this all works under the hood is fully explained using two example programs. Starting from the assembly language instructions, it is demonstrated in what way these programs execute. To really see what is happening we go down to the processor pipeline level, where the gaps in the execution are, and show in what way these idle cycles are filled by other copies of the same program running simultaneously. Both the SPARC T4 as well as the older UltraSPARC T2+ processor are covered. You may wonder why the UltraSPARC T2+ is included. The focus of this work is on the SPARC T4 processor, but to explain the basic concept of latency hiding at this very low level, we start with the UltraSPARC T2+ processor because it is architecturally a much simpler design. From the single issue, in-order pipelines of this processor we then shift gears and cover how this all works on the much more advanced dual issue, out-of-order architecture of the T4. The analysis and performance experiments have been conducted on both processors. The results depend on the processor, but in all cases the theoretical estimates are confirmed by the experiments. If you're interested to read a lot more about this and find out how things really work under the hood, you can download a copy of the paper here. A paper like this could not have been produced without the help of several other people. I want to thank the co-author of this paper, Jared Smolens, for his very valuable contributions and our highly inspiring discussions. I'm also indebted to Thomas Nau (Ulm University, Germany), Shane Sigler and Mark Woodyard (both at Oracle) for their feedback on earlier versions of this paper. Karen Perkins (Perkins Technical Writing and Editing) and Rick Ramsey at Oracle were very helpful in providing editorial and publishing assistance.

    Read the article

  • Development Quirk From ASP.NET Dynamic Compilation

    - by jkauffman
    The Problem I got a compilation error in my ASP.NET MVC3 project that tested my sanity today. (As always, names are changed to protect the innocent) The type or namespace name 'FishViewModel' does not exist in the namespace 'Company.Product.Application.Models' (are you missing an assembly reference?) Sure looks easy! There must be something in the project referring to a FishViewModel. The Confusing Part The first thing I noticed was the that error was occuring in a folder clearly not in my project and in files that I definitely had not created: %SystemRoot%\Microsoft.NET\Framework\(versionNumber)\Temporary ASP.NET Files\ App_Web_mezpfjae.1.cs I also ascertained these facts, each of which made me more confused than the last: Rebuild and Clean had no effect. No controllers in the project ever returned a ViewResult using FishViewModel. No views in the project defined that they use FishViewModel. Searching across all files included in the project for “FishViewModel” provided no results. The build server did not report a problem. The Solution The problem stemmed from a file that was not included in the project but still present on the file system: (By the way, if you don’t know this trick already, there is a toolbar button in the Solution Explorer window to “Show All Files” which allows you to see files all files in the file system) In my situation, I was working on the mission-critical Fish view before abandoning the feature. Instead of deleting the file, I excluded it from the project. However, this was a bad move. It caused the build failure, and in order to fix the error, this file must be deleted. By the way, this file was not in source control, so the build server did not have it. This explains why my build server did not report a problem for me. The Explanation So, what’s going on? This file isn’t even a part of the project, so why is it failing the build? This is a behavior of the ASP.NET Dynamic Compilation. This is the same process that occurs when deploying a webpage; ASP.NET compiles the web application’s code. When this occurs on a production server, it has to do so without the .csproj file (which isn’t usually deployed, if you’ve taken your time to do a deployment cleanly). This process has merely the file system available to identify what to compile. So, back in the world of developing the webpage in visual studio on my developer box, I run into the situation because the same process is occuring there. This is true even though I have more files on my machine than will actually get deployed. I can’t help but think that this error could be attributed back to the real culprit file (Fish.cshtml, rather than the temporary files) with some work, but at least the error had enough information in it to narrow it down. The Conclusion I had previously been accustomed to the idea that for c# projects, the .csproj file always “defines” the build behavior. This investigation has taught me that I’ll need to shift my thinking a bit to remember that the file system has the final say when it comes to web applications, even on the developer’s machine!

    Read the article

  • Parameterized StreamInsight Queries

    - by Roman Schindlauer
    The changes in our APIs enable a set of scenarios that were either not possible before or could only be achieved through workarounds. One such use case that people ask about frequently is the ability to parameterize a query and instantiate it with different values instead of re-deploying the entire statement. I’ll demonstrate how to do this in StreamInsight 2.1 and combine it with a method of using subjects for dynamic query composition in a mini-series of (at least) two blog articles. Let’s start with something really simple: I want to deploy a windowed aggregate to a StreamInsight server, and later use it with different window sizes. The LINQ statement for such an aggregate is very straightforward and familiar: var result = from win in stream.TumblingWindow(TimeSpan.FromSeconds(5))               select win.Avg(e => e.Value); Obviously, we had to use an existing input stream object as well as a concrete TimeSpan value. If we want to be able to re-use this construct, we can define it as a IQStreamable: var avg = myApp     .DefineStreamable((IQStreamable<SourcePayload> s, TimeSpan w) =>         from win in s.TumblingWindow(w)         select win.Avg(e => e.Value)); The DefineStreamable API lets us define a function, in our case from a IQStreamable (the input stream) and a TimeSpan (the window length) to an IQStreamable (the result). We can then use it like a function, with the input stream and the window length as parameters: var result = avg(stream, TimeSpan.FromSeconds(5)); Nice, but you might ask: what does this save me, except from writing my own extension method? Well, in addition to defining the IQStreamable function, you can actually deploy it to the server, to make it re-usable by another process! When we deploy an artifact in V2.1, we give it a name: var avg = myApp     .DefineStreamable((IQStreamable<SourcePayload> s, TimeSpan w) =>         from win in s.TumblingWindow(w)         select win.Avg(e => e.Value))     .Deploy("AverageQuery"); When connected to the same server, we can now use that name to retrieve the IQStreamable and use it with our own parameters: var averageQuery = myApp     .GetStreamable<IQStreamable<SourcePayload>, TimeSpan, double>("AverageQuery"); var result = averageQuery(stream, TimeSpan.FromSeconds(5)); Convenient, isn’t it? Keep in mind that, even though the function “AverageQuery” is deployed to the server, its logic will still be instantiated into each process when the process is created. The advantage here is being able to deploy that function, so another client who wants to use it doesn’t need to ask the author for the code or assembly, but just needs to know the name of deployed entity. A few words on the function signature of GetStreamable: the last type parameter (here: double) is the payload type of the result, not the actual result stream’s type itself. The returned object is a function from IQStreamable<SourcePayload> and TimeSpan to IQStreamable<double>. In the next article we will integrate this usage of IQStreamables with Subjects in StreamInsight, so stay tuned! Regards, The StreamInsight Team

    Read the article

  • Is this Hybrid of Interface / Composition kosher?

    - by paul
    I'm working on a project in which I'm considering using a hybrid of interfaces and composition as a single thing. What I mean by this is having a contain*ee* class be used as a front for functionality implemented in a contain*er* class, where the container exposes the containee as a public property. Example (pseudocode): class Visibility(lambda doShow, lambda doHide, lambda isVisible) public method Show() {...} public method Hide() {...} public property IsVisible public event Shown public event Hidden class SomeClassWithVisibility private member visibility = new Visibility(doShow, doHide, isVisible) public property Visibility with get() = visibility private method doShow() {...} private method doHide() {...} private method isVisible() {...} There are three reasons I'm considering this: The language in which I'm working (F#) has some annoyances w.r.t. implementing interfaces the way I need to (unless I'm missing something) and this will help avoid a lot of boilerplate code. The containee classes could really be considered properties of the container class(es); i.e. there seems to be a fairly strong has-a relationship. The containee classes will likely implement code which would have been pretty much the same when implemented in all the container classes, so why not do it once in one place? In the above example, this would include managing and emitting the Shown/Hidden events. Does anyone see any isseus with this Composiface/Intersition method, or know of a better way? EDIT 2012.07.26 - It seems a little background information is warranted: Where I work, we have a bunch of application front-ends that have limited access to system resources -- they need access to these resources to fully function. To remedy this we have a back-end application that can access the needed resources, with which the front-ends can communicate. (There is an API written for the front-ends for accessing back-end functionality as though it were part of the front-end.) The back-end program is out of date and its functionality is incomplete. It has made the transition from company to company a couple of times and we can't even compile it anymore. So I'm trying to rewrite it in my spare time. I'm trying to update things to make a nice(r) interface/API for the front-ends (while allowing for backwards compatibility with older front-ends), hopefully something full of OOPy goodness. The thing is, I don't want to write the front-end API after I've written pretty much the same code in F# for implementing the back-end; so, what I'm planning on doing is applying attributes to classes/methods/properties that I would like to have code for in the API then generate this code from the F# assembly using reflection. The method outlined in this question is a possible alternative I'm considering instead of implementing straight interfaces on the classes in F# because they're kind of a bear: In order to access something of an interface that has been implemented in a class, you have to explicitly cast an instance of that class to the interface type. This would make things painful when getting calls from the front-ends. If you don't want to have to do this, you have to call out all of the interface's methods/properties again in the class, outside of the interface implementation (which is separate from regular class members), and call the implementation's members. This is basically repeating the same code, which is what I'm trying to avoid!

