Search Results

Search found 42090 results on 1684 pages for 'mean square method'.

Page 134/1684 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • What has bigger priority: opacity or z-index in browsers?

    - by MartyIX
    Hi, I'm coding a "popup window" in javascript and I've come across an interesting thing: http://img91.imageshack.us/img91/4761/error01cropped.png - the navy square under the popup window is visible even though I would expect it to be hidden. The popup was added after the square so it should be on the top. CSS opacity property of the navy square is 0.3 (from what I've tried it seems that every number from the interval (0,1) would yield the same result) if I change it to 1 then it behaves as expected (i.e. the part of the square under the popup is hidden). I've tried to use z-index property and set 10 for square and 100 for the popup but it doesn't change anything. What am I missing? Why is the part of square displayed? Thanks for help!

    Read the article

  • Can I use a single MySQL query to select distinct rows and then non-distinct rows if a limit hasn't

    - by Matt Rix
    I hope I'm explaining this properly, my knowledge of MySQL is quite limited. Let's say I have a table with rows that have name and shape fields. I'd like to select a bunch of rows from a table, but return all of the rows with unique shape field values first. If I have less than a certain number of rows, let's say 7, then I'd like to fill the remaining result rows with non-unique shape rows. The best way I can word it is that they're "ordered by uniqueness, and then by some other value". So, I don't want: square, square, circle, circle, rectangle, square, triangle I'd like to have: square, circle, rectangle, triangle, square, square, circle Is this possible to do using a single SQL query? I'm using MySQL with PHP, if that makes any difference. Thanks!

    Read the article

  • Editing A Library Symbol From ActionScript

    - by Anonymous
    In the Flash authoring environment I can edit a library symbol and all on-stage instances based upon it reflect the changes. How can I do the same thing in ActionScript? There seems to be no way to address a library symbol. For example: Inside Flash CS3, I have created a Square.swf file that has 100 instances of the library symbol Square. Now, Square.swf is loaded into another file BlueSquare.swf and I want to change the Square symbol into a blue square so that all instances of Square become blue. How do I do this using Actionscript? Thanks for the help.

    Read the article

  • ggplot2 add legend for each geom_point manually

    - by user1162769
    I created a plot using 2 separate data sets so that I could create different errorbars. The first data set has error bars that go down only whereas the second data set has error bars that go up only. This prevents unnecessary overlap in the plot. I also used a compound shape for one of the groups. I want to create a legend based on these shapes (not a colour), but I can't seem to figure it out. Here is the plot code. p<-ggplot() p + geom_point(data=df.figure.1a, aes(x=Hour, y=Mean), shape=5, size=4) + geom_point(data=df.figure.1a, aes(x=Hour, y=Mean), shape=18, size=3) + geom_errorbar(data=df.figure.1a, aes(x=Hour, y=Mean, ymin = Mean - SD, ymax = Mean), size=0.7, width = 0.4) + geom_point(data=df.figure.1b, aes(x=Hour, y=Mean), shape=17, size=4) + geom_errorbar(data=df.figure.1b, aes(x=Hour, y=Mean, ymin = Mean, ymax = Mean + SD), size=0.7, width = 0.4)

    Read the article

  • Entity Framework LINQ Query using Custom C# Class Method - Once yes, once no - because executing on the client or in SQL?

    - by BrooklynDev
    I have two Entity Framework 4 Linq queries I wrote that make use of a custom class method, one works and one does not: The custom method is: public static DateTime GetLastReadToDate(string fbaUsername, Discussion discussion) { return (discussion.DiscussionUserReads.Where(dur => dur.User.aspnet_User.UserName == fbaUsername).FirstOrDefault() ?? new DiscussionUserRead { ReadToDate = DateTime.Now.AddYears(-99) }).ReadToDate; } The linq query that works calls a from after a from, the equivalent of SelectMany(): from g in oc.Users.Where(u => u.aspnet_User.UserName == fbaUsername).First().Groups from d in g.Discussions select new { UnReadPostCount = d.Posts.Where(p => p.CreatedDate > DiscussionRepository.GetLastReadToDate(fbaUsername, p.Discussion)).Count() }; The query that does not work is more like a regular select: from d in oc.Discussions where d.Group.Name == "Student" select new { UnReadPostCount = d.Posts.Where(p => p.CreatedDate > DiscussionRepository.GetLastReadToDate(fbaUsername, p.Discussion)).Count(), }; The error I get is: LINQ to Entities does not recognize the method 'System.DateTime GetLastReadToDate(System.String, Discussion)' method, and this method cannot be translated into a store expression. My question is, why am I able to use my custom GetLastReadToDate() method in the first query and not the second? I suppose this has something to do with what gets executed on the db server and what gets executed on the client? These queries seem to use the GetLastReadToDate() method so similarly though, I'm wondering why would work for the first and not the second, and most importantly if there's a way to factor common query syntax like what's in the GetLastReadToDate() method into a separate location to be reused in several different places LINQ queries. Please note all these queries are sharing the same object context.

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • PostSharp, Obfuscation, and IL

    - by Simon Cooper
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day!

    Read the article

  • PostSharp, Obfuscation, and IL

    - by simonc
    Aspect-oriented programming (AOP) is a relatively new programming paradigm. Originating at Xerox PARC in 1994, the paradigm was first made available for general-purpose development as an extension to Java in 2001. From there, it has quickly been adapted for use in all the common languages used today. In the .NET world, one of the primary AOP toolkits is PostSharp. Attributes and AOP Normally, attributes in .NET are entirely a metadata construct. Apart from a few special attributes in the .NET framework, they have no effect whatsoever on how a class or method executes within the CLR. Only by using reflection at runtime can you access any attributes declared on a type or type member. PostSharp changes this. By declaring a custom attribute that derives from PostSharp.Aspects.Aspect, applying it to types and type members, and running the resulting assembly through the PostSharp postprocessor, you can essentially declare 'clever' attributes that change the behaviour of whatever the aspect has been applied to at runtime. A simple example of this is logging. By declaring a TraceAttribute that derives from OnMethodBoundaryAspect, you can automatically log when a method has been executed: public class TraceAttribute : PostSharp.Aspects.OnMethodBoundaryAspect { public override void OnEntry(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Entering {0}.{1}.", method.DeclaringType.FullName, method.Name)); } public override void OnExit(MethodExecutionArgs args) { MethodBase method = args.Method; System.Diagnostics.Trace.WriteLine( String.Format( "Leaving {0}.{1}.", method.DeclaringType.FullName, method.Name)); } } [Trace] public void MethodToLog() { ... } Now, whenever MethodToLog is executed, the aspect will automatically log entry and exit, without having to add the logging code to MethodToLog itself. PostSharp Performance Now this does introduce a performance overhead - as you can see, the aspect allows access to the MethodBase of the method the aspect has been applied to. If you were limited to C#, you would be forced to retrieve each MethodBase instance using Type.GetMethod(), matching on the method name and signature. This is slow. Fortunately, PostSharp is not limited to C#. It can use any instruction available in IL. And in IL, you can do some very neat things. Ldtoken C# allows you to get the Type object corresponding to a specific type name using the typeof operator: Type t = typeof(Random); The C# compiler compiles this operator to the following IL: ldtoken [mscorlib]System.Random call class [mscorlib]System.Type [mscorlib]System.Type::GetTypeFromHandle( valuetype [mscorlib]System.RuntimeTypeHandle) The ldtoken instruction obtains a special handle to a type called a RuntimeTypeHandle, and from that, the Type object can be obtained using GetTypeFromHandle. These are both relatively fast operations - no string lookup is required, only direct assembly and CLR constructs are used. However, a little-known feature is that ldtoken is not just limited to types; it can also get information on methods and fields, encapsulated in a RuntimeMethodHandle or RuntimeFieldHandle: // get a MethodBase for String.EndsWith(string) ldtoken method instance bool [mscorlib]System.String::EndsWith(string) call class [mscorlib]System.Reflection.MethodBase [mscorlib]System.Reflection.MethodBase::GetMethodFromHandle( valuetype [mscorlib]System.RuntimeMethodHandle) // get a FieldInfo for the String.Empty field ldtoken field string [mscorlib]System.String::Empty call class [mscorlib]System.Reflection.FieldInfo [mscorlib]System.Reflection.FieldInfo::GetFieldFromHandle( valuetype [mscorlib]System.RuntimeFieldHandle) These usages of ldtoken aren't usable from C# or VB, and aren't likely to be added anytime soon (Eric Lippert's done a blog post on the possibility of adding infoof, methodof or fieldof operators to C#). However, PostSharp deals directly with IL, and so can use ldtoken to get MethodBase objects quickly and cheaply, without having to resort to string lookups. The kicker However, there are problems. Because ldtoken for methods or fields isn't accessible from C# or VB, it hasn't been as well-tested as ldtoken for types. This has resulted in various obscure bugs in most versions of the CLR when dealing with ldtoken and methods, and specifically, generic methods and methods of generic types. This means that PostSharp was behaving incorrectly, or just plain crashing, when aspects were applied to methods that were generic in some way. So, PostSharp has to work around this. Without using the metadata tokens directly, the only way to get the MethodBase of generic methods is to use reflection: Type.GetMethod(), passing in the method name as a string along with information on the signature. Now, this works fine. It's slower than using ldtoken directly, but it works, and this only has to be done for generic methods. Unfortunately, this poses problems when the assembly is obfuscated. PostSharp and Obfuscation When using ldtoken, obfuscators don't affect how PostSharp operates. Because the ldtoken instruction directly references the type, method or field within the assembly, it is unaffected if the name of the object is changed by an obfuscator. However, the indirect loading used for generic methods was breaking, because that uses the name of the method when the assembly is put through the PostSharp postprocessor to lookup the MethodBase at runtime. If the name then changes, PostSharp can't find it anymore, and the assembly breaks. So, PostSharp needs to know about any changes an obfuscator does to an assembly. The way PostSharp does this is by adding another layer of indirection. When PostSharp obfuscation support is enabled, it includes an extra 'name table' resource in the assembly, consisting of a series of method & type names. When PostSharp needs to lookup a method using reflection, instead of encoding the method name directly, it looks up the method name at a fixed offset inside that name table: MethodBase genericMethod = typeof(ContainingClass).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: get_Prop1 21: set_Prop1 22: DoFoo 23: GetWibble When the assembly is later processed by an obfuscator, the obfuscator can replace all the method and type names within the name table with their new name. That way, the reflection lookups performed by PostSharp will now use the new names, and everything will work as expected: MethodBase genericMethod = typeof(#kGy).GetMethod(GetNameAtIndex(22)); PostSharp.NameTable resource: ... 20: #kkA 21: #zAb 22: #EF5a 23: #2tg As you can see, this requires direct support by an obfuscator in order to perform these rewrites. Dotfuscator supports it, and now, starting with SmartAssembly 6.6.4, SmartAssembly does too. So, a relatively simple solution to a tricky problem, with some CLR bugs thrown in for good measure. You don't see those every day! Cross posted from Simple Talk.

    Read the article

  • Cannot install packages. "Warning: untrusted versions..." plus "method driver /usr/lib/apt/methods/http could not be found"

    - by Steve Tjoa
    Judging from Internet forums, these errors appear to be popular when attempting to install packages: steve:~$ sudo aptitude install examplepackage The following NEW packages will be installed: examplepackage examplepackage-common{a} 0 packages upgraded, 2 newly installed, 0 to remove and 0 not upgraded. Need to get 1,834 kB of archives. After unpacking 7,631 kB will be used. Do you want to continue? [Y/n/?] WARNING: untrusted versions of the following packages will be installed! Untrusted packages could compromise your system's security. You should only proceed with the installation if you are certain that this is what you want to do. examplepackage examplepackage-common Do you want to ignore this warning and proceed anyway? To continue, enter "Yes"; to abort, enter "No": Yes E: The method driver /usr/lib/apt/methods/http could not be found. E: The method driver /usr/lib/apt/methods/http could not be found. E: Internal error: couldn't generate list of packages to download I followed this post by uninstalling ubuntu-keyring. But I cannot reinstall ubuntu-keyring or ubuntu-minimal -- the above errors reappear. In fact, I don't even seem to have apt (I must have caused this along the way by trying a bad solution, or maybe a clean): steve:~$ sudo apt-get update sudo: apt-get: command not found Aptitude works, but I can't install apt: steve:~$ sudo aptitude install apt The following NEW packages will be installed: apt 0 packages upgraded, 1 newly installed, 0 to remove and 0 not upgraded. Need to get 1,046 kB of archives. After unpacking 3,441 kB will be used. E: The method driver /usr/lib/apt/methods/http could not be found. E: The method driver /usr/lib/apt/methods/http could not be found. E: Internal error: couldn't generate list of packages to download ...or update steve:~$ sudo aptitude update E: The method driver /usr/lib/apt/methods/http could not be found. E: The method driver /usr/lib/apt/methods/http could not be found. E: The method driver /usr/lib/apt/methods/http could not be found. I tried this post. Didn't help. To summarize, the main problem is that I cannot install anything. While attempting to fix the problem, the other aforementioned errors occurred. Can you help me fix this error? Feel free to ask if you need more information. Stats: steve:~$ lsb_release -a No LSB modules are available. Distributor ID: Ubuntu Description: Ubuntu 11.10 Release: 11.10 Codename: oneiric

    Read the article

  • What does it mean to say "Instance variables are not over-rided" in java?

    - by Ankit
    I am aware of the concept called field hiding in java. But still I am having a confusion in relation to instance variable being not over-ridden. According to my present knowledge, overriding a method of super-class means that the JVM will call the sub-class's over-ridden method though the super-class's method is available to the sub-class. And I read the similar thing for field hiding via the link:- Hiding Fields So, in any case we are over-ridding the instance if we change the values of the inherited instance variable in the sub-class. I am confused please help. I am using the following super-class:- public class Animal{ File picture; String food; int hunger; int width, height; int xcoord, ycoord; public void makeNoise(){ ......... } public void eat(){ ............. } public void sleep(){ .......... } public void roam(){ ............. } } It has sub-classes like Tiger, cat, dog,hippo etc. The sub-classes over-ride the makeNoise(), eat and roam() method. But each sub-class also uses a different set of values for instance variables. So as per my confusion, I am kind-of overriding all the instance variables and 3 methods of the super-class Animal; and I still have the super-class instance variables available to the sub-class with the use of the super keyword.

    Read the article

  • tcptrack shows SYN_SENT connections, does that mean the SYN package reached the server?

    - by xpu
    our server suffered a serious connection timeout problem, so we track tcp connection with tcptrack we found out that, if the client started to connect to the server, tcptrack shows the connection, but in SYN_SENT status, and netstat -nat shows nothing. (tcptrack & netstat all runs on the server) does this mean the syn request reached the server? and no syn/ack was sent back? why the tcptrack could report this connection but netstat could not? what could be the problem that a general apache could not establish a connection with the client? i did a bench test using ab in the same intranet, to the specified NIC, it handled 10000 concurrent connection and 400000 requests ok ps: this doesn't happen every time, but did happened a lot pps: is there any good tools to trace where the tcp connection was lost?

    Read the article

  • What does the number after 7-zip's -m switch mean?

    - by AndreKR
    7-zip has a command line switch to set the compression method, -m followed by a number, e.g. -m0=LZMA. What does the number (0 in the example) mean? Different numbers produce slightly different compression results and performance: time 7z -m0=LZMA -mx=9 -ms=on -mmt=off real 0m2.292s user 0m2.190s sys 0m0.080s time 7z -m1=LZMA -mx=9 -ms=on -mmt=off real 0m2.405s user 0m3.240s sys 0m0.070s time 7z -m0=LZMA -mx=9 -ms=on -mmt=on real 0m1.038s user 0m1.920s sys 0m0.150s time 7z -m1=LZMA -mx=9 -ms=on -mmt=on real 0m1.187s user 0m2.800s sys 0m0.130s

    Read the article

  • What does it mean to setup Postfix as "SMTP only"? [closed]

    - by BryanWheelock
    Possible Duplicate: What does it mean to setup Postfix as “SMTP only”? I am trying to setup Postfix a few different domains on a virtual host. I need to have email setup just to send out registration confirmations and new password requests. No one will have a mailbox on this server. It seems this means that I want to setup Postfix as SMTP only. I've also read about configuring Postfix null clients for simular needs. What is the difference between Postfix null client and SMTP only?

    Read the article

  • What does the "Maximum Frequency" number mean in the Windows Resource Monitor?

    - by nhinkle
    In the Windows Resource Monitor's CPU tab, there is a status box and graph for the "Maximum Frequency", right next to the "CPU Usage" values. What does this mean? The value is sometimes over 100% on my system... what could that imply? By looking at CPU-z's real-time report of the processor's clock speed, it seems to be loosely related to what frequency the CPU is running at, which would imply that it means "percent of maximum possible frequency the CPU is running at"; this would be of relevance on systems with SpeedStep and/or TurboBoost technology (or similar). Furthermore, setting the system to "power saving mode" lowers the "maximum frequency" value to around 60%, while setting it to "high performance" mode sets it to around 110%. However, the percentage does not seem to exactly correlate to the CPU speed being shown. What value is this actually representing then?

    Read the article

  • If USB is not listed in BIOS as a boot option, does that mean the machine can't boot from USB?

    - by Chace Fields
    I just purchased an Asus Zenbook Prime UX31A-DH51 with Windows 8. I want to wipe the drive and do a clean install but USB is not listed as a boot option in the BIOS. Does this mean it is not possible? Here is a photo of my BIOS options. This is the only option I get when I click Add New Boot Option. Not sure if I can add USB here. * Update * Asus tech emailed and said: "Unfortunately with Windows 8 you can not boot from bios."

    Read the article

  • What does "Windows is not a real-time operating system" mean?

    - by hydroparadise
    I came across an application called LatencyMon, that apparently does latency monitoring. I have always understood the more of a load you put on the processor, the less responsive, or more latent, the system becomes. However, in the second section of the LatencyMon page, the first sentence says, "Windows is not a real-time operating system". That got me thinking. I mean, is this any different from any other operatiing system like linux, unix, or OS X? Are there any "Real-Time" operating systems? Or is the merely a marketing scheme to get you to buy their product? EDIT: Also, are there any examples of RTOS's out there?

    Read the article

  • Vim: What do these short names / verbs like <leader>, <C-r> mean?

    - by Ambidex
    I'm using Vim for a while now, starting to like it more and more. But when searching for some new features that Vim has in it's goodie bag, I'm often slapped in the face with things like <Leader> <C-r>, etc... I'm feeling really stupid for not being able to relate these to keys, commands, or what soever they should mean. I've also been searching multiple times for the use of these verbs, but I think I'm not using the correct search queries to get to the right explanation pages. Could someone give me a push in the right direction or maybe summarize the meaning / workings of these verbs? I thank you in advance!

    Read the article

  • What does directory permission 'S' mean? (not lower case, but in upper case)

    - by Howard Guo
    I downloaded Eclipse, uncompressed it, did a few other things and all sudden I notice this interesting behaviour: ^_^ ~/Downloads > sudo chmod 0000 eclipse/ ^_^ ~/Downloads > stat eclipse/ File: 'eclipse/' Size: 4096 Blocks: 8 IO Block: 4096 directory Device: 801h/2049d Inode: 529725 Links: 9 Access: (2000/d-----S---) Uid: ( 0/ root) Gid: ( 0/ root) Access: 2012-11-22 19:54:57.752017352 +1100 Modify: 2012-09-20 18:16:26.000000000 +1000 Change: 2012-11-22 20:07:49.354016510 +1100 Birth: - ^_^ ~/Downloads > sudo chmod 0755 eclipse/ ^_^ ~/Downloads > stat eclipse/ File: 'eclipse/' Size: 4096 Blocks: 8 IO Block: 4096 directory Device: 801h/2049d Inode: 529725 Links: 9 Access: (2755/drwxr-sr-x) Uid: ( 0/ root) Gid: ( 0/ root) Access: 2012-11-22 19:54:57.752017352 +1100 Modify: 2012-09-20 18:16:26.000000000 +1000 Change: 2012-11-22 20:08:19.042016478 +1100 Birth: - What does 'S' permission mean to a directory? And why it doesn't let me get rid of it? Thanks.

    Read the article

  • What does it mean for a computer to be an "IBM Compatible PC"?

    - by Jon
    A couple questions about this: 1) Is this term even relevant any more? 2) Does this mean anything from a developer's stand point? It is not exactly clear to me if this is a BIOS, architecture, bus or a combination. A piece of software I'm working on expects to see a "Description" of the system and currently windows machines report "AT/AT Compatible". Having been tasked to port this to Mac, I really don't know what a proper "Description" would be - this will most likely be omitted but I was wondering if anyone could provide some insight on the modern usage of this term.

    Read the article

  • What does this error mean (Can't create TCP/IP socket (24))?

    - by user105196
    I have web server with OS RHEL 6.2 and Mysql 5.5.23 on another server and the web server can read from Mysql server without problem, but some time I got this error: [Sun Sep 23 06:13:07 2012] [error] [client XXXXX] DBI connect('XXXX:192.168.1.2:3306','XXX',...) failed: Can't create TCP/IP socket (24) at /var/www/html/file.pm line 199. my question : What does this error mean (Can't create TCP/IP socket (24))? is it OS error or Mysql error ? perl -v This is perl, v5.10.1 (*) built for x86_64-linux-thread-multi mysql -V mysql Ver 14.14 Distrib 5.5.23, for Linux (x86_64) using readline 5.1 su - mysql -s /bin/bash -c 'ulimit -a' core file size (blocks, -c) 0 data seg size (kbytes, -d) unlimited scheduling priority (-e) 0 file size (blocks, -f) unlimited pending signals (-i) 127220 max locked memory (kbytes, -l) 64 max memory size (kbytes, -m) unlimited open files (-n) 1024 pipe size (512 bytes, -p) 8 POSIX message queues (bytes, -q) 819200 real-time priority (-r) 0 stack size (kbytes, -s) 10240 cpu time (seconds, -t) unlimited max user processes (-u) 1024 virtual memory (kbytes, -v) unlimited file locks (-x) unlimited

    Read the article

  • What are the different file permission codes and what do they mean?

    - by zeckdude
    I am working with a file upload script. I am currently uploading a file and then trying to echo out an anchor linking to that file, but since I used mkdir() with 0700 permissions to upload the file, it won't allow me access to view the file. I am pretty sure the problem I am experiencing is because of the file permission code I used. The problem is I just don't know what all the different file permission codes are and what they mean. Can somebody please list out all the different file permissions and what they each do?

    Read the article

  • Understanding Request Validation in ASP.NET MVC 3

    - by imran_ku07
         Introduction:             A fact that you must always remember "never ever trust user inputs". An application that trusts user inputs may be easily vulnerable to XSS, XSRF, SQL Injection, etc attacks. XSS and XSRF are very dangerous attacks. So to mitigate these attacks ASP.NET introduced request validation in ASP.NET 1.1. During request validation, ASP.NET will throw HttpRequestValidationException: 'A potentially dangerous XXX value was detected from the client', if he found, < followed by an exclamation(like <!) or < followed by the letters a through z(like <s) or & followed by a pound sign(like &#123) as a part of query string, posted form and cookie collection. In ASP.NET 4.0, request validation becomes extensible. This means that you can extend request validation. Also in ASP.NET 4.0, by default request validation is enabled before the BeginRequest phase of an HTTP request. ASP.NET MVC 3 moves one step further by making request validation granular. This allows you to disable request validation for some properties of a model while maintaining request validation for all other cases. In this article I will show you the use of request validation in ASP.NET MVC 3. Then I will briefly explain the internal working of granular request validation.       Description:             First of all create a new ASP.NET MVC 3 application. Then create a simple model class called MyModel,     public class MyModel { public string Prop1 { get; set; } public string Prop2 { get; set; } }             Then just update the index action method as follows,   public ActionResult Index(MyModel p) { return View(); }             Now just run this application. You will find that everything works just fine. Now just append this query string ?Prop1=<s to the url of this application, you will get the HttpRequestValidationException exception.           Now just decorate the Index action method with [ValidateInputAttribute(false)],   [ValidateInput(false)] public ActionResult Index(MyModel p) { return View(); }             Run this application again with same query string. You will find that your application run without any unhandled exception.           Up to now, there is nothing new in ASP.NET MVC 3 because ValidateInputAttribute was present in the previous versions of ASP.NET MVC. Any problem with this approach? Yes there is a problem with this approach. The problem is that now users can send html for both Prop1 and Prop2 properties and a lot of developers are not aware of it. This means that now everyone can send html with both parameters(e.g, ?Prop1=<s&Prop2=<s). So ValidateInput attribute does not gives you the guarantee that your application is safe to XSS or XSRF. This is the reason why ASP.NET MVC team introduced granular request validation in ASP.NET MVC 3. Let's see this feature.           Remove [ValidateInputAttribute(false)] on Index action and update MyModel class as follows,   public class MyModel { [AllowHtml] public string Prop1 { get; set; } public string Prop2 { get; set; } }             Note that AllowHtml attribute is only decorated on Prop1 property. Run this application again with ?Prop1=<s query string. You will find that your application run just fine. Run this application again with ?Prop1=<s&Prop2=<s query string, you will get HttpRequestValidationException exception. This shows that the granular request validation in ASP.NET MVC 3 only allows users to send html for properties decorated with AllowHtml attribute.            Sometimes you may need to access Request.QueryString or Request.Form directly. You may change your code as follows,   [ValidateInput(false)] public ActionResult Index() { var prop1 = Request.QueryString["Prop1"]; return View(); }             Run this application again, you will get the HttpRequestValidationException exception again even you have [ValidateInput(false)] on your Index action. The reason is that Request flags are still not set to unvalidate. I will explain this later. For making this work you need to use Unvalidated extension method,     public ActionResult Index() { var q = Request.Unvalidated().QueryString; var prop1 = q["Prop1"]; return View(); }             Unvalidated extension method is defined in System.Web.Helpers namespace . So you need to add using System.Web.Helpers; in this class file. Run this application again, your application run just fine.             There you have it. If you are not curious to know the internal working of granular request validation then you can skip next paragraphs completely. If you are interested then carry on reading.             Create a new ASP.NET MVC 2 application, then open global.asax.cs file and the following lines,     protected void Application_BeginRequest() { var q = Request.QueryString; }             Then make the Index action method as,    [ValidateInput(false)] public ActionResult Index(string id) { return View(); }             Please note that the Index action method contains a parameter and this action method is decorated with [ValidateInput(false)]. Run this application again, but now with ?id=<s query string, you will get HttpRequestValidationException exception at Application_BeginRequest method. Now just add the following entry in web.config,   <httpRuntime requestValidationMode="2.0"/>             Now run this application again. This time your application will run just fine. Now just see the following quote from ASP.NET 4 Breaking Changes,   In ASP.NET 4, by default, request validation is enabled for all requests, because it is enabled before the BeginRequest phase of an HTTP request. As a result, request validation applies to requests for all ASP.NET resources, not just .aspx page requests. This includes requests such as Web service calls and custom HTTP handlers. Request validation is also active when custom HTTP modules are reading the contents of an HTTP request.             This clearly state that request validation is enabled before the BeginRequest phase of an HTTP request. For understanding what does enabled means here, we need to see HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly. Here is the implementation of HttpRequest.ValidateInput, HttpRequest.QueryString and HttpRequest.Form methods/properties in System.Web assembly,     public NameValueCollection Form { get { if (this._form == null) { this._form = new HttpValueCollection(); if (this._wr != null) { this.FillInFormCollection(); } this._form.MakeReadOnly(); } if (this._flags[2]) { this._flags.Clear(2); this.ValidateNameValueCollection(this._form, RequestValidationSource.Form); } return this._form; } } public NameValueCollection QueryString { get { if (this._queryString == null) { this._queryString = new HttpValueCollection(); if (this._wr != null) { this.FillInQueryStringCollection(); } this._queryString.MakeReadOnly(); } if (this._flags[1]) { this._flags.Clear(1); this.ValidateNameValueCollection(this._queryString, RequestValidationSource.QueryString); } return this._queryString; } } public void ValidateInput() { if (!this._flags[0x8000]) { this._flags.Set(0x8000); this._flags.Set(1); this._flags.Set(2); this._flags.Set(4); this._flags.Set(0x40); this._flags.Set(0x80); this._flags.Set(0x100); this._flags.Set(0x200); this._flags.Set(8); } }             The above code indicates that HttpRequest.QueryString and HttpRequest.Form will only validate the querystring and form collection if certain flags are set. These flags are automatically set if you call HttpRequest.ValidateInput method. Now run the above application again(don't forget to append ?id=<s query string in the url) with the same settings(i.e, requestValidationMode="2.0" setting in web.config and Application_BeginRequest method in global.asax.cs), your application will run just fine. Now just update the Application_BeginRequest method as,   protected void Application_BeginRequest() { Request.ValidateInput(); var q = Request.QueryString; }             Note that I am calling Request.ValidateInput method prior to use Request.QueryString property. ValidateInput method will internally set certain flags(discussed above). These flags will then tells the Request.QueryString (and Request.Form) property that validate the query string(or form) when user call Request.QueryString(or Request.Form) property. So running this application again with ?id=<s query string will throw HttpRequestValidationException exception. Now I hope it is clear to you that what does requestValidationMode do. It just tells the ASP.NET that not invoke the Request.ValidateInput method internally before the BeginRequest phase of an HTTP request if requestValidationMode is set to a value less than 4.0 in web.config. Here is the implementation of HttpRequest.ValidateInputIfRequiredByConfig method which will prove this statement(Don't be confused with HttpRequest and Request. Request is the property of HttpRequest class),    internal void ValidateInputIfRequiredByConfig() { ............................................................... ............................................................... ............................................................... ............................................................... if (httpRuntime.RequestValidationMode >= VersionUtil.Framework40) { this.ValidateInput(); } }              Hopefully the above discussion will clear you how requestValidationMode works in ASP.NET 4. It is also interesting to note that both HttpRequest.QueryString and HttpRequest.Form only throws the exception when you access them first time. Any subsequent access to HttpRequest.QueryString and HttpRequest.Form will not throw any exception. Continuing with the above example, just update Application_BeginRequest method in global.asax.cs file as,   protected void Application_BeginRequest() { try { var q = Request.QueryString; var f = Request.Form; } catch//swallow this exception { } var q1 = Request.QueryString; var f1 = Request.Form; }             Without setting requestValidationMode to 2.0 and without decorating ValidateInput attribute on Index action, your application will work just fine because both HttpRequest.QueryString and HttpRequest.Form will clear their flags after reading HttpRequest.QueryString and HttpRequest.Form for the first time(see the implementation of HttpRequest.QueryString and HttpRequest.Form above).           Now let's see ASP.NET MVC 3 granular request validation internal working. First of all we need to see type of HttpRequest.QueryString and HttpRequest.Form properties. Both HttpRequest.QueryString and HttpRequest.Form properties are of type NameValueCollection which is inherited from the NameObjectCollectionBase class. NameObjectCollectionBase class contains _entriesArray, _entriesTable, NameObjectEntry.Key and NameObjectEntry.Value fields which granular request validation uses internally. In addition granular request validation also uses _queryString, _form and _flags fields, ValidateString method and the Indexer of HttpRequest class. Let's see when and how granular request validation uses these fields.           Create a new ASP.NET MVC 3 application. Then put a breakpoint at Application_BeginRequest method and another breakpoint at HomeController.Index method. Now just run this application. When the break point inside Application_BeginRequest method hits then add the following expression in quick watch window, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                                              Now Press F5 so that the second breakpoint inside HomeController.Index method hits. When the second breakpoint hits then add the following expression in quick watch window again, System.Web.HttpContext.Current.Request.QueryString. You will see the following screen,                            First screen shows that _entriesTable field is of type System.Collections.Hashtable and _entriesArray field is of type System.Collections.ArrayList during the BeginRequest phase of the HTTP request. While the second screen shows that _entriesTable type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingHashtable and _entriesArray type is changed to Microsoft.Web.Infrastructure.DynamicValidationHelper.LazilyValidatingArrayList during executing the Index action method. In addition to these members, ASP.NET MVC 3 also perform some operation on _flags, _form, _queryString and other members of HttpRuntime class internally. This shows that ASP.NET MVC 3 performing some operation on the members of HttpRequest class for making granular request validation possible.           Both LazilyValidatingArrayList and LazilyValidatingHashtable classes are defined in the Microsoft.Web.Infrastructure assembly. You may wonder why their name starts with Lazily. The fact is that now with ASP.NET MVC 3, request validation will be performed lazily. In simple words, Microsoft.Web.Infrastructure assembly is now taking the responsibility for request validation from System.Web assembly. See the below screens. The first screen depicting HttpRequestValidationException exception in ASP.NET MVC 2 application while the second screen showing HttpRequestValidationException exception in ASP.NET MVC 3 application.   In MVC 2:                 In MVC 3:                          The stack trace of the second screenshot shows that Microsoft.Web.Infrastructure assembly (instead of System.Web assembly) is now performing request validation in ASP.NET MVC 3. Now you may ask: where Microsoft.Web.Infrastructure assembly is performing some operation on the members of HttpRequest class. There are at least two places where the Microsoft.Web.Infrastructure assembly performing some operation , Microsoft.Web.Infrastructure.DynamicValidationHelper.GranularValidationReflectionUtil.GetInstance method and Microsoft.Web.Infrastructure.DynamicValidationHelper.ValidationUtility.CollectionReplacer.ReplaceCollection method, Here is the implementation of these methods,   private static GranularValidationReflectionUtil GetInstance() { try { if (DynamicValidationShimReflectionUtil.Instance != null) { return null; } GranularValidationReflectionUtil util = new GranularValidationReflectionUtil(); Type containingType = typeof(NameObjectCollectionBase); string fieldName = "_entriesArray"; bool isStatic = false; Type fieldType = typeof(ArrayList); FieldInfo fieldInfo = CommonReflectionUtil.FindField(containingType, fieldName, isStatic, fieldType); util._del_get_NameObjectCollectionBase_entriesArray = MakeFieldGetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); util._del_set_NameObjectCollectionBase_entriesArray = MakeFieldSetterFunc<NameObjectCollectionBase, ArrayList>(fieldInfo); Type type6 = typeof(NameObjectCollectionBase); string str2 = "_entriesTable"; bool flag2 = false; Type type7 = typeof(Hashtable); FieldInfo info2 = CommonReflectionUtil.FindField(type6, str2, flag2, type7); util._del_get_NameObjectCollectionBase_entriesTable = MakeFieldGetterFunc<NameObjectCollectionBase, Hashtable>(info2); util._del_set_NameObjectCollectionBase_entriesTable = MakeFieldSetterFunc<NameObjectCollectionBase, Hashtable>(info2); Type targetType = CommonAssemblies.System.GetType("System.Collections.Specialized.NameObjectCollectionBase+NameObjectEntry"); Type type8 = targetType; string str3 = "Key"; bool flag3 = false; Type type9 = typeof(string); FieldInfo info3 = CommonReflectionUtil.FindField(type8, str3, flag3, type9); util._del_get_NameObjectEntry_Key = MakeFieldGetterFunc<string>(targetType, info3); Type type10 = targetType; string str4 = "Value"; bool flag4 = false; Type type11 = typeof(object); FieldInfo info4 = CommonReflectionUtil.FindField(type10, str4, flag4, type11); util._del_get_NameObjectEntry_Value = MakeFieldGetterFunc<object>(targetType, info4); util._del_set_NameObjectEntry_Value = MakeFieldSetterFunc(targetType, info4); Type type12 = typeof(HttpRequest); string methodName = "ValidateString"; bool flag5 = false; Type[] argumentTypes = new Type[] { typeof(string), typeof(string), typeof(RequestValidationSource) }; Type returnType = typeof(void); MethodInfo methodInfo = CommonReflectionUtil.FindMethod(type12, methodName, flag5, argumentTypes, returnType); util._del_validateStringCallback = CommonReflectionUtil.MakeFastCreateDelegate<HttpRequest, ValidateStringCallback>(methodInfo); Type type = CommonAssemblies.SystemWeb.GetType("System.Web.HttpValueCollection"); util._del_HttpValueCollection_ctor = CommonReflectionUtil.MakeFastNewObject<Func<NameValueCollection>>(type); Type type14 = typeof(HttpRequest); string str6 = "_form"; bool flag6 = false; Type type15 = type; FieldInfo info6 = CommonReflectionUtil.FindField(type14, str6, flag6, type15); util._del_get_HttpRequest_form = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info6); util._del_set_HttpRequest_form = MakeFieldSetterFunc(typeof(HttpRequest), info6); Type type16 = typeof(HttpRequest); string str7 = "_queryString"; bool flag7 = false; Type type17 = type; FieldInfo info7 = CommonReflectionUtil.FindField(type16, str7, flag7, type17); util._del_get_HttpRequest_queryString = MakeFieldGetterFunc<HttpRequest, NameValueCollection>(info7); util._del_set_HttpRequest_queryString = MakeFieldSetterFunc(typeof(HttpRequest), info7); Type type3 = CommonAssemblies.SystemWeb.GetType("System.Web.Util.SimpleBitVector32"); Type type18 = typeof(HttpRequest); string str8 = "_flags"; bool flag8 = false; Type type19 = type3; FieldInfo flagsFieldInfo = CommonReflectionUtil.FindField(type18, str8, flag8, type19); Type type20 = type3; string str9 = "get_Item"; bool flag9 = false; Type[] typeArray4 = new Type[] { typeof(int) }; Type type21 = typeof(bool); MethodInfo itemGetter = CommonReflectionUtil.FindMethod(type20, str9, flag9, typeArray4, type21); Type type22 = type3; string str10 = "set_Item"; bool flag10 = false; Type[] typeArray6 = new Type[] { typeof(int), typeof(bool) }; Type type23 = typeof(void); MethodInfo itemSetter = CommonReflectionUtil.FindMethod(type22, str10, flag10, typeArray6, type23); MakeRequestValidationFlagsAccessors(flagsFieldInfo, itemGetter, itemSetter, out util._del_BitVector32_get_Item, out util._del_BitVector32_set_Item); return util; } catch { return null; } } private static void ReplaceCollection(HttpContext context, FieldAccessor<NameValueCollection> fieldAccessor, Func<NameValueCollection> propertyAccessor, Action<NameValueCollection> storeInUnvalidatedCollection, RequestValidationSource validationSource, ValidationSourceFlag validationSourceFlag) { NameValueCollection originalBackingCollection; ValidateStringCallback validateString; SimpleValidateStringCallback simpleValidateString; Func<NameValueCollection> getActualCollection; Action<NameValueCollection> makeCollectionLazy; HttpRequest request = context.Request; Func<bool> getValidationFlag = delegate { return _reflectionUtil.GetRequestValidationFlag(request, validationSourceFlag); }; Func<bool> func = delegate { return !getValidationFlag(); }; Action<bool> setValidationFlag = delegate (bool value) { _reflectionUtil.SetRequestValidationFlag(request, validationSourceFlag, value); }; if ((fieldAccessor.Value != null) && func()) { storeInUnvalidatedCollection(fieldAccessor.Value); } else { originalBackingCollection = fieldAccessor.Value; validateString = _reflectionUtil.MakeValidateStringCallback(context.Request); simpleValidateString = delegate (string value, string key) { if (((key == null) || !key.StartsWith("__", StringComparison.Ordinal)) && !string.IsNullOrEmpty(value)) { validateString(value, key, validationSource); } }; getActualCollection = delegate { fieldAccessor.Value = originalBackingCollection; bool flag = getValidationFlag(); setValidationFlag(false); NameValueCollection col = propertyAccessor(); setValidationFlag(flag); storeInUnvalidatedCollection(new NameValueCollection(col)); return col; }; makeCollectionLazy = delegate (NameValueCollection col) { simpleValidateString(col[null], null); LazilyValidatingArrayList array = new LazilyValidatingArrayList(_reflectionUtil.GetNameObjectCollectionEntriesArray(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesArray(col, array); LazilyValidatingHashtable table = new LazilyValidatingHashtable(_reflectionUtil.GetNameObjectCollectionEntriesTable(col), simpleValidateString); _reflectionUtil.SetNameObjectCollectionEntriesTable(col, table); }; Func<bool> hasValidationFired = func; Action disableValidation = delegate { setValidationFlag(false); }; Func<int> fillInActualFormContents = delegate { NameValueCollection values = getActualCollection(); makeCollectionLazy(values); return values.Count; }; DeferredCountArrayList list = new DeferredCountArrayList(hasValidationFired, disableValidation, fillInActualFormContents); NameValueCollection target = _reflectionUtil.NewHttpValueCollection(); _reflectionUtil.SetNameObjectCollectionEntriesArray(target, list); fieldAccessor.Value = target; } }             Hopefully the above code will help you to understand the internal working of granular request validation. It is also important to note that Microsoft.Web.Infrastructure assembly invokes HttpRequest.ValidateInput method internally. For further understanding please see Microsoft.Web.Infrastructure assembly code. Finally you may ask: at which stage ASP NET MVC 3 will invoke these methods. You will find this answer by looking at the following method source,   Unvalidated extension method for HttpRequest class defined in System.Web.Helpers.Validation class. System.Web.Mvc.MvcHandler.ProcessRequestInit method. System.Web.Mvc.ControllerActionInvoker.ValidateRequest method. System.Web.WebPages.WebPageHttpHandler.ProcessRequestInternal method.       Summary:             ASP.NET helps in preventing XSS attack using a feature called request validation. In this article, I showed you how you can use granular request validation in ASP.NET MVC 3. I explain you the internal working of  granular request validation. Hope you will enjoy this article too.   SyntaxHighlighter.all()

    Read the article

  • Metro: Namespaces and Modules

    - by Stephen.Walther
    The goal of this blog entry is to describe how you can use the Windows JavaScript (WinJS) library to create namespaces. In particular, you learn how to use the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. You also learn how to hide private methods by using the module pattern. Why Do We Need Namespaces? Before we do anything else, we should start by answering the question: Why do we need namespaces? What function do they serve? Do they just add needless complexity to our Metro applications? After all, plenty of JavaScript libraries do just fine without introducing support for namespaces. For example, jQuery has no support for namespaces and jQuery is the most popular JavaScript library in the universe. If jQuery can do without namespaces, why do we need to worry about namespaces at all? Namespaces perform two functions in a programming language. First, namespaces prevent naming collisions. In other words, namespaces enable you to create more than one object with the same name without conflict. For example, imagine that two companies – company A and company B – both want to make a JavaScript shopping cart control and both companies want to name the control ShoppingCart. By creating a CompanyA namespace and CompanyB namespace, both companies can create a ShoppingCart control: a CompanyA.ShoppingCart and a CompanyB.ShoppingCart control. The second function of a namespace is organization. Namespaces are used to group related functionality even when the functionality is defined in different physical files. For example, I know that all of the methods in the WinJS library related to working with classes can be found in the WinJS.Class namespace. Namespaces make it easier to understand the functionality available in a library. If you are building a simple JavaScript application then you won’t have much reason to care about namespaces. If you need to use multiple libraries written by different people then namespaces become very important. Using WinJS.Namespace.define() In the WinJS library, the most basic method of creating a namespace is to use the WinJS.Namespace.define() method. This method enables you to declare a namespace (of arbitrary depth). The WinJS.Namespace.define() method has the following parameters: · name – A string representing the name of the new namespace. You can add nested namespace by using dot notation · members – An optional collection of objects to add to the new namespace For example, the following code sample declares two new namespaces named CompanyA and CompanyB.Controls. Both namespaces contain a ShoppingCart object which has a checkout() method: // Create CompanyA namespace with ShoppingCart WinJS.Namespace.define("CompanyA"); CompanyA.ShoppingCart = { checkout: function (){ return "Checking out from A"; } }; // Create CompanyB.Controls namespace with ShoppingCart WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); // Call CompanyA ShoppingCart checkout method console.log(CompanyA.ShoppingCart.checkout()); // Writes "Checking out from A" // Call CompanyB.Controls checkout method console.log(CompanyB.Controls.ShoppingCart.checkout()); // Writes "Checking out from B" In the code above, the CompanyA namespace is created by calling WinJS.Namespace.define(“CompanyA”). Next, the ShoppingCart is added to this namespace. The namespace is defined and an object is added to the namespace in separate lines of code. A different approach is taken in the case of the CompanyB.Controls namespace. The namespace is created and the ShoppingCart object is added to the namespace with the following single line of code: WinJS.Namespace.define( "CompanyB.Controls", { ShoppingCart: { checkout: function(){ return "Checking out from B"; } } } ); Notice that CompanyB.Controls is a nested namespace. The top level namespace CompanyB contains the namespace Controls. You can declare a nested namespace using dot notation and the WinJS library handles the details of creating one namespace within the other. After the namespaces have been defined, you can use either of the two shopping cart controls. You call CompanyA.ShoppingCart.checkout() or you can call CompanyB.Controls.ShoppingCart.checkout(). Using WinJS.Namespace.defineWithParent() The WinJS.Namespace.defineWithParent() method is similar to the WinJS.Namespace.define() method. Both methods enable you to define a new namespace. The difference is that the defineWithParent() method enables you to add a new namespace to an existing namespace. The WinJS.Namespace.defineWithParent() method has the following parameters: · parentNamespace – An object which represents a parent namespace · name – A string representing the new namespace to add to the parent namespace · members – An optional collection of objects to add to the new namespace The following code sample demonstrates how you can create a root namespace named CompanyA and add a Controls child namespace to the CompanyA parent namespace: WinJS.Namespace.define("CompanyA"); WinJS.Namespace.defineWithParent(CompanyA, "Controls", { ShoppingCart: { checkout: function () { return "Checking out"; } } } ); console.log(CompanyA.Controls.ShoppingCart.checkout()); // Writes "Checking out" One significant advantage of using the defineWithParent() method over the define() method is the defineWithParent() method is strongly-typed. In other words, you use an object to represent the base namespace instead of a string. If you misspell the name of the object (CompnyA) then you get a runtime error. Using the Module Pattern When you are building a JavaScript library, you want to be able to create both public and private methods. Some methods, the public methods, are intended to be used by consumers of your JavaScript library. The public methods act as your library’s public API. Other methods, the private methods, are not intended for public consumption. Instead, these methods are internal methods required to get the library to function. You don’t want people calling these internal methods because you might need to change them in the future. JavaScript does not support access modifiers. You can’t mark an object or method as public or private. Anyone gets to call any method and anyone gets to interact with any object. The only mechanism for encapsulating (hiding) methods and objects in JavaScript is to take advantage of functions. In JavaScript, a function determines variable scope. A JavaScript variable either has global scope – it is available everywhere – or it has function scope – it is available only within a function. If you want to hide an object or method then you need to place it within a function. For example, the following code contains a function named doSomething() which contains a nested function named doSomethingElse(): function doSomething() { console.log("doSomething"); function doSomethingElse() { console.log("doSomethingElse"); } } doSomething(); // Writes "doSomething" doSomethingElse(); // Throws ReferenceError You can call doSomethingElse() only within the doSomething() function. The doSomethingElse() function is encapsulated in the doSomething() function. The WinJS library takes advantage of function encapsulation to hide all of its internal methods. All of the WinJS methods are defined within self-executing anonymous functions. Everything is hidden by default. Public methods are exposed by explicitly adding the public methods to namespaces defined in the global scope. Imagine, for example, that I want a small library of utility methods. I want to create a method for calculating sales tax and a method for calculating the expected ship date of a product. The following library encapsulates the implementation of my library in a self-executing anonymous function: (function (global) { // Public method which calculates tax function calculateTax(price) { return calculateFederalTax(price) + calculateStateTax(price); } // Private method for calculating state tax function calculateStateTax(price) { return price * 0.08; } // Private method for calculating federal tax function calculateFederalTax(price) { return price * 0.02; } // Public method which returns the expected ship date function calculateShipDate(currentDate) { currentDate.setDate(currentDate.getDate() + 4); return currentDate; } // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); })(this); // Show expected ship date var shipDate = CompanyA.Utilities.calculateShipDate(new Date()); console.log(shipDate); // Show price + tax var price = 12.33; var tax = CompanyA.Utilities.calculateTax(price); console.log(price + tax); In the code above, the self-executing anonymous function contains four functions: calculateTax(), calculateStateTax(), calculateFederalTax(), and calculateShipDate(). The following statement is used to expose only the calcuateTax() and the calculateShipDate() functions: // Export public methods WinJS.Namespace.define("CompanyA.Utilities", { calculateTax: calculateTax, calculateShipDate: calculateShipDate } ); Because the calculateTax() and calcuateShipDate() functions are added to the CompanyA.Utilities namespace, you can call these two methods outside of the self-executing function. These are the public methods of your library which form the public API. The calculateStateTax() and calculateFederalTax() methods, on the other hand, are forever hidden within the black hole of the self-executing function. These methods are encapsulated and can never be called outside of scope of the self-executing function. These are the internal methods of your library. Summary The goal of this blog entry was to describe why and how you use namespaces with the WinJS library. You learned how to define namespaces using both the WinJS.Namespace.define() and WinJS.Namespace.defineWithParent() methods. We also discussed how to hide private members and expose public members using the module pattern.

    Read the article

  • How do you replace a method of a Moose object at runtime?

    - by xxxxxxx
    Is it possible to replace a method of a Moose object at runtime ? By looking at the source code of Class::MOP::Method (which Moose::Meta::Method inherits from) I concluded that by doing $method->{body} = sub{ my stuff } I would be able to replace at runtime a method of an object. I can get the method using $object->meta->find_method_by_name(<method_name>); However, this didn't quite work out. Is it conceivable to modify methods at run time? And, what is the way to do it with Moose?

    Read the article

  • Issues with mx:method, mx.rpc.remoting.mxml.RemoteObject, and sub-classing mx.rpc.remoting.mxml.Remo

    - by Ryan Wilson
    I am looking to subclass RemoteObject. Instead of: <mx:RemoteObject ... > <mx:method ... /> <mx:method ... /> </mx:RemoteObject> I want to do something like: <remoting:CustomRemoteObject ...> <mx:method ... /> <mx:method ... /> </remoting:CustomRemoteObject> where CustomRemoteObject extends mx.rpc.remoting.mxml.RemoteObject like so: package remoting { import mx.rpc.remoting.mxml.RemoteObject; public class CustomRemoteObject extends RemoteObject { public function CustomRemoteObject(destination:String=null) { super(destination); } } } However, when doing so and declaring a CustomRemoteObject in MXML as above, the flex compiler shows the error: Could not resolve <mx:method> to a component implementation At first I thought it had something to do with CustomRemoteObject failing to do something, despite that (or since) it had no change except as to the name. So, I copied the source from mx.rpc.remoting.mxml.RemoteObject into CustomRemoteObject and modified it so the only difference was a refactoring of the class and package name. But still, the same error. Unlike many MXML components, I cannot cmd+click <mx:method> in FlashBuilder to open the source. Likewise, I have not found a reference in mx.rpc.remoting.mxml.RemoteObject, mx.rpc.remoting.RemoteObject, or mx.rpc.remoting.AbstractService, and have been unsuccessful in find its source online. Which leads me to the questions in the title: What exactly is <mx:method>? (yes, I know it's a declaration of a RemoteObject method, and I know how to use it, but it's peculiar in regard to other components) Why did my attempt at subclassing RemoteObject fail, despite it effectually being a rename? Perhaps the root, why can mx.rpc.remoting.mxml.RemoteObject as an MXML declaration accept <mx:method> child tags, yet the source of said class cannot when refactored in name only?

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >