Search Results

Search found 9420 results on 377 pages for 'special characters'.

Page 134/377 | < Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >

  • ODI and OBIEE 11g Integration

    - by David Allan
    Here we will see some of the connectivity options to OBIEE 11g using the JDBC driver. You’ll see based upon some connection properties how the physical or presentation layers can be utilized. In the integrators guide for OBIEE 11g you will find a brief statement indicating that there actually is a JDBC driver for OBIEE. In OBIEE 11g its now possible to connect directly to the physical layer, Venkat has an informative post here on this topic. In ODI 11g the Oracle BI technology is shipped with the product along with KMs for reverse engineering, and using OBIEE models for a data source. When you install OBIEE in 11g a light weight demonstration application is preinstalled in the server, when you open this in the BI Administration tool we see the regular 3 panel view within the administration tool. To interrogate this system via JDBC (just like ODI does using the KMs) need a couple of things; the JDBC driver from OBIEE 11g, a java client program and the credentials. In my java client program I want to connect to the OBIEE system, when I connect I can interrogate what the JDBC driver presents for the metadata. The metadata projected via the JDBC connection’s DatabaseMetadata changes depending on whether the property NQ_SESSION.SELECTPHYSICAL is set when the java client connects. Let’s use the sample app to illustrate. I have a java client program here that will print out the tables in the DatabaseMetadata, it will also output the catalog and schema. For example if I execute without any special JDBC properties as follows; java -classpath .;%BIHOMEDIR%\clients\bijdbc.jar meta_jdbc oracle.bi.jdbc.AnaJdbcDriver jdbc:oraclebi://localhost:9703/ weblogic mypass Then I get the following returned representing the presentation layer, the sample I used is XML, and has no schema; Catalog Schema Table Sample Sales Lite null Base Facts Sample Sales Lite null Calculated Facts …     Sample Targets Lite null Base Facts …     Now if I execute with the only difference being the JDBC property NQ_SESSION.SELECTPHYSICAL with the value Yes, then I see a different set of values representing the physical layer in OBIEE; java -classpath .;%BIHOMEDIR%\clients\bijdbc.jar meta_jdbc oracle.bi.jdbc.AnaJdbcDriver jdbc:oraclebi://localhost:9703/ weblogic mypass NQ_SESSION.SELECTPHYSICAL=Yes The following is returned; Catalog Schema Table Sample App Lite Data null D01 Time Day Grain Sample App Lite Data null F10 Revenue Facts (Order grain) …     System DB (Update me)     …     If this was a database system such as Oracle, the catalog value would be the OBIEE database name and the schema would be the Oracle database schema. Other systems which have real catalog structure such as SQLServer would use its catalog value. Its this ‘Catalog’ and ‘Schema’ value that is important when integration OBIEE with ODI. For the demonstration application in OBIEE 11g, the following illustration shows how the information from OBIEE is related via the JDBC driver through to ODI. In the XML example above, within ODI’s physical schema definition on the right, we leave the schema blank since the XML data source has no schema. When I did this at first, I left the default value that ODI places in the Schema field since which was ‘<Undefined>’ (like image below) but this string is actually used in the RKM so ended up not finding any tables in this schema! Entering an empty string resolved this. Below we see a regular Oracle database example that has the database, schema, physical table structure, and how this is defined in ODI.   Remember back to the physical versus presentation layer usage when we passed the special property, well to do this in ODI, the data server has a panel for properties where you can define key/value pairs. So if you want to select physical objects from the OBIEE server, then you must set this property. An additional changed in ODI 11g is the OBIEE connection pool support, this has been implemented via a ‘Connection Pool’ flex field for the Oracle BI data server. So here you set the connection pool name from the OBIEE system that you specifically want to use and this is used by the Oracle BI to Oracle (DBLINK) LKM, so if you are using this you must set this flex field. Hopefully a useful insight into some of the mechanics of how this hangs together.

    Read the article

  • Umbraco Code Garden 2010 - Ticket Auction for Charity

    - by Vizioz Limited
    Hi All,When Code Garden 2010 was first announced I bought two early bird tickets for the conference as at the time I had hoped to offer the ticket to one of my developers, but unfortunately both of them are unable to make the conference so I am left with a spare ticket.Some people would try to sell the ticket to get the money back, but I thought I'd prefer to put the ticket up for auction and donate all the money to a charity called Able Kidz who help children with disabilities by providing them special computers and software.If you would like to bid for the ticket please look at the auction here:Umbraco Codegarden 2010 TicketHappy bidding and hopefully see the winner at Codegarden!

    Read the article

  • Van Gogh’s Starry Night Rendered in Hubble Telescope Images

    - by Jason Fitzpatrick
    The process of making a large image out of mosaic of smaller image “pixels” is certainly nothing new; this rendition of Starry Night using images from the Hubble telescope, however, is a particularly fitting use of the technique. Crafted by Alex H. Parker, a researcher at the Harvard-Smithsonian Center for Astrophysics, on evenings when cloud cover prevented him from conducting his research, the image is a carefully constructed mosaic of NASA supplied photos from the Hubble telescope program. Hit up the link below to check out the full size image. Starry Night Arranged by Alex H. Parker 8 Deadly Commands You Should Never Run on Linux 14 Special Google Searches That Show Instant Answers How To Create a Customized Windows 7 Installation Disc With Integrated Updates

    Read the article

  • This Week in Geek History: NORAD Tracks Santa, First HTTP Test, Babbage’s Birthday

    - by Jason Fitzpatrick
    History trivia shouldn’t be limited to just treaty dates and wars ending, we’re marking off major milestones in geek history—one week at at time. This week in history we’ve got Santa on the Cold War radar, baby HTTP going for a spin, and Babbage’s birth to help usher in the age of computers. Latest Features How-To Geek ETC How to Use the Avira Rescue CD to Clean Your Infected PC The Complete List of iPad Tips, Tricks, and Tutorials Is Your Desktop Printer More Expensive Than Printing Services? 20 OS X Keyboard Shortcuts You Might Not Know HTG Explains: Which Linux File System Should You Choose? HTG Explains: Why Does Photo Paper Improve Print Quality? An Alternate Star Wars Christmas Special [Video] Sunset in a Tropical Paradise Wallpaper Natural Wood Grain Icons for Your Desktop and App Launcher Docks My Blackberry Is Not Working! The Apple Too?! [Funny Video] Hidden Tracks Your Stolen Mac; Free Until End of January Why the Other Checkout Line Always Moves Faster

    Read the article

  • Play a Complete HTML5 Version of Super Mario Bros. Online for Free

    - by Akemi Iwaya
    If you love playing Super Mario Brothers, but hate the hassle of dealing with or setting up the game console, then you will be pleased to know a new and complete version is now available to play online. Josh Goldberg has worked hard to recreate the classic game in its entirety in HTML5, so sit back, relax, and get ready to enjoy all that Mario goodness via your favorite browser. There are three ‘modes’ of game play available: play through reproductions of the original classic levels, test yourself against randomly generated levels, or use the level editor to create custom levels. Special Note: There are two online versions available…one for playing in Google Chrome and one for playing in all other browsers. For our example we chose to use the non-Chrome version. Play Full Screen Mario [For All Other Browsers] Play Full Screen Mario [Google Chrome Version] [via CNET News]     

    Read the article

  • How can a code editor effectively hint at code nesting level - without using indentation?

    - by pgfearo
    I'm writing an XML text editor that provides 2 view options for the same XML text, one indented (virtually), the other left-justified. The motivation for the left-justified view is to help users 'see' the whitespace characters they're using for indentation of plain-text or XPath code without interference from indentation that is an automated side-effect of the XML context. I want to provide visual clues (in the non-editable part of the editor) for the left-justified mode that will help the user, but without getting too elaborate. I tried just using connecting lines, but that seemed too busy. The best I've come up with so far is shown in a mocked up screenshot of the editor below, but I'm seeking better/simpler alternatives (that don't require too much code). [Edit] Taking the heatmap idea (from: @jimp) I get something like this: or even these alternates:

    Read the article

  • 3D Huge mesh rendering

    - by Keyhan Asghari
    I am writing a program, that as input, I have a huge 3d mesh (with mostly structured and cubic shaped elements), and I want to realtime render it, but not as real-time as a game. But speed of rendering is somehow important. The most important point is, I don't need any special lighting nor any shadows. Also, the objects to render are static, and they do not move. I've read about ray tracing methods, but I don't know if there is any good libraries for this purpose, or I have to implement everything by myself. Thanks a lot.

    Read the article

  • If you had to reinvent a new syntax for regular expressions, what would it look like?

    - by Timwi
    Regular expressions as they are today are pretty much as concise and compact as they can be. Consequently, they are often criticised for being unreadable and hard to debug. If you had to reinvent a new syntax for regular expressions, what would it look like? Do you prefer the concise syntax they already have (or a different but similarly concise syntax)? If so, please justify why you think regular expressions deserve to be this concise, but your favourite programming language doesn’t (unless it’s Perl). Or do you think regular expressions should have a slightly more spaced-out syntax and look a bit more like operators and syntax elements normally do in programming languages? If so, provide examples of what you think the syntax should look like, and justify why it is better than the current syntax. Or do you think there shouldn’t even be a special syntax for regular expressions, and instead they should be constructed from syntax elements already present in the programming language? If so, give examples of a syntax that might be used to construct such regular expressions.

    Read the article

  • Skype Video Calling Comes To iPhone And iPod Touch

    - by Gopinath
    Skype 3.0 app for iPhone/iPod Touch lets you make video calls right from your iOS device to another iOS device or computer running Skype application. Skype blog post says This season is very special as we are releasing a new version of Skype for iPhone and iPod Touch with video calling. Skype video calling is supported over WiFi and 3G* data connections. You can enjoy video calls with users on all Skype desktop versions and with other Skype for iPhone, iPod Touch, and iPad users. You can make video calls in both portrait and landscape mode and use both front and back cameras. Users on iPhone 4, 3GS and iPod Touch (4th Generation) can enjoy full 2-way video calling. Users with iPod Touch (3rd Generation) and iPads can receive video. Download the app straight from AppStore This article titled,Skype Video Calling Comes To iPhone And iPod Touch, was originally published at Tech Dreams. Grab our rss feed or fan us on Facebook to get updates from us.

    Read the article

  • YouTube Developers Live: Tech Talk on YouTube APIs

    YouTube Developers Live: Tech Talk on YouTube APIs A special broadcast of Raul Furnică's tech talk at GDG Silicon Valley. Raul, the YouTube API Tech Lead, will discuss the technical platform the new YouTube API is built on, the impact of the new APIs on existing developers and applications, and the new features never seen before in previous versions of the API. Deck for video can be found here: goo.gl Please note, there will not be open Q/A this week. From: GoogleDevelopers Views: 0 0 ratings Time: 01:00:00 More in Science & Technology

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • SQL SERVER Enumerations in Relational Database Best Practice

    This article has been submitted by Marko Parkkola, Data systems designer at Saarionen Oy, Finland. Marko is excellent developer and always thinking at next level. You can read his earlier comment which created very interesting discussion here: SQL SERVER- IF EXISTS(Select null from table) vs IF EXISTS(Select 1 from table). I must express my special [...]...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Explore Six of the Ocean’s Incredible Coral Reefs with Google Maps

    - by Asian Angel
    Are you ready to view some gorgeous underwater photography and explore our ocean’s coral reefs from the comfort of your desktop? Then you will definitely enjoy this wonderful collection of underwater ‘street view level’ coral reef images from Google Maps. Once you get started you can easily lose yourself in the tranquillity and beauty of these oceanic kingdoms. Here is a quick peek at the collection that is available for your viewing pleasure… 8 Deadly Commands You Should Never Run on Linux 14 Special Google Searches That Show Instant Answers How To Create a Customized Windows 7 Installation Disc With Integrated Updates

    Read the article

  • String Format for DateTime in C#

    - by SAMIR BHOGAYTA
    String Format for DateTime [C#] This example shows how to format DateTime using String.Format method. All formatting can be done also using DateTime.ToString method. Custom DateTime Formatting There are following custom format specifiers y (year), M (month), d (day), h (hour 12), H (hour 24), m (minute), s (second), f (second fraction), F (second fraction, trailing zeroes are trimmed), t (P.M or A.M) and z (time zone). Following examples demonstrate how are the format specifiers rewritten to the output. [C#] // create date time 2008-03-09 16:05:07.123 DateTime dt = new DateTime(2008, 3, 9, 16, 5, 7, 123); String.Format("{0:y yy yyy yyyy}", dt); // "8 08 008 2008" year String.Format("{0:M MM MMM MMMM}", dt); // "3 03 Mar March" month String.Format("{0:d dd ddd dddd}", dt); // "9 09 Sun Sunday" day String.Format("{0:h hh H HH}", dt); // "4 04 16 16" hour 12/24 String.Format("{0:m mm}", dt); // "5 05" minute String.Format("{0:s ss}", dt); // "7 07" second String.Format("{0:f ff fff ffff}", dt); // "1 12 123 1230" sec.fraction String.Format("{0:F FF FFF FFFF}", dt); // "1 12 123 123" without zeroes String.Format("{0:t tt}", dt); // "P PM" A.M. or P.M. String.Format("{0:z zz zzz}", dt); // "-6 -06 -06:00" time zone You can use also date separator / (slash) and time sepatator : (colon). These characters will be rewritten to characters defined in the current DateTimeForma­tInfo.DateSepa­rator and DateTimeForma­tInfo.TimeSepa­rator. [C#] // date separator in german culture is "." (so "/" changes to ".") String.Format("{0:d/M/yyyy HH:mm:ss}", dt); // "9/3/2008 16:05:07" - english (en-US) String.Format("{0:d/M/yyyy HH:mm:ss}", dt); // "9.3.2008 16:05:07" - german (de-DE) Here are some examples of custom date and time formatting: [C#] // month/day numbers without/with leading zeroes String.Format("{0:M/d/yyyy}", dt); // "3/9/2008" String.Format("{0:MM/dd/yyyy}", dt); // "03/09/2008" // day/month names String.Format("{0:ddd, MMM d, yyyy}", dt); // "Sun, Mar 9, 2008" String.Format("{0:dddd, MMMM d, yyyy}", dt); // "Sunday, March 9, 2008" // two/four digit year String.Format("{0:MM/dd/yy}", dt); // "03/09/08" String.Format("{0:MM/dd/yyyy}", dt); // "03/09/2008" Standard DateTime Formatting In DateTimeForma­tInfo there are defined standard patterns for the current culture. For example property ShortTimePattern is string that contains value h:mm tt for en-US culture and value HH:mm for de-DE culture. Following table shows patterns defined in DateTimeForma­tInfo and their values for en-US culture. First column contains format specifiers for the String.Format method. Specifier DateTimeFormatInfo property Pattern value (for en-US culture) t ShortTimePattern h:mm tt d ShortDatePattern M/d/yyyy T LongTimePattern h:mm:ss tt D LongDatePattern dddd, MMMM dd, yyyy f (combination of D and t) dddd, MMMM dd, yyyy h:mm tt F FullDateTimePattern dddd, MMMM dd, yyyy h:mm:ss tt g (combination of d and t) M/d/yyyy h:mm tt G (combination of d and T) M/d/yyyy h:mm:ss tt m, M MonthDayPattern MMMM dd y, Y YearMonthPattern MMMM, yyyy r, R RFC1123Pattern ddd, dd MMM yyyy HH':'mm':'ss 'GMT' (*) s SortableDateTi­mePattern yyyy'-'MM'-'dd'T'HH':'mm':'ss (*) u UniversalSorta­bleDateTimePat­tern yyyy'-'MM'-'dd HH':'mm':'ss'Z' (*) (*) = culture independent Following examples show usage of standard format specifiers in String.Format method and the resulting output. [C#] String.Format("{0:t}", dt); // "4:05 PM" ShortTime String.Format("{0:d}", dt); // "3/9/2008" ShortDate String.Format("{0:T}", dt); // "4:05:07 PM" LongTime String.Format("{0:D}", dt); // "Sunday, March 09, 2008" LongDate String.Format("{0:f}", dt); // "Sunday, March 09, 2008 4:05 PM" LongDate+ShortTime String.Format("{0:F}", dt); // "Sunday, March 09, 2008 4:05:07 PM" FullDateTime String.Format("{0:g}", dt); // "3/9/2008 4:05 PM" ShortDate+ShortTime String.Format("{0:G}", dt); // "3/9/2008 4:05:07 PM" ShortDate+LongTime String.Format("{0:m}", dt); // "March 09" MonthDay String.Format("{0:y}", dt); // "March, 2008" YearMonth String.Format("{0:r}", dt); // "Sun, 09 Mar 2008 16:05:07 GMT" RFC1123 String.Format("{0:s}", dt); // "2008-03-09T16:05:07" SortableDateTime String.Format("{0:u}", dt); // "2008-03-09 16:05:07Z" UniversalSortableDateTime

    Read the article

  • How to configure a zone cluster on Solaris Cluster 4.0

    - by JuergenS
    This is a short overview on how to configure a zone cluster on Solaris Cluster 4.0. This is a little bit different as in Solaris Cluster 3.2/3.3 because Solaris Cluster 4.0 is only running on Solaris 11. The name of the zone cluster must be unique throughout the global Solaris Cluster and must be configured on a global Solaris Cluster. Please read all the requirements for zone cluster in Solaris Cluster Software Installation Guide for SC4.0. For Solaris Cluster 3.2/3.3 please refer to my previous blog Configuration steps to create a zone cluster in Solaris Cluster 3.2/3.3. A. Configure the zone cluster into the already running global clusterCheck if zone cluster can be created # cluster show-netprops to change number of zone clusters use # cluster set-netprops -p num_zoneclusters=12 Note: 12 zone clusters is the default, values can be customized! Create config file (zc1config) for zone cluster setup e.g: Configure zone cluster # clzc configure -f zc1config zc1 Note: If not using the config file the configuration can also be done manually # clzc configure zc1 Check zone configuration # clzc export zc1 Verify zone cluster # clzc verify zc1 Note: The following message is a notice and comes up on several clzc commands Waiting for zone verify commands to complete on all the nodes of the zone cluster "zc1"... Install the zone cluster # clzc install zc1 Note: Monitor the consoles of the global zone to see how the install proceed! (The output is different on the nodes) It's very important that all global cluster nodes have installed the same set of ha-cluster packages! Boot the zone cluster # clzc boot zc1 Login into non-global-zones of zone cluster zc1 on all nodes and finish Solaris installation. # zlogin -C zc1 Check status of zone cluster # clzc status zc1 Login into non-global-zones of zone cluster zc1 and configure the shell environment for root (for PATH: /usr/cluster/bin, for MANPATH: /usr/cluster/man) # zlogin -C zc1 If using additional name service configure /etc/nsswitch.conf of zone cluster non-global zones. hosts: cluster files netmasks: cluster files Configure /etc/inet/hosts of the zone cluster zones Enter all the logical hosts of non-global zones B. Add resource groups and resources to zone cluster Create a resource group in zone cluster # clrg create -n <zone-hostname-node1>,<zone-hostname-node2> app-rg Note1: Use command # cluster status for zone cluster resource group overview. Note2: You can also run all commands for zone cluster in global cluster by adding the option -Z to the command. e.g: # clrg create -Z zc1 -n <zone-hostname-node1>,<zone-hostname-node2> app-rg Set up the logical host resource for zone cluster In the global zone do: # clzc configure zc1 clzc:zc1 add net clzc:zc1:net set address=<zone-logicalhost-ip> clzc:zc1:net end clzc:zc1 commit clzc:zc1 exit Note: Check that logical host is in /etc/hosts file In zone cluster do: # clrslh create -g app-rg -h <zone-logicalhost> <zone-logicalhost>-rs Set up storage resource for zone cluster Register HAStoragePlus # clrt register SUNW.HAStoragePlus Example1) ZFS storage pool In the global zone do: Configure zpool eg: # zpool create <zdata> mirror cXtXdX cXtXdX and # clzc configure zc1 clzc:zc1 add dataset clzc:zc1:dataset set name=zdata clzc:zc1:dataset end clzc:zc1 verify clzc:zc1 commit clzc:zc1 exit Check setup with # clzc show -v zc1 In the zone cluster do: # clrs create -g app-rg -t SUNW.HAStoragePlus -p zpools=zdata app-hasp-rs Example2) HA filesystem In the global zone do: Configure SVM diskset and SVM devices. and # clzc configure zc1 clzc:zc1 add fs clzc:zc1:fs set dir=/data clzc:zc1:fs set special=/dev/md/datads/dsk/d0 clzc:zc1:fs set raw=/dev/md/datads/rdsk/d0 clzc:zc1:fs set type=ufs clzc:zc1:fs add options [logging] clzc:zc1:fs end clzc:zc1 verify clzc:zc1 commit clzc:zc1 exit Check setup with # clzc show -v zc1 In the zone cluster do: # clrs create -g app-rg -t SUNW.HAStoragePlus -p FilesystemMountPoints=/data app-hasp-rs Example3) Global filesystem as loopback file system In the global zone configure global filesystem and it to /etc/vfstab on all global nodes e.g.: /dev/md/datads/dsk/d0 /dev/md/datads/dsk/d0 /global/fs ufs 2 yes global,logging and # clzc configure zc1 clzc:zc1 add fs clzc:zc1:fs set dir=/zone/fs (zc-lofs-mountpoint) clzc:zc1:fs set special=/global/fs (globalcluster-mountpoint) clzc:zc1:fs set type=lofs clzc:zc1:fs end clzc:zc1 verify clzc:zc1 commit clzc:zc1 exit Check setup with # clzc show -v zc1 In the zone cluster do: (Create scalable rg if not already done) # clrg create -p desired_primaries=2 -p maximum_primaries=2 app-scal-rg # clrs create -g app-scal-rg -t SUNW.HAStoragePlus -p FilesystemMountPoints=/zone/fs hasp-rs More details of adding storage available in the Installation Guide for zone cluster Switch resource group and resources online in the zone cluster # clrg online -eM app-rg # clrg online -eM app-scal-rg Test: Switch of the resource group in the zone cluster # clrg switch -n zonehost2 app-rg # clrg switch -n zonehost2 app-scal-rg Add supported dataservice to zone cluster Documentation for SC4.0 is available here Example output: Appendix: To delete a zone cluster do: # clrg delete -Z zc1 -F + Note: Zone cluster uninstall can only be done if all resource groups are removed in the zone cluster. The command 'clrg delete -F +' can be used in zone cluster to delete the resource groups recursively. # clzc halt zc1 # clzc uninstall zc1 Note: If clzc command is not successful to uninstall the zone, then run 'zoneadm -z zc1 uninstall -F' on the nodes where zc1 is configured # clzc delete zc1

    Read the article

  • How to build Open JavaFX for Android.

    - by PictureCo
    Here's a short recipe for baking JavaFX for Android dalvik. We will need just a few ingredients but each one requires special care. So let's get down to the business.  SourcesThe first ingredient is an open JavaFX repository. This should be piece of cake. As always there's a catch. You probably know that dalvik is jdk6 compatible  and also that certain APIs are missing comparing to good old java vm from Oracle.  Fortunately there is a repository which is a backport of regular OpenJFX to jdk7 and going from jdk7 to jdk6 is possible. The first thing to do is to clone or download the repository from https://bitbucket.org/narya/jfx78. Main page of the project says "It works in some cases" so we will presume that it will work in most cases As I've said dalvik vm misses some APIs which would lead to a build failures. To get them use another compatibility repository which is available on GitHub https://github.com/robovm/robovm-jfx78-compat. Download the zip and unzip sources into jfx78/modules/base.We need also a javafx binary stubs. Use jfxrt.jar from jdk8.The last thing to download are freetype sources from http://freetype.org. These will be necessary for native font rendering. Toolchain setup I have to point out that these instructions were tested only on linux. I suppose they will work with minimal changes also on Mac OS. I also presume that you were able to build open JavaFX. That means all tools like ant, gradle, gcc and jdk8 have been installed and are working all right. In addition to this you will need to download and install jdk7, Android SDK and Android NDK for native code compilation.  Installing all of them will take some time. Don't forget to put them in your path. export ANDROID_SDK=/opt/android-sdk-linux export ANDROID_NDK=/opt/android-ndk-r9b export JAVA_HOME=/opt/jdk1.7.0 export PATH=$JAVA_HOME/bin:$ANDROID_SDK/tools:$ANDROID_SDK/platform-tools:$ANDROID_NDK FreetypeUnzip freetype release sources first. We will have to cross compile them for arm. Firstly we will create a standalone toolchain for cross compiling installed in ~/work/ndk-standalone-19. $ANDROID_NDK/build/tools/make-standalone-toolchain.sh  --platform=android-19 --install-dir=~/work/ndk-standalone-19 After the standalone toolchain has been created cross compile freetype with following script: export TOOLCHAIN=~/work/freetype/ndk-standalone-19 export PATH=$TOOLCHAIN/bin:$PATH export FREETYPE=`pwd` ./configure --host=arm-linux-androideabi --prefix=$FREETYPE/install --without-png --without-zlib --enable-shared sed -i 's/\-version\-info \$(version_info)/-avoid-version/' builds/unix/unix-cc.mk make make install It will compile and install freetype library into $FREETYPE/install. We will link to this install dir later on. It would be possible also to link openjfx font support dynamically against skia library available on Android which already contains freetype. It creates smaller result but can have compatibility problems. Patching Download patches javafx-android-compat.patch + android-tools.patch and patch jfx78 repository. I recommend to have look at patches. First one android-compat.patch updates openjfx build script, removes dependency on SharedSecret classes and updates LensLogger to remove dependency on jdk specific PlatformLogger. Second one android-tools.patch creates helper script in android-tools. The script helps to setup javaFX Android projects. Building Now is time to try the build. Run following script: JAVA_HOME=/opt/jdk1.7.0 JDK_HOME=/opt/jdk1.7.0 ANDROID_SDK=/opt/android-sdk-linux ANDROID_NDK=/opt/android-ndk-r9b PATH=$JAVA_HOME/bin:$ANDROID_SDK/tools:$ANDROID_SDK/platform-tools:$ANDROID_NDK:$PATH gradle -PDEBUG -PDALVIK_VM=true -PBINARY_STUB=~/work/binary_stub/linux/rt/lib/ext/jfxrt.jar \ -PFREETYPE_DIR=~/work/freetype/install -PCOMPILE_TARGETS=android If everything went all right the output is in build/android-sdk Create first JavaFX Android project Use gradle script int android-tools. The script sets the project structure for you.   Following command creates Android HelloWorld project which links to a freshly built javafx runtime and to a HelloWorld application. NAME is a name of Android project. DIR where to create our first project. PACKAGE is package name required by Android. It has nothing to do with a packaging of javafx application. JFX_SDK points to our recently built runtime. JFX_APP points to dist directory of javafx application. (where all application jars sit) JFX_MAIN is fully qualified name of a main class. gradle -PDEBUG -PDIR=/home/user/work -PNAME=HelloWorld -PPACKAGE=com.helloworld \ -PJFX_SDK=/home/user/work/jfx78/build/android-sdk -PJFX_APP=/home/user/NetBeansProjects/HelloWorld/dist \ -PJFX_MAIN=com.helloworld.HelloWorld createProject Now cd to the created project and use it like any other android project. ant clean, debug, uninstall, installd will work. I haven't tried it from any IDE Eclipse nor Netbeans. Special thanks to Stefan Fuchs and Daniel Zwolenski for the repositories used in this blog post.

    Read the article

  • Formal Languages, Inductive Proofs &amp; Regular Expressions

    - by MarkPearl
    So I am slogging away at my UNISA stuff. I have just finished doing the initial once non stop read through the first 11 chapters of my COS 201 Textbook - “Introduction to Computer Theory 2nd Edition” by Daniel Cohen. It has been an interesting couple of days, with familiar concepts coming up as well as some new territory. In this posting I am going to cover the first couple of chapters of the book. Let start with Formal Languages… What exactly is a formal language? Pretty much a no duh question for me but still a good one to ask – a formal language is a language that is defined in a precise mathematical way. Does that mean that the English language is a formal language? I would say no – and my main motivation for this is that one can have an English sentence that is correct grammatically that is also ambiguous. For example the ambiguous sentence: "I once shot an elephant in my pyjamas.” For this and possibly many other reasons that I am unaware of, English is termed a “Natural Language”. So why the importance of formal languages in computer science? Again a no duh question in my mind… If we want computers to be effective and useful tools then we need them to be able to evaluate a series of commands in some form of language that when interpreted by the device no confusion will exist as to what we were requesting. Imagine the mayhem that would exist if a computer misinterpreted a command to print a document and instead decided to delete it. So what is a Formal Language made up of… For my study purposes a language is made up of a finite alphabet. For a formal language to exist there needs to be a specification on the language that will describe whether a string of characters has membership in the language or not. There are two basic ways to do this: By a “machine” that will recognize strings of the language (e.g. Finite Automata). By a rule that describes how strings of a language can be formed (e.g. Regular Expressions). When we use the phrase “string of characters”, we can also be referring to a “word”. What is an Inductive Proof? So I am not to far into my textbook and of course it starts referring to proofs and different types. I have had to go through several different approaches of proofs in the past, but I can never remember their formal names , so when I saw “inductive proof” I thought to myself – what the heck is that? Google to the rescue… An inductive proof is like a normal proof but it employs a neat trick which allows you to prove a statement about an arbitrary number n by first proving it is true when n is 1 and then assuming it is true for n=k and showing it is true for n=k+1. The idea is that if you want to show that someone can climb to the nth floor of a fire escape, you need only show that you can climb the ladder up to the fire escape (n=1) and then show that you know how to climb the stairs from any level of the fire escape (n=k) to the next level (n=k+1). Does this sound like a form of recursion? No surprise then that in the same chapter they deal with recursive definitions. An example of a recursive definition for the language EVEN would the 3 rules below: 2 is in EVEN If x is in EVEN then so is x+2 The only elements in the set EVEN are those that be produced by the rules above. Nothing to exciting… So if a definition for a language is done recursively, then it makes sense that the language can be proved using induction. Regular Expressions So I am wondering to myself what use is this all – in fact – I find this the biggest challenge to any university material is that it is quite hard to find the immediate practical applications of some theory in real life stuff. How great was my joy when I suddenly saw the word regular expression being introduced. I had been introduced to regular expressions on Stack Overflow where I was trying to recognize if some text measurement put in by a user was in a valid form or not. For instance, the imperial system of measurement where you have feet and inches can be represented in so many different ways. I had eventually turned to regular expressions as an easy way to check if my parser could correctly parse the text or not and convert it to a normalize measurement. So some rules about languages and regular expressions… Any finite language can be represented by at least one if not more regular expressions A regular expressions is almost a rule syntax for expressing how regular languages can be formed regular expressions are cool For a regular expression to be valid for a language it must be able to generate all the words in the language and no other words. This is important. It doesn’t help me if my regular expression parses 100% of my measurement texts but also lets one or two invalid texts to pass as well. Okay, so this posting jumps around a bit – but introduces some very basic fundamentals for the subject which will be built on in later postings… Time to go and do some practical examples now…

    Read the article

  • Finding a problem in some task [closed]

    - by nagisa
    Recently I competed in nation wide programming contest finals. Not unexpectedly all problems were algorithmic. I lost (40 points out of 600. Winner got ~300). I know why I lost very well - I don't know how to find actual problem in those obfuscated tasks which are life-blood of every competition. I think that being self-taught and not well versed in algorithms got me too. As side effect of learning things myself I know how to search for information, however all I could find are couple questions about learning algorithms. For now I put Python Algorithms: Mastering Basic Algorithms in the Python Language and Analysis of Algorithms which I found in those questions to my "to read" list. That leaves my first problem of not knowing how to find a problem unsolved. Will that ability come with learning algorithms? Or does it need some special attention? Any suggestions are welcomed.

    Read the article

  • Bar Table Modded Into Standing Desk

    - by Jason Fitzpatrick
    This polished looking standing desk combines a stand alone bar-height counter with extra storage, cable management, and monitor riser. The end result looks like a $$$$ standing desk at a fraction of the price. Courtesy of IKEA hacker Marc Marton, the build combines the Billsta Bar Table, the Ekby Alex Shelf, and Besta legs to raise the shelf up off the desk and create a keyboard storage area. For more information about the build hit up the link below. Billsta Bar Table into Standing Work Station [IKEAHacker] 8 Deadly Commands You Should Never Run on Linux 14 Special Google Searches That Show Instant Answers How To Create a Customized Windows 7 Installation Disc With Integrated Updates

    Read the article

  • Community Megaphone Podcast #5 with Steve Michelotti

    - by Dane Morgridge
    Show 5 is finally up with special guest Steve Michelotti.  We talked about ASP.Net MVC, how to get started in the community and more! Steve Michelotti is a Microsoft ASP.NET MVP and an Architect/Developer for Applied Information Sciences (AIS). He has consulted at Advertising.com/AOL where he was the Tech Lead for one of the highest volume .NET applications in the world. He previously was the Chief Technologist at e.magination. Steve is a frequent presenter at developer user groups and Code Camps along the East Coast and holds the MCSD, MCPD, and MCT certifications. Steve has been on Microsoft Channel9 and his published articles include Visual Studio Magazine and his blog: www.geekswithblogs.net/michelotti. Audio: http://www.communitymegaphonepodcast.com/Content/Audio/Show-5-Steve-Michelotti.mp3 Show Url: http://www.communitymegaphonepodcast.com/Show/5/Steve-Michelotti Rss: http://feed.communitymegaphonepodcast.com/cm-podcast

    Read the article

  • Add 33 Unique Biomes to Minecraft with the Biomes O’ Plenty Mod Pack

    - by Asian Angel
    Are you tired of looking at the same old biomes in Minecraft? Then add some fresh scenery with the Biomes O’ Plenty mod pack and enjoy a whole new Minecraft world! Biomes included in the mod pack: Birch Forest, Bog, Cherry Blossom Grove, Crag, Deadlands, Dense Forest, Field, Frost Forest, Garden, Glacier, Highland, Mangrove, Marsh, Meadow, Mesa, Mountain, Mystic Grove, Oasis, Ominous Woods, Orchard, Prairie, Quagmire, Rainforest, Savanna, Scrubland, Seasonal Forest, Shrubland, Spruce Forest, Tropics, Tundra, Wasteland, Wetlands, and Woodlands. You can download the mod pack, view the setup instructions, see images of each biome type, and more by visiting the link below. [1.3.2] [MODLOADERMP] Biomes O’ Plenty – Adds 33 Unique Biomes! (SSP/SMP) [via BoingBoing] 8 Deadly Commands You Should Never Run on Linux 14 Special Google Searches That Show Instant Answers How To Create a Customized Windows 7 Installation Disc With Integrated Updates

    Read the article

  • Coding error at open URL

    - by Lobo
    Hi, I have the following method to open a URL API String c=""; URL direccionURL; try { direccionURL = new URL("http://api.stackoverflow.com/1.0/users/523725"); BufferedReader in = new BufferedReader(new InputStreamReader( direccionURL.openStream())); String inputLine; while ((inputLine = in.readLine()) != null) c+=inputLine; in.close(); } catch (MalformedURLException e) { // TODO Auto-generated catch block e.printStackTrace(); } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } return c; In the end, the "c" variable contains a set of characters that are not the same I get if I open the same URL with a browser. Why?, What am I doing wrong? Thank's for help. Regards!

    Read the article

  • Residential Care Homes website launched based on the Umbraco CMS

    - by Vizioz Limited
    This week we have launched a new website for a local company called Ascot Residential Homes. They run two homes for the elderly and for those who suffer with dementia. Before we built the site for Ascot Residential Homes they asked us to visit the homes to get a feeling about how special they are. If you are looking for a home for an elderly relative I would highly recommend having a look at their website and if you are in the area arranging to visit them.If you look on our site you will also find an Ascot Residential Homes case study in our Umbraco case studies section.

    Read the article

  • I&rsquo;m speaking at Software Architect 2010 in October

    - by Eric Nelson
    I’m very pleased to report I have managed to slip past the quality police and get to speak for the third year in a row at the excellent Software Architect conference in London. Which makes it the only “long running” conference that I have a 100% record on speaking at year on year which gives it an extra special significance. How much longer before I am found out :) This conference attracts some great speakers including the likes of Kevlin Henney, Neal Ford and Tim Ewald (oh – and me). If you are a software/solution architect then I would definitely recommend you check out whether the sessions this year are something that would help you grow and make great technology/architecture choices in your organisation. I am delivering a brand new session - which means I need to create it :-) 10 things every architect needs to know about Windows Azure In this session we will look at the 10 most architecturally significant features of the Windows Azure platform which directly impact how you architect solutions if you plan to deploy in the Cloud. Maybe see you there…

    Read the article

  • Would you go by WPF or WinForms? [on hold]

    - by Lorem Ipsum
    Consider the following project facts/requirements: Desktop app with try icon and notification system Forms over data Quick response needed Internal app in big corporation planned to be hosted on Windows Vista, later maybe Windows 8.x Operating system slowed down by many group policies (frequently changing GPO) No special graphic requirements So, would you go by WPF or WinForms? Edit: Please bear in mind the facts/requirements I mentioned above. The application will run on corporate machines which are very slow and without really good graphical acceleration. The crucial is to have really quick response and start time.

    Read the article

< Previous Page | 130 131 132 133 134 135 136 137 138 139 140 141  | Next Page >