    Read the article

  • Html.ValidationSummary and Multiple Forms

    - by MightyZot
    Originally posted on: http://geekswithblogs.net/MightyZot/archive/2013/11/11/html.validationsummary-and-multiple-forms.aspxThe Html.ValidationSummary helper writes a div with a list of general errors added to the model state while a request is being serviced. There is generally one form per view or partial view, I think, so often there is only one call to Html.ValidationSummary in the page resulting from the assembly of your views. And, consequently, there is no problem with the markup that Html.ValidationSummary spits out as a result. What if you want to put multiple forms in one view? Even if you create a view model that’s an aggregate of the view models for each form, the error validation summary is going to contain errors from both forms. Check out this screen shot, which shows a page with multiple forms. Notice how the error validation summary shows up twice. Grrr! Errors for the login form also show up in the registration form. Luckily, there is an easy way around this. Pull the errors out of the model state and separate them for each form. You’ll need to identify the appropriate form by setting the key when you make calls to ModelState.AddModelError. Assume in my example that errors for the login form are added to model state using the “LoginForm” key. And, likewise, assume that errors for the registration form are added to model state using the “RegistrationForm” key. An example of that might look like this… // If we got this far, something failed, redisplay form ModelState.AddModelError("LoginForm", "User name or password is not right..."); return View(model); Over in the code for your View, you can pull each form’s errors from the model state using lambda expressions that look like these… var LoginFormErrors = ViewData.ModelState.Where(ms => ms.Key == "LoginForm"); var RegistrationFormErrors = ViewData.ModelState.Where(ms => ms.Key == "RegistrationForm"); Now that you have two collections containing errors, you can display only the errors specific to each form. I’m doing that in my code by removing the calls to Html.ValidationSummary and replacing them with enumerators that look like this… if(LoginFormErrors.Count() > 0) { <div class="cdt-error-list">     <ul>     @foreach (var entry in LoginFormErrors)     {         foreach (var error in entry.Value.Errors)         {             <li>@error.ErrorMessage</li>         }     }     </ul> </div> } …and for the registration form, the code looks like this… @if(RegistrationFormErrors.Count() > 0) { <div class="cdt-error-list">     <ul>     @foreach (var entry in RegistrationFormErrors)     {         foreach (var error in entry.Value.Errors)         {             <li>@error.ErrorMessage</li>         }     }     </ul> </div> } The result is a nice clean separation of the list of errors that are specific to each form. And, this is important because each form is submitted separately in my case, so both forms don’t generate errors in the same context. As you’ll see in the screen shot below, errors added to the model state when the login form is submitted do not show up in the registration form’s validation summary.

    Read the article

  • Searching for context in Silverlight applications

    - by PeterTweed
    A common behavior in business applications that have developed through the ages is for a user to be able to get information or execute commands in relation to some information/function displayed by right clicking the object in question and popping up a context menu that offers relevant options to choose. The Silverlight Toolkit April 2010 release introduced the context menu object.  This can be added to other UI objects and display options for the user to choose.  The menu items can be enabled or disabled as per your application logic and icons can be added to the menu items to add visual effect.  This post will walk you through how to use the context menu object from the Silverlight Toolkit. Steps: 1. Create a new Silverlight 4 application 2. Copy the following namespace definition to the user control object of the MainPage.xaml file: xmlns:my="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Input.Toolkit"   3. Copy the following XAML into the LayoutRoot grid in MainPage.xaml:          <Border CornerRadius="15" Background="Blue" Width="400" Height="100">             <TextBlock Foreground="White" FontSize="20" Text="Context Menu In This Border...." HorizontalAlignment="Center" VerticalAlignment="Center" >             </TextBlock>             <my:ContextMenuService.ContextMenu>                 <my:ContextMenu >                     <my:MenuItem                 Header="Copy"                 Click="CopyMenuItem_Click" Name="copyMenuItem">                         <my:MenuItem.Icon>                             <Image Source="copy-icon-small.png"/>                         </my:MenuItem.Icon>                     </my:MenuItem>                     <my:Separator/>                     <my:MenuItem Name="pasteMenuItem"                 Header="Paste"                 Click="PasteMenuItem_Click">                         <my:MenuItem.Icon>                             <Image Source="paste-icon-small.png"/>                         </my:MenuItem.Icon>                     </my:MenuItem>                 </my:ContextMenu>             </my:ContextMenuService.ContextMenu>         </Border>   The above code associates a context menu with two menu items and a separator between them to the border object.  The menu items has icons associated with them to add visual appeal.  The menu items have click event handlers that will be added in the MainPage.xaml.cs code behind in a later step. 4. Add two icon sized images to the ClientBin directory of the web project hosting the Silverlight application, named copy-icon-small.png and paste-icon-small.jpg respectively.  I used copy and paste icons as the names suggest. 5. Add the following code to the class in MainPage.xaml.cs file:         private void CopyMenuItem_Click(object sender, RoutedEventArgs e)         {             MessageBox.Show("Copy selected");         }           private void PasteMenuItem_Click(object sender, RoutedEventArgs e)         {             MessageBox.Show("Paste selected");         }   This code adds the event handlers for the menu items defined in step 3. 6. Run the application, right click on the border and select a menu option and see the appropriate message box displayed. Congratulations it’s that easy!   Take the Slalom Challenge at www.slalomchallenge.com!

    Read the article

  • Dependency injection: How to sell it

    - by Mel
    Let it be known that I am a big fan of dependency injection (DI) and automated testing. I could talk all day about it. Background Recently, our team just got this big project that is to built from scratch. It is a strategic application with complex business requirements. Of course, I wanted it to be nice and clean, which for me meant: maintainable and testable. So I wanted to use DI. Resistance The problem was in our team, DI is taboo. It has been brought up a few times, but the gods do not approve. But that did not discourage me. My Move This may sound weird but third-party libraries are usually not approved by our architect team (think: "thou shalt not speak of Unity, Ninject, NHibernate, Moq or NUnit, lest I cut your finger"). So instead of using an established DI container, I wrote an extremely simple container. It basically wired up all your dependencies on startup, injects any dependencies (constructor/property) and disposed any disposable objects at the end of the web request. It was extremely lightweight and just did what we needed. And then I asked them to review it. The Response Well, to make it short. I was met with heavy resistance. The main argument was, "We don't need to add this layer of complexity to an already complex project". Also, "It's not like we will be plugging in different implementations of components". And "We want to keep it simple, if possible just stuff everything into one assembly. DI is an uneeded complexity with no benefit". Finally, My Question How would you handle my situation? I am not good in presenting my ideas, and I would like to know how people would present their argument. Of course, I am assuming that like me, you prefer to use DI. If you don't agree, please do say why so I can see the other side of the coin. It would be really interesting to see the point of view of someone who disagrees. Update Thank you for everyone's answers. It really puts things into perspective. It's nice enough to have another set of eyes to give you feedback, fifteen is really awesome! This are really great answers and helped me see the issue from different sides, but I can only choose one answer, so I will just pick the top voted one. Thanks everyone for taking the time to answer. I have decided that it is probably not the best time to implement DI, and we are not ready for it. Instead, I will concentrate my efforts on making the design testable and attempt to present automated unit testing. I am aware that writing tests is additional overhead and if ever it is decided that the additional overhead is not worth it, personally I would still see it as a win situation since the design is still testable. And if ever testing or DI is a choice in future, the design can easily handle it.

    Read the article

  • Obfuscation is not a panacea

    - by simonc
    So, you want to obfuscate your .NET application. My question to you is: Why? What are your aims when your obfuscate your application? To protect your IP & algorithms? Prevent crackers from breaking your licensing? Your boss says you need to? To give you a warm fuzzy feeling inside? Obfuscating code correctly can be tricky, it can break your app if applied incorrectly, it can cause problems down the line. Let me be clear - there are some very good reasons why you would want to obfuscate your .NET application. However, you shouldn't be obfuscating for the sake of obfuscating. Security through Obfuscation? Once your application has been installed on a user’s computer, you no longer control it. If they do not want to pay for your application, then nothing can stop them from cracking it, even if the time cost to them is much greater than the cost of actually paying for it. Some people will not pay for software, even if it takes them a month to crack a $30 app. And once it is cracked, there is nothing stopping them from putting the result up on the internet. There should be nothing suprising about this; there is no software protection available for general-purpose computers that cannot be cracked by a sufficiently determined attacker. Only by completely controlling the entire stack – software, hardware, and the internet connection, can you have even a chance to be uncrackable. And even then, someone somewhere will still have a go, and probably succeed. Even high-end cryptoprocessors have known vulnerabilities that can be exploited by someone with a scanning electron microscope and lots of free time. So, then, why use obfuscation? Well, the primary reason is to protect your IP. What obfuscation is very good at is hiding the overall structure of your program, so that it’s very hard to figure out what exactly the code is doing at any one time, what context it is running in, and how it fits in with the rest of the application; all of which you need to do to understand how the application operates. This is completely different to cracking an application, where you simply have to find a single toggle that determines whether the application is licensed or not, and flip it without the rest of the application noticing. However, again, there are limitations. An obfuscated application still has to run in the same way, and do the same thing, as the original unobfuscated application. This means that some of the protections applied to the obfuscated assembly have to be undone at runtime, else it would not run on the CLR and do the same thing. And, again, since we don’t control the environment the application is run on, there is nothing stopping a user from undoing those protections manually, and reversing some of the obfuscation. It’s a perpetual arms race, and it always will be. We have plenty of ideas lined about new protections, and the new protections added in SA 6.6 (method parent obfuscation and a new control flow obfuscation level) are specifically designed to be harder to reverse and reconstruct the original structure. So then, by all means, obfuscate your application if you want to protect the algorithms and what the application does. That’s what SmartAssembly is designed to do. But make sure you are clear what a .NET obfuscator can and cannot protect you against, and don’t expect your obfuscated application to be uncrackable. Someone, somewhere, will crack your application if they want to and they don’t have anything better to do with their time. The best we can do is dissuade the casual crackers and make it much more difficult for the serious ones. Cross posted from Simple Talk.

    Read the article

  • Identity in .NET 4.5&ndash;Part 3: (Breaking) changes

    - by Your DisplayName here!
    I recently started porting a private build of Thinktecture.IdentityModel to .NET 4.5 and noticed a number of changes. The good news is that I can delete large parts of my library because many features are now in the box. Along the way I found some other nice additions. ClaimsIdentity now has methods to query the claims collection, e.g. HasClaim(), FindFirst(), FindAll(). ClaimsPrincipal has those methods as well. But they work across all contained identities. Nice! ClaimsPrincipal.Current retrieves the ClaimsPrincipal from Thread.CurrentPrincipal. Combined with the above changes, no casting necessary anymore. SecurityTokenHandler now has read and write methods that work directly with strings. This makes it much easier to deal with non-XML tokens like SWT or JWT. A new session security token handler that uses the ASP.NET machine key to protect the cookie. This makes it easier to get started in web farm scenarios. No need for a custom service host factory or the federation behavior anymore. WCF can be switched into “WIF mode” with the useIdentityConfiguration switch (odd name though). Tooling has become better and the new test STS makes it very easy to get started. On the other hand – and that was kind of expected – to bring claims into the core framework, there are also some breaking changes for WIF code. If you want to migrate (and I would recommend that), most changes to your code are mechanical. The following is a brain dump of the changes I encountered. Assembly Microsoft.IdentityModel is gone. The new functionality is now in mscorlib, System.IdentityModel(.Services) and System.ServiceModel. All the namespaces have changed as well. No IClaimsPrincipal and IClaimsIdentity anymore. Configuration section has been split into <system.identityModel /> and <system.identityModel.services />. WCF configuration story has changed as well. Claim.ClaimType is now Claim.Type. ClaimCollection is now IEnumerable<Claim>. IsSessionMode is now IsReferenceMode. Bootstrap token handling is different now. ClaimsPrincipalHttpModule is gone. This is not really needed anymore, apart from maybe claims transformation (see here). Various factory methods on ClaimsPrincipal are gone (e.g. ClaimsPrincipal.CreateFromIdentity()). SecurityTokenHandler.ValidateToken now returns a ReadOnlyCollection<ClaimsIdentity>. Some lower level helper classes are gone or internal now (e.g. KeyGenerator). The WCF WS-Trust bindings are gone. I think this is a pity. They were *really* useful when doing work with WSTrustChannelFactory. Since WIF is part of the Windows operating system and also supported in future versions of .NET, there is no urgent need to migrate to the 4.5 claims model. But obviously, going forward, at some point you want to make the move.

    Read the article

  • What do you need to know to be a world-class master software developer? [closed]

    - by glitch
    I wanted to bring up this question to you folks and see what you think, hopefully advise me on the matter: let's say you had 30 years of learning and practicing software development in front of you, how would you dedicate your time so that you'd get the biggest bang for your buck. What would you both learn and work on to be a world-class software developer that would make a large impact on the industry and leave behind a legacy? I think that most great developers end up being both broad generalists and specialists in one-two areas of interest. I'm thinking Bill Joy, John Carmack, Linus Torvalds, K&R and so on. I'm thinking that perhaps one approach would be to break things down by categories and establish a base minimum of "software development" greatness. I'm thinking: Operating Systems: completely internalize the core concepts of OS, perhaps gain a lot of familiarity with an OSS one such as Linux. Anything from memory management to device drivers has to be complete second nature. Programming Languages: this is one of those topics that imho has to be fully grokked even if it might take many years. I don't think there's quite anything like going through the process of developing your own compiler, understanding language design trade-offs and so on. Programming Language Pragmatics is one of my favorite books actually, I think you want to have that internalized back to back, and that's just the start. You could go significantly deeper, but I think it's time well spent, because it's such a crucial building block. As a subset of that, you want to really understand the different programming paradigms out there. Imperative, declarative, logic, functional and so on. Anything from assembly to LISP should be at the very least comfortable to write in. Contexts: I believe one should have experience working in different contexts to truly be able to appreciate the trade-offs that are being made every day. Embedded, web development, mobile development, UX development, distributed, cloud computing and so on. Hardware: I'm somewhat conflicted about this one. I think you want some understanding of computer architecture at a low level, but I feel like the concepts that will truly matter will be slightly higher level, such as CPU caching / memory hierarchy, ILP, and so on. Networking: we live in a completely network-dependent era. Having a good understanding of the OSI model, knowing how the Web works, how HTTP works and so on is pretty much a pre-requisite these days. Distributed systems: once again, everything's distributed these days, it's getting progressively harder to ignore this reality. Slightly related, perhaps add solid understanding of how browsers work to that, since the world seems to be moving so much to interfacing with everything through a browser. Tools: Have a really broad toolset that you're familiar with, one that continuously expands throughout the years. Communication: I think being a great writer, effective communicator and a phenomenal team player is pretty much a prerequisite for a lot of a software developer's greatness. It can't be overstated. Software engineering: understanding the process of building software, team dynamics, the requirements of the business-side, all the pitfalls. You want to deeply understand where what you're writing fits from the market perspective. The better you understand all of this, the more of your work will actually see the daylight. This is really just a starting list, I'm confident that there's a ton of other material that you need to master. As I mentioned, you most likely end up specializing in a bunch of these areas as you go along, but I was trying to come up with a baseline. Any thoughts, suggestions and words of wisdom from the grizzled veterans out there who would like to share their thoughts and experiences with this? I'd really love to know what you think!

    Read the article

  • Entity System with C++ templates

    - by tommaisey
    I've been getting interested in the Entity/Component style of game programming, and I've come up with a design in C++ which I'd like a critique of. I decided to go with a fairly pure Entity system, where entities are simply an ID number. Components are stored in a series of vectors - one for each Component type. However, I didn't want to have to add boilerplate code for every new Component type I added to the game. Nor did I want to use macros to do this, which frankly scare me. So I've come up with a system based on templates and type hinting. But there are some potential issues I'd like to check before I spend ages writing this (I'm a slow coder!) All Components derive from a Component base class. This base class has a protected constructor, that takes a string parameter. When you write a new derived Component class, you must initialise the base with the name of your new class in a string. When you first instantiate a new DerivedComponent, it adds the string to a static hashmap inside Component mapped to a unique integer id. When you subsequently instantiate more Components of the same type, no action is taken. The result (I think) should be a static hashmap with the name of each class derived from Component that you instantiate at least once, mapped to a unique id, which can by obtained with the static method Component::getTypeId ("DerivedComponent"). Phew. The next important part is TypedComponentList<typename PropertyType>. This is basically just a wrapper to an std::vector<typename PropertyType> with some useful methods. It also contains a hashmap of entity ID numbers to slots in the array so we can find Components by their entity owner. Crucially TypedComponentList<> is derived from the non-template class ComponentList. This allows me to maintain a list of pointers to ComponentList in my main ComponentManager, which actually point to TypedComponentLists with different template parameters (sneaky). The Component manager has template functions such as: template <typename ComponentType> void addProperty (ComponentType& component, int componentTypeId, int entityId) and: template <typename ComponentType> TypedComponentList<ComponentType>* getComponentList (int componentTypeId) which deal with casting from ComponentList to the correct TypedComponentList for you. So to get a list of a particular type of Component you call: TypedComponentList<MyComponent>* list = componentManager.getComponentList<MyComponent> (Component::getTypeId("MyComponent")); Which I'll admit looks pretty ugly. Bad points of the design: If a user of the code writes a new Component class but supplies the wrong string to the base constructor, the whole system will fail. Each time a new Component is instantiated, we must check a hashed string to see if that component type has bee instantiated before. Will probably generate a lot of assembly because of the extensive use of templates. I don't know how well the compiler will be able to minimise this. You could consider the whole system a bit complex - perhaps premature optimisation? But I want to use this code again and again, so I want it to be performant. Good points of the design: Components are stored in typed vectors but they can also be found by using their entity owner id as a hash. This means we can iterate them fast, and minimise cache misses, but also skip straight to the component we need if necessary. We can freely add Components of different types to the system without having to add and manage new Component vectors by hand. What do you think? Do the good points outweigh the bad?

    Read the article

  • Lots of first chance Microsoft.CSharp.RuntimeBinderExceptions thrown when dealing with dynamics

    - by Orion Edwards
    I've got a standard 'dynamic dictionary' type class in C# - class Bucket : DynamicObject { readonly Dictionary<string, object> m_dict = new Dictionary<string, object>(); public override bool TrySetMember(SetMemberBinder binder, object value) { m_dict[binder.Name] = value; return true; } public override bool TryGetMember(GetMemberBinder binder, out object result) { return m_dict.TryGetValue(binder.Name, out result); } } Now I call it, as follows: static void Main(string[] args) { dynamic d = new Bucket(); d.Name = "Orion"; // 2 RuntimeBinderExceptions Console.WriteLine(d.Name); // 2 RuntimeBinderExceptions } The app does what you'd expect it to, but the debug output looks like this: A first chance exception of type 'Microsoft.CSharp.RuntimeBinder.RuntimeBinderException' occurred in Microsoft.CSharp.dll A first chance exception of type 'Microsoft.CSharp.RuntimeBinder.RuntimeBinderException' occurred in Microsoft.CSharp.dll 'ScratchConsoleApplication.vshost.exe' (Managed (v4.0.30319)): Loaded 'Anonymously Hosted DynamicMethods Assembly' A first chance exception of type 'Microsoft.CSharp.RuntimeBinder.RuntimeBinderException' occurred in Microsoft.CSharp.dll A first chance exception of type 'Microsoft.CSharp.RuntimeBinder.RuntimeBinderException' occurred in Microsoft.CSharp.dll Any attempt to access a dynamic member seems to output a RuntimeBinderException to the debug logs. While I'm aware that first-chance exceptions are not a problem in and of themselves, this does cause some problems for me: I often have the debugger set to "break on exceptions", as I'm writing WPF apps, and otherwise all exceptions end up getting converted to a DispatcherUnhandledException, and all the actual information you want is lost. WPF sucks like that. As soon as I hit any code that's using dynamic, the debug output log becomes fairly useless. All the useful trace lines that I care about get hidden amongst all the useless RuntimeBinderExceptions Is there any way I can turn this off, or is the RuntimeBinder unfortunately just built like that? Thanks, Orion

    Read the article

  • Missing Edit Option on Silverlight 4 DataForm

    - by rip
    I’m trying out the Silverlight 4 beta DataForm control. I don’t seem to be able to get the edit and paging options at the top of the control like I’ve seen in Silverlight 3 examples. Has something changed or am I doing something wrong? Here’s my code: <UserControl x:Class="SilverlightApplication7.MainPage" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:d="http://schemas.microsoft.com/expression/blend/2008" xmlns:mc="http://schemas.openxmlformats.org/markup-compatibility/2006" mc:Ignorable="d" d:DesignHeight="300" d:DesignWidth="400" xmlns:dataFormToolkit="clr-namespace:System.Windows.Controls;assembly=System.Windows.Controls.Data.DataForm.Toolkit"> <Grid x:Name="LayoutRoot" Background="White"> <dataFormToolkit:DataForm HorizontalAlignment="Left" Margin="10" Name="myDataForm" VerticalAlignment="Top" /> </Grid> </UserControl> public partial class MainPage : UserControl { public MainPage() { InitializeComponent(); this.Loaded += new RoutedEventHandler(MainPage_Loaded); } void MainPage_Loaded(object sender, RoutedEventArgs e) { Movie movie = new Movie(); myDataForm.CurrentItem = movie; } public enum Genres { Comedy, Fantasy, Drama, Thriller } public class Movie { public int MovieID { get; set; } public string Name { get; set; } public int Year { get; set; } public DateTime AddedOn { get; set; } public string Producer { get; set; } public Genres Genre { get; set; } } }

    Read the article

  • Serializing object with no namespaces using DataContractSerializer

    - by Yurik
    How do I remove XML namespaces from an object's XML representation serialized using DataContractSerializer? That object needs to be serialized to a very simple output XML. Latest & greatest - using .Net 4 beta 2 The object will never need to be deserialized. XML should not have any xmlns:... namespace refs Any subtypes of Exception and ISubObject need to be supported. It will be very difficult to change the original object. Object: [Serializable] class MyObj { string str; Exception ex; ISubObject subobj; } Need to serialize into: <xml> <str>...</str> <ex i:nil="true" /> <subobj i:type="Abc"> <AbcProp1>...</AbcProp1> <AbcProp2>...</AbcProp2> </subobj> </xml> I used this code: private static string ObjectToXmlString(object obj) { if (obj == null) throw new ArgumentNullException("obj"); var serializer = new DataContractSerializer( obj.GetType(), null, Int32.MaxValue, false, false, null, new AllowAllContractResolver()); var sb = new StringBuilder(); using (var xw = XmlWriter.Create(sb, new XmlWriterSettings { OmitXmlDeclaration = true, NamespaceHandling = NamespaceHandling.OmitDuplicates, Indent = true })) { serializer.WriteObject(xw, obj); xw.Flush(); return sb.ToString(); } } From this article I adopted a DataContractResolver so that no subtypes have to be declared: public class AllowAllContractResolver : DataContractResolver { public override bool TryResolveType(Type dataContractType, Type declaredType, DataContractResolver knownTypeResolver, out XmlDictionaryString typeName, out XmlDictionaryString typeNamespace) { if (!knownTypeResolver.TryResolveType(dataContractType, declaredType, null, out typeName, out typeNamespace)) { var dictionary = new XmlDictionary(); typeName = dictionary.Add(dataContractType.FullName); typeNamespace = dictionary.Add(dataContractType.Assembly.FullName); } return true; } public override Type ResolveName(string typeName, string typeNamespace, Type declaredType, DataContractResolver knownTypeResolver) { return knownTypeResolver.ResolveName(typeName, typeNamespace, declaredType, null) ?? Type.GetType(typeName + ", " + typeNamespace); } }

    Read the article

  • Installing VSTO 4.0 Causes VSTO 3.0 Addin to quit working

    - by Jacob Adams
    I just installed Visual Studio 2010 yesterday. As part of that I installed VSTO 4.0. Now when I run any Office application, my VSTO 3.0 addins fail to load. The error in the event log is Customization URI: file:///H:/PathToMyAddin/MyAddin.vsto Exception: Customization does not have the permissions required to create an application domain. ***** Exception Text ******* Microsoft.VisualStudio.Tools.Applications.Runtime.CannotCreateCustomizationDomainException: Customization does not have the permissions required to create an application domain. --- System.Security.SecurityException: Customized functionality in this application will not work because the administrator has listed file:///H:/PathToMyAddin/MyAddin.vsto as untrusted. Contact your administrator for further assistance. at Microsoft.VisualStudio.Tools.Office.Runtime.RuntimeUtilities.VerifySolutionUri(Uri uri) at Microsoft.VisualStudio.Tools.Office.Runtime.DomainCreator.CreateCustomizationDomainInternal(String solutionLocation, String manifestName, String documentName, Boolean showUIDuringDeployment, IntPtr hostServiceProvider, IntPtr& executor) The Zone of the assembly that failed was: MyComputer It seems like like maybe this is due to it trying to load different version of .NET is the same process/AppDomain. However the error would indicate it's some sort of permissions issue.

    Read the article

  • MSTest VS2010 - DeploymentItem copying files to different locations on different machines

    - by Jack
    I have found that DeploymentItem [TestClass(), DeploymentItem(@"TestData\")] is not copying my test data files to the same location when tests are built and run on different machines. The test data files are copied to the "bin\debug" directory in the test project on my machine, but on my friend's machine they are copied to "TestResults\*name_machine YY-MM-DD HH_MM_SS*\Out". The bin\debug directory on my machine can be obtained with the code: string appDirectory = Path.GetDirectoryNameSystem.Reflection.Assembly.GetExecutingAssembly().Location; and the same code will return "TestResults\*name_machine YY-MM-DD HH_MM_SS*\Out" on my friends PC. This however isn't really the problem. The problem is that the test data files I have made have a folder structure, and this folder structure is only maintained on my machine when copied to bin\debug, whereas on my friends machine only the files are added to the "TestResults\*name_machine YY-MM-DD HH_MM_SS*\Out" directory. This means that tests will pass on my machine and fail on his! Is there a way to ensure that DeploymentItem always copys to the bin\debug folder? Or a way to ensure that the folder structure will be retained when DeploymentItem copies the files to the "TestResults\*name_machine YY-MM-DD HH_MM_SS*\Out" folder?

    Read the article

  • COM Object Method Invoke Exception - Silverlight 4

    - by Adam Driscoll
    I'm trying to use the new AutomationFactory provided with Silverlight 4 to call a .NET COM class. .NET COM-Exposed Class: public class ObjectContainer { public bool GetObject([Out, MarshalAs((UnmanagedType.IUnknown)] out object obj) { obj = new SomeOtherObj(); return true; } } Silverlight Assembly: dynamic objectContainer; try { objectContainer = AutomationFactory.GetObject(ProgId); } catch { objectContainer = AutomationFactory.CreateObject(ProgId); } object obj; if (!objectContainer.GetObject(out obj)) { throw new Exception(); } When I call objectContainer.GetObject(out obj) an exception is thrown stating: Value does not fall within the expected range. at MS.Internal.ComAutomation.ComAutomationNative.CheckInvokeHResult(UInt32 hr, String memberName, String exceptionSource, String exceptionDescription, String exceptionHelpFile, UInt32 exceptionHelpContext) at MS.Internal.ComAutomation.ComAutomationNative.Invoke(Boolean tryInvoke, String memberName, ComAutomationInvokeType invokeType, ComAutomationInteropValue[] rgParams, IntPtr nativePeer, ComAutomationInteropValue& returnValue) at MS.Internal.ComAutomation.ComAutomationObject.InvokeImpl(Boolean tryInvoke, String name, ComAutomationInvokeType invokeType, Object& returnValue, Object[] args) at MS.Internal.ComAutomation.ComAutomationObject.Invoke(String name, ComAutomationInvokeType invokeType, Object[] args) at System.Runtime.InteropServices.Automation.AutomationMetaObjectProvider.TryInvokeMember(InvokeMemberBinder binder, Object[] args, Object& result) at System.Runtime.InteropServices.Automation.AutomationMetaObjectProviderBase.<.cctorb__4(Object obj, InvokeMemberBinder binder, Object[] args) at CallSite.Target(Closure , CallSite , Object , String , Object& ) at CallSite.Target(Closure , CallSite , Object , String , Object& ) at ApplicationModule.ObjectContainer.GetObject() Wha's the deal?

    Read the article

  • faster implementation of sum ( for Codility test )

    - by Oscar Reyes
    How can the following simple implementation of sum be faster? private long sum( int [] a, int begin, int end ) { if( a == null ) { return 0; } long r = 0; for( int i = begin ; i < end ; i++ ) { r+= a[i]; } return r; } EDIT Background is in order. Reading latest entry on coding horror, I came to this site: http://codility.com which has this interesting programming test. Anyway, I got 60 out of 100 in my submission, and basically ( I think ) is because this implementation of sum, because those parts where I failed are the performance parts. I'm getting TIME_OUT_ERROR's So, I was wondering if an optimization in the algorithm is possible. So, no built in functions or assembly would be allowed. This my be done in C, C++, C#, Java or pretty much in any other. EDIT As usual, mmyers was right. I did profile the code and I saw most of the time was spent on that function, but I didn't understand why. So what I did was to throw away my implementation and start with a new one. This time I've got an optimal solution [ according to San Jacinto O(n) -see comments to MSN below - ] This time I've got 81% on Codility which I think is good enough. The problem is that I didn't take the 30 mins. but around 2 hrs. but I guess that leaves me still as a good programmer, for I could work on the problem until I found an optimal solution: Here's my result. I never understood what is those "combinations of..." nor how to test "extreme_first"

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >