Search Results

Search found 7107 results on 285 pages for 'processing efficiency'.

Page 138/285 | < Previous Page | 134 135 136 137 138 139 140 141 142 143 144 145  | Next Page >

  • Using multiple servers for hosting [on hold]

    - by foo
    I need help understanding the concept of using multiple servers (for hosting at home). More specifically multiple WAMP servers. (I have tried looking online but have found no good resources, maybe i am searching for for the wrong things to answer my questions) Questions -How do multiple servers work together? -Do they all have their independent hard drives storing different information? and if so, does the server dynamically locate files? -How do shell commands get executed? -How do they share the "load"? i.e. processing power, resources? Please tag links to resources so i may use a reference. Cheers!

    Read the article

  • Transformation of Product Management in Telecommunications for Rapid Launch of Next Generation Products

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }a:link, span.MsoHyperlink { color: blue; text-decoration: underline; }a:visited, span.MsoHyperlinkFollowed { color: purple; text-decoration: underline; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } The Telecom industry continues to evolve through disruptive products, uncertain markets, shorter product lifecycles and convergence of technologies. Today’s market has moved from network centric to consumer centric and focuses primarily on the customer experience. It has resulted in several product management challenges such as an increased complexity and volume of offerings, creating product variants, accelerating time-to-market, ability to provide multiple product views for varied stakeholders, leveraging OSS intelligence to BSS layer, product co-creation and increasing audit and security concerns for service providers. The document discusses how enterprise product management enabled by PLM-based product catalogue solutions helps to launch next generation products rapidly in the context of the Telecommunication Industry.   1.0.       Introduction   Figure 1: Business Scenario   Modern business demands the launch of complex products in a very short timeframe and effecting changes in the price plan faster without IT intervention. One of the key transformation initiatives companies are focusing on is in the area of product management transformation and operational efficiency improvement. As part of these initiatives, companies are investing in best- in-class COTs-based Product Management solutions developed on industry-wide standards.   The new COTs packages are planned to integrate with existing or new B/OSS systems to provide a strategic end-to-end agile solution for reduced time-to-market and order journey time. In addition, system rationalization is being undertaken to phase out legacy systems and migrate to strategic systems.   2.0.       An Overview of Product Management in Telecom   Product data in telecom is multi- dimensional and difficult to manage. It increased significantly due to the complexity of the product, product offerings on the converged network, increased volume of offerings, bundled offering structures and ever increasing regulatory requirements.   In addition, the shrinking product lifecycle in telecom makes it difficult to manage the dynamic product data. Mergers and acquisitions coupled with organic growth pose major challenges in product portfolio management. It is a roadblock in the journey towards becoming an agile organization.       Figure 2: Complexity in Product Management   Network Technology’ is the new dimension in telecom product management where the same products are realized through different networks i.e., Soiled network to Converged network. Consequently, the product solution is different.     Figure 3: Current Scenario - Pain Points in Product Management   The major business implications arising out of the current scenario are slow time-to-market and an inefficient process that affects innovation.   3.0. Transformation of Next Generation Product Management   Companies must focus on their Product Management Transformation Journey in the areas of:   ·       Management of single truth of product information across the organization/geographies which is currently managed in heterogeneous systems   ·       Management of the Intellectual Property (IP) on the product concept and partnership in the design of discrete components to integrate into the system   ·       Leveraging structured and unstructured product data within the extended enterprise to extract consumer insights and drive innovation   ·       Management of effective operational separation to comply with regulatory bodies   ·       Reuse of existing designs and add relevant features such as value-added services to enable effective product bundling     Figure 4: Next generation needs   PLM-based Enterprise Product Catalogue solutions efficiently address the above requirements and act as an enabler towards product management transformation and rapid product launch.   4.0. PLM-based Enterprise Product Management     Figure 5: PLM-based Enterprise Product Mastering   Enterprise Product Management (EPM) enables the business to manage complex product attributes of data in complex environments. Product Mastering helps create a 'single view' of the product by creating a business-driven, IT-supported environment where a global 'single truth record' is created, managed and reused.   4.1 The Business Case for Telco PLM-based solutions for Enterprise Product Management   ·       Telco PLM-based Product Mastering solutions provide a centralized authoring environment for product definition and control of all product data and rules   ·       PLM packages are designed to support multiple perspectives of product data (ordering perspective, billing perspective, provisioning perspective)   ·       Maintains relationships/links between different elements of the entire product definition   ·       Telco PLM packages are specialized in next generation lifecycle management requirements of products such as revision and state management, test and release management, role management and impact analysis)   ·       Takes into consideration all aspects of OSS product requirements compared to CRM product catalogue solutions where the product data managed is mostly order oriented and transactional     ·       New breed of Telco PLM packages are designed with 'open' standards such as SID and eTOM. They are interoperable, support integration frameworks such as subscription and notification.   ·       Telco PLM packages have developed good collaboration frameworks to integrate suppliers and partners into the product development value chain   4.2 Various Architectures/Approaches for Product Mastering using Telco PLM systems   4. 2.a Single Central Product Management (Mastering) Approach   Figure 6: Single Central Product Management (Master) Approach       This approach is implemented across verticals such as aerospace and automotive. It focuses on a physically centralized product master to which other sources are dependent on. The product definition data (Product bundles, service bundles, price plans, offers and discounts, product configuration rules and market campaigns) is created and maintained physically in a centralized environment. In addition, the product definition/authoring environment is centralized. The existing legacy product definition data available in CRM product catalogue, billing catalogue and the legacy product catalogue is migrated to the centralized PLM-based Enterprise Product Management solution.   Architectural changes must be made in the existing business landscape of applications to create and revise data because the applications have to refer to the central repository for approvals and validation of product configurations. It is achieved by modifying how the applications write data or how the applications can be adapted to use the rules to be managed and published.   Complete product configuration validation will be done in enterprise / central product catalogue and final configuration will be sent to the B/OSS system through the SOA compliant product distribution architecture. The approach/architecture enables greater control in terms of product data management and product data governance.   4.2.b Federated Product Management (Mastering) Architecture     Figure 7: Federated Product Management (Mastering) Architecture   In the federated product mastering approach, the basic unique product definition data (product id, description product hierarchy, basic price plans and simple product design rules) will be centrally created and will be maintained. And, the advanced product definition (Product bundling, promotions, offers & discount plans) will be created in respective down stream OSS systems. The advanced product definition (Product bundling, promotions, offers and discount plans) will be created in respective downstream OSS systems.   For example, basic product definitions such as attributes, product hierarchy and basic price plans will be created and maintained in Enterprise/Central product reference catalogue and distributed to downstream OSS systems. Respective downstream OSS systems build product bundles, promotions, advanced price plans over the basic product definition and master the advanced product definition. Central reference database accesses the respective other source product master data and assembles a point-in-time consolidated view of the product. The approach is typically adapted in some merger and acquisition scenarios where there is a low probability of a central physical authority managing the data. In addition, the migration effort in this case is minimal and there are no big architectural changes to the organization application landscape. However, this approach will not result in better product data management and data governance.   5.0 Customer Scenario – Before EPC deployment   A leading global telecommunications service provider wanted to launch a quad play and triple play service offering in the shortest possible lead time. The service provider was offering Broadband and VoIP services to customers. The company wanted to reuse a majority of the Broadband services and price plans and bundle them with new wireless and IPTV services for quad play and triple play. The challenges in launching the new service offerings were:       Figure 8: Triple Play Plan   ·       Broadband product data was stored in multiple product catalogues (CRM catalogue, Billing catalogue, spread sheets)   ·       Product managers spent a lot of time performing tasks involving duplication or re-keying of data. Manual effort caused errors, cost and time over-runs.   ·       No effective product and price data governance mechanism. Price change issues arising from the lack of data consistency across systems resulted in leakage of customer value and revenue.   ·       Product data had re-usability issues and was not in a structured format. It resulted in uncontrolled product portfolio creation and product management issues.   ·       Lack of enterprise product model resulted into product distribution challenges and thus delays in product launch.   ·       Designers are constrained by existing legacy product management solutions to model product/service requirements and product configuration rules such as upgrading, downgrading and cross selling.    5.1 Customer Scenario - After EPC deployment     Figure 9: SOA-based end-to-end EPC Solution   The company deployed PLM-based Enterprise Product Catalogue solutions to launch quad play service after evaluating various product catalogues. The broadband product offering, service and price data were migrated to the new system, and the product and price plan hierarchy for new offerings were created using the entities defined in the Enterprise Product Model. Supplier product catalogue data such as routers and set up boxes were loaded onto the new solution through SOA-based web service. Price plans and configuration rules were built in the new system. The validated final product configurations were extracted from the product catalogue in a SID format and were distributed to the downstream B/OSS systems through exposed SOA-based web services. The transformations required for the B/OSS system were handled using the transformation layer as part of the solution.   6.0 How PLM enabled Product Management Transformation         Figure 10: Product Management Transformation     PLM-based Product Catalogue Solution helped the customer reduce the product launch cycle time by 30% and enable transformation of Product Management for next generation services.   7.0 Conclusion   On the one hand, the telecom industry is undergoing changes due to disruptions, uncertain product markets and increased complexity of products. On the other hand, the ARPU is decreasing year-on-year. Communications Service Providers are embarking on convergence, bundled service offerings, flexibility to cross-sell and up-sell, introduce new value-added services, leverage Web 2.0 concepts and network capabilities. Consequently, large scale IT transformation initiatives to improve their ARPU supporting network and business transformations are a business imperative. Product Management has become a focus area. Companies are investing in best-in- class COTS solutions to reduce time-to-market, ensure rapid service delivery and improve operational efficiency. An efficient PLM-based enterprise product mastering solution plays a key role in achieving zero touch automation and rapid product launch.   References:   1.     Preston G.Smith, Donald G.Reineristsem, Van Nostrand Reinhold “Developing Products in Half the time”.   2.     John G. Innes, "Achieving Successful Product Change", Pitman Publishing.   3.     D T Pham and R M Setchi (16th Jan, 2001) "Authoring environment for documentation development" University of Wales Cardiff, U.K., Proceedings on Institution of Mechanical Engineers, Vol. 215, Part B.   4.     Oracle Product Hub for Communications:   http://www.oracle.com/us/products/applications/master-data-management/product-hub-082059.html  

    Read the article

  • C#/.NET Fundamentals: Choosing the Right Collection Class

    - by James Michael Hare
    The .NET Base Class Library (BCL) has a wide array of collection classes at your disposal which make it easy to manage collections of objects. While it's great to have so many classes available, it can be daunting to choose the right collection to use for any given situation. As hard as it may be, choosing the right collection can be absolutely key to the performance and maintainability of your application! This post will look at breaking down any confusion between each collection and the situations in which they excel. We will be spending most of our time looking at the System.Collections.Generic namespace, which is the recommended set of collections. The Generic Collections: System.Collections.Generic namespace The generic collections were introduced in .NET 2.0 in the System.Collections.Generic namespace. This is the main body of collections you should tend to focus on first, as they will tend to suit 99% of your needs right up front. It is important to note that the generic collections are unsynchronized. This decision was made for performance reasons because depending on how you are using the collections its completely possible that synchronization may not be required or may be needed on a higher level than simple method-level synchronization. Furthermore, concurrent read access (all writes done at beginning and never again) is always safe, but for concurrent mixed access you should either synchronize the collection or use one of the concurrent collections. So let's look at each of the collections in turn and its various pros and cons, at the end we'll summarize with a table to help make it easier to compare and contrast the different collections. The Associative Collection Classes Associative collections store a value in the collection by providing a key that is used to add/remove/lookup the item. Hence, the container associates the value with the key. These collections are most useful when you need to lookup/manipulate a collection using a key value. For example, if you wanted to look up an order in a collection of orders by an order id, you might have an associative collection where they key is the order id and the value is the order. The Dictionary<TKey,TVale> is probably the most used associative container class. The Dictionary<TKey,TValue> is the fastest class for associative lookups/inserts/deletes because it uses a hash table under the covers. Because the keys are hashed, the key type should correctly implement GetHashCode() and Equals() appropriately or you should provide an external IEqualityComparer to the dictionary on construction. The insert/delete/lookup time of items in the dictionary is amortized constant time - O(1) - which means no matter how big the dictionary gets, the time it takes to find something remains relatively constant. This is highly desirable for high-speed lookups. The only downside is that the dictionary, by nature of using a hash table, is unordered, so you cannot easily traverse the items in a Dictionary in order. The SortedDictionary<TKey,TValue> is similar to the Dictionary<TKey,TValue> in usage but very different in implementation. The SortedDictionary<TKey,TValye> uses a binary tree under the covers to maintain the items in order by the key. As a consequence of sorting, the type used for the key must correctly implement IComparable<TKey> so that the keys can be correctly sorted. The sorted dictionary trades a little bit of lookup time for the ability to maintain the items in order, thus insert/delete/lookup times in a sorted dictionary are logarithmic - O(log n). Generally speaking, with logarithmic time, you can double the size of the collection and it only has to perform one extra comparison to find the item. Use the SortedDictionary<TKey,TValue> when you want fast lookups but also want to be able to maintain the collection in order by the key. The SortedList<TKey,TValue> is the other ordered associative container class in the generic containers. Once again SortedList<TKey,TValue>, like SortedDictionary<TKey,TValue>, uses a key to sort key-value pairs. Unlike SortedDictionary, however, items in a SortedList are stored as an ordered array of items. This means that insertions and deletions are linear - O(n) - because deleting or adding an item may involve shifting all items up or down in the list. Lookup time, however is O(log n) because the SortedList can use a binary search to find any item in the list by its key. So why would you ever want to do this? Well, the answer is that if you are going to load the SortedList up-front, the insertions will be slower, but because array indexing is faster than following object links, lookups are marginally faster than a SortedDictionary. Once again I'd use this in situations where you want fast lookups and want to maintain the collection in order by the key, and where insertions and deletions are rare. The Non-Associative Containers The other container classes are non-associative. They don't use keys to manipulate the collection but rely on the object itself being stored or some other means (such as index) to manipulate the collection. The List<T> is a basic contiguous storage container. Some people may call this a vector or dynamic array. Essentially it is an array of items that grow once its current capacity is exceeded. Because the items are stored contiguously as an array, you can access items in the List<T> by index very quickly. However inserting and removing in the beginning or middle of the List<T> are very costly because you must shift all the items up or down as you delete or insert respectively. However, adding and removing at the end of a List<T> is an amortized constant operation - O(1). Typically List<T> is the standard go-to collection when you don't have any other constraints, and typically we favor a List<T> even over arrays unless we are sure the size will remain absolutely fixed. The LinkedList<T> is a basic implementation of a doubly-linked list. This means that you can add or remove items in the middle of a linked list very quickly (because there's no items to move up or down in contiguous memory), but you also lose the ability to index items by position quickly. Most of the time we tend to favor List<T> over LinkedList<T> unless you are doing a lot of adding and removing from the collection, in which case a LinkedList<T> may make more sense. The HashSet<T> is an unordered collection of unique items. This means that the collection cannot have duplicates and no order is maintained. Logically, this is very similar to having a Dictionary<TKey,TValue> where the TKey and TValue both refer to the same object. This collection is very useful for maintaining a collection of items you wish to check membership against. For example, if you receive an order for a given vendor code, you may want to check to make sure the vendor code belongs to the set of vendor codes you handle. In these cases a HashSet<T> is useful for super-quick lookups where order is not important. Once again, like in Dictionary, the type T should have a valid implementation of GetHashCode() and Equals(), or you should provide an appropriate IEqualityComparer<T> to the HashSet<T> on construction. The SortedSet<T> is to HashSet<T> what the SortedDictionary<TKey,TValue> is to Dictionary<TKey,TValue>. That is, the SortedSet<T> is a binary tree where the key and value are the same object. This once again means that adding/removing/lookups are logarithmic - O(log n) - but you gain the ability to iterate over the items in order. For this collection to be effective, type T must implement IComparable<T> or you need to supply an external IComparer<T>. Finally, the Stack<T> and Queue<T> are two very specific collections that allow you to handle a sequential collection of objects in very specific ways. The Stack<T> is a last-in-first-out (LIFO) container where items are added and removed from the top of the stack. Typically this is useful in situations where you want to stack actions and then be able to undo those actions in reverse order as needed. The Queue<T> on the other hand is a first-in-first-out container which adds items at the end of the queue and removes items from the front. This is useful for situations where you need to process items in the order in which they came, such as a print spooler or waiting lines. So that's the basic collections. Let's summarize what we've learned in a quick reference table.  Collection Ordered? Contiguous Storage? Direct Access? Lookup Efficiency Manipulate Efficiency Notes Dictionary No Yes Via Key Key: O(1) O(1) Best for high performance lookups. SortedDictionary Yes No Via Key Key: O(log n) O(log n) Compromise of Dictionary speed and ordering, uses binary search tree. SortedList Yes Yes Via Key Key: O(log n) O(n) Very similar to SortedDictionary, except tree is implemented in an array, so has faster lookup on preloaded data, but slower loads. List No Yes Via Index Index: O(1) Value: O(n) O(n) Best for smaller lists where direct access required and no ordering. LinkedList No No No Value: O(n) O(1) Best for lists where inserting/deleting in middle is common and no direct access required. HashSet No Yes Via Key Key: O(1) O(1) Unique unordered collection, like a Dictionary except key and value are same object. SortedSet Yes No Via Key Key: O(log n) O(log n) Unique ordered collection, like SortedDictionary except key and value are same object. Stack No Yes Only Top Top: O(1) O(1)* Essentially same as List<T> except only process as LIFO Queue No Yes Only Front Front: O(1) O(1) Essentially same as List<T> except only process as FIFO   The Original Collections: System.Collections namespace The original collection classes are largely considered deprecated by developers and by Microsoft itself. In fact they indicate that for the most part you should always favor the generic or concurrent collections, and only use the original collections when you are dealing with legacy .NET code. Because these collections are out of vogue, let's just briefly mention the original collection and their generic equivalents: ArrayList A dynamic, contiguous collection of objects. Favor the generic collection List<T> instead. Hashtable Associative, unordered collection of key-value pairs of objects. Favor the generic collection Dictionary<TKey,TValue> instead. Queue First-in-first-out (FIFO) collection of objects. Favor the generic collection Queue<T> instead. SortedList Associative, ordered collection of key-value pairs of objects. Favor the generic collection SortedList<T> instead. Stack Last-in-first-out (LIFO) collection of objects. Favor the generic collection Stack<T> instead. In general, the older collections are non-type-safe and in some cases less performant than their generic counterparts. Once again, the only reason you should fall back on these older collections is for backward compatibility with legacy code and libraries only. The Concurrent Collections: System.Collections.Concurrent namespace The concurrent collections are new as of .NET 4.0 and are included in the System.Collections.Concurrent namespace. These collections are optimized for use in situations where multi-threaded read and write access of a collection is desired. The concurrent queue, stack, and dictionary work much as you'd expect. The bag and blocking collection are more unique. Below is the summary of each with a link to a blog post I did on each of them. ConcurrentQueue Thread-safe version of a queue (FIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentStack Thread-safe version of a stack (LIFO). For more information see: C#/.NET Little Wonders: The ConcurrentStack and ConcurrentQueue ConcurrentBag Thread-safe unordered collection of objects. Optimized for situations where a thread may be bother reader and writer. For more information see: C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection ConcurrentDictionary Thread-safe version of a dictionary. Optimized for multiple readers (allows multiple readers under same lock). For more information see C#/.NET Little Wonders: The ConcurrentDictionary BlockingCollection Wrapper collection that implement producers & consumers paradigm. Readers can block until items are available to read. Writers can block until space is available to write (if bounded). For more information see C#/.NET Little Wonders: The ConcurrentBag and BlockingCollection Summary The .NET BCL has lots of collections built in to help you store and manipulate collections of data. Understanding how these collections work and knowing in which situations each container is best is one of the key skills necessary to build more performant code. Choosing the wrong collection for the job can make your code much slower or even harder to maintain if you choose one that doesn’t perform as well or otherwise doesn’t exactly fit the situation. Remember to avoid the original collections and stick with the generic collections.  If you need concurrent access, you can use the generic collections if the data is read-only, or consider the concurrent collections for mixed-access if you are running on .NET 4.0 or higher.   Tweet Technorati Tags: C#,.NET,Collecitons,Generic,Concurrent,Dictionary,List,Stack,Queue,SortedList,SortedDictionary,HashSet,SortedSet

    Read the article

  • The Inkremental Architect&acute;s Napkin - #4 - Make increments tangible

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/06/12/the-inkremental-architectacutes-napkin---4---make-increments-tangible.aspxThe driver of software development are increments, small increments, tiny increments. With an increment being a slice of the overall requirement scope thin enough to implement and get feedback from a product owner within 2 days max. Such an increment might concern Functionality or Quality.[1] To make such high frequency delivery of increments possible, the transition from talking to coding needs to be as easy as possible. A user story or some other documentation of what´s supposed to get implemented until tomorrow evening at latest is one side of the medal. The other is where to put the logic in all of the code base. To implement an increment, only logic statements are needed. Functionality like Quality are just about expressions and control flow statements. Think of Assembler code without the CALL/RET instructions. That´s all is needed. Forget about functions, forget about classes. To make a user happy none of that is really needed. It´s just about the right expressions and conditional executions paths plus some memory allocation. Automatic function inlining of compilers which makes it clear how unimportant functions are for delivering value to users at runtime. But why then are there functions? Because they were invented for optimization purposes. We need them for better Evolvability and Production Efficiency. Nothing more, nothing less. No software has become faster, more secure, more scalable, more functional because we gathered logic under the roof of a function or two or a thousand. Functions make logic easier to understand. Functions make us faster in producing logic. Functions make it easier to keep logic consistent. Functions help to conserve memory. That said, functions are important. They are even the pivotal element of software development. We can´t code without them - whether you write a function yourself or not. Because there´s always at least one function in play: the Entry Point of a program. In Ruby the simplest program looks like this:puts "Hello, world!" In C# more is necessary:class Program { public static void Main () { System.Console.Write("Hello, world!"); } } C# makes the Entry Point function explicit, not so Ruby. But still it´s there. So you can think of logic always running in some function. Which brings me back to increments: In order to make the transition from talking to code as easy as possible, it has to be crystal clear into which function you should put the logic. Product owners might be content once there is a sticky note a user story on the Scrum or Kanban board. But developers need an idea of what that sticky note means in term of functions. Because with a function in hand, with a signature to run tests against, they have something to focus on. All´s well once there is a function behind whose signature logic can be piled up. Then testing frameworks can be used to check if the logic is correct. Then practices like TDD can help to drive the implementation. That´s why most code katas define exactly how the API of a solution should look like. It´s a function, maybe two or three, not more. A requirement like “Write a function f which takes this as parameters and produces such and such output by doing x” makes a developer comfortable. Yes, there are all kinds of details to think about, like which algorithm or technology to use, or what kind of state and side effects to consider. Even a single function not only must deliver on Functionality, but also on Quality and Evolvability. Nevertheless, once it´s clear which function to put logic in, you have a tangible starting point. So, yes, what I´m suggesting is to find a single function to put all the logic in that´s necessary to deliver on a the requirements of an increment. Or to put it the other way around: Slice requirements in a way that each increment´s logic can be located under the roof of a single function. Entry points Of course, the logic of a software will always be spread across many, many functions. But there´s always an Entry Point. That´s the most important function for each increment, because that´s the root to put integration or even acceptance tests on. A batch program like the above hello-world application only has a single Entry Point. All logic is reached from there, regardless how deep it´s nested in classes. But a program with a user interface like this has at least two Entry Points: One is the main function called upon startup. The other is the button click event handler for “Show my score”. But maybe there are even more, like another Entry Point being a handler for the event fired when one of the choices gets selected; because then some logic could check if the button should be enabled because all questions got answered. Or another Entry Point for the logic to be executed when the program is close; because then the choices made should be persisted. You see, an Entry Point to me is a function which gets triggered by the user of a software. With batch programs that´s the main function. With GUI programs on the desktop that´s event handlers. With web programs that´s handlers for URL routes. And my basic suggestion to help you with slicing requirements for Spinning is: Slice them in a way so that each increment is related to only one Entry Point function.[2] Entry Points are the “outer functions” of a program. That´s where the environment triggers behavior. That´s where hardware meets software. Entry points always get called because something happened to hardware state, e.g. a key was pressed, a mouse button clicked, the system timer ticked, data arrived over a wire.[3] Viewed from the outside, software is just a collection of Entry Point functions made accessible via buttons to press, menu items to click, gestures, URLs to open, keys to enter. Collections of batch processors I´d thus say, we haven´t moved forward since the early days of software development. We´re still writing batch programs. Forget about “event-driven programming” with its fancy GUI applications. Software is just a collection of batch processors. Earlier it was just one per program, today it´s hundreds we bundle up into applications. Each batch processor is represented by an Entry Point as its root that works on a number of resources from which it reads data to process and to which it writes results. These resources can be the keyboard or main memory or a hard disk or a communication line or a display. Together many batch processors - large and small - form applications the user perceives as a single whole: Software development that way becomes quite simple: just implement one batch processor after another. Well, at least in principle ;-) Features Each batch processor entered through an Entry Point delivers value to the user. It´s an increment. Sometimes its logic is trivial, sometimes it´s very complex. Regardless, each Entry Point represents an increment. An Entry Point implemented thus is a step forward in terms of Agility. At the same time it´s a tangible unit for developers. Therefore, identifying the more or less numerous batch processors in a software system is a rewarding task for product owners and developers alike. That´s where user stories meet code. In this example the user story translates to the Entry Point triggered by clicking the login button on a dialog like this: The batch then retrieves what has been entered via keyboard, loads data from a user store, and finally outputs some kind of response on the screen, e.g. by displaying an error message or showing the next dialog. This is all very simple, but you see, there is not just one thing happening, but several. Get input (email address, password) Load user for email address If user not found report error Check password Hash password Compare hash to hash stored in user Show next dialog Viewed from 10,000 feet it´s all done by the Entry Point function. And of course that´s technically possible. It´s just a bunch of logic and calling a couple of API functions. However, I suggest to take these steps as distinct aspects of the overall requirement described by the user story. Such aspects of requirements I call Features. Features too are increments. Each provides some (small) value of its own to the user. Each can be checked individually by a product owner. Instead of implementing all the logic behind the Login() entry point at once you can move forward increment by increment, e.g. First implement the dialog, let the user enter any credentials, and log him/her in without any checks. Features 1 and 4. Then hard code a single user and check the email address. Features 2 and 2.1. Then check password without hashing it (or use a very simple hash like the length of the password). Features 3. and 3.2 Replace hard coded user with a persistent user directoy, but a very simple one, e.g. a CSV file. Refinement of feature 2. Calculate the real hash for the password. Feature 3.1. Switch to the final user directory technology. Each feature provides an opportunity to deliver results in a short amount of time and get feedback. If you´re in doubt whether you can implement the whole entry point function until tomorrow night, then just go for a couple of features or even just one. That´s also why I think, you should strive for wrapping feature logic into a function of its own. It´s a matter of Evolvability and Production Efficiency. A function per feature makes the code more readable, since the language of requirements analysis and design is carried over into implementation. It makes it easier to apply changes to features because it´s clear where their logic is located. And finally, of course, it lets you re-use features in different context (read: increments). Feature functions make it easier for you to think of features as Spinning increments, to implement them independently, to let the product owner check them for acceptance individually. Increments consist of features, entry point functions consist of feature functions. So you can view software as a hierarchy of requirements from broad to thin which map to a hierarchy of functions - with entry points at the top.   I like this image of software as a self-similar structure on many levels of abstraction where requirements and code match each other. That to me is true agile design: the core tenet of Agility to move forward in increments is carried over into implementation. Increments on paper are retained in code. This way developers can easily relate to product owners. Elusive and fuzzy requirements are not tangible. Software production is moving forward through requirements one increment at a time, and one function at a time. In closing Product owners and developers are different - but they need to work together towards a shared goal: working software. So their notions of software need to be made compatible, they need to be connected. The increments of the product owner - user stories and features - need to be mapped straightforwardly to something which is relevant to developers. To me that´s functions. Yes, functions, not classes nor components nor micro services. We´re talking about behavior, actions, activities, processes. Their natural representation is a function. Something has to be done. Logic has to be executed. That´s the purpose of functions. Later, classes and other containers are needed to stay on top of a growing amount of logic. But to connect developers and product owners functions are the appropriate glue. Functions which represent increments. Can there always be such a small increment be found to deliver until tomorrow evening? I boldly say yes. Yes, it´s always possible. But maybe you´ve to start thinking differently. Maybe the product owner needs to start thinking differently. Completion is not the goal anymore. Neither is checking the delivery of an increment through the user interface of a software. Product owners need to become comfortable using test beds for certain features. If it´s hard to slice requirements thin enough for Spinning the reason is too little knowledge of something. Maybe you don´t yet understand the problem domain well enough? Maybe you don´t yet feel comfortable with some tool or technology? Then it´s time to acknowledge this fact. Be honest about your not knowing. And instead of trying to deliver as a craftsman officially become a researcher. Research an check back with the product owner every day - until your understanding has grown to a level where you are able to define the next Spinning increment. ? Sometimes even thin requirement slices will cover several Entry Points, like “Add validation of email addresses to all relevant dialogs.” Validation then will it put into a dozen functons. Still, though, it´s important to determine which Entry Points exactly get affected. That´s much easier, if strive for keeping the number of Entry Points per increment to 1. ? If you like call Entry Point functions event handlers, because that´s what they are. They all handle events of some kind, whether that´s palpable in your code or note. A public void btnSave_Click(object sender, EventArgs e) {…} might look like an event handler to you, but public static void Main() {…} is one also - for then event “program started”. ?

    Read the article

  • C#/.NET Little Wonders: Interlocked CompareExchange()

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Two posts ago, I discussed the Interlocked Add(), Increment(), and Decrement() methods (here) for adding and subtracting values in a thread-safe, lightweight manner.  Then, last post I talked about the Interlocked Read() and Exchange() methods (here) for safely and efficiently reading and setting 32 or 64 bit values (or references).  This week, we’ll round out the discussion by talking about the Interlocked CompareExchange() method and how it can be put to use to exchange a value if the current value is what you expected it to be. Dirty reads can lead to bad results Many of the uses of Interlocked that we’ve explored so far have centered around either reading, setting, or adding values.  But what happens if you want to do something more complex such as setting a value based on the previous value in some manner? Perhaps you were creating an application that reads a current balance, applies a deposit, and then saves the new modified balance, where of course you’d want that to happen atomically.  If you read the balance, then go to save the new balance and between that time the previous balance has already changed, you’ll have an issue!  Think about it, if we read the current balance as $400, and we are applying a new deposit of $50.75, but meanwhile someone else deposits $200 and sets the total to $600, but then we write a total of $450.75 we’ve lost $200! Now, certainly for int and long values we can use Interlocked.Add() to handles these cases, and it works well for that.  But what if we want to work with doubles, for example?  Let’s say we wanted to add the numbers from 0 to 99,999 in parallel.  We could do this by spawning several parallel tasks to continuously add to a total: 1: double total = 0; 2:  3: Parallel.For(0, 10000, next => 4: { 5: total += next; 6: }); Were this run on one thread using a standard for loop, we’d expect an answer of 4,999,950,000 (the sum of all numbers from 0 to 99,999).  But when we run this in parallel as written above, we’ll likely get something far off.  The result of one of my runs, for example, was 1,281,880,740.  That is way off!  If this were banking software we’d be in big trouble with our clients.  So what happened?  The += operator is not atomic, it will read in the current value, add the result, then store it back into the total.  At any point in all of this another thread could read a “dirty” current total and accidentally “skip” our add.   So, to clean this up, we could use a lock to guarantee concurrency: 1: double total = 0.0; 2: object locker = new object(); 3:  4: Parallel.For(0, count, next => 5: { 6: lock (locker) 7: { 8: total += next; 9: } 10: }); Which will give us the correct result of 4,999,950,000.  One thing to note is that locking can be heavy, especially if the operation being locked over is trivial, or the life of the lock is a high percentage of the work being performed concurrently.  In the case above, the lock consumes pretty much all of the time of each parallel task – and the task being locked on is relatively trivial. Now, let me put in a disclaimer here before we go further: For most uses, lock is more than sufficient for your needs, and is often the simplest solution!    So, if lock is sufficient for most needs, why would we ever consider another solution?  The problem with locking is that it can suspend execution of your thread while it waits for the signal that the lock is free.  Moreover, if the operation being locked over is trivial, the lock can add a very high level of overhead.  This is why things like Interlocked.Increment() perform so well, instead of locking just to perform an increment, we perform the increment with an atomic, lockless method. As with all things performance related, it’s important to profile before jumping to the conclusion that you should optimize everything in your path.  If your profiling shows that locking is causing a high level of waiting in your application, then it’s time to consider lighter alternatives such as Interlocked. CompareExchange() – Exchange existing value if equal some value So let’s look at how we could use CompareExchange() to solve our problem above.  The general syntax of CompareExchange() is: T CompareExchange<T>(ref T location, T newValue, T expectedValue) If the value in location == expectedValue, then newValue is exchanged.  Either way, the value in location (before exchange) is returned. Actually, CompareExchange() is not one method, but a family of overloaded methods that can take int, long, float, double, pointers, or references.  It cannot take other value types (that is, can’t CompareExchange() two DateTime instances directly).  Also keep in mind that the version that takes any reference type (the generic overload) only checks for reference equality, it does not call any overridden Equals(). So how does this help us?  Well, we can grab the current total, and exchange the new value if total hasn’t changed.  This would look like this: 1: // grab the snapshot 2: double current = total; 3:  4: // if the total hasn’t changed since I grabbed the snapshot, then 5: // set it to the new total 6: Interlocked.CompareExchange(ref total, current + next, current); So what the code above says is: if the amount in total (1st arg) is the same as the amount in current (3rd arg), then set total to current + next (2nd arg).  This check and exchange pair is atomic (and thus thread-safe). This works if total is the same as our snapshot in current, but the problem, is what happens if they aren’t the same?  Well, we know that in either case we will get the previous value of total (before the exchange), back as a result.  Thus, we can test this against our snapshot to see if it was the value we expected: 1: // if the value returned is != current, then our snapshot must be out of date 2: // which means we didn't (and shouldn't) apply current + next 3: if (Interlocked.CompareExchange(ref total, current + next, current) != current) 4: { 5: // ooops, total was not equal to our snapshot in current, what should we do??? 6: } So what do we do if we fail?  That’s up to you and the problem you are trying to solve.  It’s possible you would decide to abort the whole transaction, or perhaps do a lightweight spin and try again.  Let’s try that: 1: double current = total; 2:  3: // make first attempt... 4: if (Interlocked.CompareExchange(ref total, current + i, current) != current) 5: { 6: // if we fail, go into a spin wait, spin, and try again until succeed 7: var spinner = new SpinWait(); 8:  9: do 10: { 11: spinner.SpinOnce(); 12: current = total; 13: } 14: while (Interlocked.CompareExchange(ref total, current + i, current) != current); 15: } 16:  This is not trivial code, but it illustrates a possible use of CompareExchange().  What we are doing is first checking to see if we succeed on the first try, and if so great!  If not, we create a SpinWait and then repeat the process of SpinOnce(), grab a fresh snapshot, and repeat until CompareExchnage() succeeds.  You may wonder why not a simple do-while here, and the reason it’s more efficient to only create the SpinWait until we absolutely know we need one, for optimal efficiency. Though not as simple (or maintainable) as a simple lock, this will perform better in many situations.  Comparing an unlocked (and wrong) version, a version using lock, and the Interlocked of the code, we get the following average times for multiple iterations of adding the sum of 100,000 numbers: 1: Unlocked money average time: 2.1 ms 2: Locked money average time: 5.1 ms 3: Interlocked money average time: 3 ms So the Interlocked.CompareExchange(), while heavier to code, came in lighter than the lock, offering a good compromise of safety and performance when we need to reduce contention. CompareExchange() - it’s not just for adding stuff… So that was one simple use of CompareExchange() in the context of adding double values -- which meant we couldn’t have used the simpler Interlocked.Add() -- but it has other uses as well. If you think about it, this really works anytime you want to create something new based on a current value without using a full lock.  For example, you could use it to create a simple lazy instantiation implementation.  In this case, we want to set the lazy instance only if the previous value was null: 1: public static class Lazy<T> where T : class, new() 2: { 3: private static T _instance; 4:  5: public static T Instance 6: { 7: get 8: { 9: // if current is null, we need to create new instance 10: if (_instance == null) 11: { 12: // attempt create, it will only set if previous was null 13: Interlocked.CompareExchange(ref _instance, new T(), (T)null); 14: } 15:  16: return _instance; 17: } 18: } 19: } So, if _instance == null, this will create a new T() and attempt to exchange it with _instance.  If _instance is not null, then it does nothing and we discard the new T() we created. This is a way to create lazy instances of a type where we are more concerned about locking overhead than creating an accidental duplicate which is not used.  In fact, the BCL implementation of Lazy<T> offers a similar thread-safety choice for Publication thread safety, where it will not guarantee only one instance was created, but it will guarantee that all readers get the same instance.  Another possible use would be in concurrent collections.  Let’s say, for example, that you are creating your own brand new super stack that uses a linked list paradigm and is “lock free”.  We could use Interlocked.CompareExchange() to be able to do a lockless Push() which could be more efficient in multi-threaded applications where several threads are pushing and popping on the stack concurrently. Yes, there are already concurrent collections in the BCL (in .NET 4.0 as part of the TPL), but it’s a fun exercise!  So let’s assume we have a node like this: 1: public sealed class Node<T> 2: { 3: // the data for this node 4: public T Data { get; set; } 5:  6: // the link to the next instance 7: internal Node<T> Next { get; set; } 8: } Then, perhaps, our stack’s Push() operation might look something like: 1: public sealed class SuperStack<T> 2: { 3: private volatile T _head; 4:  5: public void Push(T value) 6: { 7: var newNode = new Node<int> { Data = value, Next = _head }; 8:  9: if (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next) 10: { 11: var spinner = new SpinWait(); 12:  13: do 14: { 15: spinner.SpinOnce(); 16: newNode.Next = _head; 17: } 18: while (Interlocked.CompareExchange(ref _head, newNode, newNode.Next) != newNode.Next); 19: } 20: } 21:  22: // ... 23: } Notice a similar paradigm here as with adding our doubles before.  What we are doing is creating the new Node with the data to push, and with a Next value being the original node referenced by _head.  This will create our stack behavior (LIFO – Last In, First Out).  Now, we have to set _head to now refer to the newNode, but we must first make sure it hasn’t changed! So we check to see if _head has the same value we saved in our snapshot as newNode.Next, and if so, we set _head to newNode.  This is all done atomically, and the result is _head’s original value, as long as the original value was what we assumed it was with newNode.Next, then we are good and we set it without a lock!  If not, we SpinWait and try again. Once again, this is much lighter than locking in highly parallelized code with lots of contention.  If I compare the method above with a similar class using lock, I get the following results for pushing 100,000 items: 1: Locked SuperStack average time: 6 ms 2: Interlocked SuperStack average time: 4.5 ms So, once again, we can get more efficient than a lock, though there is the cost of added code complexity.  Fortunately for you, most of the concurrent collection you’d ever need are already created for you in the System.Collections.Concurrent (here) namespace – for more information, see my Little Wonders – The Concurent Collections Part 1 (here), Part 2 (here), and Part 3 (here). Summary We’ve seen before how the Interlocked class can be used to safely and efficiently add, increment, decrement, read, and exchange values in a multi-threaded environment.  In addition to these, Interlocked CompareExchange() can be used to perform more complex logic without the need of a lock when lock contention is a concern. The added efficiency, though, comes at the cost of more complex code.  As such, the standard lock is often sufficient for most thread-safety needs.  But if profiling indicates you spend a lot of time waiting for locks, or if you just need a lock for something simple such as an increment, decrement, read, exchange, etc., then consider using the Interlocked class’s methods to reduce wait. Technorati Tags: C#,CSharp,.NET,Little Wonders,Interlocked,CompareExchange,threading,concurrency

    Read the article

  • SlickGrid and asp.net sample or tutorial

    - by user322862
    Hi, I am a newbie using SlickGrid. I have searched some of the sample apps out there but I am still stumped. If anyone can refer a sample or tutorial on SlickGrid using Asp.Net doing the following: Get data via JSON Implement paging, sorting, searching Pass the selected rows key to code behind for processing or call a codebehind function passing the selected rows key. Any help would be appreciated. TIA, TE:-D

    Read the article

  • Problem with cometd and jetty 6 / 7

    - by Ceilingfish
    Hi chaps, I'm trying to get started with cometd (http://cometd.org/) and jetty 6 or 7, but I seem to be having problems. I've got an ant script that packages my code up into a war with the cometd 1.1.1 binaries and jetty binaries that are appropriate to the version of jetty I deploy the war to (so 7.1.2.v20100523 binaries when I deploy to jetty 7.1.2.v20100523 and 6.1.24 when I deploy to 6.1.24). I first tried getting a setup with version 7.1.2.v20100523, but when I tried to deploy I got a very long stack trace sample of which is: 2010-05-26 15:32:12.906:WARN::Problem processing jar entry org/eclipse/jetty/util/MultiPartOutputStream.class java.io.IOException: Invalid resource at org.eclipse.jetty.util.resource.URLResource.getInputStream(URLResource.java:204) at org.eclipse.jetty.util.resource.JarResource.getInputStream(JarResource.java:113) at org.eclipse.jetty.annotations.AnnotationParser$2.processEntry(AnnotationParser.java:575) at org.eclipse.jetty.webapp.JarScanner.matched(JarScanner.java:152) at org.eclipse.jetty.util.PatternMatcher.matchPatterns(PatternMatcher.java:82) at org.eclipse.jetty.util.PatternMatcher.match(PatternMatcher.java:64) at org.eclipse.jetty.webapp.JarScanner.scan(JarScanner.java:75) at org.eclipse.jetty.annotations.AnnotationParser.parse(AnnotationParser.java:587) at org.eclipse.jetty.annotations.AbstractConfiguration.parseWebInfLib(AbstractConfiguration.java:107) at org.eclipse.jetty.annotations.AnnotationConfiguration.configure(AnnotationConfiguration.java:68) at org.eclipse.jetty.webapp.WebAppContext.startContext(WebAppContext.java:992) at org.eclipse.jetty.server.handler.ContextHandler.doStart(ContextHandler.java:579) at org.eclipse.jetty.webapp.WebAppContext.doStart(WebAppContext.java:381) at org.eclipse.jetty.util.component.AbstractLifeCycle.start(AbstractLifeCycle.java:55) at org.eclipse.jetty.deploy.bindings.StandardStarter.processBinding(StandardStarter.java:36) at org.eclipse.jetty.deploy.AppLifeCycle.runBindings(AppLifeCycle.java:182) at org.eclipse.jetty.deploy.DeploymentManager.requestAppGoal(DeploymentManager.java:497) at org.eclipse.jetty.deploy.DeploymentManager.addApp(DeploymentManager.java:135) at org.eclipse.jetty.deploy.providers.ScanningAppProvider$1.fileChanged(ScanningAppProvider.java:77) at org.eclipse.jetty.util.Scanner.reportChange(Scanner.java:490) at org.eclipse.jetty.util.Scanner.reportDifferences(Scanner.java:355) at org.eclipse.jetty.util.Scanner.scan(Scanner.java:306) at org.eclipse.jetty.util.Scanner$1.run(Scanner.java:258) at java.util.TimerThread.mainLoop(Timer.java:512) at java.util.TimerThread.run(Timer.java:462) 2010-05-26 15:32:12.907:WARN::Problem processing jar entry org/eclipse/jetty/util/MultiPartWriter.class java.io.IOException: Invalid resource at org.eclipse.jetty.util.resource.URLResource.getInputStream(URLResource.java:204) at org.eclipse.jetty.util.resource.JarResource.getInputStream(JarResource.java:113) at org.eclipse.jetty.annotations.AnnotationParser$2.processEntry(AnnotationParser.java:575) at org.eclipse.jetty.webapp.JarScanner.matched(JarScanner.java:152) at org.eclipse.jetty.util.PatternMatcher.matchPatterns(PatternMatcher.java:82) at org.eclipse.jetty.util.PatternMatcher.match(PatternMatcher.java:64) at org.eclipse.jetty.webapp.JarScanner.scan(JarScanner.java:75) at org.eclipse.jetty.annotations.AnnotationParser.parse(AnnotationParser.java:587) at org.eclipse.jetty.annotations.AbstractConfiguration.parseWebInfLib(AbstractConfiguration.java:107) at org.eclipse.jetty.annotations.AnnotationConfiguration.configure(AnnotationConfiguration.java:68) at org.eclipse.jetty.webapp.WebAppContext.startContext(WebAppContext.java:992) at org.eclipse.jetty.server.handler.ContextHandler.doStart(ContextHandler.java:579) at org.eclipse.jetty.webapp.WebAppContext.doStart(WebAppContext.java:381) at org.eclipse.jetty.util.component.AbstractLifeCycle.start(AbstractLifeCycle.java:55) at org.eclipse.jetty.deploy.bindings.StandardStarter.processBinding(StandardStarter.java:36) at org.eclipse.jetty.deploy.AppLifeCycle.runBindings(AppLifeCycle.java:182) at org.eclipse.jetty.deploy.DeploymentManager.requestAppGoal(DeploymentManager.java:497) at org.eclipse.jetty.deploy.DeploymentManager.addApp(DeploymentManager.java:135) at org.eclipse.jetty.deploy.providers.ScanningAppProvider$1.fileChanged(ScanningAppProvider.java:77) at org.eclipse.jetty.util.Scanner.reportChange(Scanner.java:490) at org.eclipse.jetty.util.Scanner.reportDifferences(Scanner.java:355) at org.eclipse.jetty.util.Scanner.scan(Scanner.java:306) at org.eclipse.jetty.util.Scanner$1.run(Scanner.java:258) at java.util.TimerThread.mainLoop(Timer.java:512) at java.util.TimerThread.run(Timer.java:462) 2010-05-26 15:32:12.907:WARN::Problem processing jar entry org/eclipse/jetty/util/Attributes.class java.io.IOException: Invalid resource at org.eclipse.jetty.util.resource.URLResource.getInputStream(URLResource.java:204) at org.eclipse.jetty.util.resource.JarResource.getInputStream(JarResource.java:113) at org.eclipse.jetty.annotations.AnnotationParser$2.processEntry(AnnotationParser.java:575) at org.eclipse.jetty.webapp.JarScanner.matched(JarScanner.java:152) at org.eclipse.jetty.util.PatternMatcher.matchPatterns(PatternMatcher.java:82) at org.eclipse.jetty.util.PatternMatcher.match(PatternMatcher.java:64) at org.eclipse.jetty.webapp.JarScanner.scan(JarScanner.java:75) at org.eclipse.jetty.annotations.AnnotationParser.parse(AnnotationParser.java:587) at org.eclipse.jetty.annotations.AbstractConfiguration.parseWebInfLib(AbstractConfiguration.java:107) at org.eclipse.jetty.annotations.AnnotationConfiguration.configure(AnnotationConfiguration.java:68) at org.eclipse.jetty.webapp.WebAppContext.startContext(WebAppContext.java:992) at org.eclipse.jetty.server.handler.ContextHandler.doStart(ContextHandler.java:579) at org.eclipse.jetty.webapp.WebAppContext.doStart(WebAppContext.java:381) at org.eclipse.jetty.util.component.AbstractLifeCycle.start(AbstractLifeCycle.java:55) at org.eclipse.jetty.deploy.bindings.StandardStarter.processBinding(StandardStarter.java:36) at org.eclipse.jetty.deploy.AppLifeCycle.runBindings(AppLifeCycle.java:182) at org.eclipse.jetty.deploy.DeploymentManager.requestAppGoal(DeploymentManager.java:497) at org.eclipse.jetty.deploy.DeploymentManager.addApp(DeploymentManager.java:135) at org.eclipse.jetty.deploy.providers.ScanningAppProvider$1.fileChanged(ScanningAppProvider.java:77) at org.eclipse.jetty.util.Scanner.reportChange(Scanner.java:490) at org.eclipse.jetty.util.Scanner.reportDifferences(Scanner.java:355) at org.eclipse.jetty.util.Scanner.scan(Scanner.java:306) at org.eclipse.jetty.util.Scanner$1.run(Scanner.java:258) at java.util.TimerThread.mainLoop(Timer.java:512) at java.util.TimerThread.run(Timer.java:462) Seemed to go through all the jetty binaries and complain about each class file. When I tried to deploy to 6.1.24 I got org.mortbay.util.MultiException[java.lang.NoClassDefFoundError: org/eclipse/jetty/util/ajax/JSON$Source, java.lang.NoClassDefFoundError: org/eclipse/jetty/util/thread/ThreadPool] at org.mortbay.jetty.servlet.ServletHandler.initialize(ServletHandler.java:656) at org.mortbay.jetty.servlet.Context.startContext(Context.java:140) at org.mortbay.jetty.webapp.WebAppContext.startContext(WebAppContext.java:1250) at org.mortbay.jetty.handler.ContextHandler.doStart(ContextHandler.java:517) at org.mortbay.jetty.webapp.WebAppContext.doStart(WebAppContext.java:467) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection.java:152) at org.mortbay.jetty.handler.ContextHandlerCollection.doStart(ContextHandlerCollection.java:156) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.handler.HandlerCollection.doStart(HandlerCollection.java:152) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.jetty.handler.HandlerWrapper.doStart(HandlerWrapper.java:130) at org.mortbay.jetty.Server.doStart(Server.java:224) at org.mortbay.component.AbstractLifeCycle.start(AbstractLifeCycle.java:50) at org.mortbay.xml.XmlConfiguration.main(XmlConfiguration.java:985) at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method) at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:39) at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:25) at java.lang.reflect.Method.invoke(Method.java:597) at org.mortbay.start.Main.invokeMain(Main.java:194) at org.mortbay.start.Main.start(Main.java:534) at org.mortbay.start.Main.start(Main.java:441) at org.mortbay.start.Main.main(Main.java:119) My web.xml looks like this: <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns="http://java.sun.com/xml/ns/javaee" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/web-app_2_5.xsd" version="2.5"> <servlet> <servlet-name>cometd</servlet-name> <servlet-class>org.cometd.server.continuation.ContinuationCometdServlet</servlet-class> <load-on-startup>1</load-on-startup> </servlet> <servlet-mapping> <servlet-name>cometd</servlet-name> <url-pattern>/cometd/*</url-pattern> </servlet-mapping> <servlet> <servlet-name>initializer</servlet-name> <servlet-class>uk.co.dubit.nexus.comet.BayeuxInitializer</servlet-class> <load-on-startup>2</load-on-startup> </servlet> <!-- <filter> <filter-name>cross-origin</filter-name> <filter-class>org.eclipse.jetty.servlets.CrossOriginFilter</filter-class> </filter> <filter-mapping> <filter-name>cross-origin</filter-name> <url-pattern>/cometd/*</url-pattern> </filter-mapping> --> </web-app> note cross origin filter is commented out. The class didn't seem to exist when I tried to run on 6.1.24 (which as far as I understand is the correct behaviour, yes?). Sorry for the noob question but does anyone know what I'm doing wrong here? Regards, Tom

    Read the article

  • Integrating POP3 client functionality into a C# application?

    - by flesh
    I have a web application that requires a server based component to periodically access POP3 email boxes and retrieve emails. The service then needs to process the emails which will involve: Validating the email against some business rules (does it contain a valid reference in the subject line, which user sent the mail, etc.) Analysing and saving any attachments to disk Take the email body and attachment details and create a new item in the database Or update an existing item where the reference matches the incoming email subject line What is the best way to approach this? I really don't want to have to write a POP3 client from scratch, but I need to be able to customize the processing of emails. Ideally I would be able to plug in some component that does the access and retrieval for me, returning arrays of attachments, body text, subject line, etc. ready for my processing... [ UPDATE: Reviews ] OK, so I have spent a fair amount of time looking into (mainly free) .NET POP3 libraries so I thought I'd provide a short review of some of those mentioned below and a few others: Pop3.net - free - works OK, very basic in terms of functionality provided. This is pretty much just the POP3 commands and some base64 encoding, but it's very straight forward - probably a good introduction Pop3 Wizard - commercial / some open source code - couldn't get this to build, missing DLLs, I wouldn't bother with this C#Mail - free - works well, comes with Mime parser and SMTP client, however the comments are in Japanese (not a big deal) and it didn't work with SSL 'out of the box' - I had to change the SslStream constructor after which it worked no problem OpenPOP - free - hasn't been updated for about 5 years so it's current state is .NET 1.0, doesn't support SSL but that was no problem to resolve - I just replaced the existing stream with an SslStream and it worked. Comes with Mime parser. Of the free libraries, I'd go for C#Mail or OpenPOP. I looked at a few commercial libraries: Chillkat, Rebex, RemObjects, JMail.net. Based on features, price and impression of the company I would probably go for Rebex and may in the future if my requirements change or I run into production issues with either of C#Mail or OpenPOP. In case anyone's needs it, this is the replacement SslStream constructor that I used to enable SSL with C#Mail and OpenPOP: SslStream stream = new SslStream(clientSocket.GetStream(), false, delegate(object sender, X509Certificate cert, X509Chain chain, SslPolicyErrors errors) { return true; });

    Read the article

  • Switching DataSources on a ReportViewer in WinForms

    - by Mike Wills
    I have created a winform for the users to view view the many reports I am creating for them. I have a drop down list with the report name which triggers the appropriate fields to display the parameters. Once those are filled, they press Submit and the report appears. This works the first time they hit the screen. They can change the parameters and the ReportViewer works fine. Change to a different report, and the I get the following ReportViewer error: An error occurred during local report processing. An error has occurred during the report processing. A data source instance has not been supplied for the data source "CgTempData_BusMaintenance". As far as the process I use: I set reportName (string) the physical RDLC name. I set the dataSource (string) as the DataSource Name I fill a generic DataTable with the data for the report to run from. Make the ReportViewer visible Set the LocalReport.ReportPath = "Reports\\" = reportName; Clear the LocalReport.DataSources.Clear() Add the new LocalReport.DataSources.Add(new ReportDataSource(dataSource, dt)); RefreshReport() on the ReportViewer. Here is the portion of the code that setups up and displays the ReportViewer: /// <summary> /// Builds the report. /// </summary> private void BuildReport() { DataTable dt = null; ReportingCG rcg = new ReportingCG(); if (reportName == "GasUsedReport.rdlc") { dataSource = "CgTempData_FuelLog"; CgTempData.FuelLogDataTable DtFuelLog = rcg.BuildFuelUsedTable(fromDate, toDate); dt = DtFuelLog; } else if (reportName == "InventoryCost.rdlc") { CgTempData.InventoryUsedDataTable DtInventory; dataSource = "CgTempData_InventoryUsed"; DtInventory = rcg.BuildInventoryUsedTable(fromDate, toDate); dt = DtInventory; } else if (reportName == "VehicleMasterList.rdlc") { dataSource = "CgTempData_VehicleMaster"; CgTempData.VehicleMasterDataTable DtVehicleMaster = rcg.BuildVehicleMasterTable(); dt = DtVehicleMaster; } else if (reportName == "BusCosts.rdlc") { dataSource = "CgTempData_BusMaintenance"; dt = rcg.BuildBusCostsTable(fromDate, toDate); } // Setup the DataSource this.reportViewer1.Visible = true; this.reportViewer1.LocalReport.ReportPath = "Reports\\" + reportName; this.reportViewer1.LocalReport.DataSources.Clear(); this.reportViewer1.LocalReport.DataSources.Add(new ReportDataSource(dataSource, dt)); this.reportViewer1.RefreshReport(); } Any ideas how to remove all of the old remaining data? Do I dispose the object and recreate it?

    Read the article

  • Custom RoleProvider with MVC 2.0 webconfig

    - by Farrell
    I have a custom MembershipProvider and a custom RoleProvider. I created the custom MembershipProvider by creating a SimpleMembershipProvider class which implements the MembershipProvider class. After that I changed my web.config and works. So I used the same approach creating a custom RoleProvider. Nothing special, just creating a SimpleRoleProvider class which implements the RoleProvider class. But then when I changed the web.config file and runs the solution I get the following error message: Web.Config <membership defaultProvider="DashboardMembershipProvider"> <providers> <clear/> <add name="SimpleMembershipProvider" type="Dashboard.Web.Controlling.Account.SimpleMembershipProvider" /> </providers> </membership> <roleManager enabled="true" defaultProvider="DashboardRoleProvider"> <providers> <clear/> <add name="DashboardRoleProvider" type="Dashboard.Web.Controlling.Account.DashboardRoleProvider" /> </providers> </roleManager> Configuration Error Description: An error occurred during the processing of a configuration file required to service this request. Please review the specific error details below and modify your configuration file appropriately. Parser Error Message: No parameterless constructor defined for this object. Source Error Line 78: <add name="SimpleRoleProvider" Line 79: type="Dashboard.Web.Controlling.Account.SimpleRoleProvider" /> So I searched the web. And tried on the type attribute, which generates the following errors: Configuration Error Description: An error occurred during the processing of a configuration file required to service this request. Please review the specific error details below and modify your configuration file appropriately. Parser Error Message: Could not load file or assembly 'Dashboard.Web.Controlling.Account' or one of its dependencies. The system cannot find the file specified. Source Error: Line 78: <add name="SimpleRoleProvider" Line 79: type="Dashboard.Web.Controlling.Account.SimpleRoleProvider,Dashboard.Web.Controlling.Account" /> Any suggestions on how I would be able to get this CustomRoleProvider working? Any help is greatly appreciated!

    Read the article

  • Access Violation Using memcpy or Assignment to an Array in a Struct

    - by Synetech inc.
    Hi, I wrote a program last night that worked just fine but when I refactored it today to make it more extensible, I ended up with a problem. The original version had a hard-coded array of bytes. After some processing, some bytes were written into the array and then some more processing was done. To avoid hard-coding the pattern, I put the array in a structure so that I could add some related data and create an array of them. However now, I cannot write to the array in the structure. Here’s a pseudo-code example: main() { char pattern[]="\x32\x33\x12\x13\xba\xbb"; PrintData(pattern); pattern[2]='\x65'; PrintData(pattern); } That one works but this one does not: struct ENTRY { char* pattern; int somenum; }; main() { ENTRY Entries[] = { {"\x32\x33\x12\x13\xba\xbb\x9a\xbc", 44} , {"\x12\x34\x56\x78", 555} }; PrintData(Entries[0].pattern); Entries[0].pattern[2]='\x65'; //0xC0000005 exception!!! :( PrintData(Entries[0].pattern); } The second version causes an access violation exception on the assignment. I’m sure it’s because the second version allocates memory differently, but I’m starting to get a headache trying to figure out what’s what or how to get fix this. (I’m currently working around it by dynamically allocating a buffer of the same size as the pattern array, copying the pattern to the new buffer, making the changes to the buffer, using the buffer in the place of the pattern array, and then trying to remember to free the—temporary—buffer.) (Specifically, the original version cast the pattern array—+offset—to a DWORD* and assigned a DWORD constant to it to overwrite the four target bytes. The new version cannot do that since the length of the source is unknown—may not be four bytes—so it uses memcpy instead. I’ve checked and re-checked and have made sure that the pointers to memcpy are correct, but I still get an access violation. I use memcpy instead of str(n)cpy because I am using plain chars (as an array of bytes), not Unicode chars and ignoring the null-terminator. Using an assignment as above causes the same problem.) Any ideas? Thanks a lot.

    Read the article

  • Common idiom in Java to Scala, traverse/Iterate Java list into Scala list

    - by Berlin Brown
    I am processing a XML document and iterating through nodes. I want to iterate through the nodes and build a new List of some type. How would I do this with Scala: Here is my XML traverse code: def findClassRef(xmlNode: Elem) = { xmlNode\"classDef" foreach { (entry) => val name = entry \ "@name" val classid = entry \ "@classId" println(name + "//" + classid) } } Where the line of println is, I want to append elements to a list.

    Read the article

  • How do I change the URL for the wordpress author archive page?

    - by Ben Burleson
    Instead of www.example.com/author/xyz, I want to use www.example.com/artist/xyz. I was hoping it was as easy as copying author.php to artist.php in my theme directory, but no such luck. Where does wordpress handle the special processing for the author archive pages? .htaccess rewriting is another option, but I wasn't able to get anything to work with the existing wordpress rewrite rules. Thanks,

    Read the article

  • ARM processor for gigabit ethernet

    - by Surjya Narayana Padhi
    Hi Geeks, I am working on a project which is a handheld device to do some measurements on IP packets. So I need to process the packets by my processor. I am planning use ARM processor for this project. Can anybody suggest if ARM is the right choice for packet processing of Gigabit range?

    Read the article

  • javax.servlet.ServletException - how could i get to the cause?

    - by Michal
    Hi, i'm getting a very strange error while opening one of the pages in my web app. The application is built on Seam 2.2 and is using JSF (RichFaces) as a view technology. I run it on Tomcat 6. The error i'm describing doesn't occur on my machine (Mac OS X), but it does on my client's dev machines (Windows) and on the server (Linux Debian). I'm sure i'm running the same version on each system and i have tried connecting to the same database... In logs everything looks fine - each next JSF Phase executes normally, and after the last one, there is this moment when the request starts processing for the SEAM debug page... And this is the stack trace i see on the debug page (nothing is logged): Exception during request processing: Caused by javax.servlet.ServletException with message: "Servlet execution threw an exception" org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:313) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) org.jboss.seam.servlet.SeamFilter$FilterChainImpl.doFilter(SeamFilter.java:83) org.jboss.seam.web.IdentityFilter.doFilter(IdentityFilter.java:40) org.jboss.seam.servlet.SeamFilter$FilterChainImpl.doFilter(SeamFilter.java:69) org.jboss.seam.web.MultipartFilter.doFilter(MultipartFilter.java:90) org.jboss.seam.servlet.SeamFilter$FilterChainImpl.doFilter(SeamFilter.java:69) org.jboss.seam.web.ExceptionFilter.doFilter(ExceptionFilter.java:64) org.jboss.seam.servlet.SeamFilter$FilterChainImpl.doFilter(SeamFilter.java:69) org.jboss.seam.web.RedirectFilter.doFilter(RedirectFilter.java:45) org.jboss.seam.servlet.SeamFilter$FilterChainImpl.doFilter(SeamFilter.java:69) org.ajax4jsf.webapp.BaseXMLFilter.doXmlFilter(BaseXMLFilter.java:178) org.ajax4jsf.webapp.BaseFilter.handleRequest(BaseFilter.java:290) org.ajax4jsf.webapp.BaseFilter.processUploadsAndHandleRequest(BaseFilter.java:388) org.ajax4jsf.webapp.BaseFilter.doFilter(BaseFilter.java:515) org.jboss.seam.web.Ajax4jsfFilter.doFilter(Ajax4jsfFilter.java:56) org.jboss.seam.servlet.SeamFilter$FilterChainImpl.doFilter(SeamFilter.java:69) org.jboss.seam.web.LoggingFilter.doFilter(LoggingFilter.java:60) org.jboss.seam.servlet.SeamFilter$FilterChainImpl.doFilter(SeamFilter.java:69) org.jboss.seam.web.HotDeployFilter.doFilter(HotDeployFilter.java:53) org.jboss.seam.servlet.SeamFilter$FilterChainImpl.doFilter(SeamFilter.java:69) org.jboss.seam.servlet.SeamFilter.doFilter(SeamFilter.java:158) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) pl.mgibowski.alterium.util.LoggingFilter.doFilter(LoggingFilter.java:18) org.apache.catalina.core.ApplicationFilterChain.internalDoFilter(ApplicationFilterChain.java:235) org.apache.catalina.core.ApplicationFilterChain.doFilter(ApplicationFilterChain.java:206) org.apache.catalina.core.StandardWrapperValve.invoke(StandardWrapperValve.java:233) org.apache.catalina.core.StandardContextValve.invoke(StandardContextValve.java:191) org.apache.catalina.authenticator.AuthenticatorBase.invoke(AuthenticatorBase.java:465) org.apache.catalina.core.StandardHostValve.invoke(StandardHostValve.java:127) org.apache.catalina.valves.ErrorReportValve.invoke(ErrorReportValve.java:102) org.apache.catalina.core.StandardEngineValve.invoke(StandardEngineValve.java:109) org.apache.catalina.connector.CoyoteAdapter.service(CoyoteAdapter.java:298) org.apache.coyote.http11.Http11Processor.process(Http11Processor.java:852) org.apache.coyote.http11.Http11Protocol$Http11ConnectionHandler.process(Http11Protocol.java:588) org.apache.tomcat.util.net.JIoEndpoint$Worker.run(JIoEndpoint.java:489) java.lang.Thread.run(Thread.java:619) Exception without any cause... I was trying to catch the exception with my custom Filter (LoggingFilter.java that you can see on the strack trace), using this code: try { filterChain.doFilter(servletRequest, servletResponse); } catch (Throwable e) { e.printStackTrace(); System.out.println("Stack trace:"); System.out.println(e.getStackTrace()); System.out.println("Cause:"); System.out.println(e.getCause()); } But it doesn't catch anything, the line 18 from the stack trace is this one: filterChain.doFilter(servletRequest, servletResponse); nothing gets caught by the try block. Anybody has any ideas about how could i get closer to the real cause?

    Read the article

  • Offloading to HLSL/GPU without displaying?

    - by George R
    As far as I know, certain mathematical functions like FFTs and perlin noise, etc. can be much faster when done on the GPU as a pixel shader. My question is, if I wanted to exploit this to calculate results and stream to bitmaps, could I do it without needing to actually display it in Silverlight or something? More specifically, I was thinking of using this for large terrain generation involving lots of perlin and other noises, and post-processing like high passes and deriving normals from heightmaps, etc, etc.

    Read the article

  • Altering the ASP.NET MVC 2 ActionResult on HTTP post

    - by Inge Henriksen
    I want to do some processing on a attribute before returning the view. If I set the appModel.Markup returned in the HttpPost ActionResult method below to "modified" it still says "original" on the form. Why cant I modify my attribute in a HttpGet ActionResult method? [HttpGet] public ActionResult Index() { return View(new MyModel { Markup = "original" }); } [HttpPost] public ActionResult Index(MyModel appModel) { return View(new MyModel { Markup = "modified" }); }

    Read the article

  • What’s the Minimum System Spec Recommended For Developer Laptop

    - by DaveDev
    I'll be regularly running Visual Studio 2010 Professional, SQLServer Express, Office and at least 1 virtual environment running a Linux Distro. I want the machine to be snappy and responsive even when doing a reasonable amount of Development work. I want to spend what it takes for this, but I don't want to go overboard spending more than I need to. I won't be playing many games or graphics processing so i won't need a monster of a machine. Any recommendations?

    Read the article

  • Why use Monte-Carlo method?

    - by Gili
    When should the Monte-Carlo method be used? For example, why did Joel decide to use the Monte-Carlo method for Evidence Based Scheduling instead of methodically processing all user data for the past year?

    Read the article

  • Http Request Monitoring Tool

    - by noli
    Hi! I would like to know if anybody can recommend an Http Request Monitoring Tool aside from HttpWatch and Firebug. What I want from the tool is for it to show me the time it took the request to arrive at the web server. HttpWatch can show me the network latency and the server times in one result but i want them separately. My goal is to isolate the network latency from the server processing times. Thanks.

    Read the article

  • Umbraco CMS stripping ALT tags from images when content saved

    - by Yucel
    Umbraco CMS stripping ALT tags from images when content saved Umbraco is taking this < img alt="Your Title - for example Mr., Mrs., Ms." src="../media/21283/q16x16.gif" width="16" height="15" /> and turning it into this. <img alt="" src="/media/21283/q16x16.gif" width="16" height="15" rel="16,15" /> If I alter the alt tag after this processing then the alt tag is saved.

    Read the article

  • BasicHTTPServer, SimpleHTTPServer and concurrency

    - by braindump
    I'm writing a small web server for testing purposes using python, BasicHTTPServer and SimpleHTTPServer. It looks like it's processing one request at a time. Is there any way to make it a little faster without messing around too deeply? Basicly my code looks as the following and I'd like to keep it this simple ;) os.chdir(webroot) httpd = BaseHTTPServer.HTTPServer(("", port), SimpleHTTPServer.SimpleHTTPRequestHandler) print("Serving directory %s on port %i" %(webroot, port) ) try: httpd.serve_forever() except KeyboardInterrupt: print("Server stopped.")

    Read the article

< Previous Page | 134 135 136 137 138 139 140 141 142 143 144 145  | Next Page >