Search Results

Search found 3454 results on 139 pages for 'offer'.

Page 138/139 | < Previous Page | 134 135 136 137 138 139  | Next Page >

  • I don't get prices with Amazon Product Advertising API

    - by Xarem
    I try to get prices of an ASIN number with the Amazon Product Advertising API. Code: $artNr = "B003TKSD8E"; $base_url = "http://ecs.amazonaws.de/onca/xml"; $params = array( 'AWSAccessKeyId' => self::API_KEY, 'AssociateTag' => self::API_ASSOCIATE_TAG, 'Version' => "2010-11-01", 'Operation' => "ItemLookup", 'Service' => "AWSECommerceService", 'Condition' => "All", 'IdType' => 'ASIN', 'ItemId' => $artNr); $params['Timestamp'] = gmdate("Y-m-d\TH:i:s.\\0\\0\\0\\Z", time()); $url_parts = array(); foreach(array_keys($params) as $key) $url_parts[] = $key . "=" . str_replace('%7E', '~', rawurlencode($params[$key])); sort($url_parts); $url_string = implode("&", $url_parts); $string_to_sign = "GET\necs.amazonaws.de\n/onca/xml\n" . $url_string; $signature = hash_hmac("sha256", $string_to_sign, self::API_SECRET, TRUE); $signature = urlencode(base64_encode($signature)); $url = $base_url . '?' . $url_string . "&Signature=" . $signature; $response = file_get_contents($url); $parsed_xml = simplexml_load_string($response); I think this should be correct - but I don't get offers in the response: SimpleXMLElement Object ( [OperationRequest] => SimpleXMLElement Object ( [RequestId] => ************************* [Arguments] => SimpleXMLElement Object ( [Argument] => Array ( [0] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => Condition [Value] => All ) ) [1] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => Operation [Value] => ItemLookup ) ) [2] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => Service [Value] => AWSECommerceService ) ) [3] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => ItemId [Value] => B003TKSD8E ) ) [4] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => IdType [Value] => ASIN ) ) [5] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => AWSAccessKeyId [Value] => ************************* ) ) [6] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => Timestamp [Value] => 2011-11-29T01:32:12.000Z ) ) [7] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => Signature [Value] => ************************* ) ) [8] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => AssociateTag [Value] => ************************* ) ) [9] => SimpleXMLElement Object ( [@attributes] => Array ( [Name] => Version [Value] => 2010-11-01 ) ) ) ) [RequestProcessingTime] => 0.0091540000000000 ) [Items] => SimpleXMLElement Object ( [Request] => SimpleXMLElement Object ( [IsValid] => True [ItemLookupRequest] => SimpleXMLElement Object ( [Condition] => All [IdType] => ASIN [ItemId] => B003TKSD8E [ResponseGroup] => Small [VariationPage] => All ) ) [Item] => SimpleXMLElement Object ( [ASIN] => B003TKSD8E [DetailPageURL] => http://www.amazon.de/Apple-iPhone-4-32GB-schwarz/dp/B003TKSD8E%3FSubscriptionId%3DAKIAI6NFQHK2DQIPRUEQ%26tag%3Dbanholzerme-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3DB003TKSD8E [ItemLinks] => SimpleXMLElement Object ( [ItemLink] => Array ( [0] => SimpleXMLElement Object ( [Description] => Add To Wishlist [URL] => http://www.amazon.de/gp/registry/wishlist/add-item.html%3Fasin.0%3DB003TKSD8E%26SubscriptionId%3DAKIAI6NFQHK2DQIPRUEQ%26tag%3Dbanholzerme-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D12738%26creativeASIN%3DB003TKSD8E ) [1] => SimpleXMLElement Object ( [Description] => Tell A Friend [URL] => http://www.amazon.de/gp/pdp/taf/B003TKSD8E%3FSubscriptionId%3DAKIAI6NFQHK2DQIPRUEQ%26tag%3Dbanholzerme-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D12738%26creativeASIN%3DB003TKSD8E ) [2] => SimpleXMLElement Object ( [Description] => All Customer Reviews [URL] => http://www.amazon.de/review/product/B003TKSD8E%3FSubscriptionId%3DAKIAI6NFQHK2DQIPRUEQ%26tag%3Dbanholzerme-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D12738%26creativeASIN%3DB003TKSD8E ) [3] => SimpleXMLElement Object ( [Description] => All Offers [URL] => http://www.amazon.de/gp/offer-listing/B003TKSD8E%3FSubscriptionId%3DAKIAI6NFQHK2DQIPRUEQ%26tag%3Dbanholzerme-20%26linkCode%3Dxm2%26camp%3D2025%26creative%3D12738%26creativeASIN%3DB003TKSD8E ) ) ) [ItemAttributes] => SimpleXMLElement Object ( [Manufacturer] => Apple Computer [ProductGroup] => CE [Title] => Apple iPhone 4 32GB schwarz ) ) ) ) Can someone please explain me why I don't get any price-information? Thank you very much

    Read the article

  • Copying one form's values to another form using JQuery

    - by rsturim
    I have a "shipping" form that I want to offer users the ability to copy their input values over to their "billing" form by simply checking a checkbox. I've coded up a solution that works -- but, I'm sort of new to jQuery and wanted some criticism on how I went about achieving this. Is this well done -- any refactorings you'd recommend? Any advice would be much appreciated! The Script <script type="text/javascript"> $(function() { $("#copy").click(function() { if($(this).is(":checked")){ var $allShippingInputs = $(":input:not(input[type=submit])", "form#shipping"); $allShippingInputs.each(function() { var billingInput = "#" + this.name.replace("ship", "bill"); $(billingInput).val($(this).val()); }) //console.log("checked"); } else { $(':input','#billing') .not(':button, :submit, :reset, :hidden') .val('') .removeAttr('checked') .removeAttr('selected'); //console.log("not checked") } }); }); </script> The Form <div> <form action="" method="get" name="shipping" id="shipping"> <fieldset> <legend>Shipping</legend> <ul> <li> <label for="ship_first_name">First Name:</label> <input type="text" name="ship_first_name" id="ship_first_name" value="John" size="" /> </li> <li> <label for="ship_last_name">Last Name:</label> <input type="text" name="ship_last_name" id="ship_last_name" value="Smith" size="" /> </li> <li> <label for="ship_state">State:</label> <select name="ship_state" id="ship_state"> <option value="RI">Rhode Island</option> <option value="VT" selected="selected">Vermont</option> <option value="CT">Connecticut</option> </select> </li> <li> <label for="ship_zip_code">Zip Code</label> <input type="text" name="ship_zip_code" id="ship_zip_code" value="05401" size="8" /> </li> <li> <input type="submit" name="" /> </li> </ul> </fieldset> </form> </div> <div> <form action="" method="get" name="billing" id="billing"> <fieldset> <legend>Billing</legend> <ul> <li> <input type="checkbox" name="copy" id="copy" /> <label for="copy">Same of my shipping</label> </li> <li> <label for="bill_first_name">First Name:</label> <input type="text" name="bill_first_name" id="bill_first_name" value="" size="" /> </li> <li> <label for="bill_last_name">Last Name:</label> <input type="text" name="bill_last_name" id="bill_last_name" value="" size="" /> </li> <li> <label for="bill_state">State:</label> <select name="bill_state" id="bill_state"> <option>-- Choose State --</option> <option value="RI">Rhode Island</option> <option value="VT">Vermont</option> <option value="CT">Connecticut</option> </select> </li> <li> <label for="bill_zip_code">Zip Code</label> <input type="text" name="bill_zip_code" id="bill_zip_code" value="" size="8" /> </li> <li> <input type="submit" name="" /> </li> </ul> </fieldset> </form> </div>

    Read the article

  • Link List Implementation Help - Visual C++

    - by Greenhouse Gases
    Hi there I'm trying to implement a link list which stores the city name (though you will see this commented out as I need to resolve the issue of not being able to use string and needing to use a primitive data type instead during the declaration), longitude, latitude and of course a pointer to the next node in the chain. I am new to the Visual C++ environment and my brain is somewhat scrambled after coding for several straight hours today so I wondered if anyone could help resolve the 2 errors I am getting (ignore the #include syntax as I had to change them to avoid the browser interpreting html!): 1U08221.obj : error LNK2028: unresolved token (0A000298) "public: __thiscall Locations::Locations(void)" (??0Locations@@$$FQAE@XZ) referenced in function "int __clrcall main(cli::array^)" (?main@@$$HYMHP$01AP$AAVString@System@@@Z) 1U08221.obj : error LNK2019: unresolved external symbol "public: __thiscall Locations::Locations(void)" (??0Locations@@$$FQAE@XZ) referenced in function "int __clrcall main(cli::array^)" (?main@@$$HYMHP$01AP$AAVString@System@@@Z) The code for my header file is here: include string struct locationNode { //char[10] nodeCityName; double nodeLati; double nodeLongi; locationNode* Next; }; class Locations { private: int size; public: Locations(); // constructor for the class locationNode* Head; int Add(locationNode* Item); }; and here is the code for the file containing the main method: // U08221.cpp : main project file. include "stdafx.h" include "Locations.h" include iostream include string using namespace std; int n = 0; int x; string cityNameInput; bool acceptedInput = false; int Locations::Add(locationNode *NewItem) { locationNode *Sample = new locationNode; Sample = NewItem; Sample-Next = Head; Head = Sample; return size++; } void CorrectCase(string name) // Correct upper and lower case letters of input { x = name.size(); int firstLetVal = name[0], letVal; n = 1; // variable for name index from second letter onwards if((name[0] 90) && (name[0] < 123)) // First letter is lower case { firstLetVal = firstLetVal - 32; // Capitalise first letter name[0] = firstLetVal; } while(n <= x - 1) { if((name[n] = 65) && (name[n] <= 90)) { letVal = name[n] + 32; name[n] = letVal; } n++; } cityNameInput = name; } void nameValidation(string name) { n = 0; // start from first letter x = name.size(); while(!acceptedInput) { if((name[n] = 65) && (name[n] <= 122)) // is in the range of letters { while(n <= x - 1) { while((name[n] =91) && (name[n] <=97)) // ERROR!! { cout << "Please enter a valid city name" << endl; cin name; } n++; } } else { cout << "Please enter a valid city name" << endl; cin name; } if(n <= x - 1) { acceptedInput = true; } } cityNameInput = name; } int main(array ^args) { cout << "Enter a city name" << endl; cin cityNameInput; nameValidation(cityNameInput); // check is made up of valid characters CorrectCase(cityNameInput); // corrects name to standard format of capitalised first letter, and lower case subsequent letters cout << cityNameInput; cin cityNameInput; Locations::Locations(); Locations *Parts = new Locations(); locationNode *Part; Part = new locationNode; //Part-nodeCityName = "London"; Part-nodeLati = 87; Part-nodeLongi = 80; Parts-Add(Part); } I am familiar with the concepts but somewhat inexperienced with OOP so am making some silly errors that you can never find when you've stared at something too long. Any help you can offer will be appreciated! Thanks

    Read the article

  • problem in displays data in one page

    - by user318068
    hi ,,,,, I have a problem in the following code ... The following code works as follows displays the invites for each member so that if he had five invite from supposed to be displayed all on one page But before you code that does not function Proper image is the only display one invite on the page and until the approval or rejection of the invitation displays the invite the other .... But this is not my want to offer all on one page I wish I could solve the problem and I can view all calls in one page I think that the problem is in the order code I think that the problem is in the order code my code : <?php session_start(); if (!isset($_SESSION['user_id'])) { header("Location: login.php"); } $id=$_SESSION['user_id']; ?> <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> <html xmlns="http://www.w3.org/1999/xhtml"> <head> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> <title>Untitled Document</title> </head> <body> <center> <?php include("connect.php"); $sql =mysql_query("select * from ninvite where recieverMemberID ='$id' and viwed= '0'"); $num =mysql_num_rows($sql); echo $num ; if ($num>0) { while($row=mysql_fetch_array($sql)) { $sender=$row['SenderMemberID']; $room=$row['RoomID']; $sql =mysql_query("select MemberName from members where MemberID ='$sender' "); $sql1 =mysql_query("select RoomName from rooms where RoomID ='$room' "); while($row=mysql_fetch_array($sql)) {$mem =$row['MemberName']; } while($rows=mysql_fetch_array($sql1)) { $Ro =$rows['RoomName']; ?> <form action="join.php" method="post"> <label> </label> <br/> <label> <?php echo " you have invite from $mem to join $Ro"; ?> </label> <br/><br/> <label>accept</label> <input name="radio1" type="radio" value="accpet" /> <label>reject</label> <input name="radio1" type="radio" value="Reject" /><br/> <input type="submit" name="submit" value="done" /> </form> <?php } } } ?> </center> </body> </html> thanks alot. my SQl -- phpMyAdmin SQL Dump -- version 3.2.4 -- http://www.phpmyadmin.net -- Host: localhost -- Generation Time: May 07, 2010 at 12:50 ? -- Server version: 5.1.41 -- PHP Version: 5.3.1 SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO"; /*!40101 SET @OLD_CHARACTER_SET_CLIENT=@@CHARACTER_SET_CLIENT /; /!40101 SET @OLD_CHARACTER_SET_RESULTS=@@CHARACTER_SET_RESULTS /; /!40101 SET @OLD_COLLATION_CONNECTION=@@COLLATION_CONNECTION /; /!40101 SET NAMES utf8 */; -- -- Database: tr -- -- Table structure for table joinroom CREATE TABLE IF NOT EXISTS joinroom ( MemberID int(10) NOT NULL, RoomID int(10) NOT NULL, PRIMARY KEY (MemberID,RoomID) ) ENGINE=MyISAM DEFAULT CHARSET=latin1; -- -- Dumping data for table joinroom INSERT INTO joinroom (MemberID, RoomID) VALUES (28, 1); -- -- Table structure for table members CREATE TABLE IF NOT EXISTS members ( MemberID int(10) unsigned NOT NULL AUTO_INCREMENT, MemberName varchar(20) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL, MemberPass varchar(10) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL, MemberEmail varchar(30) CHARACTER SET utf8 COLLATE utf8_bin NOT NULL, MemberLocation text CHARACTER SET utf8 COLLATE utf8_bin NOT NULL, MemberImg text CHARACTER SET utf8 COLLATE utf8_bin NOT NULL, PRIMARY KEY (MemberID) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=34 ; -- -- Dumping data for table members INSERT INTO members (MemberID, MemberName, MemberPass, MemberEmail, MemberLocation, MemberImg) VALUES (28, 'marwa', '1234', '[email protected]', 'mmmmmm', 'dddddddddd'), (29, 'nora', '1234', '[email protected]', 'fffffffffffgg', 'gggggggggggggg'), (30, 'soso', '1234', '[email protected]', 'ffffffff', 'kkkkkkkkkkkkkkkkkk'), (31, 'gege', '1234', '[email protected]', 'kkkkkkkkkkkkkkkk', 'uuuuuuuuuuuuuuuuu'), (32, 'nono', '1234', '[email protected]', 'ggggggggggggaaaaa', 'aaaaaaaaaaaaaaa'), (33, 'nda', '1234', '[email protected]', 'kkkkkkkkkkkkkkkk', 'ooooooooooooooo'); -- -- Table structure for table ninvite CREATE TABLE IF NOT EXISTS ninvite ( SenderMemberID int(11) NOT NULL AUTO_INCREMENT, recieverMemberID varchar(30) NOT NULL, RoomID int(11) NOT NULL, viwed int(11) NOT NULL, PRIMARY KEY (SenderMemberID,recieverMemberID,RoomID) ) ENGINE=MyISAM DEFAULT CHARSET=latin1 AUTO_INCREMENT=33 ; -- -- Dumping data for table ninvite INSERT INTO ninvite (SenderMemberID, recieverMemberID, RoomID, viwed) VALUES (28, '33', 1, 0), (28, '32', 1, 0), (28, '31', 1, 0); /*!40101 SET CHARACTER_SET_CLIENT=@OLD_CHARACTER_SET_CLIENT /; /!40101 SET CHARACTER_SET_RESULTS=@OLD_CHARACTER_SET_RESULTS /; /!40101 SET COLLATION_CONNECTION=@OLD_COLLATION_CONNECTION */;

    Read the article

  • Sharing Bandwidth and Prioritizing Realtime Traffic via HTB, Which Scenario Works Better?

    - by Mecki
    I would like to add some kind of traffic management to our Internet line. After reading a lot of documentation, I think HFSC is too complicated for me (I don't understand all the curves stuff, I'm afraid I will never get it right), CBQ is not recommend, and basically HTB is the way to go for most people. Our internal network has three "segments" and I'd like to share bandwidth more or less equally between those (at least in the beginning). Further I must prioritize traffic according to at least three kinds of traffic (realtime traffic, standard traffic, and bulk traffic). The bandwidth sharing is not as important as the fact that realtime traffic should always be treated as premium traffic whenever possible, but of course no other traffic class may starve either. The question is, what makes more sense and also guarantees better realtime throughput: Creating one class per segment, each having the same rate (priority doesn't matter for classes that are no leaves according to HTB developer) and each of these classes has three sub-classes (leaves) for the 3 priority levels (with different priorities and different rates). Having one class per priority level on top, each having a different rate (again priority won't matter) and each having 3 sub-classes, one per segment, whereas all 3 in the realtime class have highest prio, lowest prio in the bulk class, and so on. I'll try to make this more clear with the following ASCII art image: Case 1: root --+--> Segment A | +--> High Prio | +--> Normal Prio | +--> Low Prio | +--> Segment B | +--> High Prio | +--> Normal Prio | +--> Low Prio | +--> Segment C +--> High Prio +--> Normal Prio +--> Low Prio Case 2: root --+--> High Prio | +--> Segment A | +--> Segment B | +--> Segment C | +--> Normal Prio | +--> Segment A | +--> Segment B | +--> Segment C | +--> Low Prio +--> Segment A +--> Segment B +--> Segment C Case 1 Seems like the way most people would do it, but unless I don't read the HTB implementation details correctly, Case 2 may offer better prioritizing. The HTB manual says, that if a class has hit its rate, it may borrow from its parent and when borrowing, classes with higher priority always get bandwidth offered first. However, it also says that classes having bandwidth available on a lower tree-level are always preferred to those on a higher tree level, regardless of priority. Let's assume the following situation: Segment C is not sending any traffic. Segment A is only sending realtime traffic, as fast as it can (enough to saturate the link alone) and Segment B is only sending bulk traffic, as fast as it can (again, enough to saturate the full link alone). What will happen? Case 1: Segment A-High Prio and Segment B-Low Prio both have packets to send, since A-High Prio has the higher priority, it will always be scheduled first, till it hits its rate. Now it tries to borrow from Segment A, but since Segment A is on a higher level and Segment B-Low Prio has not yet hit its rate, this class is now served first, till it also hits the rate and wants to borrow from Segment B. Once both have hit their rates, both are on the same level again and now Segment A-High Prio is going to win again, until it hits the rate of Segment A. Now it tries to borrow from root (which has plenty of traffic spare, as Segment C is not using any of its guaranteed traffic), but again, it has to wait for Segment B-Low Prio to also reach the root level. Once that happens, priority is taken into account again and this time Segment A-High Prio will get all the bandwidth left over from Segment C. Case 2: High Prio-Segment A and Low Prio-Segment B both have packets to send, again High Prio-Segment A is going to win as it has the higher priority. Once it hits its rate, it tries to borrow from High Prio, which has bandwidth spare, but being on a higher level, it has to wait for Low Prio-Segment B again to also hit its rate. Once both have hit their rate and both have to borrow, High Prio-Segment A will win again until it hits the rate of the High Prio class. Once that happens, it tries to borrow from root, which has again plenty of bandwidth left (all bandwidth of Normal Prio is unused at the moment), but it has to wait again until Low Prio-Segment B hits the rate limit of the Low Prio class and also tries to borrow from root. Finally both classes try to borrow from root, priority is taken into account, and High Prio-Segment A gets all bandwidth root has left over. Both cases seem sub-optimal, as either way realtime traffic sometimes has to wait for bulk traffic, even though there is plenty of bandwidth left it could borrow. However, in case 2 it seems like the realtime traffic has to wait less than in case 1, since it only has to wait till the bulk traffic rate is hit, which is most likely less than the rate of a whole segment (and in case 1 that is the rate it has to wait for). Or am I totally wrong here? I thought about even simpler setups, using a priority qdisc. But priority queues have the big problem that they cause starvation if they are not somehow limited. Starvation is not acceptable. Of course one can put a TBF (Token Bucket Filter) into each priority class to limit the rate and thus avoid starvation, but when doing so, a single priority class cannot saturate the link on its own any longer, even if all other priority classes are empty, the TBF will prevent that from happening. And this is also sub-optimal, since why wouldn't a class get 100% of the line's bandwidth if no other class needs any of it at the moment? Any comments or ideas regarding this setup? It seems so hard to do using standard tc qdiscs. As a programmer it was such an easy task if I could simply write my own scheduler (which I'm not allowed to do).

    Read the article

  • How to use sudo with WinSCP and ProFTPd?

    - by Gaia
    I need to run the SFTP fileserver binary as root, but direct root login is not allowed. In WinSCP, if I use "default" on SFTP server protocol option everything works as expected. Following the instructions to sudo in WinSCP, I tried using "sudo /usr/sbin/proftpd" (works on the command line without any prompts) but it brings up "Cannot initialize SFTP protocol. Is the host running a SFTP server?" How to use sudo with WinSCP and ProFTPd? WinSCP 4.3.7 GUI Protocol: SFTP-3 CentOS 6.2 Webmin/Virtualmin (Current Version) PS: only cert based login is allowed . 2012-06-17 11:05:56.998 -------------------------------------------------------------------------- . 2012-06-17 11:05:56.998 WinSCP Version 4.3.7 (Build 1679) (OS 6.1.7601 Service Pack 1) . 2012-06-17 11:05:56.998 Configuration: HKEY_CURRENT_USER\Software\Martin Prikryl\WinSCP 2\ . 2012-06-17 11:05:56.999 Login time: Sunday, June 17, 2012 11:05:56 AM . 2012-06-17 11:05:56.999 -------------------------------------------------------------------------- . 2012-06-17 11:05:56.999 Session name: KVM1 (Modified stored session) . 2012-06-17 11:05:57.047 Host name: mykvm.com (Port: 22) . 2012-06-17 11:05:57.048 User name: adminuser (Password: No, Key file: Yes) . 2012-06-17 11:05:57.048 Tunnel: No . 2012-06-17 11:05:57.048 Transfer Protocol: SFTP (SCP) . 2012-06-17 11:05:57.048 Ping type: -, Ping interval: 30 sec; Timeout: 15 sec . 2012-06-17 11:05:57.048 Proxy: none . 2012-06-17 11:05:57.048 SSH protocol version: 2; Compression: Yes . 2012-06-17 11:05:57.048 Bypass authentication: No . 2012-06-17 11:05:57.048 Try agent: Yes; Agent forwarding: No; TIS/CryptoCard: No; KI: Yes; GSSAPI: No . 2012-06-17 11:05:57.048 Ciphers: aes,blowfish,3des,WARN,arcfour,des; Ssh2DES: No . 2012-06-17 11:05:57.048 SSH Bugs: -,-,-,-,-,-,-,-,- . 2012-06-17 11:05:57.048 SFTP Bugs: -,- . 2012-06-17 11:05:57.048 Return code variable: Autodetect; Lookup user groups: Yes . 2012-06-17 11:05:57.048 Shell: default . 2012-06-17 11:05:57.048 EOL: 0, UTF: 2 . 2012-06-17 11:05:57.048 Clear aliases: Yes, Unset nat.vars: Yes, Resolve symlinks: Yes . 2012-06-17 11:05:57.048 LS: ls -la, Ign LS warn: Yes, Scp1 Comp: No . 2012-06-17 11:05:57.048 Local directory: default, Remote directory: home, Update: No, Cache: Yes . 2012-06-17 11:05:57.048 Cache directory changes: Yes, Permanent: Yes . 2012-06-17 11:05:57.048 DST mode: 1 . 2012-06-17 11:05:57.048 -------------------------------------------------------------------------- . 2012-06-17 11:05:57.113 Looking up host "mykvm.com" . 2012-06-17 11:05:57.132 Connecting to xxx.xxx.128.59 port 22 . 2012-06-17 11:05:57.499 Server version: SSH-2.0-OpenSSH_5.3 . 2012-06-17 11:05:57.499 Using SSH protocol version 2 . 2012-06-17 11:05:57.499 We claim version: SSH-2.0-WinSCP_release_4.3.7 . 2012-06-17 11:05:57.679 Server supports delayed compression; will try this later . 2012-06-17 11:05:57.679 Doing Diffie-Hellman group exchange . 2012-06-17 11:05:58.077 Doing Diffie-Hellman key exchange with hash SHA-1 . 2012-06-17 11:05:58.498 Host key fingerprint is: . 2012-06-17 11:05:58.498 ssh-rsa 2048 bd:e4:34:b1:d4:69:d6:4e:e4:26:04:8b:b7:b3:de:c3 . 2012-06-17 11:05:58.498 Initialised AES-256 SDCTR client->server encryption . 2012-06-17 11:05:58.498 Initialised HMAC-SHA1 client->server MAC algorithm . 2012-06-17 11:05:58.498 Initialised AES-256 SDCTR server->client encryption . 2012-06-17 11:05:58.498 Initialised HMAC-SHA1 server->client MAC algorithm . 2012-06-17 11:05:58.922 Reading private key file "D:\id_rsa.ppk" ! 2012-06-17 11:05:58.924 Using username "adminuser". . 2012-06-17 11:05:59.550 Offered public key . 2012-06-17 11:05:59.743 Offer of public key accepted ! 2012-06-17 11:05:59.743 Authenticating with public key "masterkey for admin" . 2012-06-17 11:05:59.764 Prompt (3, SSH key passphrase, , Passphrase for key "masterkey for admin": ) . 2012-06-17 11:06:02.938 Sent public key signature . 2012-06-17 11:06:03.352 Access granted . 2012-06-17 11:06:03.352 Initiating key re-exchange (enabling delayed compression) . 2012-06-17 11:06:03.765 Doing Diffie-Hellman group exchange . 2012-06-17 11:06:03.955 Doing Diffie-Hellman key exchange with hash SHA-1 . 2012-06-17 11:06:04.410 Initialised AES-256 SDCTR client->server encryption . 2012-06-17 11:06:04.410 Initialised HMAC-SHA1 client->server MAC algorithm . 2012-06-17 11:06:04.410 Initialised zlib (RFC1950) compression . 2012-06-17 11:06:04.410 Initialised AES-256 SDCTR server->client encryption . 2012-06-17 11:06:04.410 Initialised HMAC-SHA1 server->client MAC algorithm . 2012-06-17 11:06:04.410 Initialised zlib (RFC1950) decompression . 2012-06-17 11:06:04.839 Opened channel for session . 2012-06-17 11:06:05.247 Started a shell/command . 2012-06-17 11:06:05.253 -------------------------------------------------------------------------- . 2012-06-17 11:06:05.253 Using SFTP protocol. . 2012-06-17 11:06:05.253 Doing startup conversation with host. > 2012-06-17 11:06:05.259 Type: SSH_FXP_INIT, Size: 5, Number: -1 . 2012-06-17 11:06:05.354 Server sent command exit status 0 . 2012-06-17 11:06:05.354 Disconnected: All channels closed * 2012-06-17 11:06:05.380 (ESshFatal) Connection has been unexpectedly closed. Server sent command exit status 0. * 2012-06-17 11:06:05.380 Cannot initialize SFTP protocol. Is the host running a SFTP server?

    Read the article

  • E-Business Suite Technology Sessions at OpenWorld 2012

    - by Max Arderius
    Oracle OpenWorld 2012 is almost here! We're looking forward to updating you on our products, strategy, and roadmaps. This year, the E-Business Suite Applications Technology Group (ATG) will participate in 25 speaker sessions, two Meet the Experts round-table discussions, five demoground booths and seven Special Interest Group meetings as guest speakers. We hope to see you at our sessions.  Please join us to hear the latest news and connect with senior ATG development staff. Here's a downloadable listing of all Applications Technology Group-related sessions with times and locations: FOCUS ON Oracle E-Business Suite - Applications Tools and Technology (PDF) General Sessions GEN8474 - Oracle E-Business Suite - Strategy, Update, and RoadmapCliff Godwin, SVP, Oracle Monday, Oct 1, 12:15 PM - 1:15 PM - Moscone West 2002/2004 In this session, hear Oracle E-Business Suite General Manager Cliff Godwin deliver an update on the Oracle E-Business Suite product line. This session covers the value delivered by the current release of Oracle E-Business Suite, the momentum, and how Oracle E-Business Suite applications integrate into Oracle’s overall applications strategy. You’ll come away with an understanding of the value Oracle E-Business Suite applications deliver now and will deliver in the future. GEN9173 - Optimize and Extend Oracle Applications - The Path to Oracle Fusion ApplicationsNadia Bendjedou, Oracle; Corre Curtice, Bhavish Madurai (CSC) Tuesday, Oct 2, 10:15 AM - 11:15 AM - Moscone West 3002/3004 One of the main objectives of this session is to help organizations build their IT roadmap for the next five years and be aligned with the Oracle Applications strategy in general and the Oracle Fusion Applications strategy in particular. Come hear about some of the common sense, practical steps you can take to optimize the performance of your Oracle Applications today and prepare your path to Oracle Fusion Applications for when your organization is ready to embrace them. Each step you take in adopting Oracle Fusion technology gets you partway to Oracle Fusion Applications. Conference Sessions CON9024 - Oracle E-Business Suite Technology: Latest Features and Roadmap Lisa Parekh, Oracle Monday, Oct 1, 10:45 AM - 11:45 AM - Moscone West 2016 This Oracle development session provides a comprehensive overview of Oracle’s product strategy for Oracle E-Business Suite technology, the capabilities and associated business benefits of recent releases, and a review of capabilities on the product roadmap. This is the cornerstone session for the Oracle E-Business Suite technology stack. Come hear about the latest new usability enhancements of the user interface; systems administration and configuration management tools; security-related updates; and tools and options for extending, customizing, and integrating Oracle E-Business Suite with other applications. CON9021 - Oracle E-Business Suite Future Directions: Deployment and System AdministrationMax Arderius, Oracle Monday, Oct 1, 3:15 PM - 4:15 PM - Moscone West 2016  What’s coming in the next major version of Oracle E-Business Suite 12? This Oracle Development session covers the latest technology stack, including the use of Oracle WebLogic Server (Oracle Fusion Middleware 11g) and Oracle Database 11g Release 2 (11.2). Topics include an architectural overview of the latest updates, installation and upgrade options, new configuration options, and new tools for hot cloning and automated “lights-out” cloning. Come learn how online patching (based on the Oracle Database 11g Release 2 Edition-Based Redefinition feature) will reduce your database patching downtimes to however long it takes to bounce your database server. CON9017 - Desktop Integration in Oracle E-Business Suite 12.1 Padmaprabodh Ambale, Gustavo Jimenez, Oracle Monday, Oct 1, 4:45 PM - 5:45 PM - Moscone West 2016 This presentation covers the latest functional enhancements in Oracle Web Applications Desktop Integrator and Oracle Report Manager, enhanced Microsoft Office support, and greater support for building custom desktop integration solutions. The session also presents tips and tricks for upgrading from Oracle Applications Desktop Integrator to Oracle Web Applications Desktop Integrator and Oracle Report Manager. CON9023 - Oracle E-Business Suite Technology Certification Primer and Roadmap Steven Chan, Oracle Tuesday, Oct 2, 10:15 AM - 11:15 AM - Moscone West 2016  Is your Oracle E-Business Suite technology stack up to date? Are you taking advantage of all the latest options and capabilities? This Oracle development session summarizes the latest certifications and roadmap for the Oracle E-Business Suite technology stack, including elements such as database releases and options, Java, Oracle Forms, Oracle Containers for J2EE, desktop operating systems, browsers, JRE releases, development and Web authoring tools, user authentication and management, business intelligence, Oracle Application Management Packs, security options, clouds, Oracle VM, and virtualization. The session also covers the most commonly asked questions about tech stack component support dates and upgrade implications. CON9028 - Minimizing Oracle E-Business Suite Maintenance DowntimesSantiago Bastidas, Elke Phelps, Oracle Tuesday, Oct 2, 11:45 AM - 12:45 PM - Moscone West 2016 This Oracle development session features a survey of the best techniques sysadmins can use to minimize patching downtimes. It starts with an architectural-level review of Oracle E-Business Suite fundamentals and then moves to a practical view of the various tools and approaches for downtimes. Topics include patching shortcuts, merging patches, distributing worker processes across multiple servers, running ADPatch in noninteractive mode, staged APPL_TOPs, shared file systems, deferring systemwide database tasks, avoiding resource bottlenecks, and more. An added bonus: hear about the upcoming Oracle E-Business Suite 12 online patching capabilities based on the groundbreaking Oracle Database 11g Release 2 Edition-Based Redefinition feature. CON9116 - Extending the Use of Oracle E-Business Suite with the Oracle Endeca PlatformOsama Elkady, Muhannad Obeidat, Oracle Tuesday, Oct 2, 11:45 AM - 12:45 PM - Moscone West 2018 The Oracle Endeca platform includes a leading unstructured data correlation and analytics engine, together with a best-in class catalog search and guided navigation solution, to improve the productivity of all types of users in your enterprise. This development session focuses on the details behind the Oracle Endeca platform’s integration into Oracle E-Business Suite. It demonstrates how easily you can extend the use of the Oracle Endeca platform into other areas of Oracle E-Business Suite and how you can bring in your own data and build new Oracle Endeca applications for Oracle E-Business Suite. CON9005 - Oracle E-Business Suite Integration Best PracticesVeshaal Singh, Oracle, Jeffrey Hand, Zebra Technologies Tuesday, Oct 2, 1:15 PM - 2:15 PM - Moscone West 2018 Oracle is investing across applications and technologies to make the application integration experience easier for customers. Today Oracle has certified Oracle E-Business Suite on Oracle Fusion Middleware 11g and provides a comprehensive set of integration technologies. Learn about Oracle’s integration offering across data- and process-centric integrations. These technologies can be used to address various application integration challenges and styles. In this session, you will get an understanding of how, when, and where you can leverage Oracle’s integration technologies to connect end-to-end business processes across your enterprise, including your Oracle Applications portfolio.  CON9026 - Latest Oracle E-Business Suite 12.1 User Interface and Usability EnhancementsPadmaprabodh Ambale, Oracle Tuesday, Oct 2, 1:15 PM - 2:15 PM - Moscone West 2016 This Oracle development session details the latest UI enhancements to Oracle Application Framework in Oracle E-Business Suite 12.1. Developers will get a detailed look at new features to enhance usability, offer more capabilities for personalization and extensions, and support the development and use of dashboards and Web services. Topics include new rich UI capabilities such as new home page features, Navigator and Favorites pull-down menus, REST interface, embedded widgets for analytics content, Oracle Application Development Framework (Oracle ADF) task flows, third-party widgets, a look-ahead list of values, inline attachments, pop-ups, personalization and extensibility enhancements, business layer extensions, Oracle ADF integration, and mobile devices. CON8805 - Planning Your Oracle E-Business Suite Upgrade from 11i to Release 12.1 and BeyondAnne Carlson, Oracle Tuesday, Oct 2, 5:00 PM - 6:00 PM - Moscone West 3002/3004 Attend this session to hear the latest Oracle E-Business Suite 12.1 upgrade planning tips from Oracle’s support, consulting, development, and IT organizations. You’ll get specific cross-product advice on how to understand the factors that affect your project’s duration, decide on your project’s scope, develop a robust testing strategy, leverage Oracle Support resources, and more. In a nutshell, this session tells you things you need to know before embarking upon your Release 12.1 upgrade project. CON9053 - Advanced Management of Oracle E-Business Suite with Oracle Enterprise ManagerAngelo Rosado, Oracle Tuesday, Oct 2, 5:00 PM - 6:00 PM - Moscone West 2016 The task of managing and monitoring Oracle E-Business Suite environments can be very challenging. Oracle Enterprise Manager is the only product on the market that is designed to monitor and manage all the different technologies that constitute Oracle E-Business Suite applications, including end user, midtier, configuration, host, and database management—to name just a few. Customers that have implemented Oracle Enterprise Manager have experienced dramatic improvements in system visibility and diagnostic capability as well as administrator productivity. The purpose of this session is to highlight the key features and benefits of Oracle Enterprise Manager and Oracle Application Management Suite for Oracle E-Business Suite. CON8809 - Oracle E-Business Suite 12.1 Upgrade Best Practices: Technical InsightIsam Alyousfi, Udayan Parvate, Oracle Wednesday, Oct 3, 10:15 AM - 11:15 AM - Moscone West 3011 This session is ideal for organizations thinking about upgrading to Oracle E-Business Suite 12.1. It covers the fundamentals of upgrading to Release 12.1, including the technology stack components and supported upgrade paths. Hear from Oracle Development about the set of best practices for patching in general and executing the Release 12.1 technical upgrade, with special considerations for minimizing your downtime. Also get to know about relatively recent upgrade resources. CON9032 - Upgrading Your Customizations of Oracle E-Business Suite 12.1Sara Woodhull, Oracle Wednesday, Oct 3, 10:15 AM - 11:15 AM - Moscone West 2016 Have you personalized Oracle Forms or Oracle Application Framework screens in Oracle E-Business Suite? Have you used mod_plsql in Release 11i? Have you extended or customized your Release 11i environment with other tools? The technical options for upgrading these customizations as part of your Oracle E-Business Suite Release 12.1 upgrade can be bewildering. Come to this Oracle development session to learn about selecting the best upgrade approach for your existing customizations. The session will help you understand customization scenarios and use cases, tools, and technologies to ensure that your Oracle E-Business Suite Release 12.1 environment fits your users’ needs closely and that any future customizations will be easy to upgrade. CON9259 - Oracle E-Business Suite Internationalization and Multilingual FeaturesMaher Al-Nubani, Oracle Wednesday, Oct 3, 10:15 AM - 11:15 AM - Moscone West 2018 Oracle E-Business Suite supports more countries, languages, and regions than ever. Come to this Oracle development session to get an overview of internationalization features and capabilities and see new Release 12 features such as calendar support for Hijra and Thai, new group separators, lightweight multilingual support (MLS) setup, new character sets such as AL32UTF, newly supported languages, Mac certifications, Oracle iSetup support for moving MLS setups, new file export options for Unicode, new MLS number spelling options, and more. CON7188 - Mobile Apps for Oracle E-Business Suite with Oracle ADF Mobile and Oracle SOA SuiteSrikant Subramaniam, Joe Huang, Veshaal Singh, Oracle Wednesday, Oct 3, 10:15 AM - 11:15 AM - Moscone West 3001 Follow your mobile customers, employees, and partners with Oracle Fusion Middleware. See how native iPhone and iPad applications can easily be built for Oracle E-Business Suite with the new Oracle ADF Mobile and Oracle SOA Suite. Using Oracle ADF Mobile, developers can quickly develop native applications for Apple iOS and other mobile platforms. The Oracle SOA Suite/Oracle ADF Mobile combination can execute business transactions on Oracle E-Business Suite. This session includes a demo in which a mobile user approves a business transaction in Oracle E-Business Suite and a demo of the tools used to build a native on-device solution. These concepts for mobile applications also apply to other Oracle applications.CON9029 - Oracle E-Business Suite Directions: Slashing Downtimes with Online PatchingKevin Hudson, Oracle Wednesday, Oct 3, 11:45 AM - 12:45 PM - Moscone West 2016 Oracle E-Business Suite will soon include online patching (based on the Oracle Database 11g Release 2 Edition-Based Redefinition feature), which will reduce your database patching downtimes to however long it takes to bounce your database server. This Oracle development session details how online patching works, with special attention to what’s happening at a database object level when database patches are applied to an Oracle E-Business Suite environment that’s still running. Come learn about the operational and system management implications for minimizing maintenance downtimes when applying database patches with this new technology and the related impact on customizations you might have built on top of Oracle E-Business Suite. CON8806 - Upgrading to Oracle E-Business Suite 12.1: Technical and Functional PanelAndrew Katz, Komori America Corporation; Sandra Vucinic, VLAD Group, Inc. ;Srini Chavali, Cummins Inc.; Amrita Mehrok, Nadia Bendjedou, Anne Carlson Oracle Wednesday, Oct 3, 1:15 PM - 2:15 PM - Moscone West 2018 In this panel discussion, Oracle experts, customers, and partners share their experiences in upgrading to the latest release of Oracle E-Business Suite, Release 12.1. The panelists cover aspects of a typical Release 12 upgrade, technical (upgrading the technical infrastructure) as well as functional (upgrading to the new financial infrastructure). Hear directly from the experts who either develop the product or support, implement, or upgrade it, and find out how to apply their lessons learned to your organization. CON9027 - Personalize and Extend Oracle E-Business Suite Applications with Rich MashupsGustavo Jimenez, Padmaprabodh Ambale, Oracle Wednesday, Oct 3, 1:15 PM - 2:15 PM - Moscone West 2016 This session covers the use of several Oracle Fusion Middleware technologies to personalize and extend your existing Oracle E-Business Suite applications. The Oracle Fusion Middleware technologies covered include Oracle Application Development Framework (Oracle ADF), Oracle WebCenter, Oracle Endeca applications, and Oracle Business Intelligence Enterprise Edition with Oracle E-Business Suite Oracle Application Framework applications. CON9036 - Advanced Oracle E-Business Suite Architectures: Maximum Availability, Security, and MoreElke Phelps, Oracle Wednesday, Oct 3, 3:30 PM - 4:30 PM - Moscone West 2016 This session includes architecture diagrams and configuration instructions for building a maximum availability architecture (MAA) that will help you design a disaster recovery solution that fits the needs of your business. Database and application high-availability features it describes include Oracle Data Guard, Oracle Real Application Clusters (Oracle RAC), Oracle Active Data Guard, load-balancing Web and forms services, parallel concurrent processing, and the use of Oracle Exalogic and Oracle Exadata to provide a highly available environment. The session also covers the latest updates to systems management tools, AutoConfig, cloud computing, virtualization, and Oracle WebLogic Server and provides sneak previews of upcoming functionality. CON9047 - Efficiently Scaling Oracle E-Business Suite on Oracle Exadata and Oracle ExalogicIsam Alyousfi, Nishit Rao, Oracle Wednesday, Oct 3, 5:00 PM - 6:00 PM - Moscone West 2016 Oracle Exadata and Oracle Exalogic are designed from the ground up with optimizations in software and hardware to deliver superfast performance for mission-critical applications such as Oracle E-Business Suite. Oracle E-Business Suite applications run three to eight times as fast on the Oracle Exadata/Oracle Exalogic platform in standard benchmark tests. Besides performance, customers benefit from simplified support, enhanced manageability, and the ability to consolidate multiple Oracle E-Business Suite instances. Attend this session to understand best practices for Oracle E-Business Suite deployment on Oracle Exalogic and Oracle Exadata through customer case studies. Learn how adopting the Exa* platform increases efficiency, simplifies scaling, and boosts performance for peak loads. CON8716 - Web Services and SOA Integration Options for Oracle E-Business SuiteRekha Ayothi, Veshaal Singh, Oracle Thursday, Oct 4, 11:15 AM - 12:15 PM - Moscone West 2016 This Oracle development session provides a deep dive into a subset of the Web services and SOA-related integration options available to Oracle E-Business Suite systems integrators. It offers a technical look at Oracle E-Business Suite Integrated SOA Gateway, Oracle SOA Suite, Oracle Application Adapters for Data Integration for Oracle E-Business Suite, and other Web services options for integrating Oracle E-Business Suite with other applications. Systems integrators and developers will get an overview of the latest integration capabilities and technologies available out of the box with Oracle E-Business Suite and possibly a sneak preview of upcoming functionality and features. CON9030 - Recommendations for Oracle E-Business Suite Performance TuningIsam Alyousfi, Samer Barakat, Oracle Thursday, Oct 4, 11:15 AM - 12:15 PM - Moscone West 2018 Need to squeeze more performance out of your existing servers? This packed Oracle development session summarizes practical tips and lessons learned from performance-tuning and benchmarking the world’s largest Oracle E-Business Suite environments. Apps sysadmins will learn concrete tips and techniques for identifying and resolving performance bottlenecks on all layers, with special attention to application- and database-tier servers. Learn about tuning Oracle Forms, Oracle Concurrent Manager, Apache, and Oracle Discoverer. Track down memory leaks and other issues at the Java and JVM layers. The session also covers Oracle E-Business Suite product-level tuning, including Oracle Workflow, Oracle Order Management, Oracle Payroll, and other modules. CON3429 - Using Oracle ADF with Oracle E-Business Suite: The Full Integration ViewSiva Puthurkattil, Lake County; Juan Camilo Ruiz, Sara Woodhull, Oracle Thursday, Oct 4, 11:15 AM - 12:15 PM - Moscone West 3003 Oracle E-Business Suite delivers functionality for handling the core business of your organization. However, user requirements and new technologies are driving an emerging need to implement new types of user interfaces for these applications. This session provides an overview of how to use Oracle Application Development Framework (Oracle ADF) to deliver cutting-edge Web 2.0 and mobile rich user interfaces that front existing Oracle E-Business Suite processes, and it also explores all the existing types of integration between the two worlds. CON9020 - Integrating Oracle E-Business Suite with Oracle Identity Management SolutionsSunil Ghosh, Elke Phelps, Oracle Thursday, Oct 4, 12:45 PM - 1:45 PM - Moscone West 2016 Need to integrate Oracle E-Business Suite with Microsoft Windows Kerberos, Active Directory, CA Netegrity SiteMinder, or other third-party authentication systems? Want to understand your options when Oracle Premier Support for Oracle Single Sign-On ends in December 2011? This Oracle Development session covers the latest certified integrations with Oracle Access Manager 11g and Oracle Internet Directory 11g, which can be used individually or as bridges for integrating with third-party authentication solutions. The session presents an architectural overview of how Oracle Access Manager, its WebGate and AccessGate components, and Oracle Internet Directory work together, with implications for Oracle Discoverer, Oracle Portal, and other Oracle Fusion identity management products. CON9019 - Troubleshooting, Diagnosing, and Optimizing Oracle E-Business Suite TechnologyGustavo Jimenez, Oracle Thursday, Oct 4, 2:15 PM - 3:15 PM - Moscone West 2016 This session covers how you can proactively diagnose Oracle E-Business Suite applications, including extensions built with Oracle Fusion Middleware technologies such as Oracle Application Development Framework (Oracle ADF) and Oracle WebCenter to catch potential issues in the middle tier before they become more serious. Topics include debugging, logging infrastructure, warning signs, performance tuning, information required when logging service requests, general JVM optimization, and an overall picture of all the moving parts that make it possible for Oracle E-Business Suite to isolate and fix problems. Also learn how Oracle Diagnostics Framework will help prevent downtime caused by failures. CON9031 - The Top 10 Things You Can Do to Secure Your Oracle E-Business Suite InstanceEric Bing, Erik Graversen, Oracle Thursday, Oct 4, 2:15 PM - 3:15 PM - Moscone West 2018 Learn the top 10 things you can do to secure your applications and your sensitive data. This Oracle development session for system administrators and security professionals explores some of the most important and overlooked things you can do to secure your Oracle E-Business Suite instance. It also covers data masking and other mechanisms for protecting sensitive data. Special Interest Groups (SIG) Some of our most senior staff have been invited to participate on the following SIG meetings as guest speakers: SIG10525 - OAUG - Archive & Purge SIGBrian Bent - Pre-Sales Engineer, TierData, Inc. Sunday, Sep 30, 10:30 AM - 12:00 PM - Moscone West 3011 The Archive and Purge SIG is an organization in which users can share their experiences and solicit functional and technical advice on archiving and purging data in Oracle E-Business Suite. This session provides an opportunity for users to network and share best practices, tips, and tricks. Guest: Oracle E-Business Suite Database Performance, Archive & Purging - Q&A SessionIsam Alyousfi, Senior Director, Applications Performance, Oracle SIG10547 - OAUG - Oracle E-Business (EBS) Applications Technology SIGSrini Chavali - IT Director, Cummins Inc Sunday, Sep 30, 10:30 AM - 12:00 PM - Moscone West 3018 The general purpose of the EBS Applications Technology SIG is to inform and educate its members about current and future components of the tech stack as they relate to Oracle E-Business Suite. Attend this meeting for networking and education and to share best practices. Guest: Oracle E-Business Suite Technology Certification Roadmap - Presentation and Q&ASteven Chan, Sr. Director, Applications Technology Group, Oracle SIG10559 - OAUG - User Management SIGSusan Behn - VP of Oracle Delivery, Infosemantics, Inc. Sunday, Sep 30, 10:30 AM - 12:00 PM - Moscone West 3024 The E-Business Suite User Management SIG focuses on the components of user management that enable Oracle E-Business Suite users to define administrative functions and manage users’ access to functions and data based on roles within an organization—rather than the user’s individual identity—which is referred to as role-based access control (RBAC). This meeting includes an introduction to Oracle User Management that covers the Oracle User Management building blocks and presents an example of creating a security policy.Guest: Security and User Management - Q&A SessionEric Bing, Sr. Director, EBS Security, OracleSara Woodhull, Principal Product Manager, Applications Technology Group, Oracle SIG10515 - OAUG – Upgrade SIGBarbara Matthews - Consultant, On Call DBASandra Vucinic, VLAD Group, Inc. Sunday, Sep 30, 12:00 PM - 2:00 PM - Moscone West 3009 This Upgrade SIG session starts with a business meeting and then features a Q&A panel discussion on Oracle E-Business Suite upgrade topics. The session• Reviews Upgrade SIG goals and objectives• Provides answers, during the Q&A session, to questions related to Oracle E-Business Suite upgrades• Shares “real world” experiences, tips, and techniques for Oracle E-Business Suite upgrades to Release 12.1. Guest: Oracle E-Business Suite Upgrade - Q&A SessionAnne Carlson - Sr. Director, Oracle E-Business Suite Product Strategy, OracleUdayan Parvate - Director, EBS Release Engineering, OracleSuzana Ferrari, Sr. Principal Consultant, OracleIsam Alyousfi, Sr. Director, Applications Performance, Oracle SIG10552 - OAUG - Oracle E-Business Suite SIGDonna Rosentrater - Manager, Global Sourcing & Procurement Systems, TJX Sunday, Sep 30, 12:15 PM - 1:45 PM - Moscone West 3020 The E-Business Suite SIG, affiliated with OAUG, supports Oracle E-Business Suite users through networking, education, and sharing of best practices. This SIG meeting will feature a general discussion of Oracle E-Business Suite product strategies in Release 12 and migration to Oracle Fusion Applications. Guest: Oracle E-Business Suite - Q&A SessionJeanne Lowell, Vice President, EBS Product Strategy, OracleNadia Bendjedou, Sr. Director, Product Strategy, Oracle SIG10556 - OAUG - SysAdmin SIGRandy Giefer - Sr Systems and Security Architect, Solution Beacon, LLC Sunday, Sep 30, 12:15 PM - 1:45 PM - Moscone West 3022 The SysAdmin SIG provides a forum in which OAUG members and participants can share updates, tips, and successful practices relating to system administration in an Oracle applications environment. The SysAdmin SIG strives to enable system administrators to become more effective and efficient in their jobs by providing them with access to people and information that can increase their system administration knowledge and experience. Attend this meeting to network, share best practices, and benefit from educational content. Guest: Oracle E-Business Suite 12.2 Online Patching- Presentation and Q&AKevin Hudson, Sr. Director, Applications Technology Group, Oracle SIG10553 - OAUG - Database SIGMichael Brown - Senior DBA, COLIBRI LTD LC Sunday, Sep 30, 2:00 PM - 3:15 PM - Moscone West 3020 The OAUG Database SIG provides an opportunity for applications database administrators to learn from and share their experiences with supporting the various Oracle applications environments. This session will include a brief business meeting followed by a short presentation. It will end with an open discussion among the attendees about items of interest to those present. Guest: Oracle E-Business Suite Database Performance - Presentation and Q&AIsam Alyousfi, Sr. Director, Applications Performance, Oracle Meet the Experts We're planning two round-table discussions where you can review your questions with senior E-Business Suite ATG staff: MTE9648 - Meet the Experts for Oracle E-Business Suite: Planning Your Upgrade Jeanne Lowell - VP, EBS Product Strategy, Oracle John Abraham - Sr. Principal Product Manager, Oracle Nadia Bendjedou - Sr. Director - Product Strategy, Oracle Anne Carlson - Sr. Director, Applications Technology Group, Oracle Udayan Parvate - Director, EBS Release Engineering, Oracle Isam Alyousfi, Sr. Director, Applications Performance, Oracle Monday, Oct 1, 3:15 PM - 4:15 PM - Moscone West 2001A Don’t miss this Oracle Applications Meet the Experts session with experts who specialize in Oracle E-Business Suite upgrade best practices. This is the place where attendees can have informal and semistructured but open one-on-one discussions with Strategy and Development regarding Oracle Applications strategy and your specific business and IT strategy. The experts will be available to discuss the value of the latest releases and share insights into the best path for your enterprise, so come ready with your questions. Space is limited, so make sure you register. MTE9649 - Meet the Oracle E-Business Suite Tools and Technology Experts Lisa Parekh - Vice President, Technology Integration, Oracle Steven Chan - Sr. Director, Oracle Elke Phelps - Sr. Principal Product Manager, Applications Technology Group, Oracle Max Arderius - Manager, Applications Technology Group, Oracle Tuesday, Oct 2, 1:15 PM - 2:15 PM - Moscone West 2001A Don’t miss this Oracle Applications Meet the Experts session with experts who specialize in Oracle E-Business Suite technology. This is the place where attendees can have informal and semistructured but open one-on-one discussions with Strategy and Development regarding Oracle Applications strategy and your specific business and IT strategy. The experts will be available to discuss the value of the latest releases and share insights into the best path for your enterprise, so come ready with your questions. Space is limited, so make sure you register. Demos We have five booths in the exhibition demogrounds this year, where you can try ATG technologies firsthand and get your questions answered. Please stop by and meet our staff at the following locations: Advanced Architecture and Technology Stack for Oracle E-Business Suite (W-067) New User Productivity Capabilities in Oracle E-Business Suite (W-065) End-to-End Management of Oracle E-Business Suite (W-063) Oracle E-Business Suite 12.1 Technical Upgrade Best Practices (W-066) SOA-Based Integration for Oracle E-Business Suite (W-064)

    Read the article

  • Using BPEL Performance Statistics to Diagnose Performance Bottlenecks

    - by fip
    Tuning performance of Oracle SOA 11G applications could be challenging. Because SOA is a platform for you to build composite applications that connect many applications and "services", when the overall performance is slow, the bottlenecks could be anywhere in the system: the applications/services that SOA connects to, the infrastructure database, or the SOA server itself.How to quickly identify the bottleneck becomes crucial in tuning the overall performance. Fortunately, the BPEL engine in Oracle SOA 11G (and 10G, for that matter) collects BPEL Engine Performance Statistics, which show the latencies of low level BPEL engine activities. The BPEL engine performance statistics can make it a bit easier for you to identify the performance bottleneck. Although the BPEL engine performance statistics are always available, the access to and interpretation of them are somewhat obscure in the early and current (PS5) 11G versions. This blog attempts to offer instructions that help you to enable, retrieve and interpret the performance statistics, before the future versions provides a more pleasant user experience. Overview of BPEL Engine Performance Statistics  SOA BPEL has a feature of collecting some performance statistics and store them in memory. One MBean attribute, StatLastN, configures the size of the memory buffer to store the statistics. This memory buffer is a "moving window", in a way that old statistics will be flushed out by the new if the amount of data exceeds the buffer size. Since the buffer size is limited by StatLastN, impacts of statistics collection on performance is minimal. By default StatLastN=-1, which means no collection of performance data. Once the statistics are collected in the memory buffer, they can be retrieved via another MBean oracle.as.soainfra.bpel:Location=[Server Name],name=BPELEngine,type=BPELEngine.> My friend in Oracle SOA development wrote this simple 'bpelstat' web app that looks up and retrieves the performance data from the MBean and displays it in a human readable form. It does not have beautiful UI but it is fairly useful. Although in Oracle SOA 11.1.1.5 onwards the same statistics can be viewed via a more elegant UI under "request break down" at EM -> SOA Infrastructure -> Service Engines -> BPEL -> Statistics, some unsophisticated minds like mine may still prefer the simplicity of the 'bpelstat' JSP. One thing that simple JSP does do well is that you can save the page and send it to someone to further analyze Follows are the instructions of how to install and invoke the BPEL statistic JSP. My friend in SOA Development will soon blog about interpreting the statistics. Stay tuned. Step1: Enable BPEL Engine Statistics for Each SOA Servers via Enterprise Manager First st you need to set the StatLastN to some number as a way to enable the collection of BPEL Engine Performance Statistics EM Console -> soa-infra(Server Name) -> SOA Infrastructure -> SOA Administration -> BPEL Properties Click on "More BPEL Configuration Properties" Click on attribute "StatLastN", set its value to some integer number. Typically you want to set it 1000 or more. Step 2: Download and Deploy bpelstat.war File to Admin Server, Note: the WAR file contains a JSP that does NOT have any security restriction. You do NOT want to keep in your production server for a long time as it is a security hazard. Deactivate the war once you are done. Download the bpelstat.war to your local PC At WebLogic Console, Go to Deployments -> Install Click on the "upload your file(s)" Click the "Browse" button to upload the deployment to Admin Server Accept the uploaded file as the path, click next Check the default option "Install this deployment as an application" Check "AdminServer" as the target server Finish the rest of the deployment with default settings Console -> Deployments Check the box next to "bpelstat" application Click on the "Start" button. It will change the state of the app from "prepared" to "active" Step 3: Invoke the BPEL Statistic Tool The BPELStat tool merely call the MBean of BPEL server and collects and display the in-memory performance statics. You usually want to do that after some peak loads. Go to http://<admin-server-host>:<admin-server-port>/bpelstat Enter the correct admin hostname, port, username and password Enter the SOA Server Name from which you want to collect the performance statistics. For example, SOA_MS1, etc. Click Submit Keep doing the same for all SOA servers. Step 3: Interpret the BPEL Engine Statistics You will see a few categories of BPEL Statistics from the JSP Page. First it starts with the overall latency of BPEL processes, grouped by synchronous and asynchronous processes. Then it provides the further break down of the measurements through the life time of a BPEL request, which is called the "request break down". 1. Overall latency of BPEL processes The top of the page shows that the elapse time of executing the synchronous process TestSyncBPELProcess from the composite TestComposite averages at about 1543.21ms, while the elapse time of executing the asynchronous process TestAsyncBPELProcess from the composite TestComposite2 averages at about 1765.43ms. The maximum and minimum latency were also shown. Synchronous process statistics <statistics>     <stats key="default/TestComposite!2.0.2-ScopedJMSOSB*soa_bfba2527-a9ba-41a7-95c5-87e49c32f4ff/TestSyncBPELProcess" min="1234" max="4567" average="1543.21" count="1000">     </stats> </statistics> Asynchronous process statistics <statistics>     <stats key="default/TestComposite2!2.0.2-ScopedJMSOSB*soa_bfba2527-a9ba-41a7-95c5-87e49c32f4ff/TestAsyncBPELProcess" min="2234" max="3234" average="1765.43" count="1000">     </stats> </statistics> 2. Request break down Under the overall latency categorized by synchronous and asynchronous processes is the "Request breakdown". Organized by statistic keys, the Request breakdown gives finer grain performance statistics through the life time of the BPEL requests.It uses indention to show the hierarchy of the statistics. Request breakdown <statistics>     <stats key="eng-composite-request" min="0" max="0" average="0.0" count="0">         <stats key="eng-single-request" min="22" max="606" average="258.43" count="277">             <stats key="populate-context" min="0" max="0" average="0.0" count="248"> Please note that in SOA 11.1.1.6, the statistics under Request breakdown is aggregated together cross all the BPEL processes based on statistic keys. It does not differentiate between BPEL processes. If two BPEL processes happen to have the statistic that share same statistic key, the statistics from two BPEL processes will be aggregated together. Keep this in mind when we go through more details below. 2.1 BPEL process activity latencies A very useful measurement in the Request Breakdown is the performance statistics of the BPEL activities you put in your BPEL processes: Assign, Invoke, Receive, etc. The names of the measurement in the JSP page directly come from the names to assign to each BPEL activity. These measurements are under the statistic key "actual-perform" Example 1:  Follows is the measurement for BPEL activity "AssignInvokeCreditProvider_Input", which looks like the Assign activity in a BPEL process that assign an input variable before passing it to the invocation:                                <stats key="AssignInvokeCreditProvider_Input" min="1" max="8" average="1.9" count="153">                                     <stats key="sensor-send-activity-data" min="0" max="1" average="0.0" count="306">                                     </stats>                                     <stats key="sensor-send-variable-data" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="monitor-send-activity-data" min="0" max="0" average="0.0" count="306">                                     </stats>                                 </stats> Note: because as previously mentioned that the statistics cross all BPEL processes are aggregated together based on statistic keys, if two BPEL processes happen to name their Invoke activity the same name, they will show up at one measurement (i.e. statistic key). Example 2: Follows is the measurement of BPEL activity called "InvokeCreditProvider". You can not only see that by average it takes 3.31ms to finish this call (pretty fast) but also you can see from the further break down that most of this 3.31 ms was spent on the "invoke-service".                                  <stats key="InvokeCreditProvider" min="1" max="13" average="3.31" count="153">                                     <stats key="initiate-correlation-set-again" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="invoke-service" min="1" max="13" average="3.08" count="153">                                         <stats key="prep-call" min="0" max="1" average="0.04" count="153">                                         </stats>                                     </stats>                                     <stats key="initiate-correlation-set" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="sensor-send-activity-data" min="0" max="0" average="0.0" count="306">                                     </stats>                                     <stats key="sensor-send-variable-data" min="0" max="0" average="0.0" count="153">                                     </stats>                                     <stats key="monitor-send-activity-data" min="0" max="0" average="0.0" count="306">                                     </stats>                                     <stats key="update-audit-trail" min="0" max="2" average="0.03" count="153">                                     </stats>                                 </stats> 2.2 BPEL engine activity latency Another type of measurements under Request breakdown are the latencies of underlying system level engine activities. These activities are not directly tied to a particular BPEL process or process activity, but they are critical factors in the overall engine performance. These activities include the latency of saving asynchronous requests to database, and latency of process dehydration. My friend Malkit Bhasin is working on providing more information on interpreting the statistics on engine activities on his blog (https://blogs.oracle.com/malkit/). I will update this blog once the information becomes available. Update on 2012-10-02: My friend Malkit Bhasin has published the detail interpretation of the BPEL service engine statistics at his blog http://malkit.blogspot.com/2012/09/oracle-bpel-engine-soa-suite.html.

    Read the article

  • How to find and fix performance problems in ORM powered applications

    - by FransBouma
    Once in a while we get requests about how to fix performance problems with our framework. As it comes down to following the same steps and looking into the same things every single time, I decided to write a blogpost about it instead, so more people can learn from this and solve performance problems in their O/R mapper powered applications. In some parts it's focused on LLBLGen Pro but it's also usable for other O/R mapping frameworks, as the vast majority of performance problems in O/R mapper powered applications are not specific for a certain O/R mapper framework. Too often, the developer looks at the wrong part of the application, trying to fix what isn't a problem in that part, and getting frustrated that 'things are so slow with <insert your favorite framework X here>'. I'm in the O/R mapper business for a long time now (almost 10 years, full time) and as it's a small world, we O/R mapper developers know almost all tricks to pull off by now: we all know what to do to make task ABC faster and what compromises (because there are almost always compromises) to deal with if we decide to make ABC faster that way. Some O/R mapper frameworks are faster in X, others in Y, but you can be sure the difference is mainly a result of a compromise some developers are willing to deal with and others aren't. That's why the O/R mapper frameworks on the market today are different in many ways, even though they all fetch and save entities from and to a database. I'm not suggesting there's no room for improvement in today's O/R mapper frameworks, there always is, but it's not a matter of 'the slowness of the application is caused by the O/R mapper' anymore. Perhaps query generation can be optimized a bit here, row materialization can be optimized a bit there, but it's mainly coming down to milliseconds. Still worth it if you're a framework developer, but it's not much compared to the time spend inside databases and in user code: if a complete fetch takes 40ms or 50ms (from call to entity object collection), it won't make a difference for your application as that 10ms difference won't be noticed. That's why it's very important to find the real locations of the problems so developers can fix them properly and don't get frustrated because their quest to get a fast, performing application failed. Performance tuning basics and rules Finding and fixing performance problems in any application is a strict procedure with four prescribed steps: isolate, analyze, interpret and fix, in that order. It's key that you don't skip a step nor make assumptions: these steps help you find the reason of a problem which seems to be there, and how to fix it or leave it as-is. Skipping a step, or when you assume things will be bad/slow without doing analysis will lead to the path of premature optimization and won't actually solve your problems, only create new ones. The most important rule of finding and fixing performance problems in software is that you have to understand what 'performance problem' actually means. Most developers will say "when a piece of software / code is slow, you have a performance problem". But is that actually the case? If I write a Linq query which will aggregate, group and sort 5 million rows from several tables to produce a resultset of 10 rows, it might take more than a couple of milliseconds before that resultset is ready to be consumed by other logic. If I solely look at the Linq query, the code consuming the resultset of the 10 rows and then look at the time it takes to complete the whole procedure, it will appear to me to be slow: all that time taken to produce and consume 10 rows? But if you look closer, if you analyze and interpret the situation, you'll see it does a tremendous amount of work, and in that light it might even be extremely fast. With every performance problem you encounter, always do realize that what you're trying to solve is perhaps not a technical problem at all, but a perception problem. The second most important rule you have to understand is based on the old saying "Penny wise, Pound Foolish": the part which takes e.g. 5% of the total time T for a given task isn't worth optimizing if you have another part which takes a much larger part of the total time T for that same given task. Optimizing parts which are relatively insignificant for the total time taken is not going to bring you better results overall, even if you totally optimize that part away. This is the core reason why analysis of the complete set of application parts which participate in a given task is key to being successful in solving performance problems: No analysis -> no problem -> no solution. One warning up front: hunting for performance will always include making compromises. Fast software can be made maintainable, but if you want to squeeze as much performance out of your software, you will inevitably be faced with the dilemma of compromising one or more from the group {readability, maintainability, features} for the extra performance you think you'll gain. It's then up to you to decide whether it's worth it. In almost all cases it's not. The reason for this is simple: the vast majority of performance problems can be solved by implementing the proper algorithms, the ones with proven Big O-characteristics so you know the performance you'll get plus you know the algorithm will work. The time taken by the algorithm implementing code is inevitable: you already implemented the best algorithm. You might find some optimizations on the technical level but in general these are minor. Let's look at the four steps to see how they guide us through the quest to find and fix performance problems. Isolate The first thing you need to do is to isolate the areas in your application which are assumed to be slow. For example, if your application is a web application and a given page is taking several seconds or even minutes to load, it's a good candidate to check out. It's important to start with the isolate step because it allows you to focus on a single code path per area with a clear begin and end and ignore the rest. The rest of the steps are taken per identified problematic area. Keep in mind that isolation focuses on tasks in an application, not code snippets. A task is something that's started in your application by either another task or the user, or another program, and has a beginning and an end. You can see a task as a piece of functionality offered by your application.  Analyze Once you've determined the problem areas, you have to perform analysis on the code paths of each area, to see where the performance problems occur and which areas are not the problem. This is a multi-layered effort: an application which uses an O/R mapper typically consists of multiple parts: there's likely some kind of interface (web, webservice, windows etc.), a part which controls the interface and business logic, the O/R mapper part and the RDBMS, all connected with either a network or inter-process connections provided by the OS or other means. Each of these parts, including the connectivity plumbing, eat up a part of the total time it takes to complete a task, e.g. load a webpage with all orders of a given customer X. To understand which parts participate in the task / area we're investigating and how much they contribute to the total time taken to complete the task, analysis of each participating task is essential. Start with the code you wrote which starts the task, analyze the code and track the path it follows through your application. What does the code do along the way, verify whether it's correct or not. Analyze whether you have implemented the right algorithms in your code for this particular area. Remember we're looking at one area at a time, which means we're ignoring all other code paths, just the code path of the current problematic area, from begin to end and back. Don't dig in and start optimizing at the code level just yet. We're just analyzing. If your analysis reveals big architectural stupidity, it's perhaps a good idea to rethink the architecture at this point. For the rest, we're analyzing which means we collect data about what could be wrong, for each participating part of the complete application. Reviewing the code you wrote is a good tool to get deeper understanding of what is going on for a given task but ultimately it lacks precision and overview what really happens: humans aren't good code interpreters, computers are. We therefore need to utilize tools to get deeper understanding about which parts contribute how much time to the total task, triggered by which other parts and for example how many times are they called. There are two different kind of tools which are necessary: .NET profilers and O/R mapper / RDBMS profilers. .NET profiling .NET profilers (e.g. dotTrace by JetBrains or Ants by Red Gate software) show exactly which pieces of code are called, how many times they're called, and the time it took to run that piece of code, at the method level and sometimes even at the line level. The .NET profilers are essential tools for understanding whether the time taken to complete a given task / area in your application is consumed by .NET code, where exactly in your code, the path to that code, how many times that code was called by other code and thus reveals where hotspots are located: the areas where a solution can be found. Importantly, they also reveal which areas can be left alone: remember our penny wise pound foolish saying: if a profiler reveals that a group of methods are fast, or don't contribute much to the total time taken for a given task, ignore them. Even if the code in them is perhaps complex and looks like a candidate for optimization: you can work all day on that, it won't matter.  As we're focusing on a single area of the application, it's best to start profiling right before you actually activate the task/area. Most .NET profilers support this by starting the application without starting the profiling procedure just yet. You navigate to the particular part which is slow, start profiling in the profiler, in your application you perform the actions which are considered slow, and afterwards you get a snapshot in the profiler. The snapshot contains the data collected by the profiler during the slow action, so most data is produced by code in the area to investigate. This is important, because it allows you to stay focused on a single area. O/R mapper and RDBMS profiling .NET profilers give you a good insight in the .NET side of things, but not in the RDBMS side of the application. As this article is about O/R mapper powered applications, we're also looking at databases, and the software making it possible to consume the database in your application: the O/R mapper. To understand which parts of the O/R mapper and database participate how much to the total time taken for task T, we need different tools. There are two kind of tools focusing on O/R mappers and database performance profiling: O/R mapper profilers and RDBMS profilers. For O/R mapper profilers, you can look at LLBLGen Prof by hibernating rhinos or the Linq to Sql/LLBLGen Pro profiler by Huagati. Hibernating rhinos also have profilers for other O/R mappers like NHibernate (NHProf) and Entity Framework (EFProf) and work the same as LLBLGen Prof. For RDBMS profilers, you have to look whether the RDBMS vendor has a profiler. For example for SQL Server, the profiler is shipped with SQL Server, for Oracle it's build into the RDBMS, however there are also 3rd party tools. Which tool you're using isn't really important, what's important is that you get insight in which queries are executed during the task / area we're currently focused on and how long they took. Here, the O/R mapper profilers have an advantage as they collect the time it took to execute the query from the application's perspective so they also collect the time it took to transport data across the network. This is important because a query which returns a massive resultset or a resultset with large blob/clob/ntext/image fields takes more time to get transported across the network than a small resultset and a database profiler doesn't take this into account most of the time. Another tool to use in this case, which is more low level and not all O/R mappers support it (though LLBLGen Pro and NHibernate as well do) is tracing: most O/R mappers offer some form of tracing or logging system which you can use to collect the SQL generated and executed and often also other activity behind the scenes. While tracing can produce a tremendous amount of data in some cases, it also gives insight in what's going on. Interpret After we've completed the analysis step it's time to look at the data we've collected. We've done code reviews to see whether we've done anything stupid and which parts actually take place and if the proper algorithms have been implemented. We've done .NET profiling to see which parts are choke points and how much time they contribute to the total time taken to complete the task we're investigating. We've performed O/R mapper profiling and RDBMS profiling to see which queries were executed during the task, how many queries were generated and executed and how long they took to complete, including network transportation. All this data reveals two things: which parts are big contributors to the total time taken and which parts are irrelevant. Both aspects are very important. The parts which are irrelevant (i.e. don't contribute significantly to the total time taken) can be ignored from now on, we won't look at them. The parts which contribute a lot to the total time taken are important to look at. We now have to first look at the .NET profiler results, to see whether the time taken is consumed in our own code, in .NET framework code, in the O/R mapper itself or somewhere else. For example if most of the time is consumed by DbCommand.ExecuteReader, the time it took to complete the task is depending on the time the data is fetched from the database. If there was just 1 query executed, according to tracing or O/R mapper profilers / RDBMS profilers, check whether that query is optimal, uses indexes or has to deal with a lot of data. Interpret means that you follow the path from begin to end through the data collected and determine where, along the path, the most time is contributed. It also means that you have to check whether this was expected or is totally unexpected. My previous example of the 10 row resultset of a query which groups millions of rows will likely reveal that a long time is spend inside the database and almost no time is spend in the .NET code, meaning the RDBMS part contributes the most to the total time taken, the rest is compared to that time, irrelevant. Considering the vastness of the source data set, it's expected this will take some time. However, does it need tweaking? Perhaps all possible tweaks are already in place. In the interpret step you then have to decide that further action in this area is necessary or not, based on what the analysis results show: if the analysis results were unexpected and in the area where the most time is contributed to the total time taken is room for improvement, action should be taken. If not, you can only accept the situation and move on. In all cases, document your decision together with the analysis you've done. If you decide that the perceived performance problem is actually expected due to the nature of the task performed, it's essential that in the future when someone else looks at the application and starts asking questions you can answer them properly and new analysis is only necessary if situations changed. Fix After interpreting the analysis results you've concluded that some areas need adjustment. This is the fix step: you're actively correcting the performance problem with proper action targeted at the real cause. In many cases related to O/R mapper powered applications it means you'll use different features of the O/R mapper to achieve the same goal, or apply optimizations at the RDBMS level. It could also mean you apply caching inside your application (compromise memory consumption over performance) to avoid unnecessary re-querying data and re-consuming the results. After applying a change, it's key you re-do the analysis and interpretation steps: compare the results and expectations with what you had before, to see whether your actions had any effect or whether it moved the problem to a different part of the application. Don't fall into the trap to do partly analysis: do the full analysis again: .NET profiling and O/R mapper / RDBMS profiling. It might very well be that the changes you've made make one part faster but another part significantly slower, in such a way that the overall problem hasn't changed at all. Performance tuning is dealing with compromises and making choices: to use one feature over the other, to accept a higher memory footprint, to go away from the strict-OO path and execute queries directly onto the RDBMS, these are choices and compromises which will cross your path if you want to fix performance problems with respect to O/R mappers or data-access and databases in general. In most cases it's not a big issue: alternatives are often good choices too and the compromises aren't that hard to deal with. What is important is that you document why you made a choice, a compromise: which analysis data, which interpretation led you to the choice made. This is key for good maintainability in the years to come. Most common performance problems with O/R mappers Below is an incomplete list of common performance problems related to data-access / O/R mappers / RDBMS code. It will help you with fixing the hotspots you found in the interpretation step. SELECT N+1: (Lazy-loading specific). Lazy loading triggered performance bottlenecks. Consider a list of Orders bound to a grid. You have a Field mapped onto a related field in Order, Customer.CompanyName. Showing this column in the grid will make the grid fetch (indirectly) for each row the Customer row. This means you'll get for the single list not 1 query (for the orders) but 1+(the number of orders shown) queries. To solve this: use eager loading using a prefetch path to fetch the customers with the orders. SELECT N+1 is easy to spot with an O/R mapper profiler or RDBMS profiler: if you see a lot of identical queries executed at once, you have this problem. Prefetch paths using many path nodes or sorting, or limiting. Eager loading problem. Prefetch paths can help with performance, but as 1 query is fetched per node, it can be the number of data fetched in a child node is bigger than you think. Also consider that data in every node is merged on the client within the parent. This is fast, but it also can take some time if you fetch massive amounts of entities. If you keep fetches small, you can use tuning parameters like the ParameterizedPrefetchPathThreshold setting to get more optimal queries. Deep inheritance hierarchies of type Target Per Entity/Type. If you use inheritance of type Target per Entity / Type (each type in the inheritance hierarchy is mapped onto its own table/view), fetches will join subtype- and supertype tables in many cases, which can lead to a lot of performance problems if the hierarchy has many types. With this problem, keep inheritance to a minimum if possible, or switch to a hierarchy of type Target Per Hierarchy, which means all entities in the inheritance hierarchy are mapped onto the same table/view. Of course this has its own set of drawbacks, but it's a compromise you might want to take. Fetching massive amounts of data by fetching large lists of entities. LLBLGen Pro supports paging (and limiting the # of rows returned), which is often key to process through large sets of data. Use paging on the RDBMS if possible (so a query is executed which returns only the rows in the page requested). When using paging in a web application, be sure that you switch server-side paging on on the datasourcecontrol used. In this case, paging on the grid alone is not enough: this can lead to fetching a lot of data which is then loaded into the grid and paged there. Keep note that analyzing queries for paging could lead to the false assumption that paging doesn't occur, e.g. when the query contains a field of type ntext/image/clob/blob and DISTINCT can't be applied while it should have (e.g. due to a join): the datareader will do DISTINCT filtering on the client. this is a little slower but it does perform paging functionality on the data-reader so it won't fetch all rows even if the query suggests it does. Fetch massive amounts of data because blob/clob/ntext/image fields aren't excluded. LLBLGen Pro supports field exclusion for queries. You can exclude fields (also in prefetch paths) per query to avoid fetching all fields of an entity, e.g. when you don't need them for the logic consuming the resultset. Excluding fields can greatly reduce the amount of time spend on data-transport across the network. Use this optimization if you see that there's a big difference between query execution time on the RDBMS and the time reported by the .NET profiler for the ExecuteReader method call. Doing client-side aggregates/scalar calculations by consuming a lot of data. If possible, try to formulate a scalar query or group by query using the projection system or GetScalar functionality of LLBLGen Pro to do data consumption on the RDBMS server. It's far more efficient to process data on the RDBMS server than to first load it all in memory, then traverse the data in-memory to calculate a value. Using .ToList() constructs inside linq queries. It might be you use .ToList() somewhere in a Linq query which makes the query be run partially in-memory. Example: var q = from c in metaData.Customers.ToList() where c.Country=="Norway" select c; This will actually fetch all customers in-memory and do an in-memory filtering, as the linq query is defined on an IEnumerable<T>, and not on the IQueryable<T>. Linq is nice, but it can often be a bit unclear where some parts of a Linq query might run. Fetching all entities to delete into memory first. To delete a set of entities it's rather inefficient to first fetch them all into memory and then delete them one by one. It's more efficient to execute a DELETE FROM ... WHERE query on the database directly to delete the entities in one go. LLBLGen Pro supports this feature, and so do some other O/R mappers. It's not always possible to do this operation in the context of an O/R mapper however: if an O/R mapper relies on a cache, these kind of operations are likely not supported because they make it impossible to track whether an entity is actually removed from the DB and thus can be removed from the cache. Fetching all entities to update with an expression into memory first. Similar to the previous point: it is more efficient to update a set of entities directly with a single UPDATE query using an expression instead of fetching the entities into memory first and then updating the entities in a loop, and afterwards saving them. It might however be a compromise you don't want to take as it is working around the idea of having an object graph in memory which is manipulated and instead makes the code fully aware there's a RDBMS somewhere. Conclusion Performance tuning is almost always about compromises and making choices. It's also about knowing where to look and how the systems in play behave and should behave. The four steps I provided should help you stay focused on the real problem and lead you towards the solution. Knowing how to optimally use the systems participating in your own code (.NET framework, O/R mapper, RDBMS, network/services) is key for success as well as knowing what's going on inside the application you built. I hope you'll find this guide useful in tracking down performance problems and dealing with them in a useful way.  

    Read the article

  • Ancillary Objects: Separate Debug ELF Files For Solaris

    - by Ali Bahrami
    We introduced a new object ELF object type in Solaris 11 Update 1 called the Ancillary Object. This posting describes them, using material originally written during their development, the PSARC arc case, and the Solaris Linker and Libraries Manual. ELF objects contain allocable sections, which are mapped into memory at runtime, and non-allocable sections, which are present in the file for use by debuggers and observability tools, but which are not mapped or used at runtime. Typically, all of these sections exist within a single object file. Ancillary objects allow them to instead go into a separate file. There are different reasons given for wanting such a feature. One can debate whether the added complexity is worth the benefit, and in most cases it is not. However, one important case stands out — customers with very large 32-bit objects who are not ready or able to make the transition to 64-bits. We have customers who build extremely large 32-bit objects. Historically, the debug sections in these objects have used the stabs format, which is limited, but relatively compact. In recent years, the industry has transitioned to the powerful but verbose DWARF standard. In some cases, the size of these debug sections is large enough to push the total object file size past the fundamental 4GB limit for 32-bit ELF object files. The best, and ultimately only, solution to overly large objects is to transition to 64-bits. However, consider environments where: Hundreds of users may be executing the code on large shared systems. (32-bits use less memory and bus bandwidth, and on sparc runs just as fast as 64-bit code otherwise). Complex finely tuned code, where the original authors may no longer be available. Critical production code, that was expensive to qualify and bring online, and which is otherwise serving its intended purpose without issue. Users in these risk adverse and/or high scale categories have good reasons to push 32-bits objects to the limit before moving on. Ancillary objects offer these users a longer runway. Design The design of ancillary objects is intended to be simple, both to help human understanding when examining elfdump output, and to lower the bar for debuggers such as dbx to support them. The primary and ancillary objects have the same set of section headers, with the same names, in the same order (i.e. each section has the same index in both files). A single added section of type SHT_SUNW_ANCILLARY is added to both objects, containing information that allows a debugger to identify and validate both files relative to each other. Given one of these files, the ancillary section allows you to identify the other. Allocable sections go in the primary object, and non-allocable ones go into the ancillary object. A small set of non-allocable objects, notably the symbol table, are copied into both objects. As noted above, most sections are only written to one of the two objects, but both objects have the same section header array. The section header in the file that does not contain the section data is tagged with the SHF_SUNW_ABSENT section header flag to indicate its placeholder status. Compiler writers and others who produce objects can set the SUNW_SHF_PRIMARY section header flag to mark non-allocable sections that should go to the primary object rather than the ancillary. If you don't request an ancillary object, the Solaris ELF format is unchanged. Users who don't use ancillary objects do not pay for the feature. This is important, because they exist to serve a small subset of our users, and must not complicate the common case. If you do request an ancillary object, the runtime behavior of the primary object will be the same as that of a normal object. There is no added runtime cost. The primary and ancillary object together represent a logical single object. This is facilitated by the use of a single set of section headers. One can easily imagine a tool that can merge a primary and ancillary object into a single file, or the reverse. (Note that although this is an interesting intellectual exercise, we don't actually supply such a tool because there's little practical benefit above and beyond using ld to create the files). Among the benefits of this approach are: There is no need for per-file symbol tables to reflect the contents of each file. The same symbol table that would be produced for a standard object can be used. The section contents are identical in either case — there is no need to alter data to accommodate multiple files. It is very easy for a debugger to adapt to these new files, and the processing involved can be encapsulated in input/output routines. Most of the existing debugger implementation applies without modification. The limit of a 4GB 32-bit output object is now raised to 4GB of code, and 4GB of debug data. There is also the future possibility (not currently supported) to support multiple ancillary objects, each of which could contain up to 4GB of additional debug data. It must be noted however that the 32-bit DWARF debug format is itself inherently 32-bit limited, as it uses 32-bit offsets between debug sections, so the ability to employ multiple ancillary object files may not turn out to be useful. Using Ancillary Objects (From the Solaris Linker and Libraries Guide) By default, objects contain both allocable and non-allocable sections. Allocable sections are the sections that contain executable code and the data needed by that code at runtime. Non-allocable sections contain supplemental information that is not required to execute an object at runtime. These sections support the operation of debuggers and other observability tools. The non-allocable sections in an object are not loaded into memory at runtime by the operating system, and so, they have no impact on memory use or other aspects of runtime performance no matter their size. For convenience, both allocable and non-allocable sections are normally maintained in the same file. However, there are situations in which it can be useful to separate these sections. To reduce the size of objects in order to improve the speed at which they can be copied across wide area networks. To support fine grained debugging of highly optimized code requires considerable debug data. In modern systems, the debugging data can easily be larger than the code it describes. The size of a 32-bit object is limited to 4 Gbytes. In very large 32-bit objects, the debug data can cause this limit to be exceeded and prevent the creation of the object. To limit the exposure of internal implementation details. Traditionally, objects have been stripped of non-allocable sections in order to address these issues. Stripping is effective, but destroys data that might be needed later. The Solaris link-editor can instead write non-allocable sections to an ancillary object. This feature is enabled with the -z ancillary command line option. $ ld ... -z ancillary[=outfile] ...By default, the ancillary file is given the same name as the primary output object, with a .anc file extension. However, a different name can be provided by providing an outfile value to the -z ancillary option. When -z ancillary is specified, the link-editor performs the following actions. All allocable sections are written to the primary object. In addition, all non-allocable sections containing one or more input sections that have the SHF_SUNW_PRIMARY section header flag set are written to the primary object. All remaining non-allocable sections are written to the ancillary object. The following non-allocable sections are written to both the primary object and ancillary object. .shstrtab The section name string table. .symtab The full non-dynamic symbol table. .symtab_shndx The symbol table extended index section associated with .symtab. .strtab The non-dynamic string table associated with .symtab. .SUNW_ancillary Contains the information required to identify the primary and ancillary objects, and to identify the object being examined. The primary object and all ancillary objects contain the same array of sections headers. Each section has the same section index in every file. Although the primary and ancillary objects all define the same section headers, the data for most sections will be written to a single file as described above. If the data for a section is not present in a given file, the SHF_SUNW_ABSENT section header flag is set, and the sh_size field is 0. This organization makes it possible to acquire a full list of section headers, a complete symbol table, and a complete list of the primary and ancillary objects from either of the primary or ancillary objects. The following example illustrates the underlying implementation of ancillary objects. An ancillary object is created by adding the -z ancillary command line option to an otherwise normal compilation. The file utility shows that the result is an executable named a.out, and an associated ancillary object named a.out.anc. $ cat hello.c #include <stdio.h> int main(int argc, char **argv) { (void) printf("hello, world\n"); return (0); } $ cc -g -zancillary hello.c $ file a.out a.out.anc a.out: ELF 32-bit LSB executable 80386 Version 1 [FPU], dynamically linked, not stripped, ancillary object a.out.anc a.out.anc: ELF 32-bit LSB ancillary 80386 Version 1, primary object a.out $ ./a.out hello worldThe resulting primary object is an ordinary executable that can be executed in the usual manner. It is no different at runtime than an executable built without the use of ancillary objects, and then stripped of non-allocable content using the strip or mcs commands. As previously described, the primary object and ancillary objects contain the same section headers. To see how this works, it is helpful to use the elfdump utility to display these section headers and compare them. The following table shows the section header information for a selection of headers from the previous link-edit example. Index Section Name Type Primary Flags Ancillary Flags Primary Size Ancillary Size 13 .text PROGBITS ALLOC EXECINSTR ALLOC EXECINSTR SUNW_ABSENT 0x131 0 20 .data PROGBITS WRITE ALLOC WRITE ALLOC SUNW_ABSENT 0x4c 0 21 .symtab SYMTAB 0 0 0x450 0x450 22 .strtab STRTAB STRINGS STRINGS 0x1ad 0x1ad 24 .debug_info PROGBITS SUNW_ABSENT 0 0 0x1a7 28 .shstrtab STRTAB STRINGS STRINGS 0x118 0x118 29 .SUNW_ancillary SUNW_ancillary 0 0 0x30 0x30 The data for most sections is only present in one of the two files, and absent from the other file. The SHF_SUNW_ABSENT section header flag is set when the data is absent. The data for allocable sections needed at runtime are found in the primary object. The data for non-allocable sections used for debugging but not needed at runtime are placed in the ancillary file. A small set of non-allocable sections are fully present in both files. These are the .SUNW_ancillary section used to relate the primary and ancillary objects together, the section name string table .shstrtab, as well as the symbol table.symtab, and its associated string table .strtab. It is possible to strip the symbol table from the primary object. A debugger that encounters an object without a symbol table can use the .SUNW_ancillary section to locate the ancillary object, and access the symbol contained within. The primary object, and all associated ancillary objects, contain a .SUNW_ancillary section that allows all the objects to be identified and related together. $ elfdump -T SUNW_ancillary a.out a.out.anc a.out: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0x8724 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 a.out.anc: Ancillary Section: .SUNW_ancillary index tag value [0] ANC_SUNW_CHECKSUM 0xfbe2 [1] ANC_SUNW_MEMBER 0x1 a.out [2] ANC_SUNW_CHECKSUM 0x8724 [3] ANC_SUNW_MEMBER 0x1a3 a.out.anc [4] ANC_SUNW_CHECKSUM 0xfbe2 [5] ANC_SUNW_NULL 0 The ancillary sections for both objects contain the same number of elements, and are identical except for the first element. Each object, starting with the primary object, is introduced with a MEMBER element that gives the file name, followed by a CHECKSUM that identifies the object. In this example, the primary object is a.out, and has a checksum of 0x8724. The ancillary object is a.out.anc, and has a checksum of 0xfbe2. The first element in a .SUNW_ancillary section, preceding the MEMBER element for the primary object, is always a CHECKSUM element, containing the checksum for the file being examined. The presence of a .SUNW_ancillary section in an object indicates that the object has associated ancillary objects. The names of the primary and all associated ancillary objects can be obtained from the ancillary section from any one of the files. It is possible to determine which file is being examined from the larger set of files by comparing the first checksum value to the checksum of each member that follows. Debugger Access and Use of Ancillary Objects Debuggers and other observability tools must merge the information found in the primary and ancillary object files in order to build a complete view of the object. This is equivalent to processing the information from a single file. This merging is simplified by the primary object and ancillary objects containing the same section headers, and a single symbol table. The following steps can be used by a debugger to assemble the information contained in these files. Starting with the primary object, or any of the ancillary objects, locate the .SUNW_ancillary section. The presence of this section identifies the object as part of an ancillary group, contains information that can be used to obtain a complete list of the files and determine which of those files is the one currently being examined. Create a section header array in memory, using the section header array from the object being examined as an initial template. Open and read each file identified by the .SUNW_ancillary section in turn. For each file, fill in the in-memory section header array with the information for each section that does not have the SHF_SUNW_ABSENT flag set. The result will be a complete in-memory copy of the section headers with pointers to the data for all sections. Once this information has been acquired, the debugger can proceed as it would in the single file case, to access and control the running program. Note - The ELF definition of ancillary objects provides for a single primary object, and an arbitrary number of ancillary objects. At this time, the Oracle Solaris link-editor only produces a single ancillary object containing all non-allocable sections. This may change in the future. Debuggers and other observability tools should be written to handle the general case of multiple ancillary objects. ELF Implementation Details (From the Solaris Linker and Libraries Guide) To implement ancillary objects, it was necessary to extend the ELF format to add a new object type (ET_SUNW_ANCILLARY), a new section type (SHT_SUNW_ANCILLARY), and 2 new section header flags (SHF_SUNW_ABSENT, SHF_SUNW_PRIMARY). In this section, I will detail these changes, in the form of diffs to the Solaris Linker and Libraries manual. Part IV ELF Application Binary Interface Chapter 13: Object File Format Object File Format Edit Note: This existing section at the beginning of the chapter describes the ELF header. There's a table of object file types, which now includes the new ET_SUNW_ANCILLARY type. e_type Identifies the object file type, as listed in the following table. NameValueMeaning ET_NONE0No file type ET_REL1Relocatable file ET_EXEC2Executable file ET_DYN3Shared object file ET_CORE4Core file ET_LOSUNW0xfefeStart operating system specific range ET_SUNW_ANCILLARY0xfefeAncillary object file ET_HISUNW0xfefdEnd operating system specific range ET_LOPROC0xff00Start processor-specific range ET_HIPROC0xffffEnd processor-specific range Sections Edit Note: This overview section defines the section header structure, and provides a high level description of known sections. It was updated to define the new SHF_SUNW_ABSENT and SHF_SUNW_PRIMARY flags and the new SHT_SUNW_ANCILLARY section. ... sh_type Categorizes the section's contents and semantics. Section types and their descriptions are listed in Table 13-5. sh_flags Sections support 1-bit flags that describe miscellaneous attributes. Flag definitions are listed in Table 13-8. ... Table 13-5 ELF Section Types, sh_type NameValue . . . SHT_LOSUNW0x6fffffee SHT_SUNW_ancillary0x6fffffee . . . ... SHT_LOSUNW - SHT_HISUNW Values in this inclusive range are reserved for Oracle Solaris OS semantics. SHT_SUNW_ANCILLARY Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section. ... Table 13-8 ELF Section Attribute Flags NameValue . . . SHF_MASKOS0x0ff00000 SHF_SUNW_NODISCARD0x00100000 SHF_SUNW_ABSENT0x00200000 SHF_SUNW_PRIMARY0x00400000 SHF_MASKPROC0xf0000000 . . . ... SHF_SUNW_ABSENT Indicates that the data for this section is not present in this file. When ancillary objects are created, the primary object and any ancillary objects, will all have the same section header array, to facilitate merging them to form a complete view of the object, and to allow them to use the same symbol tables. Each file contains a subset of the section data. The data for allocable sections is written to the primary object while the data for non-allocable sections is written to an ancillary file. The SHF_SUNW_ABSENT flag is used to indicate that the data for the section is not present in the object being examined. When the SHF_SUNW_ABSENT flag is set, the sh_size field of the section header must be 0. An application encountering an SHF_SUNW_ABSENT section can choose to ignore the section, or to search for the section data within one of the related ancillary files. SHF_SUNW_PRIMARY The default behavior when ancillary objects are created is to write all allocable sections to the primary object and all non-allocable sections to the ancillary objects. The SHF_SUNW_PRIMARY flag overrides this behavior. Any output section containing one more input section with the SHF_SUNW_PRIMARY flag set is written to the primary object without regard for its allocable status. ... Two members in the section header, sh_link, and sh_info, hold special information, depending on section type. Table 13-9 ELF sh_link and sh_info Interpretation sh_typesh_linksh_info . . . SHT_SUNW_ANCILLARY The section header index of the associated string table. 0 . . . Special Sections Edit Note: This section describes the sections used in Solaris ELF objects, using the types defined in the previous description of section types. It was updated to define the new .SUNW_ancillary (SHT_SUNW_ANCILLARY) section. Various sections hold program and control information. Sections in the following table are used by the system and have the indicated types and attributes. Table 13-10 ELF Special Sections NameTypeAttribute . . . .SUNW_ancillarySHT_SUNW_ancillaryNone . . . ... .SUNW_ancillary Present when a given object is part of a group of ancillary objects. Contains information required to identify all the files that make up the group. See Ancillary Section for details. ... Ancillary Section Edit Note: This new section provides the format reference describing the layout of a .SUNW_ancillary section and the meaning of the various tags. Note that these sections use the same tag/value concept used for dynamic and capabilities sections, and will be familiar to anyone used to working with ELF. In addition to the primary output object, the Solaris link-editor can produce one or more ancillary objects. Ancillary objects contain non-allocable sections that would normally be written to the primary object. When ancillary objects are produced, the primary object and all of the associated ancillary objects contain a SHT_SUNW_ancillary section, containing information that identifies these related objects. Given any one object from such a group, the ancillary section provides the information needed to identify and interpret the others. This section contains an array of the following structures. See sys/elf.h. typedef struct { Elf32_Word a_tag; union { Elf32_Word a_val; Elf32_Addr a_ptr; } a_un; } Elf32_Ancillary; typedef struct { Elf64_Xword a_tag; union { Elf64_Xword a_val; Elf64_Addr a_ptr; } a_un; } Elf64_Ancillary; For each object with this type, a_tag controls the interpretation of a_un. a_val These objects represent integer values with various interpretations. a_ptr These objects represent file offsets or addresses. The following ancillary tags exist. Table 13-NEW1 ELF Ancillary Array Tags NameValuea_un ANC_SUNW_NULL0Ignored ANC_SUNW_CHECKSUM1a_val ANC_SUNW_MEMBER2a_ptr ANC_SUNW_NULL Marks the end of the ancillary section. ANC_SUNW_CHECKSUM Provides the checksum for a file in the c_val element. When ANC_SUNW_CHECKSUM precedes the first instance of ANC_SUNW_MEMBER, it provides the checksum for the object from which the ancillary section is being read. When it follows an ANC_SUNW_MEMBER tag, it provides the checksum for that member. ANC_SUNW_MEMBER Specifies an object name. The a_ptr element contains the string table offset of a null-terminated string, that provides the file name. An ancillary section must always contain an ANC_SUNW_CHECKSUM before the first instance of ANC_SUNW_MEMBER, identifying the current object. Following that, there should be an ANC_SUNW_MEMBER for each object that makes up the complete set of objects. Each ANC_SUNW_MEMBER should be followed by an ANC_SUNW_CHECKSUM for that object. A typical ancillary section will therefore be structured as: TagMeaning ANC_SUNW_CHECKSUMChecksum of this object ANC_SUNW_MEMBERName of object #1 ANC_SUNW_CHECKSUMChecksum for object #1 . . . ANC_SUNW_MEMBERName of object N ANC_SUNW_CHECKSUMChecksum for object N ANC_SUNW_NULL An object can therefore identify itself by comparing the initial ANC_SUNW_CHECKSUM to each of the ones that follow, until it finds a match. Related Other Work The GNU developers have also encountered the need/desire to support separate debug information files, and use the solution detailed at http://sourceware.org/gdb/onlinedocs/gdb/Separate-Debug-Files.html. At the current time, the separate debug file is constructed by building the standard object first, and then copying the debug data out of it in a separate post processing step, Hence, it is limited to a total of 4GB of code and debug data, just as a single object file would be. They are aware of this, and I have seen online comments indicating that they may add direct support for generating these separate files to their link-editor. It is worth noting that the GNU objcopy utility is available on Solaris, and that the Studio dbx debugger is able to use these GNU style separate debug files even on Solaris. Although this is interesting in terms giving Linux users a familiar environment on Solaris, the 4GB limit means it is not an answer to the problem of very large 32-bit objects. We have also encountered issues with objcopy not understanding Solaris-specific ELF sections, when using this approach. The GNU community also has a current effort to adapt their DWARF debug sections in order to move them to separate files before passing the relocatable objects to the linker. The details of Project Fission can be found at http://gcc.gnu.org/wiki/DebugFission. The goal of this project appears to be to reduce the amount of data seen by the link-editor. The primary effort revolves around moving DWARF data to separate .dwo files so that the link-editor never encounters them. The details of modifying the DWARF data to be usable in this form are involved — please see the above URL for details.

    Read the article

  • ASP.NET Frameworks and Raw Throughput Performance

    - by Rick Strahl
    A few days ago I had a curious thought: With all these different technologies that the ASP.NET stack has to offer, what's the most efficient technology overall to return data for a server request? When I started this it was mere curiosity rather than a real practical need or result. Different tools are used for different problems and so performance differences are to be expected. But still I was curious to see how the various technologies performed relative to each just for raw throughput of the request getting to the endpoint and back out to the client with as little processing in the actual endpoint logic as possible (aka Hello World!). I want to clarify that this is merely an informal test for my own curiosity and I'm sharing the results and process here because I thought it was interesting. It's been a long while since I've done any sort of perf testing on ASP.NET, mainly because I've not had extremely heavy load requirements and because overall ASP.NET performs very well even for fairly high loads so that often it's not that critical to test load performance. This post is not meant to make a point  or even come to a conclusion which tech is better, but just to act as a reference to help understand some of the differences in perf and give a starting point to play around with this yourself. I've included the code for this simple project, so you can play with it and maybe add a few additional tests for different things if you like. Source Code on GitHub I looked at this data for these technologies: ASP.NET Web API ASP.NET MVC WebForms ASP.NET WebPages ASMX AJAX Services  (couldn't get AJAX/JSON to run on IIS8 ) WCF Rest Raw ASP.NET HttpHandlers It's quite a mixed bag, of course and the technologies target different types of development. What started out as mere curiosity turned into a bit of a head scratcher as the results were sometimes surprising. What I describe here is more to satisfy my curiosity more than anything and I thought it interesting enough to discuss on the blog :-) First test: Raw Throughput The first thing I did is test raw throughput for the various technologies. This is the least practical test of course since you're unlikely to ever create the equivalent of a 'Hello World' request in a real life application. The idea here is to measure how much time a 'NOP' request takes to return data to the client. So for this request I create the simplest Hello World request that I could come up for each tech. Http Handler The first is the lowest level approach which is an HTTP handler. public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public bool IsReusable { get { return true; } } } WebForms Next I added a couple of ASPX pages - one using CodeBehind and one using only a markup page. The CodeBehind page simple does this in CodeBehind without any markup in the ASPX page: public partial class HelloWorld_CodeBehind : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { Response.Write("Hello World. Time is: " + DateTime.Now.ToString() ); Response.End(); } } while the Markup page only contains some static output via an expression:<%@ Page Language="C#" AutoEventWireup="false" CodeBehind="HelloWorld_Markup.aspx.cs" Inherits="AspNetFrameworksPerformance.HelloWorld_Markup" %> Hello World. Time is <%= DateTime.Now %> ASP.NET WebPages WebPages is the freestanding Razor implementation of ASP.NET. Here's the simple HelloWorld.cshtml page:Hello World @DateTime.Now WCF REST WCF REST was the token REST implementation for ASP.NET before WebAPI and the inbetween step from ASP.NET AJAX. I'd like to forget that this technology was ever considered for production use, but I'll include it here. Here's an OperationContract class: [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World" + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } } WCF REST can return arbitrary results by returning a Stream object and a content type. The code above turns the string result into a stream and returns that back to the client. ASP.NET AJAX (ASMX Services) I also wanted to test ASP.NET AJAX services because prior to WebAPI this is probably still the most widely used AJAX technology for the ASP.NET stack today. Unfortunately I was completely unable to get this running on my Windows 8 machine. Visual Studio 2012  removed adding of ASP.NET AJAX services, and when I tried to manually add the service and configure the script handler references it simply did not work - I always got a SOAP response for GET and POST operations. No matter what I tried I always ended up getting XML results even when explicitly adding the ScriptHandler. So, I didn't test this (but the code is there - you might be able to test this on a Windows 7 box). ASP.NET MVC Next up is probably the most popular ASP.NET technology at the moment: MVC. Here's the small controller: public class MvcPerformanceController : Controller { public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } } ASP.NET WebAPI Next up is WebAPI which looks kind of similar to MVC. Except here I have to use a StringContent result to return the response: public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } } Testing Take a minute to think about each of the technologies… and take a guess which you think is most efficient in raw throughput. The fastest should be pretty obvious, but the others - maybe not so much. The testing I did is pretty informal since it was mainly to satisfy my curiosity - here's how I did this: I used Apache Bench (ab.exe) from a full Apache HTTP installation to run and log the test results of hitting the server. ab.exe is a small executable that lets you hit a URL repeatedly and provides counter information about the number of requests, requests per second etc. ab.exe and the batch file are located in the \LoadTests folder of the project. An ab.exe command line  looks like this: ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld which hits the specified URL 100,000 times with a load factor of 20 concurrent requests. This results in output like this:   It's a great way to get a quick and dirty performance summary. Run it a few times to make sure there's not a large amount of varience. You might also want to do an IISRESET to clear the Web Server. Just make sure you do a short test run to warm up the server first - otherwise your first run is likely to be skewed downwards. ab.exe also allows you to specify headers and provide POST data and many other things if you want to get a little more fancy. Here all tests are GET requests to keep it simple. I ran each test: 100,000 iterations Load factor of 20 concurrent connections IISReset before starting A short warm up run for API and MVC to make sure startup cost is mitigated Here is the batch file I used for the test: IISRESET REM make sure you add REM C:\Program Files (x86)\Apache Software Foundation\Apache2.2\bin REM to your path so ab.exe can be found REM Warm up ab.exe -n100 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJsonab.exe -n100 -c20 http://localhost/aspnetperf/api/HelloWorldJson ab.exe -n100 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld ab.exe -n100000 -c20 http://localhost/aspnetperf/handler.ashx > handler.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_CodeBehind.aspx > AspxCodeBehind.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/HelloWorld_Markup.aspx > AspxMarkup.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorld > Wcf.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldCode > Mvc.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorld > WebApi.txt I ran each of these tests 3 times and took the average score for Requests/second, with the machine otherwise idle. I did see a bit of variance when running many tests but the values used here are the medians. Part of this has to do with the fact I ran the tests on my local machine - result would probably more consistent running the load test on a separate machine hitting across the network. I ran these tests locally on my laptop which is a Dell XPS with quad core Sandibridge I7-2720QM @ 2.20ghz and a fast SSD drive on Windows 8. CPU load during tests ran to about 70% max across all 4 cores (IOW, it wasn't overloading the machine). Ideally you can try running these tests on a separate machine hitting the local machine. If I remember correctly IIS 7 and 8 on client OSs don't throttle so the performance here should be Results Ok, let's cut straight to the chase. Below are the results from the tests… It's not surprising that the handler was fastest. But it was a bit surprising to me that the next fastest was WebForms and especially Web Forms with markup over a CodeBehind page. WebPages also fared fairly well. MVC and WebAPI are a little slower and the slowest by far is WCF REST (which again I find surprising). As mentioned at the start the raw throughput tests are not overly practical as they don't test scripting performance for the HTML generation engines or serialization performances of the data engines. All it really does is give you an idea of the raw throughput for the technology from time of request to reaching the endpoint and returning minimal text data back to the client which indicates full round trip performance. But it's still interesting to see that Web Forms performs better in throughput than either MVC, WebAPI or WebPages. It'd be interesting to try this with a few pages that actually have some parsing logic on it, but that's beyond the scope of this throughput test. But what's also amazing about this test is the sheer amount of traffic that a laptop computer is handling. Even the slowest tech managed 5700 requests a second, which is one hell of a lot of requests if you extrapolate that out over a 24 hour period. Remember these are not static pages, but dynamic requests that are being served. Another test - JSON Data Service Results The second test I used a JSON result from several of the technologies. I didn't bother running WebForms and WebPages through this test since that doesn't make a ton of sense to return data from the them (OTOH, returning text from the APIs didn't make a ton of sense either :-) In these tests I have a small Person class that gets serialized and then returned to the client. The Person class looks like this: public class Person { public Person() { Id = 10; Name = "Rick"; Entered = DateTime.Now; } public int Id { get; set; } public string Name { get; set; } public DateTime Entered { get; set; } } Here are the updated handler classes that use Person: Handler public class Handler : IHttpHandler { public void ProcessRequest(HttpContext context) { var action = context.Request.QueryString["action"]; if (action == "json") JsonRequest(context); else TextRequest(context); } public void TextRequest(HttpContext context) { context.Response.ContentType = "text/plain"; context.Response.Write("Hello World. Time is: " + DateTime.Now.ToString()); } public void JsonRequest(HttpContext context) { var json = JsonConvert.SerializeObject(new Person(), Formatting.None); context.Response.ContentType = "application/json"; context.Response.Write(json); } public bool IsReusable { get { return true; } } } This code adds a little logic to check for a action query string and route the request to an optional JSON result method. To generate JSON, I'm using the same JSON.NET serializer (JsonConvert.SerializeObject) used in Web API to create the JSON response. WCF REST   [ServiceContract(Namespace = "")] [AspNetCompatibilityRequirements(RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)] public class WcfService { [OperationContract] [WebGet] public Stream HelloWorld() { var data = Encoding.Unicode.GetBytes("Hello World " + DateTime.Now.ToString()); var ms = new MemoryStream(data); // Add your operation implementation here return ms; } [OperationContract] [WebGet(ResponseFormat=WebMessageFormat.Json,BodyStyle=WebMessageBodyStyle.WrappedRequest)] public Person HelloWorldJson() { // Add your operation implementation here return new Person(); } } For WCF REST all I have to do is add a method with the Person result type.   ASP.NET MVC public class MvcPerformanceController : Controller { // // GET: /MvcPerformance/ public ActionResult Index() { return View(); } public ActionResult HelloWorldCode() { return new ContentResult() { Content = "Hello World. Time is: " + DateTime.Now.ToString() }; } public JsonResult HelloWorldJson() { return Json(new Person(), JsonRequestBehavior.AllowGet); } } For MVC all I have to do for a JSON response is return a JSON result. ASP.NET internally uses JavaScriptSerializer. ASP.NET WebAPI public class WebApiPerformanceController : ApiController { [HttpGet] public HttpResponseMessage HelloWorldCode() { return new HttpResponseMessage() { Content = new StringContent("Hello World. Time is: " + DateTime.Now.ToString(), Encoding.UTF8, "text/plain") }; } [HttpGet] public Person HelloWorldJson() { return new Person(); } [HttpGet] public HttpResponseMessage HelloWorldJson2() { var response = new HttpResponseMessage(HttpStatusCode.OK); response.Content = new ObjectContent<Person>(new Person(), GlobalConfiguration.Configuration.Formatters.JsonFormatter); return response; } } Testing and Results To run these data requests I used the following ab.exe commands:REM JSON RESPONSES ab.exe -n100000 -c20 http://localhost/aspnetperf/Handler.ashx?action=json > HandlerJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/MvcPerformance/HelloWorldJson > MvcJson.txt ab.exe -n100000 -c20 http://localhost/aspnetperf/api/HelloWorldJson > WebApiJson.txt ab.exe -n100000 -c20 http://localhost/AspNetPerf/WcfService.svc/HelloWorldJson > WcfJson.txt The results from this test run are a bit interesting in that the WebAPI test improved performance significantly over returning plain string content. Here are the results:   The performance for each technology drops a little bit except for WebAPI which is up quite a bit! From this test it appears that WebAPI is actually significantly better performing returning a JSON response, rather than a plain string response. Snag with Apache Benchmark and 'Length Failures' I ran into a little snag with Apache Benchmark, which was reporting failures for my Web API requests when serializing. As the graph shows performance improved significantly from with JSON results from 5580 to 6530 or so which is a 15% improvement (while all others slowed down by 3-8%). However, I was skeptical at first because the WebAPI test reports showed a bunch of errors on about 10% of the requests. Check out this report: Notice the Failed Request count. What the hey? Is WebAPI failing on roughly 10% of requests when sending JSON? Turns out: No it's not! But it took some sleuthing to figure out why it reports these failures. At first I thought that Web API was failing, and so to make sure I re-ran the test with Fiddler attached and runiisning the ab.exe test by using the -X switch: ab.exe -n100 -c10 -X localhost:8888 http://localhost/aspnetperf/api/HelloWorldJson which showed that indeed all requests where returning proper HTTP 200 results with full content. However ab.exe was reporting the errors. After some closer inspection it turned out that the dates varying in size altered the response length in dynamic output. For example: these two results: {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.841926-10:00"} {"Id":10,"Name":"Rick","Entered":"2012-09-04T10:57:24.8519262-10:00"} are different in length for the number which results in 68 and 69 bytes respectively. The same URL produces different result lengths which is what ab.exe reports. I didn't notice at first bit the same is happening when running the ASHX handler with JSON.NET result since it uses the same serializer that varies the milliseconds. Moral: You can typically ignore Length failures in Apache Benchmark and when in doubt check the actual output with Fiddler. Note that the other failure values are accurate though. Another interesting Side Note: Perf drops over Time As I was running these tests repeatedly I was finding that performance steadily dropped from a startup peak to a 10-15% lower stable level. IOW, with Web API I'd start out with around 6500 req/sec and in subsequent runs it keeps dropping until it would stabalize somewhere around 5900 req/sec occasionally jumping lower. For these tests this is why I did the IIS RESET and warm up for individual tests. This is a little puzzling. Looking at Process Monitor while the test are running memory very quickly levels out as do handles and threads, on the first test run. Subsequent runs everything stays stable, but the performance starts going downwards. This applies to all the technologies - Handlers, Web Forms, MVC, Web API - curious to see if others test this and see similar results. Doing an IISRESET then resets everything and performance starts off at peak again… Summary As I stated at the outset, these were informal to satiate my curiosity not to prove that any technology is better or even faster than another. While there clearly are differences in performance the differences (other than WCF REST which was by far the slowest and the raw handler which was by far the highest) are relatively minor, so there is no need to feel that any one technology is a runaway standout in raw performance. Choosing a technology is about more than pure performance but also about the adequateness for the job and the easy of implementation. The strengths of each technology will make for any minor performance difference we see in these tests. However, to me it's important to get an occasional reality check and compare where new technologies are heading. Often times old stuff that's been optimized and designed for a time of less horse power can utterly blow the doors off newer tech and simple checks like this let you compare. Luckily we're seeing that much of the new stuff performs well even in V1.0 which is great. To me it was very interesting to see Web API perform relatively badly with plain string content, which originally led me to think that Web API might not be properly optimized just yet. For those that caught my Tweets late last week regarding WebAPI's slow responses was with String content which is in fact considerably slower. Luckily where it counts with serialized JSON and XML WebAPI actually performs better. But I do wonder what would make generic string content slower than serialized code? This stresses another point: Don't take a single test as the final gospel and don't extrapolate out from a single set of tests. Certainly Twitter can make you feel like a fool when you post something immediate that hasn't been fleshed out a little more <blush>. Egg on my face. As a result I ended up screwing around with this for a few hours today to compare different scenarios. Well worth the time… I hope you found this useful, if not for the results, maybe for the process of quickly testing a few requests for performance and charting out a comparison. Now onwards with more serious stuff… Resources Source Code on GitHub Apache HTTP Server Project (ab.exe is part of the binary distribution)© Rick Strahl, West Wind Technologies, 2005-2012Posted in ASP.NET  Web Api   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • The Incremental Architect&acute;s Napkin &ndash; #3 &ndash; Make Evolvability inevitable

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/04/the-incremental-architectacutes-napkin-ndash-3-ndash-make-evolvability-inevitable.aspxThe easier something to measure the more likely it will be produced. Deviations between what is and what should be can be readily detected. That´s what automated acceptance tests are for. That´s what sprint reviews in Scrum are for. It´s no small wonder our software looks like it looks. It has all the traits whose conformance with requirements can easily be measured. And it´s lacking traits which cannot easily be measured. Evolvability (or Changeability) is such a trait. If an operation is correct, if an operation if fast enough, that can be checked very easily. But whether Evolvability is high or low, that cannot be checked by taking a measure or two. Evolvability might correlate with certain traits, e.g. number of lines of code (LOC) per function or Cyclomatic Complexity or test coverage. But there is no threshold value signalling “evolvability too low”; also Evolvability is hardly tangible for the customer. Nevertheless Evolvability is of great importance - at least in the long run. You can get away without much of it for a short time. Eventually, though, it´s needed like any other requirement. Or even more. Because without Evolvability no other requirement can be implemented. Evolvability is the foundation on which all else is build. Such fundamental importance is in stark contrast with its immeasurability. To compensate this, Evolvability must be put at the very center of software development. It must become the hub around everything else revolves. Since we cannot measure Evolvability, though, we cannot start watching it more. Instead we need to establish practices to keep it high (enough) at all times. Chefs have known that for long. That´s why everybody in a restaurant kitchen is constantly seeing after cleanliness. Hygiene is important as is to have clean tools at standardized locations. Only then the health of the patrons can be guaranteed and production efficiency is constantly high. Still a kitchen´s level of cleanliness is easier to measure than software Evolvability. That´s why important practices like reviews, pair programming, or TDD are not enough, I guess. What we need to keep Evolvability in focus and high is… to continually evolve. Change must not be something to avoid but too embrace. To me that means the whole change cycle from requirement analysis to delivery needs to be gone through more often. Scrum´s sprints of 4, 2 even 1 week are too long. Kanban´s flow of user stories across is too unreliable; it takes as long as it takes. Instead we should fix the cycle time at 2 days max. I call that Spinning. No increment must take longer than from this morning until tomorrow evening to finish. Then it should be acceptance checked by the customer (or his/her representative, e.g. a Product Owner). For me there are several resasons for such a fixed and short cycle time for each increment: Clear expectations Absolute estimates (“This will take X days to complete.”) are near impossible in software development as explained previously. Too much unplanned research and engineering work lurk in every feature. And then pervasive interruptions of work by peers and management. However, the smaller the scope the better our absolute estimates become. That´s because we understand better what really are the requirements and what the solution should look like. But maybe more importantly the shorter the timespan the more we can control how we use our time. So much can happen over the course of a week and longer timespans. But if push comes to shove I can block out all distractions and interruptions for a day or possibly two. That´s why I believe we can give rough absolute estimates on 3 levels: Noon Tonight Tomorrow Think of a meeting with a Product Owner at 8:30 in the morning. If she asks you, how long it will take you to implement a user story or bug fix, you can say, “It´ll be fixed by noon.”, or you can say, “I can manage to implement it until tonight before I leave.”, or you can say, “You´ll get it by tomorrow night at latest.” Yes, I believe all else would be naive. If you´re not confident to get something done by tomorrow night (some 34h from now) you just cannot reliably commit to any timeframe. That means you should not promise anything, you should not even start working on the issue. So when estimating use these four categories: Noon, Tonight, Tomorrow, NoClue - with NoClue meaning the requirement needs to be broken down further so each aspect can be assigned to one of the first three categories. If you like absolute estimates, here you go. But don´t do deep estimates. Don´t estimate dozens of issues; don´t think ahead (“Issue A is a Tonight, then B will be a Tomorrow, after that it´s C as a Noon, finally D is a Tonight - that´s what I´ll do this week.”). Just estimate so Work-in-Progress (WIP) is 1 for everybody - plus a small number of buffer issues. To be blunt: Yes, this makes promises impossible as to what a team will deliver in terms of scope at a certain date in the future. But it will give a Product Owner a clear picture of what to pull for acceptance feedback tonight and tomorrow. Trust through reliability Our trade is lacking trust. Customers don´t trust software companies/departments much. Managers don´t trust developers much. I find that perfectly understandable in the light of what we´re trying to accomplish: delivering software in the face of uncertainty by means of material good production. Customers as well as managers still expect software development to be close to production of houses or cars. But that´s a fundamental misunderstanding. Software development ist development. It´s basically research. As software developers we´re constantly executing experiments to find out what really provides value to users. We don´t know what they need, we just have mediated hypothesises. That´s why we cannot reliably deliver on preposterous demands. So trust is out of the window in no time. If we switch to delivering in short cycles, though, we can regain trust. Because estimates - explicit or implicit - up to 32 hours at most can be satisfied. I´d say: reliability over scope. It´s more important to reliably deliver what was promised then to cover a lot of requirement area. So when in doubt promise less - but deliver without delay. Deliver on scope (Functionality and Quality); but also deliver on Evolvability, i.e. on inner quality according to accepted principles. Always. Trust will be the reward. Less complexity of communication will follow. More goodwill buffer will follow. So don´t wait for some Kanban board to show you, that flow can be improved by scheduling smaller stories. You don´t need to learn that the hard way. Just start with small batch sizes of three different sizes. Fast feedback What has been finished can be checked for acceptance. Why wait for a sprint of several weeks to end? Why let the mental model of the issue and its solution dissipate? If you get final feedback after one or two weeks, you hardly remember what you did and why you did it. Resoning becomes hard. But more importantly youo probably are not in the mood anymore to go back to something you deemed done a long time ago. It´s boring, it´s frustrating to open up that mental box again. Learning is harder the longer it takes from event to feedback. Effort can be wasted between event (finishing an issue) and feedback, because other work might go in the wrong direction based on false premises. Checking finished issues for acceptance is the most important task of a Product Owner. It´s even more important than planning new issues. Because as long as work started is not released (accepted) it´s potential waste. So before starting new work better make sure work already done has value. By putting the emphasis on acceptance rather than planning true pull is established. As long as planning and starting work is more important, it´s a push process. Accept a Noon issue on the same day before leaving. Accept a Tonight issue before leaving today or first thing tomorrow morning. Accept a Tomorrow issue tomorrow night before leaving or early the day after tomorrow. After acceptance the developer(s) can start working on the next issue. Flexibility As if reliability/trust and fast feedback for less waste weren´t enough economic incentive, there is flexibility. After each issue the Product Owner can change course. If on Monday morning feature slices A, B, C, D, E were important and A, B, C were scheduled for acceptance by Monday evening and Tuesday evening, the Product Owner can change her mind at any time. Maybe after A got accepted she asks for continuation with D. But maybe, just maybe, she has gotten a completely different idea by then. Maybe she wants work to continue on F. And after B it´s neither D nor E, but G. And after G it´s D. With Spinning every 32 hours at latest priorities can be changed. And nothing is lost. Because what got accepted is of value. It provides an incremental value to the customer/user. Or it provides internal value to the Product Owner as increased knowledge/decreased uncertainty. I find such reactivity over commitment economically very benefical. Why commit a team to some workload for several weeks? It´s unnecessary at beast, and inflexible and wasteful at worst. If we cannot promise delivery of a certain scope on a certain date - which is what customers/management usually want -, we can at least provide them with unpredecented flexibility in the face of high uncertainty. Where the path is not clear, cannot be clear, make small steps so you´re able to change your course at any time. Premature completion Customers/management are used to premeditating budgets. They want to know exactly how much to pay for a certain amount of requirements. That´s understandable. But it does not match with the nature of software development. We should know that by now. Maybe there´s somewhere in the world some team who can consistently deliver on scope, quality, and time, and budget. Great! Congratulations! I, however, haven´t seen such a team yet. Which does not mean it´s impossible, but I think it´s nothing I can recommend to strive for. Rather I´d say: Don´t try this at home. It might hurt you one way or the other. However, what we can do, is allow customers/management stop work on features at any moment. With spinning every 32 hours a feature can be declared as finished - even though it might not be completed according to initial definition. I think, progress over completion is an important offer software development can make. Why think in terms of completion beyond a promise for the next 32 hours? Isn´t it more important to constantly move forward? Step by step. We´re not running sprints, we´re not running marathons, not even ultra-marathons. We´re in the sport of running forever. That makes it futile to stare at the finishing line. The very concept of a burn-down chart is misleading (in most cases). Whoever can only think in terms of completed requirements shuts out the chance for saving money. The requirements for a features mostly are uncertain. So how does a Product Owner know in the first place, how much is needed. Maybe more than specified is needed - which gets uncovered step by step with each finished increment. Maybe less than specified is needed. After each 4–32 hour increment the Product Owner can do an experient (or invite users to an experiment) if a particular trait of the software system is already good enough. And if so, she can switch the attention to a different aspect. In the end, requirements A, B, C then could be finished just 70%, 80%, and 50%. What the heck? It´s good enough - for now. 33% money saved. Wouldn´t that be splendid? Isn´t that a stunning argument for any budget-sensitive customer? You can save money and still get what you need? Pull on practices So far, in addition to more trust, more flexibility, less money spent, Spinning led to “doing less” which also means less code which of course means higher Evolvability per se. Last but not least, though, I think Spinning´s short acceptance cycles have one more effect. They excert pull-power on all sorts of practices known for increasing Evolvability. If, for example, you believe high automated test coverage helps Evolvability by lowering the fear of inadverted damage to a code base, why isn´t 90% of the developer community practicing automated tests consistently? I think, the answer is simple: Because they can do without. Somehow they manage to do enough manual checks before their rare releases/acceptance checks to ensure good enough correctness - at least in the short term. The same goes for other practices like component orientation, continuous build/integration, code reviews etc. None of that is compelling, urgent, imperative. Something else always seems more important. So Evolvability principles and practices fall through the cracks most of the time - until a project hits a wall. Then everybody becomes desperate; but by then (re)gaining Evolvability has become as very, very difficult and tedious undertaking. Sometimes up to the point where the existence of a project/company is in danger. With Spinning that´s different. If you´re practicing Spinning you cannot avoid all those practices. With Spinning you very quickly realize you cannot deliver reliably even on your 32 hour promises. Spinning thus is pulling on developers to adopt principles and practices for Evolvability. They will start actively looking for ways to keep their delivery rate high. And if not, management will soon tell them to do that. Because first the Product Owner then management will notice an increasing difficulty to deliver value within 32 hours. There, finally there emerges a way to measure Evolvability: The more frequent developers tell the Product Owner there is no way to deliver anything worth of feedback until tomorrow night, the poorer Evolvability is. Don´t count the “WTF!”, count the “No way!” utterances. In closing For sustainable software development we need to put Evolvability first. Functionality and Quality must not rule software development but be implemented within a framework ensuring (enough) Evolvability. Since Evolvability cannot be measured easily, I think we need to put software development “under pressure”. Software needs to be changed more often, in smaller increments. Each increment being relevant to the customer/user in some way. That does not mean each increment is worthy of shipment. It´s sufficient to gain further insight from it. Increments primarily serve the reduction of uncertainty, not sales. Sales even needs to be decoupled from this incremental progress. No more promises to sales. No more delivery au point. Rather sales should look at a stream of accepted increments (or incremental releases) and scoup from that whatever they find valuable. Sales and marketing need to realize they should work on what´s there, not what might be possible in the future. But I digress… In my view a Spinning cycle - which is not easy to reach, which requires practice - is the core practice to compensate the immeasurability of Evolvability. From start to finish of each issue in 32 hours max - that´s the challenge we need to accept if we´re serious increasing Evolvability. Fortunately higher Evolvability is not the only outcome of Spinning. Customer/management will like the increased flexibility and “getting more bang for the buck”.

    Read the article

  • Using Stub Objects

    - by user9154181
    Having told the long and winding tale of where stub objects came from and how we use them to build Solaris, I'd like to focus now on the the nuts and bolts of building and using them. The following new features were added to the Solaris link-editor (ld) to support the production and use of stub objects: -z stub This new command line option informs ld that it is to build a stub object rather than a normal object. In this mode, it accepts the same command line arguments as usual, but will quietly ignore any objects and sharable object dependencies. STUB_OBJECT Mapfile Directive In order to build a stub version of an object, its mapfile must specify the STUB_OBJECT directive. When producing a non-stub object, the presence of STUB_OBJECT causes the link-editor to perform extra validation to ensure that the stub and non-stub objects will be compatible. ASSERT Mapfile Directive All data symbols exported from the object must have an ASSERT symbol directive in the mapfile that declares them as data and supplies the size, binding, bss attributes, and symbol aliasing details. When building the stub objects, the information in these ASSERT directives is used to create the data symbols. When building the real object, these ASSERT directives will ensure that the real object matches the linking interface presented by the stub. Although ASSERT was added to the link-editor in order to support stub objects, they are a general purpose feature that can be used independently of stub objects. For instance you might choose to use an ASSERT directive if you have a symbol that must have a specific address in order for the object to operate properly and you want to automatically ensure that this will always be the case. The material presented here is derived from a document I originally wrote during the development effort, which had the dual goals of providing supplemental materials for the stub object PSARC case, and as a set of edits that were eventually applied to the Oracle Solaris Linker and Libraries Manual (LLM). The Solaris 11 LLM contains this information in a more polished form. Stub Objects A stub object is a shared object, built entirely from mapfiles, that supplies the same linking interface as the real object, while containing no code or data. Stub objects cannot be used at runtime. However, an application can be built against a stub object, where the stub object provides the real object name to be used at runtime, and then use the real object at runtime. When building a stub object, the link-editor ignores any object or library files specified on the command line, and these files need not exist in order to build a stub. Since the compilation step can be omitted, and because the link-editor has relatively little work to do, stub objects can be built very quickly. Stub objects can be used to solve a variety of build problems: Speed Modern machines, using a version of make with the ability to parallelize operations, are capable of compiling and linking many objects simultaneously, and doing so offers significant speedups. However, it is typical that a given object will depend on other objects, and that there will be a core set of objects that nearly everything else depends on. It is necessary to impose an ordering that builds each object before any other object that requires it. This ordering creates bottlenecks that reduce the amount of parallelization that is possible and limits the overall speed at which the code can be built. Complexity/Correctness In a large body of code, there can be a large number of dependencies between the various objects. The makefiles or other build descriptions for these objects can become very complex and difficult to understand or maintain. The dependencies can change as the system evolves. This can cause a given set of makefiles to become slightly incorrect over time, leading to race conditions and mysterious rare build failures. Dependency Cycles It might be desirable to organize code as cooperating shared objects, each of which draw on the resources provided by the other. Such cycles cannot be supported in an environment where objects must be built before the objects that use them, even though the runtime linker is fully capable of loading and using such objects if they could be built. Stub shared objects offer an alternative method for building code that sidesteps the above issues. Stub objects can be quickly built for all the shared objects produced by the build. Then, all the real shared objects and executables can be built in parallel, in any order, using the stub objects to stand in for the real objects at link-time. Afterwards, the executables and real shared objects are kept, and the stub shared objects are discarded. Stub objects are built from a mapfile, which must satisfy the following requirements. The mapfile must specify the STUB_OBJECT directive. This directive informs the link-editor that the object can be built as a stub object, and as such causes the link-editor to perform validation and sanity checking intended to guarantee that an object and its stub will always provide identical linking interfaces. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data exported from the object must have an ASSERT symbol attribute in the mapfile to specify the symbol type, size, and bss attributes. In the case where there are multiple symbols that reference the same data, the ASSERT for one of these symbols must specify the TYPE and SIZE attributes, while the others must use the ALIAS attribute to reference this primary symbol. Given such a mapfile, the stub and real versions of the shared object can be built using the same command line for each, adding the '-z stub' option to the link for the stub object, and omiting the option from the link for the real object. To demonstrate these ideas, the following code implements a shared object named idx5, which exports data from a 5 element array of integers, with each element initialized to contain its zero-based array index. This data is available as a global array, via an alternative alias data symbol with weak binding, and via a functional interface. % cat idx5.c int _idx5[5] = { 0, 1, 2, 3, 4 }; #pragma weak idx5 = _idx5 int idx5_func(int index) { if ((index 4)) return (-1); return (_idx5[index]); } A mapfile is required to describe the interface provided by this shared object. % cat mapfile $mapfile_version 2 STUB_OBJECT; SYMBOL_SCOPE { _idx5 { ASSERT { TYPE=data; SIZE=4[5] }; }; idx5 { ASSERT { BINDING=weak; ALIAS=_idx5 }; }; idx5_func; local: *; }; The following main program is used to print all the index values available from the idx5 shared object. % cat main.c #include <stdio.h> extern int _idx5[5], idx5[5], idx5_func(int); int main(int argc, char **argv) { int i; for (i = 0; i The following commands create a stub version of this shared object in a subdirectory named stublib. elfdump is used to verify that the resulting object is a stub. The command used to build the stub differs from that of the real object only in the addition of the -z stub option, and the use of a different output file name. This demonstrates the ease with which stub generation can be added to an existing makefile. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o stublib/libidx5.so.1 -zstub % ln -s libidx5.so.1 stublib/libidx5.so % elfdump -d stublib/libidx5.so | grep STUB [11] FLAGS_1 0x4000000 [ STUB ] The main program can now be built, using the stub object to stand in for the real shared object, and setting a runpath that will find the real object at runtime. However, as we have not yet built the real object, this program cannot yet be run. Attempts to cause the system to load the stub object are rejected, as the runtime linker knows that stub objects lack the actual code and data found in the real object, and cannot execute. % cc main.c -L stublib -R '$ORIGIN/lib' -lidx5 -lc % ./a.out ld.so.1: a.out: fatal: libidx5.so.1: open failed: No such file or directory Killed % LD_PRELOAD=stublib/libidx5.so.1 ./a.out ld.so.1: a.out: fatal: stublib/libidx5.so.1: stub shared object cannot be used at runtime Killed We build the real object using the same command as we used to build the stub, omitting the -z stub option, and writing the results to a different file. % cc -Kpic -G -M mapfile -h libidx5.so.1 idx5.c -o lib/libidx5.so.1 Once the real object has been built in the lib subdirectory, the program can be run. % ./a.out [0] 0 0 0 [1] 1 1 1 [2] 2 2 2 [3] 3 3 3 [4] 4 4 4 Mapfile Changes The version 2 mapfile syntax was extended in a number of places to accommodate stub objects. Conditional Input The version 2 mapfile syntax has the ability conditionalize mapfile input using the $if control directive. As you might imagine, these directives are used frequently with ASSERT directives for data, because a given data symbol will frequently have a different size in 32 or 64-bit code, or on differing hardware such as x86 versus sparc. The link-editor maintains an internal table of names that can be used in the logical expressions evaluated by $if and $elif. At startup, this table is initialized with items that describe the class of object (_ELF32 or _ELF64) and the type of the target machine (_sparc or _x86). We found that there were a small number of cases in the Solaris code base in which we needed to know what kind of object we were producing, so we added the following new predefined items in order to address that need: NameMeaning ...... _ET_DYNshared object _ET_EXECexecutable object _ET_RELrelocatable object ...... STUB_OBJECT Directive The new STUB_OBJECT directive informs the link-editor that the object described by the mapfile can be built as a stub object. STUB_OBJECT; A stub shared object is built entirely from the information in the mapfiles supplied on the command line. When the -z stub option is specified to build a stub object, the presence of the STUB_OBJECT directive in a mapfile is required, and the link-editor uses the information in symbol ASSERT attributes to create global symbols that match those of the real object. When the real object is built, the presence of STUB_OBJECT causes the link-editor to verify that the mapfiles accurately describe the real object interface, and that a stub object built from them will provide the same linking interface as the real object it represents. All function and data symbols that make up the external interface to the object must be explicitly listed in the mapfile. The mapfile must use symbol scope reduction ('*'), to remove any symbols not explicitly listed from the external interface. All global data in the object is required to have an ASSERT attribute that specifies the symbol type and size. If the ASSERT BIND attribute is not present, the link-editor provides a default assertion that the symbol must be GLOBAL. If the ASSERT SH_ATTR attribute is not present, or does not specify that the section is one of BITS or NOBITS, the link-editor provides a default assertion that the associated section is BITS. All data symbols that describe the same address and size are required to have ASSERT ALIAS attributes specified in the mapfile. If aliased symbols are discovered that do not have an ASSERT ALIAS specified, the link fails and no object is produced. These rules ensure that the mapfiles contain a description of the real shared object's linking interface that is sufficient to produce a stub object with a completely compatible linking interface. SYMBOL_SCOPE/SYMBOL_VERSION ASSERT Attribute The SYMBOL_SCOPE and SYMBOL_VERSION mapfile directives were extended with a symbol attribute named ASSERT. The syntax for the ASSERT attribute is as follows: ASSERT { ALIAS = symbol_name; BINDING = symbol_binding; TYPE = symbol_type; SH_ATTR = section_attributes; SIZE = size_value; SIZE = size_value[count]; }; The ASSERT attribute is used to specify the expected characteristics of the symbol. The link-editor compares the symbol characteristics that result from the link to those given by ASSERT attributes. If the real and asserted attributes do not agree, a fatal error is issued and the output object is not created. In normal use, the link editor evaluates the ASSERT attribute when present, but does not require them, or provide default values for them. The presence of the STUB_OBJECT directive in a mapfile alters the interpretation of ASSERT to require them under some circumstances, and to supply default assertions if explicit ones are not present. See the definition of the STUB_OBJECT Directive for the details. When the -z stub command line option is specified to build a stub object, the information provided by ASSERT attributes is used to define the attributes of the global symbols provided by the object. ASSERT accepts the following: ALIAS Name of a previously defined symbol that this symbol is an alias for. An alias symbol has the same type, value, and size as the main symbol. The ALIAS attribute is mutually exclusive to the TYPE, SIZE, and SH_ATTR attributes, and cannot be used with them. When ALIAS is specified, the type, size, and section attributes are obtained from the alias symbol. BIND Specifies an ELF symbol binding, which can be any of the STB_ constants defined in <sys/elf.h>, with the STB_ prefix removed (e.g. GLOBAL, WEAK). TYPE Specifies an ELF symbol type, which can be any of the STT_ constants defined in <sys/elf.h>, with the STT_ prefix removed (e.g. OBJECT, COMMON, FUNC). In addition, for compatibility with other mapfile usage, FUNCTION and DATA can be specified, for STT_FUNC and STT_OBJECT, respectively. TYPE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SH_ATTR Specifies attributes of the section associated with the symbol. The section_attributes that can be specified are given in the following table: Section AttributeMeaning BITSSection is not of type SHT_NOBITS NOBITSSection is of type SHT_NOBITS SH_ATTR is mutually exclusive to ALIAS, and cannot be used in conjunction with it. SIZE Specifies the expected symbol size. SIZE is mutually exclusive to ALIAS, and cannot be used in conjunction with it. The syntax for the size_value argument is as described in the discussion of the SIZE attribute below. SIZE The SIZE symbol attribute existed before support for stub objects was introduced. It is used to set the size attribute of a given symbol. This attribute results in the creation of a symbol definition. Prior to the introduction of the ASSERT SIZE attribute, the value of a SIZE attribute was always numeric. While attempting to apply ASSERT SIZE to the objects in the Solaris ON consolidation, I found that many data symbols have a size based on the natural machine wordsize for the class of object being produced. Variables declared as long, or as a pointer, will be 4 bytes in size in a 32-bit object, and 8 bytes in a 64-bit object. Initially, I employed the conditional $if directive to handle these cases as follows: $if _ELF32 foo { ASSERT { TYPE=data; SIZE=4 } }; bar { ASSERT { TYPE=data; SIZE=20 } }; $elif _ELF64 foo { ASSERT { TYPE=data; SIZE=8 } }; bar { ASSERT { TYPE=data; SIZE=40 } }; $else $error UNKNOWN ELFCLASS $endif I found that the situation occurs frequently enough that this is cumbersome. To simplify this case, I introduced the idea of the addrsize symbolic name, and of a repeat count, which together make it simple to specify machine word scalar or array symbols. Both the SIZE, and ASSERT SIZE attributes support this syntax: The size_value argument can be a numeric value, or it can be the symbolic name addrsize. addrsize represents the size of a machine word capable of holding a memory address. The link-editor substitutes the value 4 for addrsize when building 32-bit objects, and the value 8 when building 64-bit objects. addrsize is useful for representing the size of pointer variables and C variables of type long, as it automatically adjusts for 32 and 64-bit objects without requiring the use of conditional input. The size_value argument can be optionally suffixed with a count value, enclosed in square brackets. If count is present, size_value and count are multiplied together to obtain the final size value. Using this feature, the example above can be written more naturally as: foo { ASSERT { TYPE=data; SIZE=addrsize } }; bar { ASSERT { TYPE=data; SIZE=addrsize[5] } }; Exported Global Data Is Still A Bad Idea As you can see, the additional plumbing added to the Solaris link-editor to support stub objects is minimal. Furthermore, about 90% of that plumbing is dedicated to handling global data. We have long advised against global data exported from shared objects. There are many ways in which global data does not fit well with dynamic linking. Stub objects simply provide one more reason to avoid this practice. It is always better to export all data via a functional interface. You should always hide your data, and make it available to your users via a function that they can call to acquire the address of the data item. However, If you do have to support global data for a stub, perhaps because you are working with an already existing object, it is still easilily done, as shown above. Oracle does not like us to discuss hypothetical new features that don't exist in shipping product, so I'll end this section with a speculation. It might be possible to do more in this area to ease the difficulty of dealing with objects that have global data that the users of the library don't need. Perhaps someday... Conclusions It is easy to create stub objects for most objects. If your library only exports function symbols, all you have to do to build a faithful stub object is to add STUB_OBJECT; and then to use the same link command you're currently using, with the addition of the -z stub option. Happy Stubbing!

    Read the article

  • nokia cell phone not accepting IP from dnsmasq dhcp server

    - by samix
    Hello, I having problem connecting a NOkia cell phone to my home wifi network. The wifi network is provided by a wireless card in a machine running Debian Testing and 2.6.26-2-686 kernel. The cars is D-Link DWL-G520 working in ap mode and has WPA encryption enabled. The wireless network is provided by hostapd using madwifi driver. Windows and Mac machines work properly with this wifi network. When I try to get the Nokia phone to connect to the wifi network, I get these lines in my dnsmasq log (to see lines without wrapping, here is the pastebin link for convenience - http://pastebin.com/m466c8fd2): Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 IEEE 802.11: disassociated Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 IEEE 802.11: associated Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 RADIUS: starting accounting session 4AE664FA-00000036 Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 WPA: pairwise key handshake completed (WPA) Oct 27 13:25:21 red hostapd: ath0: STA 11:22:33:44:55:66 WPA: group key handshake completed (WPA) Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 Available DHCP range: 192.168.5.150 -- 192.168.5.199 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 DHCPDISCOVER(ath0) 0.0.0.0 11:22:33:44:55:66 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 DHCPOFFER(ath0) 192.168.5.21 11:22:33:44:55:66 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 requested options: 12:hostname, 6:dns-server, 15:domain-name, Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 requested options: 1:netmask, 3:router, 28:broadcast, 120:sip-server Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 tags: known, ath0 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 next server: 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 1 option: 53:message-type 02 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 54:server-identifier 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 51:lease-time 00:00:46:50 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 58:T1 00:00:23:28 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 59:T2 00:00:3d:86 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 1:netmask 255.255.255.0 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 28:broadcast 192.168.5.255 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 3:router 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 4 option: 6:dns-server 192.168.5.1 Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 8 option: 15:domain-name home.pvt Oct 27 13:25:21 red dnsmasq-dhcp[11451]: 3875439214 sent size: 3 option: 12:hostname NokiaCellPhone Anybody know the problem might be? If I switch off dnsmasq dhcp queries logging, i.e. if I decrease the verbosity of the log, all I see are two lines of DHCPDISCOVER(ath0) and DHCPOFFER(ath0) repeatedly in the log with no acceptance by the cell phone. It appears as though the phone is not accepting the dhcp offer. However, if I give the phone a static IP address in its configuration, it works properly on the wifi network. So it appears as though the problem is dhcp related. Hints? Suggestions? Installed stuff: $ dpkg -l dnsmasq hostap* | grep ^i ii dnsmasq 2.50-1 A small caching DNS proxy and DHCP/TFTP server ii dnsmasq-base 2.50-1 A small caching DNS proxy and DHCP/TFTP server ii hostapd 1:0.6.9-3 user space IEEE 802.11 AP and IEEE 802.1X/WPA/ Thanks. PS: Here is the DHCP tcp dump for more information (with mac addresses changed): $ sudo dhcpdump -i ath0 -h ^11:22:33:44:55:66 TIME: 2009-10-30 12:15:32.916 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:32.918 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:32.918 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 0 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:34.922 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:34.922 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:34.923 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 2 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:38.919 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:38.920 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:38.921 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: c3f93d53 SECS: 6 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:46.944 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:46.944 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 0.0.0.0 SIADDR: 0.0.0.0 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 1 (DHCPDISCOVER) OPTION: 50 ( 4) Request IP address 0.0.0.0 OPTION: 61 ( 7) Client-identifier 01:11:22:33:44:55:66 OPTION: 55 ( 7) Parameter Request List 12 (Host name) 6 (DNS server) 15 (Domainname) 1 (Subnet mask) 3 (Routers) 28 (Broadcast address) 120 (SIP Servers DHCP Option) OPTION: 57 ( 2) Maximum DHCP message size 576 TIME: 2009-10-30 12:15:46.945 IP: 192.168.5.1 (a:bb:cc:dd:ee:ff) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 2 (BOOTPREPLY) HTYPE: 1 (Ethernet) HLEN: 6 HOPS: 0 XID: ccafe769 SECS: 14 FLAGS: 7f80 CIADDR: 0.0.0.0 YIADDR: 192.168.5.21 SIADDR: 192.168.5.1 GIADDR: 0.0.0.0 CHADDR: 11:22:33:44:55:66:00:00:00:00:00:00:00:00:00:00 SNAME: . FNAME: . OPTION: 53 ( 1) DHCP message type 2 (DHCPOFFER) OPTION: 54 ( 4) Server identifier 192.168.5.1 OPTION: 51 ( 4) IP address leasetime 18000 (5h) OPTION: 58 ( 4) T1 9000 (2h30m) OPTION: 59 ( 4) T2 15750 (4h22m30s) OPTION: 1 ( 4) Subnet mask 255.255.255.0 OPTION: 28 ( 4) Broadcast address 192.168.5.255 OPTION: 3 ( 4) Routers 192.168.5.1 OPTION: 6 ( 4) DNS server 192.168.5.1 OPTION: 15 ( 8) Domainname home.pvt OPTION: 12 ( 3) Host name Nokia_E63 TIME: 2009-10-30 12:15:48.952 IP: 0.0.0.0 (1:22:33:44:55:66) 255.255.255.255 (ff:ff:ff:ff:ff:ff) OP: 1 (BOOTPREQUEST) HTYPE: 1 (Ethernet) HLEN: 6 ... and so on ...

    Read the article

  • Android WebView not loading a JavaScript file, but Android Browser loads it fine.

    - by Justin
    I'm writing an application which connects to a back office site. The backoffice site contains a whole slew of JavaScript functions, at least 100 times the average site. Unfortunately it does not load them, and causes much of the functionality to not work properly. So I am running a test. I put a page out on my server which loads the FireBugLite javascript text. Its a lot of javascript and perfect to test and see if the Android WebView will load it. The WebView loads nothing, but the browser loads the Firebug Icon. What on earth would make the difference, why can it run in the browser and not in my WebView? Any suggestions. More background information, in order to get the stinking backoffice application available on a Droid (or any other platform except windows) I needed to trick the bakcoffice application to believe what's accessing the website is Internet Explorer. I do this by modifying the WebView User Agent. Also for this application I've slimmed my landing page, so I could give you the source to offer me aid. package ksc.myKMB; import android.app.Activity; import android.app.AlertDialog; import android.app.Dialog; import android.app.ProgressDialog; import android.content.DialogInterface; import android.graphics.Bitmap; import android.os.Bundle; import android.view.Menu; import android.view.MenuInflater; import android.view.MenuItem; import android.view.Window; import android.webkit.WebChromeClient; import android.webkit.WebView; import android.webkit.WebSettings; import android.webkit.WebViewClient; import android.widget.Toast; public class myKMB extends Activity { /** Called when the activity is first created. */ @Override public void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); /** Performs base set up */ /** Create a Activity of this Activity, IE myProcess */ myProcess = this; /*** Create global objects and web browsing objects */ HideDialogOnce = true; webview = new WebView(this) { }; webChromeClient = new WebChromeClient() { public void onProgressChanged(WebView view, int progress) { // Activities and WebViews measure progress with different scales. // The progress meter will automatically disappear when we reach 100% myProcess.setProgress((progress * 100)); //CreateMessage("Progress is : " + progress); } }; webViewClient = new WebViewClient() { public void onReceivedError(WebView view, int errorCode, String description, String failingUrl) { Toast.makeText(myProcess, MessageBegText + description + MessageEndText, Toast.LENGTH_SHORT).show(); } public void onPageFinished (WebView view, String url) { /** Hide dialog */ try { // loadingDialog.dismiss(); } finally { } //myProcess.setProgress(1000); /** Fon't show the dialog while I'm performing fixes */ //HideDialogOnce = true; view.loadUrl("javascript:document.getElementById('JTRANS011').style.visibility='visible';"); } public void onPageStarted(WebView view, String url, Bitmap favicon) { if (HideDialogOnce == false) { //loadingDialog = ProgressDialog.show(myProcess, "", // "One moment, the page is laoding...", true); } else { //HideDialogOnce = true; } } }; getWindow().requestFeature(Window.FEATURE_PROGRESS); webview.setWebChromeClient(webChromeClient); webview.setWebViewClient(webViewClient); setContentView(webview); /** Load the Keynote Browser Settings */ LoadSettings(); webview.loadUrl(LandingPage); } /** Get Menu */ @Override public boolean onCreateOptionsMenu(Menu menu) { MenuInflater inflater = getMenuInflater(); inflater.inflate(R.menu.menu, menu); return true; } /** an item gets pushed */ @Override public boolean onOptionsItemSelected(MenuItem item) { switch (item.getItemId()) { // We have only one menu option case R.id.quit: System.exit(0); break; case R.id.back: webview.goBack(); case R.id.refresh: webview.reload(); case R.id.info: //IncludeJavascript(""); } return true; } /** Begin Globals */ public WebView webview; public WebChromeClient webChromeClient; public WebViewClient webViewClient; public ProgressDialog loadingDialog; public Boolean HideDialogOnce; public Activity myProcess; public String OverideUserAgent_IE = "Mozilla/5.0 (Windows; MSIE 6.0; Android 1.6; en-US) AppleWebKit/525.10+ (KHTML, like Gecko) Version/3.0.4 Safari/523.12.2 myKMB/1.0"; public String LandingPage = "http://kscserver.com/main-leap-slim.html"; public String MessageBegText = "Problem making a connection, Details: "; public String MessageEndText = " For Support Call: (xxx) xxx - xxxx."; public void LoadSettings() { webview.getSettings().setUserAgentString(OverideUserAgent_IE); webview.getSettings().setJavaScriptEnabled(true); webview.getSettings().setBuiltInZoomControls(true); webview.getSettings().setSupportZoom(true); } /** Creates a message alert dialog */ public void CreateMessage(String message) { AlertDialog.Builder builder = new AlertDialog.Builder(this); builder.setMessage(message) .setCancelable(true) .setNegativeButton("Close", new DialogInterface.OnClickListener() { public void onClick(DialogInterface dialog, int id) { dialog.cancel(); } }); AlertDialog alert = builder.create(); alert.show(); } } My Application is running in the background, and as you can see no Firebug in the lower right hand corner. However the browser (the emulator on top) has the same page but shows the firebug. What am I doing wrong? I'm assuming its either not enough memory allocated to the application, process power allocation, or a physical memory thing. I can't tell, all I know is the results are strange. I get the same thing form my android device, the application shows no firebug but the browser shows the firebug.

    Read the article

  • .NET file Decryption - Bad Data

    - by Jon
    I am in the process of rewriting an old application. The old app stored data in a scoreboard file that was encrypted with the following code: private const String SSecretKey = @"?B?n?Mj?"; public DataTable GetScoreboardFromFile() { FileInfo f = new FileInfo(scoreBoardLocation); if (!f.Exists) { return setupNewScoreBoard(); } DESCryptoServiceProvider DES = new DESCryptoServiceProvider(); //A 64 bit key and IV is required for this provider. //Set secret key For DES algorithm. DES.Key = ASCIIEncoding.ASCII.GetBytes(SSecretKey); //Set initialization vector. DES.IV = ASCIIEncoding.ASCII.GetBytes(SSecretKey); //Create a file stream to read the encrypted file back. FileStream fsread = new FileStream(scoreBoardLocation, FileMode.Open, FileAccess.Read); //Create a DES decryptor from the DES instance. ICryptoTransform desdecrypt = DES.CreateDecryptor(); //Create crypto stream set to read and do a //DES decryption transform on incoming bytes. CryptoStream cryptostreamDecr = new CryptoStream(fsread, desdecrypt, CryptoStreamMode.Read); DataTable dTable = new DataTable("scoreboard"); dTable.ReadXml(new StreamReader(cryptostreamDecr)); cryptostreamDecr.Close(); fsread.Close(); return dTable; } This works fine. I have copied the code into my new app so that I can create a legacy loader and convert the data into the new format. The problem is I get a "Bad Data" error: System.Security.Cryptography.CryptographicException was unhandled Message="Bad Data.\r\n" Source="mscorlib" The error fires at this line: dTable.ReadXml(new StreamReader(cryptostreamDecr)); The encrypted file was created today on the same machine with the old code. I guess that maybe the encryption / decryption process uses the application name / file or something and therefore means I can not open it. Does anyone have an idea as to: A) Be able explain why this isn't working? B) Offer a solution that would allow me to be able to open files that were created with the legacy application and be able to convert them please? Here is the whole class that deals with loading and saving the scoreboard: using System; using System.Collections.Generic; using System.Text; using System.Security.Cryptography; using System.Runtime.InteropServices; using System.IO; using System.Data; using System.Xml; using System.Threading; namespace JawBreaker { [Serializable] class ScoreBoardLoader { private Jawbreaker jawbreaker; private String sSecretKey = @"?B?n?Mj?"; private String scoreBoardFileLocation = ""; private bool keepScoreBoardUpdated = true; private int intTimer = 180000; public ScoreBoardLoader(Jawbreaker jawbreaker, String scoreBoardFileLocation) { this.jawbreaker = jawbreaker; this.scoreBoardFileLocation = scoreBoardFileLocation; } // Call this function to remove the key from memory after use for security [System.Runtime.InteropServices.DllImport("KERNEL32.DLL", EntryPoint = "RtlZeroMemory")] public static extern bool ZeroMemory(IntPtr Destination, int Length); // Function to Generate a 64 bits Key. private string GenerateKey() { // Create an instance of Symetric Algorithm. Key and IV is generated automatically. DESCryptoServiceProvider desCrypto = (DESCryptoServiceProvider)DESCryptoServiceProvider.Create(); // Use the Automatically generated key for Encryption. return ASCIIEncoding.ASCII.GetString(desCrypto.Key); } public void writeScoreboardToFile() { DataTable tempScoreBoard = getScoreboardFromFile(); //add in the new scores to the end of the file. for (int i = 0; i < jawbreaker.Scoreboard.Rows.Count; i++) { DataRow row = tempScoreBoard.NewRow(); row.ItemArray = jawbreaker.Scoreboard.Rows[i].ItemArray; tempScoreBoard.Rows.Add(row); } //before it is written back to the file make sure we update the sync info if (jawbreaker.SyncScoreboard) { //connect to webservice, login and update all the scores that have not been synced. for (int i = 0; i < tempScoreBoard.Rows.Count; i++) { try { //check to see if that row has been synced to the server if (!Boolean.Parse(tempScoreBoard.Rows[i].ItemArray[7].ToString())) { //sync info to server //update the row to say that it has been updated object[] tempArray = tempScoreBoard.Rows[i].ItemArray; tempArray[7] = true; tempScoreBoard.Rows[i].ItemArray = tempArray; tempScoreBoard.AcceptChanges(); } } catch (Exception ex) { jawbreaker.writeErrorToLog("ERROR OCCURED DURING SYNC TO SERVER UPDATE: " + ex.Message); } } } FileStream fsEncrypted = new FileStream(scoreBoardFileLocation, FileMode.Create, FileAccess.Write); DESCryptoServiceProvider DES = new DESCryptoServiceProvider(); DES.Key = ASCIIEncoding.ASCII.GetBytes(sSecretKey); DES.IV = ASCIIEncoding.ASCII.GetBytes(sSecretKey); ICryptoTransform desencrypt = DES.CreateEncryptor(); CryptoStream cryptostream = new CryptoStream(fsEncrypted, desencrypt, CryptoStreamMode.Write); MemoryStream ms = new MemoryStream(); tempScoreBoard.WriteXml(ms, XmlWriteMode.WriteSchema); ms.Position = 0; byte[] bitarray = new byte[ms.Length]; ms.Read(bitarray, 0, bitarray.Length); cryptostream.Write(bitarray, 0, bitarray.Length); cryptostream.Close(); ms.Close(); //now the scores have been added to the file remove them from the datatable jawbreaker.Scoreboard.Rows.Clear(); } public void startPeriodicScoreboardWriteToFile() { while (keepScoreBoardUpdated) { //three minute sleep. Thread.Sleep(intTimer); writeScoreboardToFile(); } } public void stopPeriodicScoreboardWriteToFile() { keepScoreBoardUpdated = false; } public int IntTimer { get { return intTimer; } set { intTimer = value; } } public DataTable getScoreboardFromFile() { FileInfo f = new FileInfo(scoreBoardFileLocation); if (!f.Exists) { jawbreaker.writeInfoToLog("Scoreboard not there so creating new one"); return setupNewScoreBoard(); } else { DESCryptoServiceProvider DES = new DESCryptoServiceProvider(); //A 64 bit key and IV is required for this provider. //Set secret key For DES algorithm. DES.Key = ASCIIEncoding.ASCII.GetBytes(sSecretKey); //Set initialization vector. DES.IV = ASCIIEncoding.ASCII.GetBytes(sSecretKey); //Create a file stream to read the encrypted file back. FileStream fsread = new FileStream(scoreBoardFileLocation, FileMode.Open, FileAccess.Read); //Create a DES decryptor from the DES instance. ICryptoTransform desdecrypt = DES.CreateDecryptor(); //Create crypto stream set to read and do a //DES decryption transform on incoming bytes. CryptoStream cryptostreamDecr = new CryptoStream(fsread, desdecrypt, CryptoStreamMode.Read); DataTable dTable = new DataTable("scoreboard"); dTable.ReadXml(new StreamReader(cryptostreamDecr)); cryptostreamDecr.Close(); fsread.Close(); return dTable; } } public DataTable setupNewScoreBoard() { //scoreboard info into dataset DataTable scoreboard = new DataTable("scoreboard"); scoreboard.Columns.Add(new DataColumn("playername", System.Type.GetType("System.String"))); scoreboard.Columns.Add(new DataColumn("score", System.Type.GetType("System.Int32"))); scoreboard.Columns.Add(new DataColumn("ballnumber", System.Type.GetType("System.Int32"))); scoreboard.Columns.Add(new DataColumn("xsize", System.Type.GetType("System.Int32"))); scoreboard.Columns.Add(new DataColumn("ysize", System.Type.GetType("System.Int32"))); scoreboard.Columns.Add(new DataColumn("gametype", System.Type.GetType("System.String"))); scoreboard.Columns.Add(new DataColumn("date", System.Type.GetType("System.DateTime"))); scoreboard.Columns.Add(new DataColumn("synced", System.Type.GetType("System.Boolean"))); scoreboard.AcceptChanges(); return scoreboard; } private void Run() { // For additional security Pin the key. GCHandle gch = GCHandle.Alloc(sSecretKey, GCHandleType.Pinned); // Remove the Key from memory. ZeroMemory(gch.AddrOfPinnedObject(), sSecretKey.Length * 2); gch.Free(); } } }

    Read the article

  • Silverlight 4 + WCF RIA - Data Service Design Best Practices

    - by Chadd Nervig
    Hey all. I realize this is a rather long question, but I'd really appreciate any help from anyone experienced with RIA services. Thanks! I'm working on a Silverlight 4 app that views data from the server. I'm relatively inexperienced with RIA Services, so have been working through the tasks of getting the data I need down to the client, but every new piece I add to the puzzle seems to be more and more problematic. I feel like I'm missing some basic concepts here, and it seems like I'm just 'hacking' pieces on, in time-consuming ways, each one breaking the previous ones as I try to add them. I'd love to get the feedback of developers experienced with RIA services, to figure out the intended way to do what I'm trying to do. Let me lay out what I'm trying to do: First, the data. The source of this data is a variety of sources, primarily created by a shared library which reads data from our database, and exposes it as POCOs (Plain Old CLR Objects). I'm creating my own POCOs to represent the different types of data I need to pass between server and client. DataA - This app is for viewing a certain type of data, lets call DataA, in near-realtime. Every 3 minutes, the client should pull data down from the server, of all the new DataA since the last time it requested data. DataB - Users can view the DataA objects in the app, and may select one of them from the list, which displays additional details about that DataA. I'm bringing these extra details down from the server as DataB. DataC - One of the things that DataB contains is a history of a couple important values over time. I'm calling each data point of this history a DataC object, and each DataB object contains many DataCs. The Data Model - On the server side, I have a single DomainService: [EnableClientAccess] public class MyDomainService : DomainService { public IEnumerable<DataA> GetDataA(DateTime? startDate) { /*Pieces together the DataAs that have been created since startDate, and returns them*/ } public DataB GetDataB(int dataAID) { /*Looks up the extended info for that dataAID, constructs a new DataB with that DataA's data, plus the extended info (with multiple DataCs in a List<DataC> property on the DataB), and returns it*/ } //Not exactly sure why these are here, but I think it //wouldn't compile without them for some reason? The data //is entirely read-only, so I don't need to update. public void UpdateDataA(DataA dataA) { throw new NotSupportedException(); } public void UpdateDataB(DataB dataB) { throw new NotSupportedException(); } } The classes for DataA/B/C look like this: [KnownType(typeof(DataB))] public partial class DataA { [Key] [DataMember] public int DataAID { get; set; } [DataMember] public decimal MyDecimalA { get; set; } [DataMember] public string MyStringA { get; set; } [DataMember] public DataTime MyDateTimeA { get; set; } } public partial class DataB : DataA { [Key] [DataMember] public int DataAID { get; set; } [DataMember] public decimal MyDecimalB { get; set; } [DataMember] public string MyStringB { get; set; } [Include] //I don't know which of these, if any, I need? [Composition] [Association("DataAToC","DataAID","DataAID")] public List<DataC> DataCs { get; set; } } public partial class DataC { [Key] [DataMember] public int DataAID { get; set; } [Key] [DataMember] public DateTime Timestamp { get; set; } [DataMember] public decimal MyHistoricDecimal { get; set; } } I guess a big question I have here is... Should I be using Entities instead of POCOs? Are my classes constructed correctly to be able to pass the data down correctly? Should I be using Invoke methods instead of Query (Get) methods on the DomainService? On the client side, I'm having a number of issues. Surprisingly, one of my biggest ones has been threading. I didn't expect there to be so many threading issues with MyDomainContext. What I've learned is that you only seem to be able to create MyDomainContextObjects on the UI thread, all of the queries you can make are done asynchronously only, and that if you try to fake doing it synchronously by blocking the calling thread until the LoadOperation finishes, you have to do so on a background thread, since it uses the UI thread to make the query. So here's what I've got so far. The app should display a stream of the DataA objects, spreading each 3min chunk of them over the next 3min (so they end up displayed 3min after the occurred, looking like a continuous stream, but only have to be downloaded in 3min bursts). To do this, the main form initializes, creates a private MyDomainContext, and starts up a background worker, which continuously loops in a while(true). On each loop, it checks if it has any DataAs left over to display. If so, it displays that Data, and Thread.Sleep()s until the next DataA is scheduled to be displayed. If it's out of data, it queries for more, using the following methods: public DataA[] GetDataAs(DateTime? startDate) { _loadOperationGetDataACompletion = new AutoResetEvent(false); LoadOperation<DataA> loadOperationGetDataA = null; loadOperationGetDataA = _context.Load(_context.GetDataAQuery(startDate), System.ServiceModel.DomainServices.Client.LoadBehavior.RefreshCurrent, false); loadOperationGetDataA.Completed += new EventHandler(loadOperationGetDataA_Completed); _loadOperationGetDataACompletion.WaitOne(); List<DataA> dataAs = new List<DataA>(); foreach (var dataA in loadOperationGetDataA.Entities) dataAs.Add(dataA); return dataAs.ToArray(); } private static AutoResetEvent _loadOperationGetDataACompletion; private static void loadOperationGetDataA_Completed(object sender, EventArgs e) { _loadOperationGetDataACompletion.Set(); } Seems kind of clunky trying to force it into being synchronous, but since this already is on a background thread, I think this is OK? So far, everything actually works, as much of a hack as it seems like it may be. It's important to note that if I try to run that code on the UI thread, it locks, because it waits on the WaitOne() forever, locking the thread, so it can't make the Load request to the server. So once the data is displayed, users can click on one as it goes by to fill a details pane with the full DataB data about that object. To do that, I have the the details pane user control subscribing to a selection event I have setup, which gets fired when the selection changes (on the UI thread). I use a similar technique there, to get the DataB object: void SelectionService_SelectedDataAChanged(object sender, EventArgs e) { DataA dataA = /*Get the selected DataA*/; MyDomainContext context = new MyDomainContext(); var loadOperationGetDataB = context.Load(context.GetDataBQuery(dataA.DataAID), System.ServiceModel.DomainServices.Client.LoadBehavior.RefreshCurrent, false); loadOperationGetDataB.Completed += new EventHandler(loadOperationGetDataB_Completed); } private void loadOperationGetDataB_Completed(object sender, EventArgs e) { this.DataContext = ((LoadOperation<DataB>)sender).Entities.SingleOrDefault(); } Again, it seems kinda hacky, but it works... except on the DataB that it loads, the DataCs list is empty. I've tried all kinds of things there, and I don't see what I'm doing wrong to allow the DataCs to come down with the DataB. I'm about ready to make a 3rd query for the DataCs, but that's screaming even more hackiness to me. It really feels like I'm fighting against the grain here, like I'm doing this in an entirely unintended way. If anyone could offer any assistance, and point out what I'm doing wrong here, I'd very much appreciate it! Thanks!

    Read the article

  • Class member functions instantiated by traits [policies, actually]

    - by Jive Dadson
    I am reluctant to say I can't figure this out, but I can't figure this out. I've googled and searched Stack Overflow, and come up empty. The abstract, and possibly overly vague form of the question is, how can I use the traits-pattern to instantiate member functions? [Update: I used the wrong term here. It should be "policies" rather than "traits." Traits describe existing classes. Policies prescribe synthetic classes.] The question came up while modernizing a set of multivariate function optimizers that I wrote more than 10 years ago. The optimizers all operate by selecting a straight-line path through the parameter space away from the current best point (the "update"), then finding a better point on that line (the "line search"), then testing for the "done" condition, and if not done, iterating. There are different methods for doing the update, the line-search, and conceivably for the done test, and other things. Mix and match. Different update formulae require different state-variable data. For example, the LMQN update requires a vector, and the BFGS update requires a matrix. If evaluating gradients is cheap, the line-search should do so. If not, it should use function evaluations only. Some methods require more accurate line-searches than others. Those are just some examples. The original version instantiates several of the combinations by means of virtual functions. Some traits are selected by setting mode bits that are tested at runtime. Yuck. It would be trivial to define the traits with #define's and the member functions with #ifdef's and macros. But that's so twenty years ago. It bugs me that I cannot figure out a whiz-bang modern way. If there were only one trait that varied, I could use the curiously recurring template pattern. But I see no way to extend that to arbitrary combinations of traits. I tried doing it using boost::enable_if, etc.. The specialized state information was easy. I managed to get the functions done, but only by resorting to non-friend external functions that have the this-pointer as a parameter. I never even figured out how to make the functions friends, much less member functions. The compiler (VC++ 2008) always complained that things didn't match. I would yell, "SFINAE, you moron!" but the moron is probably me. Perhaps tag-dispatch is the key. I haven't gotten very deeply into that. Surely it's possible, right? If so, what is best practice? UPDATE: Here's another try at explaining it. I want the user to be able to fill out an order (manifest) for a custom optimizer, something like ordering off of a Chinese menu - one from column A, one from column B, etc.. Waiter, from column A (updaters), I'll have the BFGS update with Cholesky-decompositon sauce. From column B (line-searchers), I'll have the cubic interpolation line-search with an eta of 0.4 and a rho of 1e-4, please. Etc... UPDATE: Okay, okay. Here's the playing-around that I've done. I offer it reluctantly, because I suspect it's a completely wrong-headed approach. It runs okay under vc++ 2008. #include <boost/utility.hpp> #include <boost/type_traits/integral_constant.hpp> namespace dj { struct CBFGS { void bar() {printf("CBFGS::bar %d\n", data);} CBFGS(): data(1234){} int data; }; template<class T> struct is_CBFGS: boost::false_type{}; template<> struct is_CBFGS<CBFGS>: boost::true_type{}; struct LMQN {LMQN(): data(54.321){} void bar() {printf("LMQN::bar %lf\n", data);} double data; }; template<class T> struct is_LMQN: boost::false_type{}; template<> struct is_LMQN<LMQN> : boost::true_type{}; // "Order form" struct default_optimizer_traits { typedef CBFGS update_type; // Selection from column A - updaters }; template<class traits> class Optimizer; template<class traits> void foo(typename boost::enable_if<is_LMQN<typename traits::update_type>, Optimizer<traits> >::type& self) { printf(" LMQN %lf\n", self.data); } template<class traits> void foo(typename boost::enable_if<is_CBFGS<typename traits::update_type>, Optimizer<traits> >::type& self) { printf("CBFGS %d\n", self.data); } template<class traits = default_optimizer_traits> class Optimizer{ friend typename traits::update_type; //friend void dj::foo<traits>(typename Optimizer<traits> & self); // How? public: //void foo(void); // How??? void foo() { dj::foo<traits>(*this); } void bar() { data.bar(); } //protected: // How? typedef typename traits::update_type update_type; update_type data; }; } // namespace dj int main() { dj::Optimizer<> opt; opt.foo(); opt.bar(); std::getchar(); return 0; }

    Read the article

  • How to find an entry-level job after you already have a graduate degree?

    - by Uri
    Note: I asked this question in early 2009. A couple of months later, I found a great job. I've previously updated this question with some tips for whoever ends up in a similar situation, and now cleaned it up a little for the benefit of the fresh batch of graduates. Original post: In my early 20s I abandoned a great C++ development career path in a major company to go to graduate school and get a research masters (3 years). I did another year in industrial research, and then moved to the US to attend graduate school again, getting another masters and a Ph.D in software engineering from a top school (another 6 years down the drain). I was coding the whole way throughout my degrees (core Java and Eclipse plug-ins) and working on research related to software engineering (usability of APIs). I ended up graduating the year of the recession, with a son on the way and the prospects of no healthcare. Academic jobs and industrial research jobs are quite scarce. Initially, I was naive, thinking that with my background, I could easily find a coding job. Big mistake. It turns out that I'm in a complicated position. Entry level positions are usually offered to college undergraduates. I attended my school's career fairs, but you could immediately see signs of Ph.D. aversion and overqualification issues. Some of the recruiters I spoke with explicitly told me that they wanted 20 year olds with clean slates, and some were looking for interns since they are in various forms of hiring freezes. I managed to get a couple of interviews from these career fairs and through recruiters. However, since I've been out of school for a long time and programming primarily in Java, I am also no longer proficient in C/C++ and the usual range of college-level interview questions that everyone uses. I had no problems with this when I was 19 and interviewing for my first job since a lot of what you do in C is manipulate pointers and I was coding C++ for fun and for school. Later I was routinely doing pointer manipulation on the job, and during my first masters taught college courses with data structures and C++. But even though I remember many properties of C++ well, it's been close to ten years since I regularly used C++ and pointers. As a Java developer I rarely had to work at this level, but experience in OOD and in writing good maintainable code is meaningless for C++ interviews. Reading books as a refresh and looking at sample code did not do the trick. I also looked at mid-to-senior level Java positions, but most of them focused on J2EE APIs rather than on core Java and required a certain number of years in industrial positions. Coding research tools and prior C++ experience doesn't count. So that sends me back to entry-level jobs that are posted through job-boards, and these are not common (mostly they are Monster junk), and small companies are even less likely to answer a Ph.D. compared to the giants who participate in top-10 career fairs. Even worse, in many companies initial screening is done by HR folks who really don't want to deal with anything anomalous like a Ph.D. Any tips on how I should approach this intractable position? For example, what should I write in cover letters? Note that while immigration is not an issue for me, I cannot go freelance as I need the benefits (and in particular group health insurance). During my studies I had no time to contribute to open-source projects or maintain a popular blog, so even if I invested in that now there would be no immediate benefit. Updates: In the two months after posting this I received several offers to work as a core Java developer in the financial industry and accepted one from a firm where I am working to this day. For those who find themselves in similar situations, here are my tips: Give up on trying to find an entry level positions. You can't undo time. Accept the fact that there is Ph.D. discrimination in the job market (some might say rightfully so). It is legal to discriminate based on education. No point fighting it. The most important tip is to focus on the language you are comfortable with. The sad truth about programming in a particular language is that it is not like riding a bike. If you haven't used a language in the last few years, and can't actually apply it routinely (not just as a refresher) before you start your search, it is going to be very difficult to do well in an interview. Now that I'm interviewing others, I routinely see it in folks with a mixed C++/Java background. We maintain "a shadow" of the old language but end up with a weird mix that makes it hard to interview on either. Entry-level folks are at an advantage here since they usually have one language. Memory can help you do great in a screening interview, but without recent day-to-day experience, code tests will be difficult. Despite the supposed relation, core Java programming and J2EE programming are two different things with different skillsets. If you come from academia, you likely have very little J2EE experience and may find it hard to get accepted for a J2EE job. J2EE jobs seem to have a larger list of acronyms in their requirements. In addition, from interviewing J2EE developers it seems that for many there is a focus on mastering specific APIs and architectures, whereas core Java development tends to be secondary. In the same way that I can no longer manipulate pointers well, a J2EE developer may have difficulties doing low level Java manipulation. This puts you at a relative advantage in competing for core Java jobs! If you are able to work for startups (in terms of family life and stability) or migrate to startup-rich areas such as the west coast, you can find many exciting opportunities where advanced degrees are a benefit. I've since been approached by several startups, although I had to decline. Work through a recruiter if possible. They have direct contacts with the hiring parties, allowing you to "stand out". It is better to get a clear yes/no confirmation from a recruiter on whether a company might be interested in interviewing you, than it is to send your resume and hope that someone will ever see it. Recruiters are also a great way of bypassing HR. However, also beware of recruiters. They have a vested interest and will go to various shady practices and pressure tactics. To find a good recruiter, talk to a friend who declined a job offer he got through a recruiter. A good recruiter, to me, is measured in how they handle that. Interview for the jobs that require your core strength. If you're rusty or entirely unfamiliar with a technology around which the job revolves, you're probably not a good match. Yes, you probably have the talent to master them, but most companies would want "instant gratification". I got my offers from companies that wanted core Java developer. I didn't do well on places that wanted advance C++ because I am too rusty and not up to date on recent libraries. I also didn't hear from companies that wanted lots of J2EE experience, and that's ok. Finding companies that want core Java without web is harder, but exists in specific industries (e.g., finance, defense). This requires a lot more legwork in terms of search, but these jobs do exist. There are different interview styles. Some companies focus on puzzles, some companies focus on algorithms, and some companies focus on design and coding skills. I had the most success in places where the questions were the most related to the function I would have been performing. Pick companies accordingly as well.

    Read the article

  • Parse XML document

    - by Neil
    I am trying to parse a remote XML document (from Amazon AWS): <ItemLookupResponse xmlns="http://webservices.amazon.com/AWSECommerceService/2009-03-31"> <OperationRequest> <RequestId>011d32c5-4fab-4c7d-8785-ac48b9bda6da</RequestId> <Arguments> <Argument Name="Condition" Value="New"></Argument> <Argument Name="Operation" Value="ItemLookup"></Argument> <Argument Name="Service" Value="AWSECommerceService"></Argument> <Argument Name="Signature" Value="73l8oLJhITTsWtHxsdrS3BMKsdf01n37PE8u/XCbsJM="></Argument> <Argument Name="MerchantId" Value="Amazon"></Argument> <Argument Name="Version" Value="2009-03-31"></Argument> <Argument Name="ItemId" Value="603084260089"></Argument> <Argument Name="IdType" Value="UPC"></Argument> <Argument Name="AWSAccessKeyId" Value="[myAccessKey]"></Argument> <Argument Name="Timestamp" Value="2010-06-14T15:03:27Z"></Argument> <Argument Name="ResponseGroup" Value="OfferSummary,ItemAttributes"></Argument> <Argument Name="SearchIndex" Value="All"></Argument> </Arguments> <RequestProcessingTime>0.0318510000000000</RequestProcessingTime> </OperationRequest> <Items> <Request> <IsValid>True</IsValid> <ItemLookupRequest> <Condition>New</Condition> <DeliveryMethod>Ship</DeliveryMethod> <IdType>UPC</IdType> <MerchantId>Amazon</MerchantId> <OfferPage>1</OfferPage> <ItemId>603084260089</ItemId> <ResponseGroup>OfferSummary</ResponseGroup> <ResponseGroup>ItemAttributes</ResponseGroup> <ReviewPage>1</ReviewPage> <ReviewSort>-SubmissionDate</ReviewSort> <SearchIndex>All</SearchIndex> <VariationPage>All</VariationPage> </ItemLookupRequest> </Request> <Item> <ASIN>B0000UTUNI</ASIN> <DetailPageURL>http://www.amazon.com/Garnier-Fructis-Fortifying-Conditioner-Minute/dp/B0000UTUNI%3FSubscriptionId%3DAKIAIYPTKHCWTRWWPWBQ%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D165953%26creativeASIN%3DB0000UTUNI</DetailPageURL> <ItemLinks> <ItemLink> <Description>Technical Details</Description> <URL>http://www.amazon.com/Garnier-Fructis-Fortifying-Conditioner-Minute/dp/tech-data/B0000UTUNI%3FSubscriptionId%3DAKIAIYPTKHCWTRWWPWBQ%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D386001%26creativeASIN%3DB0000UTUNI</URL> </ItemLink> <ItemLink> <Description>Add To Baby Registry</Description> <URL>http://www.amazon.com/gp/registry/baby/add-item.html%3Fasin.0%3DB0000UTUNI%26SubscriptionId%3DAKIAIYPTKHCWTRWWPWBQ%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D386001%26creativeASIN%3DB0000UTUNI</URL> </ItemLink> <ItemLink> <Description>Add To Wedding Registry</Description> <URL>http://www.amazon.com/gp/registry/wedding/add-item.html%3Fasin.0%3DB0000UTUNI%26SubscriptionId%3DAKIAIYPTKHCWTRWWPWBQ%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D386001%26creativeASIN%3DB0000UTUNI</URL> </ItemLink> <ItemLink> <Description>Add To Wishlist</Description> <URL>http://www.amazon.com/gp/registry/wishlist/add-item.html%3Fasin.0%3DB0000UTUNI%26SubscriptionId%3DAKIAIYPTKHCWTRWWPWBQ%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D386001%26creativeASIN%3DB0000UTUNI</URL> </ItemLink> <ItemLink> <Description>Tell A Friend</Description> <URL>http://www.amazon.com/gp/pdp/taf/B0000UTUNI%3FSubscriptionId%3DAKIAIYPTKHCWTRWWPWBQ%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D386001%26creativeASIN%3DB0000UTUNI</URL> </ItemLink> <ItemLink> <Description>All Customer Reviews</Description> <URL>http://www.amazon.com/review/product/B0000UTUNI%3FSubscriptionId%3DAKIAIYPTKHCWTRWWPWBQ%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D386001%26creativeASIN%3DB0000UTUNI</URL> </ItemLink> <ItemLink> <Description>All Offers</Description> <URL>http://www.amazon.com/gp/offer-listing/B0000UTUNI%3FSubscriptionId%3DAKIAIYPTKHCWTRWWPWBQ%26tag%3Dws%26linkCode%3Dxm2%26camp%3D2025%26creative%3D386001%26creativeASIN%3DB0000UTUNI</URL> </ItemLink> </ItemLinks> <ItemAttributes> <Binding>Health and Beauty</Binding> <Brand>Garnier</Brand> <EAN>0603084260089</EAN> <Feature>Helps restore strength and shine</Feature> <Feature>Penetrates deep to nourish, repair and rejuvenate</Feature> <Feature>Makes hair softer and more manageable without weighing it down</Feature> <ItemDimensions> <Weight Units="hundredths-pounds">40</Weight> </ItemDimensions> <Label>Garnier</Label> <ListPrice> <Amount>419</Amount> <CurrencyCode>USD</CurrencyCode> <FormattedPrice>$4.19</FormattedPrice> </ListPrice> <Manufacturer>Garnier</Manufacturer> <NumberOfItems>1</NumberOfItems> <ProductGroup>Health and Beauty</ProductGroup> <ProductTypeName>ABIS_DRUGSTORE</ProductTypeName> <Publisher>Garnier</Publisher> <Size>5.0 oz</Size> <Studio>Garnier</Studio> <Title>Garnier Fructis Fortifying Fortifying Deep Conditioner, 3 Minute Masque - 5 oz</Title> <UPC>603084260089</UPC> </ItemAttributes> <OfferSummary> <LowestNewPrice> <Amount>229</Amount> <CurrencyCode>USD</CurrencyCode> <FormattedPrice>$2.29</FormattedPrice> </LowestNewPrice> <TotalNew>7</TotalNew> <TotalUsed>0</TotalUsed> <TotalCollectible>0</TotalCollectible> <TotalRefurbished>0</TotalRefurbished> </OfferSummary> </Item> </Items> </ItemLookupResponse> I am trying to extract data from the XML stream using XPathDocument, but with no luck: WebRequest request = HttpWebRequest.Create(url); WebResponse response = request.GetResponse(); //XmlDocument doc = new XmlDocument(); XPathDocument Doc = new XPathDocument(response.GetResponseStream()); XPathNavigator nav = Doc.CreateNavigator(); XPathNodeIterator ListPrice = nav.Select("/ItemLookupResponse/Items/Item/ItemAttributes/ListPrice"); foreach (XPathNavigator node in ListPrice) { Response.Write(node.GetAttribute("Amount", NAMESPACE)); } What am I missing? Thanks in advance!!

    Read the article

  • 26 Days: Countdown to Oracle OpenWorld 2012

    - by Michael Snow
    Welcome to our countdown to Oracle OpenWorld! Oracle OpenWorld 2012 is just around the corner. In less than 26 days, San Francisco will be invaded by an expected 50,000 people from all over the world. Here on the Oracle WebCenter team, we’ve all been working to help make the experience a great one for all our WebCenter customers. For a sneak peak  – we’ll be spending this week giving you a teaser of what to look forward to if you are joining us in San Francisco from September 30th through October 4th. We have Oracle WebCenter sessions covering all topics imaginable. Take a look and use the tools we provide to build out your schedule in advance and reserve your seats in your favorite sessions.  That gives you plenty of time to plan for your week with us in San Francisco. If unfortunately, your boss denied your request to attend - there are still some ways that you can join in the experience virtually On-Demand. This year - we are expanding even more up North of Market Street and will be taking over Union Square as well. Check out this map of San Francisco to get a sense of how much of a footprint Oracle OpenWorld has grown to this year. With so much to see and so many sessions to learn from - its no wonder that people get excited. Add to that a good mix of fun and all of the possible WebCenter sessions you could attend - you won't want to sleep at all to take full advantage of such an opportunity. We'll also have our annual WebCenter Customer Appreciation reception - stay tuned this week for some more info on registration to make sure you'll be able to join us. If you've been following the America's Cup at all and believe in EXTREME PERFORMANCE you'll definitely want to take a look at this video from last year's OpenWorld Keynote. 12.00 Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-family:"Calibri","sans-serif"; mso-ascii- mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi- mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Important OpenWorld Links:  Attendee / Presenters Toolkit Oracle Schedule Builder WebCenter Sessions (listed in the catalog under Fusion Middleware as "Portals, Sites, Content, and Collaboration" ) Oracle Music Festival - AMAZING Line up!!  Oracle Customer Appreciation Night -LOOK HERE!! Oracle OpenWorld LIVE On-Demand Here are all the WebCenter sessions broken down by day for your viewing pleasure. Monday, October 1st CON8885 - Simplify CRM Engagement with Contextual Collaboration Are your sales teams disconnected and disengaged? Do you want a tool for easily connecting expertise across your organization and providing visibility into the complete sales process? Do you want a way to enhance and retain organization knowledge? Oracle Social Network is the answer. Attend this session to learn how to make CRM easy, effective, and efficient for use across virtual sales teams. Also learn how Oracle Social Network can drive sales force collaboration with natural conversations throughout the sales cycle, promote sales team productivity through purposeful social networking without the noise, and build cross-team knowledge by integrating conversations with CRM and other business applications. CON8268 - Oracle WebCenter Strategy: Engaging Your Customers. Empowering Your Business Oracle WebCenter is a user engagement platform for social business, connecting people and information. Attend this session to learn about the Oracle WebCenter strategy, and understand where Oracle is taking the platform to help companies engage customers, empower employees, and enable partners. Business success starts with ensuring that everyone is engaged with the right people and the right information and can access what they need through the channel of their choice—Web, mobile, or social. Are you giving customers, employees, and partners the best-possible experience? Come learn how you can! ¶ HOL10208 - Add Social Capabilities to Your Enterprise Applications Oracle Social Network enables you to add real-time collaboration capabilities into your enterprise applications, so that conversations can happen directly within your business systems. In this hands-on lab, you will try out the Oracle Social Network product to collaborate with other attendees, using real-time conversations with document sharing capabilities. Next you will embed social capabilities into a sample Web-based enterprise application, using embedded UI components. Experts will also write simple REST-based integrations, using the Oracle Social Network API to programmatically create social interactions. ¶ CON8893 - Improve Employee Productivity with Intuitive and Social Work Environments Social technologies have already transformed the ways customers, employees, partners, and suppliers communicate and stay informed. Forward-thinking organizations today need technologies and infrastructures to help them advance to the next level and integrate social activities with business applications to deliver a user experience that simplifies business processes and enterprise application engagement. Attend this session to hear from an innovative Oracle Social Network customer and learn how you can improve productivity with intuitive and social work environments and empower your employees with innovative social tools to enable contextual access to content and dynamic personalization of solutions. ¶ CON8270 - Oracle WebCenter Content Strategy and Vision Oracle WebCenter provides a strategic content infrastructure for managing documents, images, e-mails, and rich media files. With a single repository, organizations can address any content use case, such as accounts payable, HR onboarding, document management, compliance, records management, digital asset management, or Website management. In this session, learn about future plans for how Oracle WebCenter will address new use cases as well as new integrations with Oracle Fusion Middleware and Oracle Applications, leveraging your investments by making your users more productive and error-free. ¶ CON8269 - Oracle WebCenter Sites Strategy and Vision Oracle’s Web experience management solution, Oracle WebCenter Sites, enables organizations to use the online channel to drive customer acquisition and brand loyalty. It helps marketers and business users easily create and manage contextually relevant, social, interactive online experiences across multiple channels on a global scale. In this session, learn about future plans for how Oracle WebCenter Sites will provide you with the tools, capabilities, and integrations you need in order to continue to address your customers’ evolving requirements for engaging online experiences and keep moving your business forward. ¶ CON8896 - Living with SharePoint SharePoint is a popular platform, but it’s not always the best fit for Oracle customers. In this session, you’ll discover the technical and nontechnical limitations and pitfalls of SharePoint and learn about Oracle alternatives for collaboration, portals, enterprise and Web content management, social computing, and application integration. The presentation shows you how to integrate with SharePoint when business or IT requirements dictate and covers cloud-based (Office 365) and on-premises versions of SharePoint. Presented by a former Microsoft director of SharePoint product management and backed by independent customer research, this session will prepare you to answer the question “Why don’t we just use SharePoint for that?’ the next time it comes up in your organization. ¶ CON7843 - Content-Enabling Enterprise Processes with Oracle WebCenter Organizations today continually strive to automate business processes, reduce costs, and improve efficiency. Many business processes are content-intensive and unstructured, requiring ad hoc collaboration, and distributed in nature, requiring many approvals and generating huge volumes of paper. In this session, learn how Oracle and SYSTIME have partnered to help a customer content-enable its enterprise with Oracle WebCenter Content and Oracle WebCenter Imaging 11g and integrate them with Oracle Applications. ¶ CON6114 - Tape Robotics’ Newest Superhero: Now Fueled by Oracle Software For small, midsize, and rapidly growing businesses that want the most energy-efficient, scalable storage infrastructure to meet their rapidly growing data demands, Oracle’s most recent addition to its award-winning tape portfolio leverages several pieces of Oracle software. With Oracle Linux, Oracle WebLogic, and Oracle Fusion Middleware tools, the library achieves a higher level of usability than previous products while offering customers a familiar interface for management, plus ease of use. This session examines the competitive advantages of the tape library and how Oracle software raises customer satisfaction. Learn how the combination of Oracle engineered systems, Oracle Secure Backup, and Oracle’s StorageTek tape libraries provide end-to-end coverage of your data. ¶ CON9437 - Mobile Access Management With more than five billion mobile devices on the planet and an increasing number of users using their own devices to access corporate data and applications, securely extending identity management to mobile devices has become a hot topic. This session focuses on how to extend your existing identity management infrastructure and policies to securely and seamlessly enable mobile user access. CON7815 - Customer Experience Online in Cloud: Oracle WebCenter Sites, Oracle ATG Apps, Oracle Exalogic Oracle WebCenter Sites and Oracle’s ATG product line together can provide a compelling marketing and e-commerce experience. When you couple them with the extreme performance of Oracle Exalogic, you’ll see unmatched scalability that provides you with a true cloud-based solution. In this session, you’ll learn how running Oracle WebCenter Sites and ATG applications on Oracle Exalogic delivers both a private and a public cloud experience. Find out what it takes to get these systems working together and delivering engaging Web experiences. Even if you aren’t considering Oracle Exalogic today, the rich Web experience of Oracle WebCenter, paired with the depth of the ATG product line, can provide your business full support, from merchandising through sale completion. ¶ CON8271 - Oracle WebCenter Portal Strategy and Vision To innovate and keep a competitive edge, organizations need to leverage the power of agile and responsive Web applications. Oracle WebCenter Portal enables you to do just that, by delivering intuitive user experiences for enterprise applications to drive innovation with composite applications and mashups. Attend this session to learn firsthand from customers how Oracle WebCenter Portal extends the value of existing enterprise applications, business processes, and content; delivers a superior business user experience; and maximizes limited IT resources. ¶ CON8880 - The Connected Customer Experience Begins with the Online Channel There’s a lot of talk these days about how to connect the customer journey across various touchpoints—from Websites and e-commerce to call centers and in-store—to provide experiences that are more relevant and engaging and ultimately gain competitive edge. Doing it all at once isn’t a realistic objective, so where do you start? Come to this session, and hear about three steps you can take that can help you begin your journey toward delivering the connected customer experience. You’ll hear how Oracle now has an integrated digital marketing platform for your corporate Website, your e-commerce site, your self-service portal, and your marketing and loyalty campaigns, and you’ll learn what you can do today to begin executing on your customer experience initiatives. ¶ GEN11451 - General Session: Building Mobile Applications with Oracle Cloud With the prevalence of smart mobile devices, companies are facing an increased demand to provide access to data and applications from new channels. However, developing applications for mobile devices poses some unique challenges. Come to this session to learn how Oracle addresses these challenges, offering a simpler way to develop and deploy cross-device mobile applications. See how Oracle Cloud enables you to access applications, data, and services from mobile channels in an easier way.  CON8272 - Oracle Social Network Strategy and Vision One key way of increasing employee productivity is by bringing people, processes, and information together—providing new social capabilities to enable business users to quickly correspond and collaborate on business activities. Oracle WebCenter provides a user engagement platform with social and collaborative technologies to empower business users to focus on their key business processes, applications, and content in the context of their role and process. Attend this session to hear how the latest social capabilities in Oracle Social Network are enabling organizations to transform themselves into social businesses.  --- Tuesday, October 2nd HOL10194 - Enterprise Content Management Simplified: Oracle WebCenter Content’s Next-Generation UI Regardless of the nature of your business, unstructured content underpins many of its daily functions. Whether you are working with traditional presentations, spreadsheets, or text documents—or even with digital assets such as images and multimedia files—your content needs to be accessible and manageable in convenient and intuitive ways to make working with the content easier. Additionally, you need the ability to easily share documents with coworkers to facilitate a collaborative working environment. Come to this session to see how Oracle WebCenter Content’s next-generation user interface helps modern knowledge workers easily manage personal and enterprise documents in a collaborative environment.¶ CON8877 - Develop a Mobile Strategy with Oracle WebCenter: Engage Customers, Employees, and Partners Mobile technology has gone from nice-to-have to a cornerstone of user engagement. Mobile access enables users to have information available at their fingertips, enabling them to take action the moment they make a decision, interact in the moment of convenience, and take advantage of new service offerings in their preferred channels. All your employees have your mobile applications in their pocket; now what are you going to do? It is a critical step for companies to think through what their employees, customers, and partners really need on their devices. Attend this session to see how Oracle WebCenter enables you to better engage your customers, employees, and partners by providing a unified experience across multiple channels. ¶ CON9447 - Enabling Access for Hundreds of Millions of Users How do you grow your business by identifying, authenticating, authorizing, and federating users on the Web, leveraging social identity and the open source OAuth protocol? How do you scale your access management solution to support hundreds of millions of users? With social identity support out of the box, Oracle’s access management solution is also benchmarked for 250-million-user deployment according to real-world customer scenarios. In this session, you will learn about the social identity capability and the 250-million-user benchmark testing of Oracle Access Manager and Oracle Adaptive Access Manager running on Oracle Exalogic and Oracle Exadata. ¶ HOL10207 - Build an Intranet Portal with Oracle WebCenter In this hands-on lab, you’ll work with Oracle WebCenter Portal and Oracle WebCenter Content to build out an enterprise portal that maximizes the productivity of teams and individual contributors. Using browser-based tools, you’ll manage site resources such as page styles, templates, and navigation. You’ll edit content stored in Oracle WebCenter Content directly from your portal. You’ll also experience the latest features that promote collaboration, social networking, and personal productivity. ¶ CON2906 - Get Proactive: Best Practices for Maintaining Oracle Fusion Middleware You chose Oracle Fusion Middleware products to help your organization deliver superior business results. Now learn how to take full advantage of your software with all the great tools, resources, and product updates you’re entitled to through Oracle Support. In this session, Oracle product experts provide proven best practices to help you work more efficiently, plan and prepare for upgrades and patching more effectively, and manage risk. Topics include configuration management tools, remote diagnostics, My Oracle Support Community, and My Oracle Support Lifecycle Advisors. New users and Oracle Fusion Middleware experts alike are guaranteed to leave with fresh ideas and practical, easy-to-implement next steps. ¶ CON8878 - Oracle WebCenter’s Cloud Strategy: From Social and Platform Services to Mashups Cloud computing represents a paradigm shift in how we build applications, automate processes, collaborate, and share and in how we secure our enterprise. Additionally, as you adopt cloud-based services in your organization, it’s likely that you will still have many critical on-premises applications running. With these mixed environments, multiple user interfaces, different security, and multiple datasources and content sources, how do you start evolving your strategy to account for these challenges? Oracle WebCenter offers a complete array of technologies enabling you to solve these challenges and prepare you for the cloud. Attend this session to learn how you can use Oracle WebCenter in the cloud as well as create on-premises and cloud application mash-ups. ¶ CON8901 - Optimize Enterprise Business Processes with Oracle WebCenter and Oracle BPM Do you have business processes that span multiple applications? Are you grappling with how to have visibility across these business processes; how to manage content that is associated with these processes; and, most importantly, how to model and optimize these business processes? Attend this session to hear how Oracle WebCenter and Oracle Business Process Management provide a unique set of integrated solutions to provide a composite application dashboard across these business processes and offer a solution for content-centric business processes. ¶ CON8883 - Deliver Engaging Interfaces to Oracle Applications with Oracle WebCenter Critical business processes live within enterprise applications, and application users need to manage and execute these processes as effectively as possible. Oracle provides a comprehensive user engagement platform to increase user productivity and optimize overall processes within Oracle Applications—Oracle E-Business Suite and Oracle’s Siebel, PeopleSoft, and JD Edwards product families—and third-party applications. Attend this session to learn how you can integrate these applications with Oracle WebCenter to deliver composite application dashboards to your end users—whether they are your customers, partners, or employees—for enhanced usability and Web 2.0–enabled enterprise portals.¶ Wednesday, October 3rd CON8895 - Future-Ready Intranets: How Aramark Re-engineered the Application Landscape There are essential techniques and technologies you can use to deliver employee portals that garner higher productivity, improve business efficiency, and increase user engagement. Attend this session to learn how you can leverage Oracle WebCenter Portal as a user engagement platform for bringing together business process management, enterprise content management, and business intelligence into a highly relevant and integrated experience. Hear how Aramark has leveraged Oracle WebCenter Portal and Oracle WebCenter Content to deliver a unified workspace providing simpler navigation and processing, consolidation of tools, easy access to information, integrated search, and single sign-on. ¶ CON8886 - Content Consolidation: Save Money, Increase Efficiency, and Eliminate Silos Organizations are looking for ways to save money and be more efficient. With content in many different places, it’s difficult to know where to look for a document and whether the document is the most current version. With Oracle WebCenter, content can be consolidated into one best-of-breed repository that is secure, scalable, and integrated with your business processes and applications. Users can find the content they need, where they need it, and ensure that it is the right content. This session covers content challenges that affect your business; content consolidation that can lead to savings in storage and administration costs and can lower risks; and how companies are realizing savings. ¶ CON8911 - Improve Online Experiences for Customers and Partners with Self-Service Portals Are you able to provide your customers and partners an easy-to-use online self-service experience? Are you processing high-volume transactions and struggling with call center bottlenecks or back-end systems that won’t integrate, causing order delays and customer frustration? Are you looking to target content such as product and service offerings to your end users? This session shares approaches to providing targeted delivery as well as strategies and best practices for transforming your business by providing an intuitive user experience for your customers and partners. ¶ CON6156 - Top 10 Ways to Integrate Oracle WebCenter Content This session covers 10 common ways to integrate Oracle WebCenter Content with other enterprise applications and middleware. It discusses out-of-the-box modules that provide expanded features in Oracle WebCenter Content—such as enterprise search, SOA, and BPEL—as well as developer tools you can use to create custom integrations. The presentation also gives guidance on which integration option may work best in your environment. ¶ HOL10207 - Build an Intranet Portal with Oracle WebCenter In this hands-on lab, you’ll work with Oracle WebCenter Portal and Oracle WebCenter Content to build out an enterprise portal that maximizes the productivity of teams and individual contributors. Using browser-based tools, you’ll manage site resources such as page styles, templates, and navigation. You’ll edit content stored in Oracle WebCenter Content directly from your portal. You’ll also experience the latest features that promote collaboration, social networking, and personal productivity. ¶ CON7817 - Migration to Oracle WebCenter Imaging 11g Customers today continually strive to automate business processes, reduce costs, and improve efficiency. The accounts payable process—which is often distributed in nature, requires many approvals, and generates huge volumes of paper invoices—is automated by many customers. In this session, learn how Oracle and SYSTIME have partnered to help a customer migrate its existing Oracle Imaging and Process Management Release 7.6 to the latest Oracle WebCenter Imaging 11g and integrate it with Oracle’s JD Edwards family of products. ¶ CON8910 - How to Engage Customers Across Web, Mobile, and Social Channels Whether on desktops at the office, on tablets at home, or on mobile phones when on the go, today’s customers are always connected. To engage today’s customers, you need to make the online customer experience connected and consistent across a host of devices and multiple channels, including Web, mobile, and social networks. Managing this multichannel environment can result in lots of headaches without the right tools. Attend this session to learn how Oracle WebCenter Sites solves the challenge of multichannel customer engagement. ¶ HOL10206 - Oracle WebCenter Sites 11g: Transforming the Content Contributor Experience Oracle WebCenter Sites 11g makes it easy for marketers and business users to contribute to and manage Websites with the new visual, contextual, and intuitive Web authoring interface. In this hands-on lab, you will create and manage content for a sports-themed Website, using many of the new and enhanced features of the 11g release. ¶ CON8900 - Building Next-Generation Portals: An Interactive Customer Panel Discussion Social and collaborative technologies have changed how people interact, learn, and collaborate, and providing a modern, social Web presence is imperative to remain competitive in today’s market. Can your business benefit from a more collaborative and interactive portal environment for employees, customers, and partners? Attend this session to hear from Oracle WebCenter Portal customers as they share their strategies and best practices for providing users with a modern experience that adapts to their needs and includes personalized access to content in context. The panel also addresses how customers have benefited from creating next-generation portals by migrating from older portal technologies to Oracle WebCenter Portal. ¶ CON9625 - Taking Control of Oracle WebCenter Security Organizations are increasingly looking to extend their Oracle WebCenter portal for social business, to serve external users and provide seamless access to the right information. In particular, many organizations are extending Oracle WebCenter in a business-to-business scenario requiring secure identification and authorization of business partners and their users. This session focuses on how customers are leveraging, securing, and providing access control to Oracle WebCenter portal and mobile solutions. You will learn best practices and hear real-world examples of how to provide flexible and granular access control for Oracle WebCenter deployments, using Oracle Platform Security Services and Oracle Access Management Suite product offerings. ¶ CON8891 - Extending Social into Enterprise Applications and Business Processes Oracle Social Network is an extensible social platform that enables contextual collaboration within enterprise applications and business processes, providing relevant data from across various enterprise systems in one place. Attend this session to see how an Oracle Social Network customer is integrating multiple applications—such as CRM, HCM, and business processes—into Oracle Social Network and Oracle WebCenter to enable individuals and teams to solve complex cross-organizational business problems more effectively by utilizing the social enterprise. ¶ Thursday, October 4th CON8899 - Becoming a Social Business: Stories from the Front Lines of Change What does it really mean to be a social business? How can you change our organization to embrace social approaches? What pitfalls do you need to avoid? In this lively panel discussion, customer and industry thought leaders in social business explore these topics and more as they share their stories of the good, the bad, and the ugly that can happen when embracing social methods and technologies to improve business success. Using moderated questions and open Q&A from the audience, the panel discusses vital topics such as the critical factors for success, the major issues to avoid, how to gain senior executive support for social efforts, how to handle undesired behavior, and how to measure business impact. It takes a thought-provoking look at becoming a social business from the inside. ¶ CON6851 - Oracle WebCenter and Oracle Business Intelligence Enterprise Edition to Create Vendor Portals Large manufacturers of grocery items routinely find themselves depending on the inventory management expertise of their wholesalers and distributors. Inventory costs can be managed more efficiently by the manufacturers if they have better insight into the inventory levels of items carried by their distributors. This creates a unique opportunity for distributors and wholesalers to leverage this knowledge into a revenue-generating subscription service. Oracle Business Intelligence Enterprise Edition and Oracle WebCenter Portal play a key part in enabling creation of business-managed business intelligence portals for vendors. This session discusses one customer that implemented this by leveraging Oracle WebCenter and Oracle Business Intelligence Enterprise Edition. ¶ CON8879 - Provide a Personalized and Consistent Customer Experience in Your Websites and Portals Your customers engage with your company online in different ways throughout their journey—from prospecting by acquiring information on your corporate Website to transacting through self-service applications on your customer portal—and then the cycle begins again when they look for new products and services. Ensuring that the customer experience is consistent and personalized across online properties—from branding and content to interactions and transactions—can be a daunting task. Oracle WebCenter enables you to speak and interact with your customers with one voice across your Websites and portals by providing an integrated platform for delivery of self-service and engagement that unifies and personalizes the online experience. Learn more in this session. ¶ CON8898 - Land Mines, Potholes, and Dirt Roads: Navigating the Way to ECM Nirvana Ten years ago, people were predicting that by this time in history, we’d be some kind of utopian paperless society. As we all know, we’re not there yet, but are we getting closer? What is keeping companies from driving down the road to enterprise content management bliss? Most people understand that using ECM as a central platform enables organizations to expedite document-centric processes, but most business processes in organizations are still heavily paper-based. Many of these processes could be automated and improved with an ECM platform infrastructure. In this panel discussion, you’ll hear from Oracle WebCenter customers that have already solved some of these challenges as they share their strategies for success and roads to avoid along your journey. ¶ CON8908 - Oracle WebCenter Portal: Creating and Using Content Presenter Templates Oracle WebCenter Portal applications use task flows to display and integrate content stored in the Oracle WebCenter Content server. Among the most flexible task flows is Content Presenter, which renders various types of content on an Oracle WebCenter Portal page. Although Oracle WebCenter Portal comes with a set of predefined Content Presenter templates, developers can create their own templates for specific rendering needs. This session shows the lifecycle of developing Content Presenter task flows, including how to create, package, import, modify at runtime, and use such templates. In addition to simple examples with Oracle Application Development Framework (Oracle ADF) UI elements to render the content, it shows how to use other UI technologies, CSS files, and JavaScript libraries. ¶ CON8897 - Using Web Experience Management to Drive Online Marketing Success Every year, the online channel becomes more imperative for driving organizational top-line revenue, but for many companies, mastering how to best market their products and services in a fast-evolving online world with high customer expectations for personalized experiences can be a complex proposition. Come to this panel discussion, and hear directly from online marketers how they are succeeding today by using Web experience management to drive marketing success, using capabilities such as targeting and optimization, user-generated content, mobile site publishing, and site visitor personalization to deliver engaging online experiences. ¶ CON8892 - Oracle’s Journey to Social Business Social business is a revolution, one that is causing rapidly accelerating change in how companies and customers engage with one another and how employees work together. Oracle’s goal in becoming a social business is to create a socially connected organization in which working collaboratively across geographical locations, lines of business, and management chains is second nature, enabling innovative solutions to business challenges. We can achieve this by connecting the right people, finding the right content, communicating with the right people, collaborating at the right time, and building the right communities in the right context—all ready in the CLOUD. Attend this session to see how Oracle is transforming itself into a social business. ¶  ------------ If you've read all the way to the end here - we are REALLY looking forward to seeing you in San Francisco.

    Read the article

  • MySQL Syslog Audit Plugin

    - by jonathonc
    This post shows the construction process of the Syslog Audit plugin that was presented at MySQL Connect 2012. It is based on an environment that has the appropriate development tools enabled including gcc,g++ and cmake. It also assumes you have downloaded the MySQL source code (5.5.16 or higher) and have compiled and installed the system into the /usr/local/mysql directory ready for use.  The information provided below is designed to show the different components that make up a plugin, and specifically an audit type plugin, and how it comes together to be used within the MySQL service. The MySQL Reference Manual contains information regarding the plugin API and how it can be used, so please refer there for more detailed information. The code in this post is designed to give the simplest information necessary, so handling every return code, managing race conditions etc is not part of this example code. Let's start by looking at the most basic implementation of our plugin code as seen below: /*    Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.    Author:  Jonathon Coombes    Licence: GPL    Description: An auditing plugin that logs to syslog and                 can adjust the loglevel via the system variables. */ #include <stdio.h> #include <string.h> #include <mysql/plugin_audit.h> #include <syslog.h> There is a commented header detailing copyright/licencing and meta-data information and then the include headers. The two important include statements for our plugin are the syslog.h plugin, which gives us the structures for syslog, and the plugin_audit.h include which has details regarding the audit specific plugin api. Note that we do not need to include the general plugin header plugin.h, as this is done within the plugin_audit.h file already. To implement our plugin within the current implementation we need to add it into our source code and compile. > cd /usr/local/src/mysql-5.5.28/plugin > mkdir audit_syslog > cd audit_syslog A simple CMakeLists.txt file is created to manage the plugin compilation: MYSQL_ADD_PLUGIN(audit_syslog audit_syslog.cc MODULE_ONLY) Run the cmake  command at the top level of the source and then you can compile the plugin using the 'make' command. This results in a compiled audit_syslog.so library, but currently it is not much use to MySQL as there is no level of api defined to communicate with the MySQL service. Now we need to define the general plugin structure that enables MySQL to recognise the library as a plugin and be able to install/uninstall it and have it show up in the system. The structure is defined in the plugin.h file in the MySQL source code.  /*   Plugin library descriptor */ mysql_declare_plugin(audit_syslog) {   MYSQL_AUDIT_PLUGIN,           /* plugin type                    */   &audit_syslog_descriptor,     /* descriptor handle               */   "audit_syslog",               /* plugin name                     */   "Author Name",                /* author                          */   "Simple Syslog Audit",        /* description                     */   PLUGIN_LICENSE_GPL,           /* licence                         */   audit_syslog_init,            /* init function     */   audit_syslog_deinit,          /* deinit function */   0x0001,                       /* plugin version                  */   NULL,                         /* status variables        */   NULL,                         /* system variables                */   NULL,                         /* no reserves                     */   0,                            /* no flags                        */ } mysql_declare_plugin_end; The general plugin descriptor above is standard for all plugin types in MySQL. The plugin type is defined along with the init/deinit functions and interface methods into the system for sharing information, and various other metadata information. The descriptors have an internally recognised version number so that plugins can be matched against the api on the running server. The other details are usually related to the type-specific methods and structures to implement the plugin. Each plugin has a type-specific descriptor as well which details how the plugin is implemented for the specific purpose of that plugin type. /*   Plugin type-specific descriptor */ static struct st_mysql_audit audit_syslog_descriptor= {   MYSQL_AUDIT_INTERFACE_VERSION,                        /* interface version    */   NULL,                                                 /* release_thd function */   audit_syslog_notify,                                  /* notify function      */   { (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK |                     MYSQL_AUDIT_CONNECTION_CLASSMASK }  /* class mask           */ }; In this particular case, the release_thd function has not been defined as it is not required. The important method for auditing is the notify function which is activated when an event occurs on the system. The notify function is designed to activate on an event and the implementation will determine how it is handled. For the audit_syslog plugin, the use of the syslog feature sends all events to the syslog for recording. The class mask allows us to determine what type of events are being seen by the notify function. There are currently two major types of event: 1. General Events: This includes general logging, errors, status and result type events. This is the main one for tracking the queries and operations on the database. 2. Connection Events: This group is based around user logins. It monitors connections and disconnections, but also if somebody changes user while connected. With most audit plugins, the principle behind the plugin is to track changes to the system over time and counters can be an important part of this process. The next step is to define and initialise the counters that are used to track the events in the service. There are 3 counters defined in total for our plugin - the # of general events, the # of connection events and the total number of events.  static volatile int total_number_of_calls; /* Count MYSQL_AUDIT_GENERAL_CLASS event instances */ static volatile int number_of_calls_general; /* Count MYSQL_AUDIT_CONNECTION_CLASS event instances */ static volatile int number_of_calls_connection; The init and deinit functions for the plugin are there to be called when the plugin is activated and when it is terminated. These offer the best option to initialise the counters for our plugin: /*  Initialize the plugin at server start or plugin installation. */ static int audit_syslog_init(void *arg __attribute__((unused))) {     openlog("mysql_audit:",LOG_PID|LOG_PERROR|LOG_CONS,LOG_USER);     total_number_of_calls= 0;     number_of_calls_general= 0;     number_of_calls_connection= 0;     return(0); } The init function does a call to openlog to initialise the syslog functionality. The parameters are the service to log under ("mysql_audit" in this case), the syslog flags and the facility for the logging. Then each of the counters are initialised to zero and a success is returned. If the init function is not defined, it will return success by default. /*  Terminate the plugin at server shutdown or plugin deinstallation. */ static int audit_syslog_deinit(void *arg __attribute__((unused))) {     closelog();     return(0); } The deinit function will simply close our syslog connection and return success. Note that the syslog functionality is part of the glibc libraries and does not require any external factors.  The function names are what we define in the general plugin structure, so these have to match otherwise there will be errors. The next step is to implement the event notifier function that was defined in the type specific descriptor (audit_syslog_descriptor) which is audit_syslog_notify. /* Event notifier function */ static void audit_syslog_notify(MYSQL_THD thd __attribute__((unused)), unsigned int event_class, const void *event) { total_number_of_calls++; if (event_class == MYSQL_AUDIT_GENERAL_CLASS) { const struct mysql_event_general *event_general= (const struct mysql_event_general *) event; number_of_calls_general++; syslog(audit_loglevel,"%lu: User: %s Command: %s Query: %s\n", event_general->general_thread_id, event_general->general_user, event_general->general_command, event_general->general_query ); } else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS) { const struct mysql_event_connection *event_connection= (const struct mysql_event_connection *) event; number_of_calls_connection++; syslog(audit_loglevel,"%lu: User: %s@%s[%s] Event: %d Status: %d\n", event_connection->thread_id, event_connection->user, event_connection->host, event_connection->ip, event_connection->event_subclass, event_connection->status ); } }   In the case of an event, the notifier function is called. The first step is to increment the total number of events that have occurred in our database.The event argument is then cast into the appropriate event structure depending on the class type, of general event or connection event. The event type counters are incremented and details are sent via the syslog() function out to the system log. There are going to be different line formats and information returned since the general events have different data compared to the connection events, even though some of the details overlap, for example, user, thread id, host etc. On compiling the code now, there should be no errors and the resulting audit_syslog.so can be loaded into the server and ready to use. Log into the server and type: mysql> INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so'; This will install the plugin and will start updating the syslog immediately. Note that the audit plugin attaches to the immediate thread and cannot be uninstalled while that thread is active. This means that you cannot run the UNISTALL command until you log into a different connection (thread) on the server. Once the plugin is loaded, the system log will show output such as the following: Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: show tables Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: show tables Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: select * from t1 Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: select * from t1 It appears that two of each event is being shown, but in actuality, these are two separate event types - the result event and the status event. This could be refined further by changing the audit_syslog_notify function to handle the different event sub-types in a different manner.  So far, it seems that the logging is working with events showing up in the syslog output. The issue now is that the counters created earlier to track the number of events by type are not accessible when the plugin is being run. Instead there needs to be a way to expose the plugin specific information to the service and vice versa. This could be done via the information_schema plugin api, but for something as simple as counters, the obvious choice is the system status variables. This is done using the standard structure and the declaration: /*  Plugin status variables for SHOW STATUS */ static struct st_mysql_show_var audit_syslog_status[]= {   { "Audit_syslog_total_calls",     (char *) &total_number_of_calls,     SHOW_INT },   { "Audit_syslog_general_events",     (char *) &number_of_calls_general,     SHOW_INT },   { "Audit_syslog_connection_events",     (char *) &number_of_calls_connection,     SHOW_INT },   { 0, 0, SHOW_INT } };   The structure is simply the name that will be displaying in the mysql service, the address of the associated variables, and the data type being used for the counter. It is finished with a blank structure to show that there are no more variables. Remember that status variables may have the same name for variables from other plugin, so it is considered appropriate to add the plugin name at the start of the status variable name to avoid confusion. Looking at the status variables in the mysql client shows something like the following: mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 2     | | Audit_syslog_total_calls       | 3     | +--------------------------------+-------+ 3 rows in set (0.00 sec) The final connectivity piece for the plugin is to allow the interactive change of the logging level between the plugin and the system. This requires the ability to send changes via the mysql service through to the plugin. This is done using the system variables interface and defining a single variable to keep track of the active logging level for the facility. /* Plugin system variables for SHOW VARIABLES */ static MYSQL_SYSVAR_STR(loglevel, audit_loglevel,                         PLUGIN_VAR_RQCMDARG,                         "User can specify the log level for auditing",                         audit_loglevel_check, audit_loglevel_update, "LOG_NOTICE"); static struct st_mysql_sys_var* audit_syslog_sysvars[] = {     MYSQL_SYSVAR(loglevel),     NULL }; So now the system variable 'loglevel' is defined for the plugin and associated to the global variable 'audit_loglevel'. The check or validation function is defined to make sure that no garbage values are attempted in the update of the variable. The update function is used to save the new value to the variable. Note that the audit_syslog_sysvars structure is defined in the general plugin descriptor to associate the link between the plugin and the system and how much they interact. Next comes the implementation of the validation function and the update function for the system variable. It is worth noting that if you have a simple numeric such as integers for the variable types, the validate function is often not required as MySQL will handle the automatic check and validation of simple types. /* longest valid value */ #define MAX_LOGLEVEL_SIZE 100 /* hold the valid values */ static const char *possible_modes[]= { "LOG_ERROR", "LOG_WARNING", "LOG_NOTICE", NULL };  static int audit_loglevel_check(     THD*                        thd,    /*!< in: thread handle */     struct st_mysql_sys_var*    var,    /*!< in: pointer to system                                         variable */     void*                       save,   /*!< out: immediate result                                         for update function */     struct st_mysql_value*      value)  /*!< in: incoming string */ {     char buff[MAX_LOGLEVEL_SIZE];     const char *str;     const char **found;     int length;     length= sizeof(buff);     if (!(str= value->val_str(value, buff, &length)))         return 1;     /*         We need to return a pointer to a locally allocated value in "save".         Here we pick to search for the supplied value in an global array of         constant strings and return a pointer to one of them.         The other possiblity is to use the thd_alloc() function to allocate         a thread local buffer instead of the global constants.     */     for (found= possible_modes; *found; found++)     {         if (!strcmp(*found, str))         {             *(const char**)save= *found;             return 0;         }     }     return 1; } The validation function is simply to take the value being passed in via the SET GLOBAL VARIABLE command and check if it is one of the pre-defined values allowed  in our possible_values array. If it is found to be valid, then the value is assigned to the save variable ready for passing through to the update function. static void audit_loglevel_update(     THD*                        thd,        /*!< in: thread handle */     struct st_mysql_sys_var*    var,        /*!< in: system variable                                             being altered */     void*                       var_ptr,    /*!< out: pointer to                                             dynamic variable */     const void*                 save)       /*!< in: pointer to                                             temporary storage */ {     /* assign the new value so that the server can read it */     *(char **) var_ptr= *(char **) save;     /* assign the new value to the internal variable */     audit_loglevel= *(char **) save; } Since all the validation has been done already, the update function is quite simple for this plugin. The first part is to update the system variable pointer so that the server can read the value. The second part is to update our own global plugin variable for tracking the value. Notice that the save variable is passed in as a void type to allow handling of various data types, so it must be cast to the appropriate data type when assigning it to the variables. Looking at how the latest changes affect the usage of the plugin and the interaction within the server shows: mysql> show global variables like "audit%"; +-----------------------+------------+ | Variable_name         | Value      | +-----------------------+------------+ | audit_syslog_loglevel | LOG_NOTICE | +-----------------------+------------+ 1 row in set (0.00 sec) mysql> set global audit_syslog_loglevel="LOG_ERROR"; Query OK, 0 rows affected (0.00 sec) mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 11    | | Audit_syslog_total_calls       | 12    | +--------------------------------+-------+ 3 rows in set (0.00 sec) mysql> show global variables like "audit%"; +-----------------------+-----------+ | Variable_name         | Value     | +-----------------------+-----------+ | audit_syslog_loglevel | LOG_ERROR | +-----------------------+-----------+ 1 row in set (0.00 sec)   So now we have a plugin that will audit the events on the system and log the details to the system log. It allows for interaction to see the number of different events within the server details and provides a mechanism to change the logging level interactively via the standard system methods of the SET command. A more complex auditing plugin may have more detailed code, but each of the above areas is what will be involved and simply expanded on to add more functionality. With the above skeleton code, it is now possible to create your own audit plugins to implement your own auditing requirements. If, however, you are not of the coding persuasion, then you could always consider the option of the MySQL Enterprise Audit plugin that is available to purchase.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Data Modeling: Logical Modeling Exercise

    - by swisscheese
    In trying to learn the art of data storage I have been trying to take in as much solid information as possible. PerformanceDBA posted some really helpful tutorials/examples in the following posts among others: is my data normalized? and Relational table naming convention. I already asked a subset question of this model here. So to make sure I understood the concepts he presented and I have seen elsewhere I wanted to take things a step or two further and see if I am grasping the concepts. Hence the purpose of this post, which hopefully others can also learn from. Everything I present is conceptual to me and for learning rather than applying it in some production system. It would be cool to get some input from PerformanceDBA also since I used his models to get started, but I appreciate all input given from anyone. As I am new to databases and especially modeling I will be the first to admit that I may not always ask the right questions, explain my thoughts clearly, or use the right verbage due to lack of expertise on the subject. So please keep that in mind and feel free to steer me in the right direction if I head off track. If there is enough interest in this I would like to take this from the logical to physical phases to show the evolution of the process and share it here on Stack. I will keep this thread for the Logical Diagram though and start new one for the additional steps. For my understanding I will be building a MySQL DB in the end to run some tests and see if what I came up with actually works. Here is the list of things that I want to capture in this conceptual model. Edit for V1.2 The purpose of this is to list Bands, their members, and the Events that they will be appearing at, as well as offer music and other merchandise for sale Members will be able to match up with friends Members can write reviews on the Bands, their music, and their events. There can only be one review per member on a given item, although they can edit their reviews and history will be maintained. BandMembers will have the chance to write a single Comment on Reviews about the Band they are associated with. Collectively as a Band only one Comment is allowed per Review. Members can then rate all Reviews and Comments but only once per given instance Members can select their favorite Bands, music, Merchandise, and Events Bands, Songs, and Events will be categorized into the type of Genre that they are and then further subcategorized into a SubGenre if necessary. It is ok for a Band or Event to fall into more then one Genre/SubGenre combination. Event date, time, and location will be posted for a given band and members can show that they will be attending the Event. An Event can be comprised of more than one Band, and multiple Events can take place at a single location on the same day Every party will be tied to at least one address and address history shall be maintained. Each party could also be tied to more then one address at a time (i.e. billing, shipping, physical) There will be stored profiles for Bands, BandMembers, and general members. So there it is, maybe a bit involved but could be a great learning tool for many hopefully as the process evolves and input is given by the community. Any input? EDIT v1.1 In response to PerformanceDBA U.3) That means no merchandise other than Band merchandise in the database. Correct ? That was my original thought but you got me thinking. Maybe the site would want to sell its own merchandise or even other merchandise from the bands. Not sure a mod to make for that. Would it require an entire rework of the Catalog section or just the identifying relationship that exists with the Band? Attempted a mod to sell both complete albums or song. Either way they would both be in electronic format only available for download. That is why I listed an Album as being comprised of Songs rather then 2 separate entities. U.5) I understand what you bring up about the circular relation with Favorite. I would like to get to this “It is either one Entity with some form of differentiation (FavoriteType) which identifies its treatment” but how to is not clear to me. What am I missing here? u.6) “Business Rules This is probably the only area you are weak in.” Thanks for the honest response. I will readdress these but I hope to clear up some confusion in my head first with the responses I have posted back to you. Q.1) Yes I would like to have Accepted, Rejected, and Blocked. I am not sure what you are referring to as to how this would change the logical model? Q.2) A person does not have to be a User. They can exist only as a BandMember. Is that what you are asking? Minor Issue Zero, One, or More…Oops I admit I forgot to give this attention when building the model. I am submitting this version as is and will address in a future version. I need to read up more on Constraint Checking to make sure I am understanding things. M.4) Depends if you envision OrderPurchase in the future. Can you expand as to what you mean here? EDIT V1.2 In response to PerformanceDBA input... Lessons learned. I was mixing the concept of Identifying / Non-Identifying and Cardinality (i.e. Genre / SubGenre), and doing so inconsistently to make things worse. Associative Tables are not required in Logical Diagrams as their many-to-many relationships can be depicted and then expanded in the Physical Model. I was overlooking the Cardinality in a lot of the relationships The importance of reading through relationships using effective Verb Phrases to reassure I am modeling what I want to accomplish. U.2) In the concept of this model it is only required to track a Venue as a location for an Event. No further data needs to be collected. With that being said Events will take place on a given EventDate and will be hosted at a Venue. Venues will host multiple events and possibly multiple events on a given date. In my new model my thinking was that EventDate is already tied to Event . Therefore, Venue will not need a relationship with EventDate. The 5th and 6th bullets you have listed under U.2) leave me questioning my thinking though. Am I missing something here? U.3) Is it time to move the link between Item and Band up to Item and Party instead? With the current design I don't see a possibility to sell merchandise not tied to the band as you have brought up. U.5) I left as per your input rather than making it a discrete Supertype/Subtype Relationship as I don’t see a benefit of having that type of roll up. Additional Revisions AR.1) After going through the exercise for FavoriteItem, I feel that Item to Review requires a many-to-many relationship so that is indicated. Necessary? Ok here we go for v1.3 I took a few days on this version, going back and forth with my design. Once the logical process is complete, as I want to see if I am on the right track, I will go through in depth what I had learned and the troubles I faced as a beginner going through this process. The big point for this version was it took throwing in some Keys to help see what I was missing in the past. Going through the process of doing a matrix proved to be of great help also. Regardless of anything, if it wasn't for the input given by PerformanceDBA I would still be a lost soul wondering in the dark. Who knows my current design might reaffirm that I still am, but I have learned a lot so I am know I at least have a flashlight in my hand. At this point in time I admit that I am still confused about identifying and non-identifying relationships. In my model I had to use non-identifying relationships with non nulls just to join the relationships I wanted to model. In reading a lot on the subject there seems to be a lot of disagreement and indecisiveness on the subject so I did what I thought represented the right things in my model. When to force (identifying) and when to be free (non-identifying)? Anyone have inputs? EDIT V1.4 Ok took the V1.3 inputs and cleaned things up for this V1.4 Currently working on a V1.5 to include attributes.

    Read the article

< Previous Page | 134 135 136 137 138 139  | Next Page >