Search Results

Search found 10215 results on 409 pages for 'ram usage'.

Page 137/409 | < Previous Page | 133 134 135 136 137 138 139 140 141 142 143 144  | Next Page >

  • 3-4 old computers = general purpose cluster?

    - by TheLQ
    I have 3 old computers lying around right now running a P2 at 800 MHz(?), Intel Mobile 1.6 GHz, AMD Athlon XP 2000+ at 1.66 GHz, and (might not use this) P4 at 2.7 GHz, all with 512 MB Ram, and am considering clustering them together for fun/knowledge. They would be running an undecided version of linux, preferably ubuntu based. The issue is what I want to use it for: general computing and occasional video encoding. By general computing I mean day to day tasks. However I'm not sure if every program started by a single X session is going to exist on the same machine, defeating the purpose of such a system. Will programs be split up or exist on one machine? Second, assuming this is running 100baseT ethernet (not sure if the PCI slot itself could handle Gigabit), would the speed of having a program exist over the network be an issue? It seems that the constant asking of various things in RAM would be quite slow. And before you say "buy another computer!", that's not the point of this question. I'm asking would it be usable, not necessarily practical. And yes I know, this is going to be extreamly power consuming.

    Read the article

  • Strange boot problems on 6 month old setup

    - by Balefire
    I've already exhausted my knowledge on this one, so forgive me if this post is a bit long. I built a computer 6 months ago for my wife and it worked fine until last week. Then it randomly shut down and would lock up while trying to boot on the boot screen. I cleared cmos and it allowed me to do startup recovery, but it "failed to fix the issue" so I reinstalled windows on the HD (moving the old install to windows_old). It worked, so I started installing drivers again, but then when I restarted to finalize installations it locked up again. This time, I took the hard drive and hooked it up to my computer, backed up all her files, and then formatted the hard drive before reinstalling it. (again had to clear cmos to let me boot from disk) It installed windows, I installed drivers, and it worked for a few hours but then died during startup again. So, then I got a new HD, cleared cmos, and installed clean again, with the same result as the time before, it worked for a few hours, installed windows updates, then crashed on the 3rd or 4th time turning it on. I decided next to try reinstalling and then going online to see if there were any updates for the BIOS or drivers on the Motherboard, but now I can't get it to even bring up the boot menu, so now I'm just left wondering was it the motherboard, or is it the CPU, or the RAM? The problem was strangely intermittent so I thought it had to be a software issue, since a hardware issue would ALWAYS fail to boot, right? But now it seems to be a hardware issue, because it's not bringing up anything. Any suggestions? System: Windows 7 64-bit 970A-DS3 Gigabyte Motherboard AMD Phenom II X4 955 Deneb 3.2GHz Quad core Proc GeForce GT 430 (Fermi) 1GB Video Card 500W PSU 2 x G.SKILL Ripjaws X Series 4GB 240-Pin DDR3 1600 RAM

    Read the article

  • 4GB Memory Upgrade for Acer Aspire 5102WLMi

    - by Richard Slater
    I have bought a 4GB memory upgrade (2x 2GB PC2-5300 SODIMM) for my Acer Aspire 5102WLMi (Aspire 5100 Series) laptop, I installed the two memory modules correctly however with 4GB installed the laptop refuses to POST. I have tried the following: Tried both 2GB SODIMMs without the other (Worked Fine) Tried the original 512MB SODIMMs (Worked Fine) Tried with original 512MB SODIMM and new 2GB SODIMM (Worked Fine) Tried swapping over the 2GB SODIMs (Didn't Boot) Left the computer for 10 minutes with both 2GB SODIMMs installed (Didn't Boot) Checked latest BIOS installed (No Change) The Crucial website said that the laptop supported 4GB of RAM as do several other sites through found through Google, up until now I was fairly confident this would work. Couple of questions that would be good to have answered: Question: Has anyone got an Acer Aspire 5100 Series running with 4GB RAM? Answer: Yes, I have now got one working with 3.75GB Usable, the rest is occupied utilized by the Graphics Card. Question: Any tips on getting this to work; is there a CMOS reset switch? Answer: Yes there is, if both SODIMMs are removed two very small interlocking PCB tracks are revealed. If these are shorted together with a screwdriver the BIOS will be reset. Thanks.

    Read the article

  • Why is my browser using so much memory?

    - by Steve
    Hi. I've recently had problems with Firefox running very slowly when I have many tabs open; say 20 tabs. My whole system would slow down. I decided to give Google Chrome a try, and it started out fine. But lately I am finding that it too, slows down my whole system. Looking at Task Manager, chrome.exe is using about 250MB of memory in about 6 different entries in task manager. However, when I shut Chrome down, memory usage is reduced by about 600MB. How can this be? (shows drop in memory usage after ending Chrome.) When my system locks up with Chrome having many tabs open, it takes 10 seconds to load the Start Menu, 10 seconds to expand All Programs, and each folder and subfolder, and 30 seconds for the program to be highlighted under my mouse. It also takes 10 seconds to switch to Notepad. Why is Chrome appearing to use so much more memory than Task Manager indicates? Why is my pagefile being used when I have around 1.1GB of memory? Can I set Chrome to run in RAM and not in the pagefile? How can 20 tabs use 600MB? That's 30MB per tab. Thanks for your help.

    Read the article

  • How to fix Windows 7 device removal notification loop

    - by Barry Kelly
    Bit of an odd one this. One of our PCs is getting caught in a loop some time after being turned on, usually after a USB storage device has been attached - sometimes an iPod, sometimes a GPS. Specifically, Windows Explorer starts showing a drive icon and letter (E:, as of right now) for the System partition (the small hidden one at the start of the boot drive). Then, the icon disappears. Then it reappears again. And disappears. It does this very quickly, at what looks like maybe 50 times a second. CPU usage in this loop is also very high; averages about 66%. This machine has an i7 920 CPU, which is quad core with hyperthreading; so this usage rate works out to about 5 100% busy threads, along with whatever normal idle load is (particularly Task Manager itself). Inspecting with Process Explorer shows that the device removal notification infrastructure has gone berserk. The threads in system service processes (i.e. apart from Windows Explorer) which are using all the CPU power relate to device notification. The Disk Management MMC snap-in also fails to run when the loop starts. The only way to break the loop, it seems, is to reboot the machine. Anyone seen anything similar to this, and know of a way to fix it? Machine details: Windows 7 x64, fully patched i7 920, 12GB RAM Intel SSD 80GB (X25-M, I believe; not G2) 2TB 5.2K disk for bulk storage AMD HD 5870 Further hardware details await. I'm going to go through and update all drivers I can find.

    Read the article

  • Computer will freeze/ lock up after doing relatively stressful things

    - by GrowingCode247
    I'll first start off by saying that the issue GENERALLY doesn't occur unless I'm doing something remotely stressful for my computer. This issue used to occur whenever it felt it was necessary, however has not occurred completely randomly for a while now (thankfully) My computer's specs: CPU: AMD Phenom II X4 960T GPU: GeForce GTX 760 Memory: 16 GB RAM Resolution Used: 1680x1050, 59Hz (strange number for refresh rate?) res is highest for monitor Nvidia Driver version: 331.65 OS: Microsoft Windows 7 Ultimate (64-bit) Sometimes I will be able to go 2-3 games (about an hour, depending) and sometimes it will go maybe one game (20-30 minutes) and then my computer will run sluggishly and leave me unable to do much of anything. I can sometimes interact with programs at a very basic level (maximizing, minimizing), and I usually cannot close them in any way, not even through Task Manager. The highest temperature my GPU reaches is 76C, with the average being around 73C. During the time the temperatures are around 73C, my GPU's RAM usage is anywhere between 1250-1300 (out of 2GB). My CPU's temperature never goes over 60C, thankfully. The PSU should be fine. It's very mildly dusty but I feel as though that would not be causing this problem... I will clean it out as soon as everything else has been ruled out. Honestly I have no clue how to test the PSU for problems - same goes for my Motherboard. I cannot really think of what could be causing these freezes otherwise. Event Viewer details: EventID: 1 - VDS Basic Provider (I've no clue what this is) EventID: 3 - Kernel-EventTracing (Again, lost) EventID: 8003 - bowser (this seems fishy) and the one critical that I know others have been dealing with as I've browsed some other responses on the web: EventID: 41 - Kernel-Power any help to solve this problem would be GREATLY appreciated.

    Read the article

  • Minecraft server hosting hardware specifications [on hold]

    - by Andrew Wright
    I am planning on purchasing a server to rent off Minecraft game servers, largely to friends. I am planning on purchasing a 128GB RAM server to save on colocation costs (as I am likely to need more than 32GB and would have to rent 2U of space...) I am hoping for some advice about the processing power needed to deal with this level of RAM. The servers will be run in a shared environment on linux in a VM to make backups easier. The server I have in mind is dual CPU. I have been considering at the low end dual Xeon E5-2609V2 Quad-Core 2.5Ghz, and at the high end dual Xeon E5-2650V2 Eight-Core 2.6Ghz. The difference between these is 6.4 GT/s and 8 GT/s and £3000 for the lower spec server, £4300 for the higher spec. I was hoping I could get advice about whether it is worth paying for the extra/higher speed processor or if I would be wasting my money? Thank you for any help - I appreciate that this is not directly related to professional system administration.

    Read the article

  • I really need help resolving a Window Vista BSOD (Blue Screen Crash) on my desktop

    - by anonymous
    Hi, thanks for taking the time to read this. I'll get straight to the details. My desktop is on the fritz; it keeps going to blue screen with the stop message of 0x0000007E immediately after the loading bar of vista, right before transitioning to the account selection screen. My desktop runs on a dual-core 32-bit processor with windows Vista Home(?) installed. I have 3 GB of ram as two separate modules, a 1GB acer module and a 2GB geil module. I have an ati video card, unfortunately I cannot recall the exact name but the chipset is ATI and the manufacturer is Sapphire and the card is on the lower end. My hard drive is 320GB (i think) partitioned into two. The C:\ partition is red lined, while the D:\ partition is still pretty empty. As per the advice of my friend, i tried restarting the system with the graphics card removed. Upon failure, i repeated the process removing one RAM module one at a time, but the system still failed to load. Vista would attempt to repair the system and it would initially report that the system was fixed, but vista really failed to fix the problem. After removing the memory modules, vista started to report it's inability to fix the problem. I tried running on safe mode and the driver listing would always stop at crcdisk.sys. I ran memory diagnostics using the windows memory diagnostic tool found in the screen after vista's failed attempt to fix the problem with no luck. the problem details are as such: Problem Event Name : StartupRepairV2 Problem Signature 01: AutoFailover 02: (vista's version number?) 03: 6 04: 720907 05: 0x7e 06: 0x7e 07: 0 08: 2 09: WrpRepair 10: 0 OS Version: 6.0.6000.2.0.0.256.1 Locale ID 1033 any correct advice would be appreciated as i really need my pc to work so i can work on my projects. kinda sad, but i'm college of computer science and i have no idea what to do :P

    Read the article

  • My PC suddenly reboots

    - by ChocoDeveloper
    Yesterday I opened my PC hub (after like, 5 years) to add more RAM and a new HDD. It was full of dust and balls of fluff, so I cleaned it a bit by blowing. I also removed the fan that was attached to the motherboard (I think it's there to cool the processor) and I cleaned it also by blowing and with a paintbrush, then put it back where it was (it had 4 weird plastic screws, it wasn't easy). Then I added 2 x 2Gib of RAM (Kingston 1333MHz), and the new HDD (Western Digital Caviar Blue 1TB SATA 3). I couldn't find another wire like the one my first disk had, which was thicker, but there was one that was more flat, so I plugged it and it worked fine (I also plugged the wire that I think is for the data, which looks like many little wires glued together). I'm running Ubuntu 12.04, and in the new disk I've just installed Windows 7. Between yesterday and today, two reboots ocurred while working on Ubuntu. I haven't used Windows 7 that much so I don't know if it will happen there too. So where can I begin to debug this?

    Read the article

  • netbook screen stays black

    - by sam113101
    I have an acer aspire one netbook. The screen is black but the computer turns on (LED's are on, fan is spinning, etc.) By black I mean absolutely no backlight. I tried to remove the battery and power it on to "discharge" it (I read that on the Internet, not sure if that ever fixes anything), but no luck. I also tried to replace the RAM stick with another one (which I know for sure is working properly), still no luck. I tried to connect an external monitor and switch to it (fn + f5 on this particular model), still no luck, nothing on the external monitor. I read that flashing the BIOS could fix it (http://community.spiceworks.com/how_to/show/22042-acer-aspire-one-black-screen-of-death), I tried to flash it but basically it doesn't do anything when I power it on with the usb thumb drive. No blinking power button. To me it sounds like it might be a dead motherboard, a dead RAM slot (there's only one), or the BIOS thing. I would like to rule out the BIOS possibility, but I need help. The reason I ruled out the dead screen possibility is that it did not switch to the external display when I pressed fn + f5, am I wrong by assuming so? Thank you for your help.

    Read the article

  • Auto-restart mysql when it dies

    - by Los Frijoles
    I have a rackspace server that I have been renting to run my personal projects upon. Since I am cheap, it has 256Mb of RAM and honestly can't handle alot. Every once in a while, when there is a sharp uptick in traffic, the server decides to start killing processes and it seems that mysqld is a popular one for it to kill. I try to visit my site and am greeted with the message that there was an error establishing the database connection. Inspection of the logs reveals that mysqld was killed due to lack of memory. Since I am still as poor as I was yesterday and don't want to upgrade my rackspace VM's RAM, is there a way I can tell it to automagically restart mysqld when it dies? I have a thought to use something like crontab, but alas, I don't know exactly what to do there either. I guess I am product of the "Linux on your desktop" generation since I can do most things on my desktop and laptop (which run Linux almost exclusively), but still lack a lot of server administration skills for Linux. The server runs CentOS 6.3

    Read the article

  • Windows Server 2008 Alerting to Low memory

    - by t1nt1n
    I have a file and print server running on Windows 2008 R2 fully patched in a VSphere environment (ESXi 5.1 fully updated). Every evening between 19:20 and 19:30 our monitoring software reported that the available memory is 1% and performance is dire. There is nothing in the event logs to point to an issue. At this point in the evening I am general the only user on the system to check to see why these alerts are going off. Things I have done; Checked to see if any backups are running – None at all. Checked Scheduled tasks – None before or during this time period. Moved the VM to another host. AV is disabled to rule out that as the issue. The server does not have any problems during the day with memory when fully loaded with about 50 users. The server did have 4GB ram provisioned but I have increased this to 5Gb. Running PrefMon at the time (I will save the graphs tonight) There very little CPU usage at the time but RAM usage goes up.

    Read the article

  • Ubuntu 12.04 VirtualBox on powerful W7 quite slow

    - by wnstnsmth
    I own a Thinkpad T420s with 8GB RAM, 160 GB SSD and a quite fast i7 processor. Summa summarum a very fast computer that works perfectly. Now, I am not very impressed by the performance of my Ubuntu 12.04 virtual machine running on VirtualBox 4.1.18. I assume that Virtual Machines are always a bit slower than the guest system, still I think it should be more performant given the hardware settings I give it: 4096 MB RAM 1 CPU without CPU limitation (I would like to give it more but then it does not seem to work - I am not experienced in this maybe somebody could give me advice on this too) Activated PAE/NX, VT-x/AMD-V and Nested Paging 96 MB Graphics Memory (no 2D or 3D acceleration) ~ 14 GB disk space, currently about 7 GB are used Maybe I misconfigured something, could you give me a hint please? Thanks! Edit: What I mean by slow is that for example switching tabs in the browser (whether FF or Chrome) only goes with a 0.5s delay or something, as well as switching application windows and/or double-clicking applications in the dock to get all open windows.. opening Aptana takes about a minute whereas opening something like Photoshop on the guest system takes 5 seconds

    Read the article

  • SQL Server: Network pauses after installing cheap SATA card: Is there a solution?

    - by samsmith
    At the risk of being assigned to the "bad DBA" club... I did something desperate, and may have to undo it. Problem: After installing a low cost eSATA board, my SQL Server is intermittently unresponsive (seemingly when there is a lot of IO to the eSATA drive). Questions: 1) Is there a solution to the intermittent unresponsiveness that allows me to keep the eSATA in place? 2) Whether or not (1==true): What is a decent, low cost way to add 1-3 TB storage to SQL for non-critical SQL DBs? Detail: Our SAN is full, and expanding it is costly and will take a month. I have a pressing need to add 1-3 TB for some development DBs (e.g. not mission critical; data loss is OK). As a bandaid, I threw a $20 eSATA PCI board in the Dell 1950 server, and attached an external 2TB eSATA drive. This seemed to work fine, but I notice that our production SQL DBs, and even remote desktop, now experience network "pauses" that they never did before (with both SQL client apps and remote desktop throwing "networking problem" errors). This SQL Server has lots of memory, and runs an instance of SQL 2005 (where all line of business apps reside) and an instance SQL 2008 (for development db's). SQL Server RAM has been appropriately configured, and this setup has run great for years. The server is: Dell 1950 Win2003 x64 14GB RAM PERC controller, 2 mirrored hd's internal Dell SAN over gbit ethernet, dual homed 2 PCIx slots (1 used by NIC for SAN, 1 now in use for eSATA board) Thank you for suggestions!

    Read the article

  • Non-volatile cache RAID controllers: what kind of protection is there against NVCACHE failure?

    - by astrostl
    The battery back-up (BBU) model: admin enables write-back cache with BBU writes are cached to the RAID controller's RAM (major performance benefit) the battery saves uncommitted and cached data in the event of a power loss (reliability) If I lose power and come back within a day or so, my data should be both complete and uncorrupted. The downside to this is that, if the battery is dead or low, OR EVEN IF IT IS IN A RELEARN CYCLE (drain/charge loops to ensure the battery's health), the controller reverts to write-through mode and performance will suffer. What's more, the relearn cycles are usually automated on a schedule which may or may not happen in the middle of big traffic. So, that has to be manually disabled and manually scheduled for off-hours if it's a concern. Annoying either way. NV caches have capacitors with a sufficient charge to commit any uncommitted-to-disk data to flash. Not only is that more survivable in longer loss situations, but you don't have to concern yourself with battery death, wear-out, or relearning. All of that sounds great to me. What doesn't sound great to me is the prospect of that flash module having an issue, though. What if it's completely hosed? What if it's only partially hosed? A bit corrupted at the edges? Relearn cycles can tell when something like a simple battery is failing, but is there a similar process to verify that the flash is functional? I'm just far more trusting of a battery, warts and all. I know the card's RAM can fail, the card itself can fail - that's common territory, though. In case you didn't guess, yeah, I've experienced a shocking-to-me amount of flash/SSD/etc. failure :)

    Read the article

  • windows server 2003 speed issues

    - by farzinSH
    I have a HP server with windows server 2003 and 50 windows XP clients. Since a week and a half the networks speed suddenly drop 2-3 times per day. It gets so slow that none of the clients could work with the HIS program installed on them. We tried so many different things such as replacing the hubs,switches and even some wires. Every time one of these changes solves the problem and the network goes back to its normal state. I checked everything. Even when I disconnected all the clients from the server and connected it to just one computer the problem still remained for 2 hours. I just narrowed down the problem to the couple of likely speculations as follows: viruses? (Updated Kaspersky running on the server shows none) server hardware failure? Physical memory usage on the server? (Because the last time the problem occurred none of the changes above solved the issue so I restarted the server an checked the physical memory usage which was 2 GBs. But I noticed it's increasing over time to over 9 GBs...the server has 16 GBs of RAM.) I surfed the internet and got nothing. Any help would do us a lot....thanks in advance

    Read the article

  • Server down at 23:26 every night

    - by miccet
    We are having a big problem with our sites stability the last couple of weeks and after endless hours of troubleshooting I don't get anywhere. So I turn to you dear community. Setup: 2 x VPS servers - Front end, 8 core, 8G RAM. - Database, 5 core, 3G RAM. Both running Ubuntu. Ruby on Rails EE with Passenger 3 and Rails 2.3.11. MySQL 5.1.67. The problem is that each night, at the exact same time (23:26) the SQL server suddenly shows a processlist full of COMMIT with an increasing Time. After 30-40 seconds (can go longer) a wave seems processed and the site responds for a few seconds before it repeats. During this hick up the database server load spikes while the front end is relaxing. I have looked at slow queries, but is not finding any locks or other unusual queries ran at this time. I have looked at iotop at the time of the halt and there is no activity from mysql. I also tried turning off query_cache and messed around with the mysql configuration file without much change. Any ideas?

    Read the article

  • very diferent results from df after few seconds

    - by tatus2
    When the backup moves the files from one to the other server the results from df changing every some seconds in impossible manner. On source host is running rsync. On destination host I'm running every few seconds following command: echo `date` `df|grep md0` Results are below: Sat Jun 29 23:57:12 CEST 2013 /dev/md0 4326425568 579316100 3527339636 15% /MD0 Sat Jun 29 23:57:14 CEST 2013 /dev/md0 4326425568 852513700 3254142036 21% /MD0 Sat Jun 29 23:57:15 CEST 2013 /dev/md0 4326425568 969970340 3136685396 24% /MD0 Sat Jun 29 23:57:17 CEST 2013 /dev/md0 4326425568 1255222180 2851433556 31% /MD0 Sat Jun 29 23:57:20 CEST 2013 /dev/md0 4326425568 1276006720 2830649016 32% /MD0 Sat Jun 29 23:57:24 CEST 2013 /dev/md0 4326425568 1355440016 2751215720 34% /MD0 Sat Jun 29 23:57:26 CEST 2013 /dev/md0 4326425568 1425090960 2681564776 35% /MD0 Sat Jun 29 23:57:27 CEST 2013 /dev/md0 4326425568 1474601872 2632053864 36% /MD0 Sat Jun 29 23:57:28 CEST 2013 /dev/md0 4326425568 1493627384 2613028352 37% /MD0 Sat Jun 29 23:57:32 CEST 2013 /dev/md0 4326425568 615934400 3490721336 15% /MD0 Sat Jun 29 23:57:33 CEST 2013 /dev/md0 4326425568 636071360 3470584376 16% /MD0 as you can see I start from USE of 15% and after 15 seconds I'm at 37% (I don't need to mention that the backup can not copy this huge amount of data in so short time). After ~20 sec the cycle closes. I'm again roughly by the same usage as earlier. The value is reasonable ca. 35 Mb were copied. Can somebody explain me what is going on? Does df only make an estimation of usage instead of used value?

    Read the article

  • Allow more websocket connections

    - by Switz
    I want to load balance my node.js (DerbyJS to be specific) application on a basic Linode (512MB ram). It can probably take more than one process running at once. The querys/database does not concern me as I'm not doing anything intensive. The problem at the moment is that it can only handle up to ~40 websocket connections at once. I would love if I could get that number in the few hundred+ range. I anticipate a lot of traffic on launch due to the fact that it's a highly niche community with an engaged audience, but after it should be fine with just ~20-40 connections at once, which it handles perfectly as of now. I don't mind spending a bit of money for a week or two worth of running, but I also don't want to switch production environments. How can I test the process to see how many instances I am able to run on the box? Will increasing the number of processes increase the amount of websockets I can handle, or is that a limitation of the server's network? I have an old Macbook Pro running Linux sitting next to me that has 2GB ram and a 2.8 Dual Core Processor. Could I use this to handle some of the extra load? I could probably load balance with nginx to its IP. I'm on a FiOS home network. If you have any suggestions, I'd really appreciate it. Thanks

    Read the article

  • Deploying Memcached as 32bit or 64bit?

    - by rlotun
    I'm curious about how people deploy memcached on 64 bit machines. Do you compile a 64bit (standard) memcached binary and run that, or do people compile it in 32bit mode and run N instances (where N = machine_RAM / 4GB)? Consider a recommended deployment of Redis (from the Redis FAQ): Redis uses a lot more memory when compiled for 64 bit target, especially if the dataset is composed of many small keys and values. Such a database will, for instance, consume 50 MB of RAM when compiled for the 32 bit target, and 80 MB for 64 bit! That's a big difference. You can run 32 bit Redis binaries in a 64 bit Linux and Mac OS X system without problems. For OS X just use make 32bit. For Linux instead, make sure you have libc6-dev-i386 installed, then use make 32bit if you are using the latest Git version. Instead for Redis <= 1.2.2 you have to edit the Makefile and replace "-arch i386" with "-m32". If your application is already able to perform application-level sharding, it is very advisable to run N instances of Redis 32bit against a big 64 bit Redis box (with more than 4GB of RAM) instead than a single 64 bit instance, as this is much more memory efficient. Would not the same recommendation also apply to a memcached cluster?

    Read the article

  • Trouble Starting MySL Community Server on Windows 7

    - by CodeAngel
    I have installed Netbeans 7 on my Windows 7. In addition, the MySQL Community Server 5.6.12 is installed with the MSI installer on thesame 7 PC. The MySQL server is integrated with the Netbeans IDE. However , it is not possible to start or stop the MySQL server from the command prompt or the Netbeans IDE. I am only able to start or stop the server from the Windows 7 services tool. Also , it is difficult running SQL queries from the Netbeans IDE even though it shows there is connection with the MySQL server. I have added the my.ini file to the installed directory of the MySQL server , that is : C:\Program Files\MySQL\MySQL Server 5.6 below is the my.ini file : # For advice on how to change settings please see # http://dev.mysql.com/doc/refman/5.6/en/server-configuration-defaults.html # *** DO NOT EDIT THIS FILE. It's a template which will be copied to the # *** default location during install, and will be replaced if you # *** upgrade to a newer version of MySQL. [mysqld] # Remove leading # and set to the amount of RAM for the most important data # cache in MySQL. Start at 70% of total RAM for dedicated server, else 10%. # innodb_buffer_pool_size = 128M # Remove leading # to turn on a very important data integrity option: logging # changes to the binary log between backups. # log_bin # These are commonly set, remove the # and set as required. # basedir = ..... # datadir = ..... port = 3306 # server_id = ..... # Remove leading # to set options mainly useful for reporting servers. # The server defaults are faster for transactions and fast SELECTs. # Adjust sizes as needed, experiment to find the optimal values. # join_buffer_size = 128M # sort_buffer_size = 2M # read_rnd_buffer_size = 2M sql_mode=NO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES Any suggestion is welcomed.

    Read the article

  • Very diferent results from df after a few seconds

    - by tatus2
    When the backup moves the files from one server to the other the results from df change every few seconds in an impossible manner. The source host is running rsync. On the destination host I'm running the following command every few seconds: echo `date` `df|grep md0` Results are below: Sat Jun 29 23:57:12 CEST 2013 /dev/md0 4326425568 579316100 3527339636 15% /MD0 Sat Jun 29 23:57:14 CEST 2013 /dev/md0 4326425568 852513700 3254142036 21% /MD0 Sat Jun 29 23:57:15 CEST 2013 /dev/md0 4326425568 969970340 3136685396 24% /MD0 Sat Jun 29 23:57:17 CEST 2013 /dev/md0 4326425568 1255222180 2851433556 31% /MD0 Sat Jun 29 23:57:20 CEST 2013 /dev/md0 4326425568 1276006720 2830649016 32% /MD0 Sat Jun 29 23:57:24 CEST 2013 /dev/md0 4326425568 1355440016 2751215720 34% /MD0 Sat Jun 29 23:57:26 CEST 2013 /dev/md0 4326425568 1425090960 2681564776 35% /MD0 Sat Jun 29 23:57:27 CEST 2013 /dev/md0 4326425568 1474601872 2632053864 36% /MD0 Sat Jun 29 23:57:28 CEST 2013 /dev/md0 4326425568 1493627384 2613028352 37% /MD0 Sat Jun 29 23:57:32 CEST 2013 /dev/md0 4326425568 615934400 3490721336 15% /MD0 Sat Jun 29 23:57:33 CEST 2013 /dev/md0 4326425568 636071360 3470584376 16% /MD0 As you can see I start from USE of 15% and after 15 seconds I'm at 37% (I don't need to mention that the backup can not copy this huge amount of data in such a short time). After ~20 seconds the cycle closes. I'm again roughly at the same usage as earlier. The value is reasonable, ca. 35 Mb were copied. Can somebody explain to me what is going on? Does df only make an estimation of usage instead of used value?

    Read the article

  • Solving embarassingly parallel problems using Python multiprocessing

    - by gotgenes
    How does one use multiprocessing to tackle embarrassingly parallel problems? Embarassingly parallel problems typically consist of three basic parts: Read input data (from a file, database, tcp connection, etc.). Run calculations on the input data, where each calculation is independent of any other calculation. Write results of calculations (to a file, database, tcp connection, etc.). We can parallelize the program in two dimensions: Part 2 can run on multiple cores, since each calculation is independent; order of processing doesn't matter. Each part can run independently. Part 1 can place data on an input queue, part 2 can pull data off the input queue and put results onto an output queue, and part 3 can pull results off the output queue and write them out. This seems a most basic pattern in concurrent programming, but I am still lost in trying to solve it, so let's write a canonical example to illustrate how this is done using multiprocessing. Here is the example problem: Given a CSV file with rows of integers as input, compute their sums. Separate the problem into three parts, which can all run in parallel: Process the input file into raw data (lists/iterables of integers) Calculate the sums of the data, in parallel Output the sums Below is traditional, single-process bound Python program which solves these three tasks: #!/usr/bin/env python # -*- coding: UTF-8 -*- # basicsums.py """A program that reads integer values from a CSV file and writes out their sums to another CSV file. """ import csv import optparse import sys def make_cli_parser(): """Make the command line interface parser.""" usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV", __doc__, """ ARGUMENTS: INPUT_CSV: an input CSV file with rows of numbers OUTPUT_CSV: an output file that will contain the sums\ """]) cli_parser = optparse.OptionParser(usage) return cli_parser def parse_input_csv(csvfile): """Parses the input CSV and yields tuples with the index of the row as the first element, and the integers of the row as the second element. The index is zero-index based. :Parameters: - `csvfile`: a `csv.reader` instance """ for i, row in enumerate(csvfile): row = [int(entry) for entry in row] yield i, row def sum_rows(rows): """Yields a tuple with the index of each input list of integers as the first element, and the sum of the list of integers as the second element. The index is zero-index based. :Parameters: - `rows`: an iterable of tuples, with the index of the original row as the first element, and a list of integers as the second element """ for i, row in rows: yield i, sum(row) def write_results(csvfile, results): """Writes a series of results to an outfile, where the first column is the index of the original row of data, and the second column is the result of the calculation. The index is zero-index based. :Parameters: - `csvfile`: a `csv.writer` instance to which to write results - `results`: an iterable of tuples, with the index (zero-based) of the original row as the first element, and the calculated result from that row as the second element """ for result_row in results: csvfile.writerow(result_row) def main(argv): cli_parser = make_cli_parser() opts, args = cli_parser.parse_args(argv) if len(args) != 2: cli_parser.error("Please provide an input file and output file.") infile = open(args[0]) in_csvfile = csv.reader(infile) outfile = open(args[1], 'w') out_csvfile = csv.writer(outfile) # gets an iterable of rows that's not yet evaluated input_rows = parse_input_csv(in_csvfile) # sends the rows iterable to sum_rows() for results iterable, but # still not evaluated result_rows = sum_rows(input_rows) # finally evaluation takes place as a chain in write_results() write_results(out_csvfile, result_rows) infile.close() outfile.close() if __name__ == '__main__': main(sys.argv[1:]) Let's take this program and rewrite it to use multiprocessing to parallelize the three parts outlined above. Below is a skeleton of this new, parallelized program, that needs to be fleshed out to address the parts in the comments: #!/usr/bin/env python # -*- coding: UTF-8 -*- # multiproc_sums.py """A program that reads integer values from a CSV file and writes out their sums to another CSV file, using multiple processes if desired. """ import csv import multiprocessing import optparse import sys NUM_PROCS = multiprocessing.cpu_count() def make_cli_parser(): """Make the command line interface parser.""" usage = "\n\n".join(["python %prog INPUT_CSV OUTPUT_CSV", __doc__, """ ARGUMENTS: INPUT_CSV: an input CSV file with rows of numbers OUTPUT_CSV: an output file that will contain the sums\ """]) cli_parser = optparse.OptionParser(usage) cli_parser.add_option('-n', '--numprocs', type='int', default=NUM_PROCS, help="Number of processes to launch [DEFAULT: %default]") return cli_parser def main(argv): cli_parser = make_cli_parser() opts, args = cli_parser.parse_args(argv) if len(args) != 2: cli_parser.error("Please provide an input file and output file.") infile = open(args[0]) in_csvfile = csv.reader(infile) outfile = open(args[1], 'w') out_csvfile = csv.writer(outfile) # Parse the input file and add the parsed data to a queue for # processing, possibly chunking to decrease communication between # processes. # Process the parsed data as soon as any (chunks) appear on the # queue, using as many processes as allotted by the user # (opts.numprocs); place results on a queue for output. # # Terminate processes when the parser stops putting data in the # input queue. # Write the results to disk as soon as they appear on the output # queue. # Ensure all child processes have terminated. # Clean up files. infile.close() outfile.close() if __name__ == '__main__': main(sys.argv[1:]) These pieces of code, as well as another piece of code that can generate example CSV files for testing purposes, can be found on github. I would appreciate any insight here as to how you concurrency gurus would approach this problem. Here are some questions I had when thinking about this problem. Bonus points for addressing any/all: Should I have child processes for reading in the data and placing it into the queue, or can the main process do this without blocking until all input is read? Likewise, should I have a child process for writing the results out from the processed queue, or can the main process do this without having to wait for all the results? Should I use a processes pool for the sum operations? If yes, what method do I call on the pool to get it to start processing the results coming into the input queue, without blocking the input and output processes, too? apply_async()? map_async()? imap()? imap_unordered()? Suppose we didn't need to siphon off the input and output queues as data entered them, but could wait until all input was parsed and all results were calculated (e.g., because we know all the input and output will fit in system memory). Should we change the algorithm in any way (e.g., not run any processes concurrently with I/O)?

    Read the article

  • Why should you choose Oracle WebLogic 12c instead of JBoss EAP 6?

    - by Ricardo Ferreira
    In this post, I will cover some technical differences between Oracle WebLogic 12c and JBoss EAP 6, which was released a couple days ago from Red Hat. This article claims to help you in the evaluation of key points that you should consider when choosing for an Java EE application server. In the following sections, I will present to you some important aspects that most customers ask us when they are seriously evaluating for an middleware infrastructure, specially if you are considering JBoss for some reason. I would suggest that you keep the following question in mind while you are reading the points: "Why should I choose JBoss instead of WebLogic?" 1) Multi Datacenter Deployment and Clustering - D/R ("Disaster & Recovery") architecture support is embedded on the WebLogic Server 12c product. JBoss EAP 6 on the other hand has no direct D/R support included, Red Hat relies on third-part tools with higher prices. When you consider a middleware solution to host your business critical application, you should worry with every architectural aspect that are related with the solution. Fail-over support is one little aspect of a truly reliable solution. If you do not worry about D/R, your solution will not be reliable. Having said that, with Red Hat and JBoss EAP 6, you have this extra cost that will increase considerably the total cost of ownership of the solution. As we commonly hear from analysts, open-source are not so cheaper when you start seeing the big picture. - WebLogic Server 12c supports advanced LAN clustering, detection of death servers and have a common alert framework. JBoss EAP 6 on the other hand has limited LAN clustering support with no server death detection. They do not generate any alerts when servers goes down (only if you buy JBoss ON which is a separated technology, but until now does not support JBoss EAP 6) and manual intervention are required when servers goes down. In most cases, admin people must rely on "kill -9", "tail -f someFile.log" and "ps ax | grep java" commands to manage failures and clustering anomalies. - WebLogic Server 12c supports the concept of Node Manager, which is a separated process that runs on the physical | virtual servers that allows extend the administration of the cluster to WebLogic managed servers that are often distributed across multiple machines and geographic locations. JBoss EAP 6 on the other hand has no equivalent technology. Whole server instances must be managed individually. - WebLogic Server 12c Node Manager supports Coherence to boost performance when managing servers. JBoss EAP 6 on the other hand has no similar technology. There is no way to coordinate JBoss and infiniband instances provided by JBoss using high throughput and low latency protocols like InfiniBand. The Node Manager feature also allows another very important feature that JBoss EAP lacks: secure the administration. When using WebLogic Node Manager, all the administration tasks are sent to the managed servers in a secure tunel protected by a certificate, which means that the transport layer that separates the WebLogic administration console from the managed servers are secured by SSL. - WebLogic Server 12c are now integrated with OTD ("Oracle Traffic Director") which is a web server technology derived from the former Sun iPlanet Web Server. This software complements the web server support offered by OHS ("Oracle HTTP Server"). Using OTD, WebLogic instances are load-balanced by a high powerful software that knows how to handle SDP ("Socket Direct Protocol") over InfiniBand, which boost performance when used with engineered systems technologies like Oracle Exalogic Elastic Cloud. JBoss EAP 6 on the other hand only offers support to Apache Web Server with custom modules created to deal with JBoss clusters, but only across standard TCP/IP networks.  2) Application and Runtime Diagnostics - WebLogic Server 12c have diagnostics capabilities embedded on the server called WLDF ("WebLogic Diagnostic Framework") so there is no need to rely on third-part tools. JBoss EAP 6 on the other hand has no diagnostics capabilities. Their only diagnostics tool is the log generated by the application server. Admin people are encouraged to analyse thousands of log lines to find out what is going on. - WebLogic Server 12c complement WLDF with JRockit MC ("Mission Control"), which provides to administrators and developers a complete insight about the JVM performance, behavior and possible bottlenecks. WebLogic Server 12c also have an classloader analysis tool embedded, and even a log analyzer tool that enables administrators and developers to view logs of multiple servers at the same time. JBoss EAP 6 on the other hand relies on third-part tools to do something similar. Again, only log searching are offered to find out whats going on. - WebLogic Server 12c offers end-to-end traceability and monitoring available through Oracle EM ("Enterprise Manager"), including monitoring of business transactions that flows through web servers, ESBs, application servers and database servers, all of this with high deep JVM analysis and diagnostics. JBoss EAP 6 on the other hand, even using JBoss ON ("Operations Network"), which is a separated technology, does not support those features. Red Hat relies on third-part tools to provide direct Oracle database traceability across JVMs. One of those tools are Oracle EM for non-Oracle middleware that manage JBoss, Tomcat, Websphere and IIS transparently. - WebLogic Server 12c with their JRockit support offers a tool called JRockit Flight Recorder, which can give developers a complete visibility of a certain period of application production monitoring with zero extra overhead. This automatic recording allows you to deep analyse threads latency, memory leaks, thread contention, resource utilization, stack overflow damages and GC ("Garbage Collection") cycles, to observe in real time stop-the-world phenomenons, generational, reference count and parallel collects and mutator threads analysis. JBoss EAP 6 don't even dream to support something similar, even because they don't have their own JVM. 3) Application Server Administration - WebLogic Server 12c offers a complete administration console complemented with scripting and macro-like recording capabilities. A single WebLogic console can managed up to hundreds of WebLogic servers belonging to the same domain. JBoss EAP 6 on the other hand has a limited console and provides a XML centric administration. JBoss, after ten years, started the development of a rudimentary centralized administration that still leave a lot of administration tasks aside, so admin people and developers must touch scripts and XML configuration files for most advanced and even simple administration tasks. This lead applications to error prone and risky deployments. Even using JBoss ON, JBoss EAP are not able to offer decent administration features for admin people which must be high skilled in JBoss internal architecture and its managing capabilities. - Oracle EM is available to manage multiple domains, databases, application servers, operating systems and virtualization, with a complete end-to-end visibility. JBoss ON does not provide management capabilities across the complete architecture, only basic monitoring. Even deployment must be done aside JBoss ON which does no integrate well with others softwares than JBoss. Until now, JBoss ON does not supports JBoss EAP 6, so even their minimal support for JBoss are not available for JBoss EAP 6 leaving customers uncovered and subject to high skilled JBoss admin people. - WebLogic Server 12c has the same administration model whatever is the topology selected by the customer. JBoss EAP 6 on the other hand differentiates between two operational models: standalone-mode and domain-mode, that are not consistent with each other. Depending on the mode used, the administration skill is different. - WebLogic Server 12c has no point-of-failures processes, and it does not need to define any specialized server. Domain model in WebLogic is available for years (at least ten years or more) and is production proven. JBoss EAP 6 on the other hand needs special processes to garantee JBoss integrity, the PC ("Process-Controller") and the HC ("Host-Controller"). Different from WebLogic, the domain model in JBoss is quite new (one year at tops) of maturity, and need to mature considerably until start doing things like WebLogic domain model does. - WebLogic Server 12c supports parallel deployment model which enables some artifacts being deployed at the same time. JBoss EAP 6 on the other hand does not have any similar feature. Every deployment are done atomically in the containers. This means that if you have a huge EAR (an EAR of 120 MB of size for instance) and deploy onto JBoss EAP 6, this EAR will take some minutes in order to starting accept thread requests. The same EAR deployed onto WebLogic Server 12c will reduce the deployment time at least in 2X compared to JBoss. 4) Support and Upgrades - WebLogic Server 12c has patch management available. JBoss EAP 6 on the other hand has no patch management available, each JBoss EAP instance should be patched manually. To achieve such feature, you need to buy a separated technology called JBoss ON ("Operations Network") that manage this type of stuff. But until now, JBoss ON does not support JBoss EAP 6 so, in practice, JBoss EAP 6 does not have this feature. - WebLogic Server 12c supports previuous WebLogic domains without any reconfiguration since its kernel is robust and mature since its creation in 1995. JBoss EAP 6 on the other hand has a proven lack of supportability between JBoss AS 4, 5, 6 and 7. Different kernels and messaging engines were implemented in JBoss stack in the last five years reveling their incapacity to create a well architected and proven middleware technology. - WebLogic Server 12c has patch prescription based on customer configuration. JBoss EAP 6 on the other hand has no such capability. People need to create ticket supports and have their installations revised by Red Hat support guys to gain some patch prescription from them. - Oracle WebLogic Server independent of the version has 8 years of support of new patches and has lifetime release of existing patches beyond that. JBoss EAP 6 on the other hand provides patches for a specific application server version up to 5 years after the release date. JBoss EAP 4 and previous versions had only 4 years. A good question that Red Hat will argue to answer is: "what happens when you find issues after year 5"?  5) RAC ("Real Application Clusters") Support - WebLogic Server 12c ships with a specific JDBC driver to leverage Oracle RAC clustering capabilities (Fast-Application-Notification, Transaction Affinity, Fast-Connection-Failover, etc). Oracle JDBC thin driver are also available. JBoss EAP 6 on the other hand ships only the standard Oracle JDBC thin driver. Load balancing with Oracle RAC are not supported. Manual intervention in case of planned or unplanned RAC downtime are necessary. In JBoss EAP 6, situation does not reestablish automatically after downtime. - WebLogic Server 12c has a feature called Active GridLink for Oracle RAC which provides up to 3X performance on OLTP applications. This seamless integration between WebLogic and Oracle database enable more value added to critical business applications leveraging their investments in Oracle database technology and Oracle middleware. JBoss EAP 6 on the other hand has no performance gains at all, even when admin people implement some kind of connection-pooling tuning. - WebLogic Server 12c also supports transaction and web session affinity to the Oracle RAC, which provides aditional gains of performance. This is particularly interesting if you are creating a reliable solution that are distributed not only in an LAN cluster, but into a different data center. JBoss EAP 6 on the other hand has no such support. 6) Standards and Technology Support - WebLogic Server 12c is fully Java EE 6 compatible and production ready since december of 2011. JBoss EAP 6 on the other hand became fully compatible with Java EE 6 only in the community version after three months, and production ready only in a few days considering that this article was written in June of 2012. Red Hat says that they are the masters of innovation and technology proliferation, but compared with Oracle and even other proprietary vendors like IBM, they historically speaking are lazy to deliver the most newest technologies and standards adherence. - Oracle is the steward of Java, driving innovation into the platform from commercial and open-source vendors. Red Hat on the other hand does not have its own JVM and relies on third-part JVMs to complete their application server offer. 95% of Red Hat customers are using Oracle HotSpot as JVM, which means that without Oracle involvement, their support are limited exclusively to the application server layer and we all know that most problems are happens in the JVM layer. - WebLogic Server 12c supports natively JDK 7, which empower developers to explore the maximum of the Java platform productivity when writing code. This feature differentiate WebLogic from others application servers (except GlassFish that are also managed by Oracle) because the usage of JDK 7 introduce such remarkable productivity features like the "try-with-resources" enhancement, catching multiple exceptions with one try block, Strings in the switch statements, JVM improvements in terms of JDBC, I/O, networking, security, concurrency and of course, the most important feature of Java 7: native support for multiple non-Java languages. More features regarding JDK 7 can be found here. JBoss EAP 6 on the other hand does not support JDK 7 officially, they comment in their community version that "Java SE 7 can be used with JBoss 7" which does not gives you any guarantees of enterprise support for JDK 7. - Oracle WebLogic Server 12c supports integration with Spring framework allowing Spring applications to use WebLogic special transaction manager, exposing bean interfaces to WebLogic MBeans to take advantage of all WebLogic monitoring and administration advantages. JBoss EAP 6 on the other hand has no special integration with Spring. In fact, Red Hat offers a suspicious package called "JBoss Web Platform" that in theory supports Spring, but in practice this package does not offers any special integration. It is just a facility for Red Hat customers to have support from both JBoss and Spring technology using the same customer support. 7) Lightweight Development - Oracle WebLogic Server 12c and Oracle GlassFish are completely integrated and can share applications without any modifications. Starting with the 12c version, WebLogic now understands natively GlassFish deployment descriptors and specific configurations in order to offer you a truly and reliable migration path from a community Java EE application server to a enterprise middleware product like WebLogic. JBoss EAP 6 on the other hand has no support to natively reuse an existing (or still in development) application from JBoss AS community server. Users of JBoss suffer of critical issues during deployment time that includes: changing the libraries and dependencies of the application, patching the DTD or XSD deployment descriptors, refactoring of the application layers due classloading issues and anomalies, rebuilding of persistence, business and web layers due issues with "usage of the certified version of an certain dependency" or "frameworks that Red Hat potentially does not recommend" etc. If you have the culture or enterprise IT directive of developing Java EE applications using community middleware to in a certain future, transition to enterprise (supported by a vendor) middleware, Oracle WebLogic plus Oracle GlassFish offers you a more sustainable solution. - WebLogic Server 12c has a very light ZIP distribution (less than 165 MB). JBoss EAP 6 ZIP size is around 130 MB, together with JBoss ON you have more 100 MB resulting in a higher download footprint. This is particularly interesting if you plan to use automated setup of application server instances (for example, to rapidly setup a development or staging environment) using Maven or Hudson. - WebLogic Server 12c has a complete integration with Maven allowing developers to setup WebLogic domains with few commands. Tasks like downloading WebLogic, installation, domain creation, data sources deployment are completely integrated. JBoss EAP 6 on the other hand has a limited offer integration with those tools.  - WebLogic Server 12c has a startup mode called WLX that turns-off EJB, JMS and JCA containers leaving enabled only the web container with Java EE 6 web profile. JBoss EAP 6 on the other hand has no such feature, you need to disable manually the containers that you do not want to use. - WebLogic Server 12c supports fastswap, which enables you to change classes without redeployment. This is particularly interesting if you are developing patches for the application that is already deployed and you do not want to redeploy the entire application. This is the same behavior that most application servers offers to JSP pages, but with WebLogic Server 12c, you have the same feature for Java classes in general. JBoss EAP 6 on the other hand has no such support. Even JBoss EAP 5 does not support this until now. 8) JMS and Messaging - WebLogic Server 12c has a proven and high scalable JMS implementation since its initial release in 1995. JBoss EAP 6 on the other hand has a still immature technology called HornetQ, which was introduced in JBoss EAP 5 replacing everything that was implemented in the previous versions. Red Hat loves to introduce new technologies across JBoss versions, playing around with customers and their investments. And when they are asked about why they have changed the implementation and caused such a mess, their answer is always: "the previous implementation was inadequate and not aligned with the community strategy so we are creating a new a improved one". This Red Hat practice leads to uncomfortable investments that in a near future (sometimes less than a year) will be affected in someway. - WebLogic Server 12c has troubleshooting and monitoring features included on the WebLogic console and WLDF. JBoss EAP 6 on the other hand has no direct monitoring on the console, activity is reflected only on the logs, no debug logs available in case of JMS issues. - WebLogic Server 12c has extremely good performance and scalability. JBoss EAP 6 on the other hand has a JMS storage mechanism relying on Oracle database or MySQL. This means that if an issue in production happens and Red Hat affirms that an performance issue is happening due to database problems, they will not support you on the performance issue. They will orient you to call Oracle instead. - WebLogic Server 12c supports messaging enterprise features like SAF ("Store and Forward"), Distributed Queues/Topics and Foreign JMS providers support that leverage JMS implementations without compromise developer code making things completely transparent. JBoss EAP 6 on the other hand do not even dream to support such features. 9) Caching and Grid - Coherence, which is the leading and most mature data grid technology from Oracle, is available since early 2000 and was integrated with WebLogic in 2009. Coherence and WebLogic clusters can be both managed from WebLogic administrative console. Even Node Manager supports Coherence. JBoss on the other hand discontinued JBoss Cache, which was their caching implementation just like they did with the messaging implementation (JBossMQ) which was a issue for long term customers. JBoss EAP 6 ships InfiniSpan version 1.0 which is immature and lack a proven record of successful cases and reliability. - WebLogic Server 12c has a feature called ActiveCache which uses Coherence to, without any code changes, replicate HTTP sessions from both WebLogic and other application servers like JBoss, Tomcat, Websphere, GlassFish and even Microsoft IIS. JBoss EAP 6 on the other hand does have such support and even when they do in the future, they probably will support only their own application server. - Coherence can be used to manage both L1 and L2 cache levels, providing support to Oracle TopLink and others JPA compliant implementations, even Hibernate. JBoss EAP 6 and Infinispan on the other hand supports only Hibernate. And most important of all: Infinispan does not have any successful case of L1 or L2 caching level support using Hibernate, which lead us to reflect about its viability. 10) Performance - WebLogic Server 12c is certified with Oracle Exalogic Elastic Cloud and can run unchanged applications at this engineered system. This approach can benefit customers from Exalogic optimization's of both kernel and JVM layers to boost performance in terms of 10X for web, OLTP, JMS and grid applications. JBoss EAP 6 on the other hand has no investment on engineered systems: customers do not have the choice to deploy on a Java ultra fast system if their project becomes relevant and performance issues are detected. - WebLogic Server 12c maintains a performance gain across each new release: starting on WebLogic 5.1, the overall performance gain has been close to 4X, which close to a 20% gain release by release. JBoss on the other hand does not provide SPECJAppServer or SPECJEnterprise performance benchmarks. Their so called "performance gains" remains hidden in their customer environments, which lead us to think if it is true or not since we will never get access to those environments. - WebLogic Server 12c has industry performance benchmarks with submissions across platforms and configurations leading SPECJ. Oracle WebLogic leads SPECJAppServer performance in multiple categories, fitting all customer topologies like: dual-node, single-node, multi-node and multi-node with RAC. JBoss... again, does not provide any SPECJAppServer performance benchmarks. - WebLogic Server 12c has a feature called work manager which allows your application to embrace new performance levels based on critical resource utilization of the CPUs usage. Work managers prioritizes work and allocates threads based on an execution model that takes into account administrator-defined parameters and actual run-time performance and throughput. JBoss EAP 6 on the other hand has no compared feature and probably they never will. Not supporting such feature like work managers, JBoss EAP 6 forces admin people and specially developers to uncover performance gains in a intrusive way, rewriting the code and doing performance refactorings. 11) Professional Services Support - WebLogic Server 12c and any other technology sold by Oracle give customers the possibility of hire OCS ("Oracle Consulting Services") to manage critical scenarios, deployment assistance of new applications, high skilled consultancy of architecture, best practices and people allocation together with customer teams. All OCS services are available without any restrictions, having the customer bought software from Oracle or just starting their implementation before any acquisition. JBoss EAP 6 or Red Hat to be more specifically, only offers professional services if you buy subscriptions from them. If you are developing a new critical application for your business and need the help of Red Hat for a serious issue or architecture decision, they will probably say: "OK... I can help you but after you buy subscriptions from me". Red Hat also does not allows their professional services consultants to manage environments that uses community based software. They will probably force you to first buy a subscription, download their "enterprise" version and them, optionally hire their consultants. - Oracle provides you our university to educate your team into our technologies, including of course specialized trainings of WebLogic application server. At any time and location, you can hire Oracle to train your team so you get trustful knowledge according to your specific needs. Certifications for the products are also available if your technical people desire to differentiate themselves as professionals. Red Hat on the other hand have a limited pool of resources to train your team in their technologies. Basically they are selling training and certification for RHEL ("Red Hat Enterprise Linux") but if you demand more specialized training in JBoss middleware, they will probably connect you to some "certified" partner localized training since they are apparently discontinuing their education center, at least here in Brazil. They were not able to reproduce their success with RHEL education to their middleware division since they need first sell the subscriptions to after gives you specialized training. And again, they only offer you specialized training based on their enterprise version (EAP in the case of JBoss) which means that the courses will be a quite outdated. There are reports of developers that took official training's from Red Hat at this year (2012) and in a certain JBoss advanced course, Red Hat supposedly covered JBossMQ as the messaging subsystem, and even the printed material provided was based on JBossMQ since the training was created for JBoss EAP 4.3. 12) Encouraging Transparency without Ulterior Motives - WebLogic Server 12c like any other software from Oracle can be downloaded any time from anywhere, you should only possess an OTN ("Oracle Technology Network") credential and you can download any enterprise software how many times you want. And is not some kind of "trial" version. It is the official binaries that will be running for ever in your data center. Oracle does not encourages the usage of "specific versions" of our software. The binaries you buy from Oracle are the same binaries anyone in the world could download and use for testing and personal education. JBoss EAP 6 on the other hand are not available for download unless you buy a subscription and get access to the Red Hat enterprise repositories. If you need to test, learn or just start creating your application using Red Hat's middleware software, you should download it from the community website. You are not allowed to download the enterprise version that, according to Red Hat are more secure, reliable and robust. But no one of us want to start the development of a software with an unsecured, unreliable and not scalable middleware right? So what you do? You are "invited" by Red Hat to buy subscriptions from them to get access to the "cool" version of the software. - WebLogic Server 12c prices are publicly available in the Oracle website. If you want to know right now how much WebLogic will cost to your organization, just click here and get access to our price list. In the case of WebLogic, check out the "US Oracle Technology Commercial Price List". Oracle also encourages you to get in touch with a sales representative to discuss discounts that would make possible the investment into our technology. But you are not required to do this, only if you are interested in buying our technology or maybe you want to discuss some discount scenarios. JBoss EAP 6 on the other hand does not have its cost publicly available in Red Hat's website or in any other media, at least is not so easy to get such information. The only link you will possibly find in their website is a "Contact a Sales Representative" link. This is not a very good relationship between an customer and an vendor. This is not an example of transparency, mainly when the software are sold as open. In this situations, customers expects to see the software prices publicly available, so they can have the chance to decide, based on the existing features of the software, if the cost is fair or not. Conclusion Oracle WebLogic is the most mature, secure, reliable and scalable Java EE application server of the market, and have a proven record of success around the globe to prove it's majority. Don't lose the chance to discover today how WebLogic could fit your needs and sustain your global IT middleware strategy, no matter if your strategy are completely based on the Cloud or not.

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

< Previous Page | 133 134 135 136 137 138 139 140 141 142 143 144  | Next Page >