Search Results

Search found 8344 results on 334 pages for 'fast vector highlighter'.

Page 139/334 | < Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >

  • Difference between a Deprecated and an Legacy API?

    - by Vaibhav Bajpai
    I was studying the legacy API's in the Java's Collection Framework and I learnt that classes such as Vector and HashTable have been superseded by ArrayList and HashMap. However still they are NOT deprecated, and deemed as legacy when essentially, deprecation is applied to software features that are superseded and should be avoided, so, I am not sure when is a API deemed legacy and when it is deprecated.

    Read the article

  • C++, class as parameter to a method, not template.

    - by ra170
    So, I came across an interesting method signature that I don't quite understand, it went along the lines of: void Initialize(std::vector< std::string > & param1, class SomeClassName * p); what I don't understand is the "class" keyword being used as the parameter, why is it there? Is it necessary to specify or it is purely superficial?

    Read the article

  • Weird seg fault problem

    - by bluedaemon
    Greetings, I'm having a weird seg fault problem. My application dumps a core file at runtime. After digging into it I found it died in this block: #include <lib1/c.h> ... x::c obj; obj.func1(); I defined class c in a library lib1: namespace x { struct c { c(); ~c(); void fun1(); vector<char *> _data; }; } x::c::c() { } x::c::~c() { for ( int i = 0; i < _data.size(); ++i ) delete _data[i]; } I could not figure it out for some time till I ran nm on the lib1.so file: there are more function definitions than I defined: x::c::c() x::c::c() x::c::~c() x::c::~c() x::c::func1() x::c::func2() After searching in code base I found someone else defined a class with same name in same namespace, but in another library lib2 as follows: namespace x { struct c { c(); ~c(); void func2(); vector<string> strs_; }; } x::c::c() { } x::c::~c() { } My application links to lib2, which has dependency on lib1. This interesting behavior brings several questions: Why would it even work? I would expect a "multiple definitions" error while linking against lib2 (which depends upon lib1) but never had such. The application seems to be doing what's defined in func1 except it dumps a core at runtime. After attaching debugger, I found my application calls the ctor of class c in lib2, then calls func1 (defined in lib1). When going out of scope it calls dtor of class c in lib2, where the seg fault occurs. Can anybody teach me how this could even occur? How can I prevent such problems from happening again? Is there any C++ syntax I can use? Forgot to mention I'm using g++ 4.1 on RHEL4, thank you very much!

    Read the article

  • QT List of Callbacks

    - by Talguy
    I am trying to make a real-time data collection application that has timed task. Each task can have a different or the same update period. I would like to store the task with the common update period in a list where I can iterate through it and call the function that I registered in the list. How would I go about adding callbacks to a data structure like a list or vector? Can I store slots in them?

    Read the article

  • Can I Have Polymorphic Containers With Value Semantics in C++11?

    - by John Dibling
    This is a sequel to a related post which asked the eternal question: Can I have polymorphic containers with value semantics in C++? The question was asked slightly incorrectly. It should have been more like: Can I have STL containers of a base type stored by-value in which the elements exhibit polymorphic behavior? If you are asking the question in terms of C++, the answer is "no." At some point, you will slice objects stored by-value. Now I ask the question again, but strictly in terms of C++11. With the changes to the language and the standard libraries, is it now possible to store polymorphic objects by value in an STL container? I'm well aware of the possibility of storing a smart pointer to the base class in the container -- this is not what I'm looking for, as I'm trying to construct objects on the stack without using new. Consider if you will (from the linked post) as basic C++ example: #include <iostream> using namespace std; class Parent { public: Parent() : parent_mem(1) {} virtual void write() { cout << "Parent: " << parent_mem << endl; } int parent_mem; }; class Child : public Parent { public: Child() : child_mem(2) { parent_mem = 2; } void write() { cout << "Child: " << parent_mem << ", " << child_mem << endl; } int child_mem; }; int main(int, char**) { // I can have a polymorphic container with pointer semantics vector<Parent*> pointerVec; pointerVec.push_back(new Parent()); pointerVec.push_back(new Child()); pointerVec[0]->write(); pointerVec[1]->write(); // Output: // // Parent: 1 // Child: 2, 2 // But I can't do it with value semantics vector<Parent> valueVec; valueVec.push_back(Parent()); valueVec.push_back(Child()); // gets turned into a Parent object :( valueVec[0].write(); valueVec[1].write(); // Output: // // Parent: 1 // Parent: 2 }

    Read the article

  • draw a curve Sketchup using ruby

    - by David
    Below are some point 3d 15.733798,20.019757,23.006311 15.733798,19.847666,23.006311 15.723798,19.847666,23.006311 15.723798,20.019757,23.006311 15.733798,20.019757,23.006311 and this is a vector 0.0,0.0,-0.1 Is it possible to draw a curve from the information above in sketchup? Thank you

    Read the article

  • [C++] Converting Integer to a Byte Representation

    - by bobber205
    How can I convert a integer to it's byte representation. I want to take an integer and return a vector that has contains 1's and 0's of the integers byte representation. I'm having a heck of a time trying to do this myself so I'd thought I would ask to see if there was a built in library function that could help. Thanks!

    Read the article

  • R: optimal way of computing the "product" of two vectors

    - by Musa
    Hi, Let's assume that I have a vector r <- rnorm(4) and a matrix W of dimension 20000*200 for example: W <- matrix(rnorm(20000*200),20000,200) I want to compute a new matrix M of dimension 5000*200 such that m11 <- r%*%W[1:4,1], m21 <- r%*%W[5:8,1], m12 <- r%*%W[1:4,2] etc. (i.e. grouping rows 4-by-4 and computing the product). What's the optimal (speed,memory) way of doing this? Thanks in advance.

    Read the article

  • in R, how can i save the value of "print"

    - by alex
    in R , when i use "print", i can see all the values, but how can i save this as a vector for example, in for loop, for (i in 1:10), i want the value of A , when i= 1,2,3,4..... but if i use the x=A, it only have the final value of A which is the value when i = 10. so , how can i save the vaule in print(A)

    Read the article

  • C++ return object

    - by Pauff
    I have a class that has a vector of objects. What do I need to do to return one of this objects and change it outside the class, keeping the changings? Is it possible to do with regular pointers? Is there a standard procedure? (And yes, my background is in Java.)

    Read the article

  • R: How to replace elements of a data.frame?

    - by John
    I'm trying to replace elements of a data.frame containing "#N/A" with "NULL", and I'm running into problems: foo <- data.frame("day"= c(1, 3, 5, 7), "od" = c(0.1, "#N/A", 0.4, 0.8)) indices_of_NAs <- which(foo == "#N/A") replace(foo, indices_of_NAs, "NULL") Error in [<-.data.frame(*tmp*, list, value = "NULL") : new columns would leave holes after existing columns I think that the problem is that my index is treating the data.frame as a vector, but that the replace function is treating it differently somehow, but I'm not sure what the issue is?

    Read the article

  • Creating a thematic map

    - by jsharma
    This post describes how to create a simple thematic map, just a state population layer, with no underlying map tile layer. The map shows states color-coded by total population. The map is interactive with info-windows and can be panned and zoomed. The sample code demonstrates the following: Displaying an interactive vector layer with no background map tile layer (i.e. purpose and use of the Universe object) Using a dynamic (i.e. defined via the javascript client API) color bucket style Dynamically changing a layer's rendering style Specifying which attribute value to use in determining the bucket, and hence style, for a feature (FoI) The result is shown in the screenshot below. The states layer was defined, and stored in the user_sdo_themes view of the mvdemo schema, using MapBuilder. The underlying table is defined as SQL> desc states_32775  Name                                      Null?    Type ----------------------------------------- -------- ----------------------------  STATE                                              VARCHAR2(26)  STATE_ABRV                                         VARCHAR2(2) FIPSST                                             VARCHAR2(2) TOTPOP                                             NUMBER PCTSMPLD                                           NUMBER LANDSQMI                                           NUMBER POPPSQMI                                           NUMBER ... MEDHHINC NUMBER AVGHHINC NUMBER GEOM32775 MDSYS.SDO_GEOMETRY We'll use the TOTPOP column value in the advanced (color bucket) style for rendering the states layers. The predefined theme (US_STATES_BI) is defined as follows. SQL> select styling_rules from user_sdo_themes where name='US_STATES_BI'; STYLING_RULES -------------------------------------------------------------------------------- <?xml version="1.0" standalone="yes"?> <styling_rules highlight_style="C.CB_QUAL_8_CLASS_DARK2_1"> <hidden_info> <field column="STATE" name="Name"/> <field column="POPPSQMI" name="POPPSQMI"/> <field column="TOTPOP" name="TOTPOP"/> </hidden_info> <rule column="TOTPOP"> <features style="states_totpop"> </features> <label column="STATE_ABRV" style="T.BLUE_SERIF_10"> 1 </label> </rule> </styling_rules> SQL> The theme definition specifies that the state, poppsqmi, totpop, state_abrv, and geom columns will be queried from the states_32775 table. The state_abrv value will be used to label the state while the totpop value will be used to determine the color-fill from those defined in the states_totpop advanced style. The states_totpop style, which we will not use in our demo, is defined as shown below. SQL> select definition from user_sdo_styles where name='STATES_TOTPOP'; DEFINITION -------------------------------------------------------------------------------- <?xml version="1.0" ?> <AdvancedStyle> <BucketStyle> <Buckets default_style="C.S02_COUNTRY_AREA"> <RangedBucket seq="0" label="10K - 5M" low="10000" high="5000000" style="C.SEQ6_01" /> <RangedBucket seq="1" label="5M - 12M" low="5000001" high="1.2E7" style="C.SEQ6_02" /> <RangedBucket seq="2" label="12M - 20M" low="1.2000001E7" high="2.0E7" style="C.SEQ6_04" /> <RangedBucket seq="3" label="&gt; 20M" low="2.0000001E7" high="5.0E7" style="C.SEQ6_05" /> </Buckets> </BucketStyle> </AdvancedStyle> SQL> The demo defines additional advanced styles via the OM.style object and methods and uses those instead when rendering the states layer.   Now let's look at relevant snippets of code that defines the map extent and zoom levels (i.e. the OM.universe),  loads the states predefined vector layer (OM.layer), and sets up the advanced (color bucket) style. Defining the map extent and zoom levels. function initMap() {   //alert("Initialize map view");     // define the map extent and number of zoom levels.   // The Universe object is similar to the map tile layer configuration   // It defines the map extent, number of zoom levels, and spatial reference system   // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined   // The Universe must be defined when there is no underlying map tile layer.   // When there is a map tile layer then that defines the map extent, srid, and zoom levels.      var uni= new OM.universe.Universe(     {         srid : 32775,         bounds : new OM.geometry.Rectangle(                         -3280000, 170000, 2300000, 3200000, 32775),         numberOfZoomLevels: 8     }); The srid specifies the spatial reference system which is Equal-Area Projection (United States). SQL> select cs_name from cs_srs where srid=32775 ; CS_NAME --------------------------------------------------- Equal-Area Projection (United States) The bounds defines the map extent. It is a Rectangle defined using the lower-left and upper-right coordinates and srid. Loading and displaying the states layer This is done in the states() function. The full code is at the end of this post, however here's the snippet which defines the states VectorLayer.     // States is a predefined layer in user_sdo_themes     var  layer2 = new OM.layer.VectorLayer("vLayer2",     {         def:         {             type:OM.layer.VectorLayer.TYPE_PREDEFINED,             dataSource:"mvdemo",             theme:"us_states_bi",             url: baseURL,             loadOnDemand: false         },         boundingTheme:true      }); The first parameter is a layer name, the second is an object literal for a layer config. The config object has two attributes: the first is the layer definition, the second specifies whether the layer is a bounding one (i.e. used to determine the current map zoom and center such that the whole layer is displayed within the map window) or not. The layer config has the following attributes: type - specifies whether is a predefined one, a defined via a SQL query (JDBC), or in a json-format file (DATAPACK) theme - is the predefined theme's name url - is the location of the mapviewer server loadOnDemand - specifies whether to load all the features or just those that lie within the current map window and load additional ones as needed on a pan or zoom The code snippet below dynamically defines an advanced style and then uses it, instead of the 'states_totpop' style, when rendering the states layer. // override predefined rendering style with programmatic one    var theRenderingStyle =      createBucketColorStyle('YlBr5', colorSeries, 'States5', true);   // specify which attribute is used in determining the bucket (i.e. color) to use for the state   // It can be an array because the style could be a chart type (pie/bar)   // which requires multiple attribute columns     // Use the STATE.TOTPOP column (aka attribute) value here    layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); The style itself is defined in the createBucketColorStyle() function. Dynamically defining an advanced style The advanced style used here is a bucket color style, i.e. a color style is associated with each bucket. So first we define the colors and then the buckets.     numClasses = colorSeries[colorName].classes;    // create Color Styles    for (var i=0; i < numClasses; i++)    {         theStyles[i] = new OM.style.Color(                      {fill: colorSeries[colorName].fill[i],                        stroke:colorSeries[colorName].stroke[i],                       strokeOpacity: useGradient? 0.25 : 1                      });    }; numClasses is the number of buckets. The colorSeries array contains the color fill and stroke definitions and is: var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": {   classes:3,                  fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8],                  stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6]   }, "YlBl5": {   classes:5,                  fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494],                  stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85]   }, //multi-hue color scheme #11 YlBr.  "YlBr3": {classes:3,                  fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E],                  stroke:[0xE6DEA9, 0xE5B047, 0xC5360D]   }, "YlBr5": {classes:5,                  fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404],                  stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04]     }, etc. Next we create the bucket style.    bucketStyleDef = {       numClasses : colorSeries[colorName].classes, //      classification: 'custom',  //since we are supplying all the buckets //      buckets: theBuckets,       classification: 'logarithmic',  // use a logarithmic scale       styles: theStyles,       gradient:  useGradient? 'linear' : 'off' //      gradient:  useGradient? 'radial' : 'off'     };    theBucketStyle = new OM.style.BucketStyle(bucketStyleDef);    return theBucketStyle; A BucketStyle constructor takes a style definition as input. The style definition specifies the number of buckets (numClasses), a classification scheme (which can be equal-ranged, logarithmic scale, or custom), the styles for each bucket, whether to use a gradient effect, and optionally the buckets (required when using a custom classification scheme). The full source for the demo <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <title>Oracle Maps V2 Thematic Map Demo</title> <script src="http://localhost:8080/mapviewer/jslib/v2/oraclemapsv2.js" type="text/javascript"> </script> <script type="text/javascript"> //var $j = jQuery.noConflict(); var baseURL="http://localhost:8080/mapviewer"; // location of mapviewer OM.gv.proxyEnabled =false; // no mvproxy needed OM.gv.setResourcePath(baseURL+"/jslib/v2/images/"); // location of resources for UI elements like nav panel buttons var map = null; // the client mapviewer object var statesLayer = null, stateCountyLayer = null; // The vector layers for states and counties in a state var layerName="States"; // initial map center and zoom var mapCenterLon = -20000; var mapCenterLat = 1750000; var mapZoom = 2; var mpoint = new OM.geometry.Point(mapCenterLon,mapCenterLat,32775); var currentPalette = null, currentStyle=null; // set an onchange listener for the color palette select list // initialize the map // load and display the states layer $(document).ready( function() { $("#demo-htmlselect").change(function() { var theColorScheme = $(this).val(); useSelectedColorScheme(theColorScheme); }); initMap(); states(); } ); /** * color series from ColorBrewer site (http://colorbrewer2.org/). */ var colorSeries = { //multi-hue color scheme #10 YlBl. "YlBl3": { classes:3, fill: [0xEDF8B1, 0x7FCDBB, 0x2C7FB8], stroke:[0xB5DF9F, 0x72B8A8, 0x2872A6] }, "YlBl5": { classes:5, fill:[0xFFFFCC, 0xA1DAB4, 0x41B6C4, 0x2C7FB8, 0x253494], stroke:[0xE6E6B8, 0x91BCA2, 0x3AA4B0, 0x2872A6, 0x212F85] }, //multi-hue color scheme #11 YlBr. "YlBr3": {classes:3, fill:[0xFFF7BC, 0xFEC44F, 0xD95F0E], stroke:[0xE6DEA9, 0xE5B047, 0xC5360D] }, "YlBr5": {classes:5, fill:[0xFFFFD4, 0xFED98E, 0xFE9929, 0xD95F0E, 0x993404], stroke:[0xE6E6BF, 0xE5C380, 0xE58A25, 0xC35663, 0x8A2F04] }, // single-hue color schemes (blues, greens, greys, oranges, reds, purples) "Purples5": {classes:5, fill:[0xf2f0f7, 0xcbc9e2, 0x9e9ac8, 0x756bb1, 0x54278f], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Blues5": {classes:5, fill:[0xEFF3FF, 0xbdd7e7, 0x68aed6, 0x3182bd, 0x18519C], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greens5": {classes:5, fill:[0xedf8e9, 0xbae4b3, 0x74c476, 0x31a354, 0x116d2c], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Greys5": {classes:5, fill:[0xf7f7f7, 0xcccccc, 0x969696, 0x636363, 0x454545], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Oranges5": {classes:5, fill:[0xfeedde, 0xfdb385, 0xfd8d3c, 0xe6550d, 0xa63603], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] }, "Reds5": {classes:5, fill:[0xfee5d9, 0xfcae91, 0xfb6a4a, 0xde2d26, 0xa50f15], stroke:[0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3, 0xd3d3d3] } }; function createBucketColorStyle( colorName, colorSeries, rangeName, useGradient) { var theBucketStyle; var bucketStyleDef; var theStyles = []; var theColors = []; var aBucket, aStyle, aColor, aRange; var numClasses ; numClasses = colorSeries[colorName].classes; // create Color Styles for (var i=0; i < numClasses; i++) { theStyles[i] = new OM.style.Color( {fill: colorSeries[colorName].fill[i], stroke:colorSeries[colorName].stroke[i], strokeOpacity: useGradient? 0.25 : 1 }); }; bucketStyleDef = { numClasses : colorSeries[colorName].classes, // classification: 'custom', //since we are supplying all the buckets // buckets: theBuckets, classification: 'logarithmic', // use a logarithmic scale styles: theStyles, gradient: useGradient? 'linear' : 'off' // gradient: useGradient? 'radial' : 'off' }; theBucketStyle = new OM.style.BucketStyle(bucketStyleDef); return theBucketStyle; } function initMap() { //alert("Initialize map view"); // define the map extent and number of zoom levels. // The Universe object is similar to the map tile layer configuration // It defines the map extent, number of zoom levels, and spatial reference system // well-known ones (like web mercator/google/bing or maps.oracle/elocation are predefined // The Universe must be defined when there is no underlying map tile layer. // When there is a map tile layer then that defines the map extent, srid, and zoom levels. var uni= new OM.universe.Universe( { srid : 32775, bounds : new OM.geometry.Rectangle( -3280000, 170000, 2300000, 3200000, 32775), numberOfZoomLevels: 8 }); map = new OM.Map( document.getElementById('map'), { mapviewerURL: baseURL, universe:uni }) ; var navigationPanelBar = new OM.control.NavigationPanelBar(); map.addMapDecoration(navigationPanelBar); } // end initMap function states() { //alert("Load and display states"); layerName = "States"; if(statesLayer) { // states were already visible but the style may have changed // so set the style to the currently selected one var theData = $('#demo-htmlselect').val(); setStyle(theData); } else { // States is a predefined layer in user_sdo_themes var layer2 = new OM.layer.VectorLayer("vLayer2", { def: { type:OM.layer.VectorLayer.TYPE_PREDEFINED, dataSource:"mvdemo", theme:"us_states_bi", url: baseURL, loadOnDemand: false }, boundingTheme:true }); // add drop shadow effect and hover style var shadowFilter = new OM.visualfilter.DropShadow({opacity:0.5, color:"#000000", offset:6, radius:10}); var hoverStyle = new OM.style.Color( {stroke:"#838383", strokeThickness:2}); layer2.setHoverStyle(hoverStyle); layer2.setHoverVisualFilter(shadowFilter); layer2.enableFeatureHover(true); layer2.enableFeatureSelection(false); layer2.setLabelsVisible(true); // override predefined rendering style with programmatic one var theRenderingStyle = createBucketColorStyle('YlBr5', colorSeries, 'States5', true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state // It can be an array because the style could be a chart type (pie/bar) // which requires multiple attribute columns // Use the STATE.TOTPOP column (aka attribute) value here layer2.setRenderingStyle(theRenderingStyle, ["TOTPOP"]); currentPalette = "YlBr5"; var stLayerIdx = map.addLayer(layer2); //alert('State Layer Idx = ' + stLayerIdx); map.setMapCenter(mpoint); map.setMapZoomLevel(mapZoom) ; // display the map map.init() ; statesLayer=layer2; // add rt-click event listener to show counties for the state layer2.addListener(OM.event.MouseEvent.MOUSE_RIGHT_CLICK,stateRtClick); } // end if } // end states function setStyle(styleName) { // alert("Selected Style = " + styleName); // there may be a counties layer also displayed. // that wll have different bucket ranges so create // one style for states and one for counties var newRenderingStyle = null; if (layerName === "States") { if(/3/.test(styleName)) { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States3', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties3', false); } else { newRenderingStyle = createBucketColorStyle(styleName, colorSeries, 'States5', false); currentStyle = createBucketColorStyle(styleName, colorSeries, 'Counties5', false); } statesLayer.setRenderingStyle(newRenderingStyle, ["TOTPOP"]); if (stateCountyLayer) stateCountyLayer.setRenderingStyle(currentStyle, ["TOTPOP"]); } } // end setStyle function stateRtClick(evt){ var foi = evt.feature; //alert('Rt-Click on State: ' + foi.attributes['_label_'] + // ' with pop ' + foi.attributes['TOTPOP']); // display another layer with counties info // layer may change on each rt-click so create and add each time. var countyByState = null ; // the _label_ attribute of a feature in this case is the state abbreviation // we will use that to query and get the counties for a state var sqlText = "select totpop,geom32775 from counties_32775_moved where state_abrv="+ "'"+foi.getAttributeValue('_label_')+"'"; // alert(sqlText); if (currentStyle === null) currentStyle = createBucketColorStyle('YlBr5', colorSeries, 'Counties5', false); /* try a simple style instead new OM.style.ColorStyle( { stroke: "#B8F4FF", fill: "#18E5F4", fillOpacity:0 } ); */ // remove existing layer if any if(stateCountyLayer) map.removeLayer(stateCountyLayer); countyByState = new OM.layer.VectorLayer("stCountyLayer", {def:{type:OM.layer.VectorLayer.TYPE_JDBC, dataSource:"mvdemo", sql:sqlText, url:baseURL}}); // url:baseURL}, // renderingStyle:currentStyle}); countyByState.setVisible(true); // specify which attribute is used in determining the bucket (i.e. color) to use for the state countyByState.setRenderingStyle(currentStyle, ["TOTPOP"]); var ctLayerIdx = map.addLayer(countyByState); // alert('County Layer Idx = ' + ctLayerIdx); //map.addLayer(countyByState); stateCountyLayer = countyByState; } // end stateRtClick function useSelectedColorScheme(theColorScheme) { if(map) { // code to update renderStyle goes here //alert('will try to change render style'); setStyle(theColorScheme); } else { // do nothing } } </script> </head> <body bgcolor="#b4c5cc" style="height:100%;font-family:Arial,Helvetica,Verdana"> <h3 align="center">State population thematic map </h3> <div id="demo" style="position:absolute; left:68%; top:44px; width:28%; height:100%"> <HR/> <p/> Choose Color Scheme: <select id="demo-htmlselect"> <option value="YlBl3"> YellowBlue3</option> <option value="YlBr3"> YellowBrown3</option> <option value="YlBl5"> YellowBlue5</option> <option value="YlBr5" selected="selected"> YellowBrown5</option> <option value="Blues5"> Blues</option> <option value="Greens5"> Greens</option> <option value="Greys5"> Greys</option> <option value="Oranges5"> Oranges</option> <option value="Purples5"> Purples</option> <option value="Reds5"> Reds</option> </select> <p/> </div> <div id="map" style="position:absolute; left:10px; top:50px; width:65%; height:75%; background-color:#778f99"></div> <div style="position:absolute;top:85%; left:10px;width:98%" class="noprint"> <HR/> <p> Note: This demo uses HTML5 Canvas and requires IE9+, Firefox 10+, or Chrome. No map will show up in IE8 or earlier. </p> </div> </body> </html>

    Read the article

  • Using R to Analyze G1GC Log Files

    - by user12620111
    Using R to Analyze G1GC Log Files body, td { font-family: sans-serif; background-color: white; font-size: 12px; margin: 8px; } tt, code, pre { font-family: 'DejaVu Sans Mono', 'Droid Sans Mono', 'Lucida Console', Consolas, Monaco, monospace; } h1 { font-size:2.2em; } h2 { font-size:1.8em; } h3 { font-size:1.4em; } h4 { font-size:1.0em; } h5 { font-size:0.9em; } h6 { font-size:0.8em; } a:visited { color: rgb(50%, 0%, 50%); } pre { margin-top: 0; max-width: 95%; border: 1px solid #ccc; white-space: pre-wrap; } pre code { display: block; padding: 0.5em; } code.r, code.cpp { background-color: #F8F8F8; } table, td, th { border: none; } blockquote { color:#666666; margin:0; padding-left: 1em; border-left: 0.5em #EEE solid; } hr { height: 0px; border-bottom: none; border-top-width: thin; border-top-style: dotted; border-top-color: #999999; } @media print { * { background: transparent !important; color: black !important; filter:none !important; -ms-filter: none !important; } body { font-size:12pt; max-width:100%; } a, a:visited { text-decoration: underline; } hr { visibility: hidden; page-break-before: always; } pre, blockquote { padding-right: 1em; page-break-inside: avoid; } tr, img { page-break-inside: avoid; } img { max-width: 100% !important; } @page :left { margin: 15mm 20mm 15mm 10mm; } @page :right { margin: 15mm 10mm 15mm 20mm; } p, h2, h3 { orphans: 3; widows: 3; } h2, h3 { page-break-after: avoid; } } pre .operator, pre .paren { color: rgb(104, 118, 135) } pre .literal { color: rgb(88, 72, 246) } pre .number { color: rgb(0, 0, 205); } pre .comment { color: rgb(76, 136, 107); } pre .keyword { color: rgb(0, 0, 255); } pre .identifier { color: rgb(0, 0, 0); } pre .string { color: rgb(3, 106, 7); } var hljs=new function(){function m(p){return p.replace(/&/gm,"&").replace(/"}while(y.length||w.length){var v=u().splice(0,1)[0];z+=m(x.substr(q,v.offset-q));q=v.offset;if(v.event=="start"){z+=t(v.node);s.push(v.node)}else{if(v.event=="stop"){var p,r=s.length;do{r--;p=s[r];z+=("")}while(p!=v.node);s.splice(r,1);while(r'+M[0]+""}else{r+=M[0]}O=P.lR.lastIndex;M=P.lR.exec(L)}return r+L.substr(O,L.length-O)}function J(L,M){if(M.sL&&e[M.sL]){var r=d(M.sL,L);x+=r.keyword_count;return r.value}else{return F(L,M)}}function I(M,r){var L=M.cN?'':"";if(M.rB){y+=L;M.buffer=""}else{if(M.eB){y+=m(r)+L;M.buffer=""}else{y+=L;M.buffer=r}}D.push(M);A+=M.r}function G(N,M,Q){var R=D[D.length-1];if(Q){y+=J(R.buffer+N,R);return false}var P=q(M,R);if(P){y+=J(R.buffer+N,R);I(P,M);return P.rB}var L=v(D.length-1,M);if(L){var O=R.cN?"":"";if(R.rE){y+=J(R.buffer+N,R)+O}else{if(R.eE){y+=J(R.buffer+N,R)+O+m(M)}else{y+=J(R.buffer+N+M,R)+O}}while(L1){O=D[D.length-2].cN?"":"";y+=O;L--;D.length--}var r=D[D.length-1];D.length--;D[D.length-1].buffer="";if(r.starts){I(r.starts,"")}return R.rE}if(w(M,R)){throw"Illegal"}}var E=e[B];var D=[E.dM];var A=0;var x=0;var y="";try{var s,u=0;E.dM.buffer="";do{s=p(C,u);var t=G(s[0],s[1],s[2]);u+=s[0].length;if(!t){u+=s[1].length}}while(!s[2]);if(D.length1){throw"Illegal"}return{r:A,keyword_count:x,value:y}}catch(H){if(H=="Illegal"){return{r:0,keyword_count:0,value:m(C)}}else{throw H}}}function g(t){var p={keyword_count:0,r:0,value:m(t)};var r=p;for(var q in e){if(!e.hasOwnProperty(q)){continue}var s=d(q,t);s.language=q;if(s.keyword_count+s.rr.keyword_count+r.r){r=s}if(s.keyword_count+s.rp.keyword_count+p.r){r=p;p=s}}if(r.language){p.second_best=r}return p}function i(r,q,p){if(q){r=r.replace(/^((]+|\t)+)/gm,function(t,w,v,u){return w.replace(/\t/g,q)})}if(p){r=r.replace(/\n/g,"")}return r}function n(t,w,r){var x=h(t,r);var v=a(t);var y,s;if(v){y=d(v,x)}else{return}var q=c(t);if(q.length){s=document.createElement("pre");s.innerHTML=y.value;y.value=k(q,c(s),x)}y.value=i(y.value,w,r);var u=t.className;if(!u.match("(\\s|^)(language-)?"+v+"(\\s|$)")){u=u?(u+" "+v):v}if(/MSIE [678]/.test(navigator.userAgent)&&t.tagName=="CODE"&&t.parentNode.tagName=="PRE"){s=t.parentNode;var p=document.createElement("div");p.innerHTML=""+y.value+"";t=p.firstChild.firstChild;p.firstChild.cN=s.cN;s.parentNode.replaceChild(p.firstChild,s)}else{t.innerHTML=y.value}t.className=u;t.result={language:v,kw:y.keyword_count,re:y.r};if(y.second_best){t.second_best={language:y.second_best.language,kw:y.second_best.keyword_count,re:y.second_best.r}}}function o(){if(o.called){return}o.called=true;var r=document.getElementsByTagName("pre");for(var p=0;p|=||=||=|\\?|\\[|\\{|\\(|\\^|\\^=|\\||\\|=|\\|\\||~";this.ER="(?![\\s\\S])";this.BE={b:"\\\\.",r:0};this.ASM={cN:"string",b:"'",e:"'",i:"\\n",c:[this.BE],r:0};this.QSM={cN:"string",b:'"',e:'"',i:"\\n",c:[this.BE],r:0};this.CLCM={cN:"comment",b:"//",e:"$"};this.CBLCLM={cN:"comment",b:"/\\*",e:"\\*/"};this.HCM={cN:"comment",b:"#",e:"$"};this.NM={cN:"number",b:this.NR,r:0};this.CNM={cN:"number",b:this.CNR,r:0};this.BNM={cN:"number",b:this.BNR,r:0};this.inherit=function(r,s){var p={};for(var q in r){p[q]=r[q]}if(s){for(var q in s){p[q]=s[q]}}return p}}();hljs.LANGUAGES.cpp=function(){var a={keyword:{"false":1,"int":1,"float":1,"while":1,"private":1,"char":1,"catch":1,"export":1,virtual:1,operator:2,sizeof:2,dynamic_cast:2,typedef:2,const_cast:2,"const":1,struct:1,"for":1,static_cast:2,union:1,namespace:1,unsigned:1,"long":1,"throw":1,"volatile":2,"static":1,"protected":1,bool:1,template:1,mutable:1,"if":1,"public":1,friend:2,"do":1,"return":1,"goto":1,auto:1,"void":2,"enum":1,"else":1,"break":1,"new":1,extern:1,using:1,"true":1,"class":1,asm:1,"case":1,typeid:1,"short":1,reinterpret_cast:2,"default":1,"double":1,register:1,explicit:1,signed:1,typename:1,"try":1,"this":1,"switch":1,"continue":1,wchar_t:1,inline:1,"delete":1,alignof:1,char16_t:1,char32_t:1,constexpr:1,decltype:1,noexcept:1,nullptr:1,static_assert:1,thread_local:1,restrict:1,_Bool:1,complex:1},built_in:{std:1,string:1,cin:1,cout:1,cerr:1,clog:1,stringstream:1,istringstream:1,ostringstream:1,auto_ptr:1,deque:1,list:1,queue:1,stack:1,vector:1,map:1,set:1,bitset:1,multiset:1,multimap:1,unordered_set:1,unordered_map:1,unordered_multiset:1,unordered_multimap:1,array:1,shared_ptr:1}};return{dM:{k:a,i:"",k:a,r:10,c:["self"]}]}}}();hljs.LANGUAGES.r={dM:{c:[hljs.HCM,{cN:"number",b:"\\b0[xX][0-9a-fA-F]+[Li]?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+(?:[eE][+\\-]?\\d*)?L\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\b\\d+\\.(?!\\d)(?:i\\b)?",e:hljs.IMMEDIATE_RE,r:1},{cN:"number",b:"\\b\\d+(?:\\.\\d*)?(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"number",b:"\\.\\d+(?:[eE][+\\-]?\\d*)?i?\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"keyword",b:"(?:tryCatch|library|setGeneric|setGroupGeneric)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\.",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\.\\.\\d+(?![\\w.])",e:hljs.IMMEDIATE_RE,r:10},{cN:"keyword",b:"\\b(?:function)",e:hljs.IMMEDIATE_RE,r:2},{cN:"keyword",b:"(?:if|in|break|next|repeat|else|for|return|switch|while|try|stop|warning|require|attach|detach|source|setMethod|setClass)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"literal",b:"(?:NA|NA_integer_|NA_real_|NA_character_|NA_complex_)\\b",e:hljs.IMMEDIATE_RE,r:10},{cN:"literal",b:"(?:NULL|TRUE|FALSE|T|F|Inf|NaN)\\b",e:hljs.IMMEDIATE_RE,r:1},{cN:"identifier",b:"[a-zA-Z.][a-zA-Z0-9._]*\\b",e:hljs.IMMEDIATE_RE,r:0},{cN:"operator",b:"|=||   Using R to Analyze G1GC Log Files   Using R to Analyze G1GC Log Files Introduction Working in Oracle Platform Integration gives an engineer opportunities to work on a wide array of technologies. My team’s goal is to make Oracle applications run best on the Solaris/SPARC platform. When looking for bottlenecks in a modern applications, one needs to be aware of not only how the CPUs and operating system are executing, but also network, storage, and in some cases, the Java Virtual Machine. I was recently presented with about 1.5 GB of Java Garbage First Garbage Collector log file data. If you’re not familiar with the subject, you might want to review Garbage First Garbage Collector Tuning by Monica Beckwith. The customer had been running Java HotSpot 1.6.0_31 to host a web application server. I was told that the Solaris/SPARC server was running a Java process launched using a commmand line that included the following flags: -d64 -Xms9g -Xmx9g -XX:+UseG1GC -XX:MaxGCPauseMillis=200 -XX:InitiatingHeapOccupancyPercent=80 -XX:PermSize=256m -XX:MaxPermSize=256m -XX:+PrintGC -XX:+PrintGCTimeStamps -XX:+PrintHeapAtGC -XX:+PrintGCDateStamps -XX:+PrintFlagsFinal -XX:+DisableExplicitGC -XX:+UnlockExperimentalVMOptions -XX:ParallelGCThreads=8 Several sources on the internet indicate that if I were to print out the 1.5 GB of log files, it would require enough paper to fill the bed of a pick up truck. Of course, it would be fruitless to try to scan the log files by hand. Tools will be required to summarize the contents of the log files. Others have encountered large Java garbage collection log files. There are existing tools to analyze the log files: IBM’s GC toolkit The chewiebug GCViewer gchisto HPjmeter Instead of using one of the other tools listed, I decide to parse the log files with standard Unix tools, and analyze the data with R. Data Cleansing The log files arrived in two different formats. I guess that the difference is that one set of log files was generated using a more verbose option, maybe -XX:+PrintHeapAtGC, and the other set of log files was generated without that option. Format 1 In some of the log files, the log files with the less verbose format, a single trace, i.e. the report of a singe garbage collection event, looks like this: {Heap before GC invocations=12280 (full 61): garbage-first heap total 9437184K, used 7499918K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 1 young (4096K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. 2014-05-14T07:24:00.988-0700: 60586.353: [GC pause (young) 7324M->7320M(9216M), 0.1567265 secs] Heap after GC invocations=12281 (full 61): garbage-first heap total 9437184K, used 7496533K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) region size 4096K, 0 young (0K), 0 survivors (0K) compacting perm gen total 262144K, used 144077K [0xffffffff40000000, 0xffffffff50000000, 0xffffffff50000000) the space 262144K, 54% used [0xffffffff40000000, 0xffffffff48cb3758, 0xffffffff48cb3800, 0xffffffff50000000) No shared spaces configured. } A simple grep can be used to extract a summary: $ grep "\[ GC pause (young" g1gc.log 2014-05-13T13:24:35.091-0700: 3.109: [GC pause (young) 20M->5029K(9216M), 0.0146328 secs] 2014-05-13T13:24:35.440-0700: 3.459: [GC pause (young) 9125K->6077K(9216M), 0.0086723 secs] 2014-05-13T13:24:37.581-0700: 5.599: [GC pause (young) 25M->8470K(9216M), 0.0203820 secs] 2014-05-13T13:24:42.686-0700: 10.704: [GC pause (young) 44M->15M(9216M), 0.0288848 secs] 2014-05-13T13:24:48.941-0700: 16.958: [GC pause (young) 51M->20M(9216M), 0.0491244 secs] 2014-05-13T13:24:56.049-0700: 24.066: [GC pause (young) 92M->26M(9216M), 0.0525368 secs] 2014-05-13T13:25:34.368-0700: 62.383: [GC pause (young) 602M->68M(9216M), 0.1721173 secs] But that format wasn't easily read into R, so I needed to be a bit more tricky. I used the following Unix command to create a summary file that was easy for R to read. $ echo "SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime" $ grep "\[GC pause (young" g1gc.log | grep -v mark | sed -e 's/[A-SU-z\(\),]/ /g' -e 's/->/ /' -e 's/: / /g' | more SecondsSinceLaunch BeforeSize AfterSize TotalSize RealTime 2014-05-13T13:24:35.091-0700 3.109 20 5029 9216 0.0146328 2014-05-13T13:24:35.440-0700 3.459 9125 6077 9216 0.0086723 2014-05-13T13:24:37.581-0700 5.599 25 8470 9216 0.0203820 2014-05-13T13:24:42.686-0700 10.704 44 15 9216 0.0288848 2014-05-13T13:24:48.941-0700 16.958 51 20 9216 0.0491244 2014-05-13T13:24:56.049-0700 24.066 92 26 9216 0.0525368 2014-05-13T13:25:34.368-0700 62.383 602 68 9216 0.1721173 Format 2 In some of the log files, the log files with the more verbose format, a single trace, i.e. the report of a singe garbage collection event, was more complicated than Format 1. Here is a text file with an example of a single G1GC trace in the second format. As you can see, it is quite complicated. It is nice that there is so much information available, but the level of detail can be overwhelming. I wrote this awk script (download) to summarize each trace on a single line. #!/usr/bin/env awk -f BEGIN { printf("SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize\n") } ###################### # Save count data from lines that are at the start of each G1GC trace. # Each trace starts out like this: # {Heap before GC invocations=14 (full 0): # garbage-first heap total 9437184K, used 325496K [0xfffffffd00000000, 0xffffffff40000000, 0xffffffff40000000) ###################### /{Heap.*full/{ gsub ( "\\)" , "" ); nf=split($0,a,"="); split(a[2],b," "); getline; if ( match($0, "first") ) { G1GC=1; IncrementalCount=b[1]; FullCount=substr( b[3], 1, length(b[3])-1 ); } else { G1GC=0; } } ###################### # Pull out time stamps that are in lines with this format: # 2014-05-12T14:02:06.025-0700: 94.312: [GC pause (young), 0.08870154 secs] ###################### /GC pause/ { DateTime=$1; SecondsSinceLaunch=substr($2, 1, length($2)-1); } ###################### # Heap sizes are in lines that look like this: # [ 4842M->4838M(9216M)] ###################### /\[ .*]$/ { gsub ( "\\[" , "" ); gsub ( "\ \]" , "" ); gsub ( "->" , " " ); gsub ( "\\( " , " " ); gsub ( "\ \)" , " " ); split($0,a," "); if ( split(a[1],b,"M") > 1 ) {BeforeSize=b[1]*1024;} if ( split(a[1],b,"K") > 1 ) {BeforeSize=b[1];} if ( split(a[2],b,"M") > 1 ) {AfterSize=b[1]*1024;} if ( split(a[2],b,"K") > 1 ) {AfterSize=b[1];} if ( split(a[3],b,"M") > 1 ) {TotalSize=b[1]*1024;} if ( split(a[3],b,"K") > 1 ) {TotalSize=b[1];} } ###################### # Emit an output line when you find input that looks like this: # [Times: user=1.41 sys=0.08, real=0.24 secs] ###################### /\[Times/ { if (G1GC==1) { gsub ( "," , "" ); split($2,a,"="); UserTime=a[2]; split($3,a,"="); SysTime=a[2]; split($4,a,"="); RealTime=a[2]; print DateTime,SecondsSinceLaunch,IncrementalCount,FullCount,UserTime,SysTime,RealTime,BeforeSize,AfterSize,TotalSize; G1GC=0; } } The resulting summary is about 25X smaller that the original file, but still difficult for a human to digest. SecondsSinceLaunch IncrementalCount FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ... 2014-05-12T18:36:34.669-0700: 3985.744 561 0 0.57 0.06 0.16 1724416 1720320 9437184 2014-05-12T18:36:34.839-0700: 3985.914 562 0 0.51 0.06 0.19 1724416 1720320 9437184 2014-05-12T18:36:35.069-0700: 3986.144 563 0 0.60 0.04 0.27 1724416 1721344 9437184 2014-05-12T18:36:35.354-0700: 3986.429 564 0 0.33 0.04 0.09 1725440 1722368 9437184 2014-05-12T18:36:35.545-0700: 3986.620 565 0 0.58 0.04 0.17 1726464 1722368 9437184 2014-05-12T18:36:35.726-0700: 3986.801 566 0 0.43 0.05 0.12 1726464 1722368 9437184 2014-05-12T18:36:35.856-0700: 3986.930 567 0 0.30 0.04 0.07 1726464 1723392 9437184 2014-05-12T18:36:35.947-0700: 3987.023 568 0 0.61 0.04 0.26 1727488 1723392 9437184 2014-05-12T18:36:36.228-0700: 3987.302 569 0 0.46 0.04 0.16 1731584 1724416 9437184 Reading the Data into R Once the GC log data had been cleansed, either by processing the first format with the shell script, or by processing the second format with the awk script, it was easy to read the data into R. g1gc.df = read.csv("summary.txt", row.names = NULL, stringsAsFactors=FALSE,sep="") str(g1gc.df) ## 'data.frame': 8307 obs. of 10 variables: ## $ row.names : chr "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ... ## $ SecondsSinceLaunch: num 1.16 1.47 1.97 3.83 6.1 ... ## $ IncrementalCount : int 0 1 2 3 4 5 6 7 8 9 ... ## $ FullCount : int 0 0 0 0 0 0 0 0 0 0 ... ## $ UserTime : num 0.11 0.05 0.04 0.21 0.08 0.26 0.31 0.33 0.34 0.56 ... ## $ SysTime : num 0.04 0.01 0.01 0.05 0.01 0.06 0.07 0.06 0.07 0.09 ... ## $ RealTime : num 0.02 0.02 0.01 0.04 0.02 0.04 0.05 0.04 0.04 0.06 ... ## $ BeforeSize : int 8192 5496 5768 22528 24576 43008 34816 53248 55296 93184 ... ## $ AfterSize : int 1400 1672 2557 4907 7072 14336 16384 18432 19456 21504 ... ## $ TotalSize : int 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 9437184 ... head(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount ## 1 2014-05-12T14:00:32.868-0700: 1.161 0 ## 2 2014-05-12T14:00:33.179-0700: 1.472 1 ## 3 2014-05-12T14:00:33.677-0700: 1.969 2 ## 4 2014-05-12T14:00:35.538-0700: 3.830 3 ## 5 2014-05-12T14:00:37.811-0700: 6.103 4 ## 6 2014-05-12T14:00:41.428-0700: 9.720 5 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 1 0 0.11 0.04 0.02 8192 1400 9437184 ## 2 0 0.05 0.01 0.02 5496 1672 9437184 ## 3 0 0.04 0.01 0.01 5768 2557 9437184 ## 4 0 0.21 0.05 0.04 22528 4907 9437184 ## 5 0 0.08 0.01 0.02 24576 7072 9437184 ## 6 0 0.26 0.06 0.04 43008 14336 9437184 Basic Statistics Once the data has been read into R, simple statistics are very easy to generate. All of the numbers from high school statistics are available via simple commands. For example, generate a summary of every column: summary(g1gc.df) ## row.names SecondsSinceLaunch IncrementalCount FullCount ## Length:8307 Min. : 1 Min. : 0 Min. : 0.0 ## Class :character 1st Qu.: 9977 1st Qu.:2048 1st Qu.: 0.0 ## Mode :character Median :12855 Median :4136 Median : 12.0 ## Mean :12527 Mean :4156 Mean : 31.6 ## 3rd Qu.:15758 3rd Qu.:6262 3rd Qu.: 61.0 ## Max. :55484 Max. :8391 Max. :113.0 ## UserTime SysTime RealTime BeforeSize ## Min. :0.040 Min. :0.0000 Min. : 0.0 Min. : 5476 ## 1st Qu.:0.470 1st Qu.:0.0300 1st Qu.: 0.1 1st Qu.:5137920 ## Median :0.620 Median :0.0300 Median : 0.1 Median :6574080 ## Mean :0.751 Mean :0.0355 Mean : 0.3 Mean :5841855 ## 3rd Qu.:0.920 3rd Qu.:0.0400 3rd Qu.: 0.2 3rd Qu.:7084032 ## Max. :3.370 Max. :1.5600 Max. :488.1 Max. :8696832 ## AfterSize TotalSize ## Min. : 1380 Min. :9437184 ## 1st Qu.:5002752 1st Qu.:9437184 ## Median :6559744 Median :9437184 ## Mean :5785454 Mean :9437184 ## 3rd Qu.:7054336 3rd Qu.:9437184 ## Max. :8482816 Max. :9437184 Q: What is the total amount of User CPU time spent in garbage collection? sum(g1gc.df$UserTime) ## [1] 6236 As you can see, less than two hours of CPU time was spent in garbage collection. Is that too much? To find the percentage of time spent in garbage collection, divide the number above by total_elapsed_time*CPU_count. In this case, there are a lot of CPU’s and it turns out the the overall amount of CPU time spent in garbage collection isn’t a problem when viewed in isolation. When calculating rates, i.e. events per unit time, you need to ask yourself if the rate is homogenous across the time period in the log file. Does the log file include spikes of high activity that should be separately analyzed? Averaging in data from nights and weekends with data from business hours may alias problems. If you have a reason to suspect that the garbage collection rates include peaks and valleys that need independent analysis, see the “Time Series” section, below. Q: How much garbage is collected on each pass? The amount of heap space that is recovered per GC pass is surprisingly low: At least one collection didn’t recover any data. (“Min.=0”) 25% of the passes recovered 3MB or less. (“1st Qu.=3072”) Half of the GC passes recovered 4MB or less. (“Median=4096”) The average amount recovered was 56MB. (“Mean=56390”) 75% of the passes recovered 36MB or less. (“3rd Qu.=36860”) At least one pass recovered 2GB. (“Max.=2121000”) g1gc.df$Delta = g1gc.df$BeforeSize - g1gc.df$AfterSize summary(g1gc.df$Delta) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0 3070 4100 56400 36900 2120000 Q: What is the maximum User CPU time for a single collection? The worst garbage collection (“Max.”) is many standard deviations away from the mean. The data appears to be right skewed. summary(g1gc.df$UserTime) ## Min. 1st Qu. Median Mean 3rd Qu. Max. ## 0.040 0.470 0.620 0.751 0.920 3.370 sd(g1gc.df$UserTime) ## [1] 0.3966 Basic Graphics Once the data is in R, it is trivial to plot the data with formats including dot plots, line charts, bar charts (simple, stacked, grouped), pie charts, boxplots, scatter plots histograms, and kernel density plots. Histogram of User CPU Time per Collection I don't think that this graph requires any explanation. hist(g1gc.df$UserTime, main="User CPU Time per Collection", xlab="Seconds", ylab="Frequency") Box plot to identify outliers When the initial data is viewed with a box plot, you can see the one crazy outlier in the real time per GC. Save this data point for future analysis and drop the outlier so that it’s not throwing off our statistics. Now the box plot shows many outliers, which will be examined later, using times series analysis. Notice that the scale of the x-axis changes drastically once the crazy outlier is removed. par(mfrow=c(2,1)) boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(dominated by a crazy outlier)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") crazy.outlier.df=g1gc.df[g1gc.df$RealTime > 400,] g1gc.df=g1gc.df[g1gc.df$RealTime < 400,] boxplot(g1gc.df$UserTime,g1gc.df$SysTime,g1gc.df$RealTime, main="Box Plot of Time per GC\n(crazy outlier excluded)", names=c("usr","sys","elapsed"), xlab="Seconds per GC", ylab="Time (Seconds)", horizontal = TRUE, outcol="red") box(which = "outer", lty = "solid") Here is the crazy outlier for future analysis: crazy.outlier.df ## row.names SecondsSinceLaunch IncrementalCount ## 8233 2014-05-12T23:15:43.903-0700: 20741 8316 ## FullCount UserTime SysTime RealTime BeforeSize AfterSize TotalSize ## 8233 112 0.55 0.42 488.1 8381440 8235008 9437184 ## Delta ## 8233 146432 R Time Series Data To analyze the garbage collection as a time series, I’ll use Z’s Ordered Observations (zoo). “zoo is the creator for an S3 class of indexed totally ordered observations which includes irregular time series.” require(zoo) ## Loading required package: zoo ## ## Attaching package: 'zoo' ## ## The following objects are masked from 'package:base': ## ## as.Date, as.Date.numeric head(g1gc.df[,1]) ## [1] "2014-05-12T14:00:32.868-0700:" "2014-05-12T14:00:33.179-0700:" ## [3] "2014-05-12T14:00:33.677-0700:" "2014-05-12T14:00:35.538-0700:" ## [5] "2014-05-12T14:00:37.811-0700:" "2014-05-12T14:00:41.428-0700:" options("digits.secs"=3) times=as.POSIXct( g1gc.df[,1], format="%Y-%m-%dT%H:%M:%OS%z:") g1gc.z = zoo(g1gc.df[,-c(1)], order.by=times) head(g1gc.z) ## SecondsSinceLaunch IncrementalCount FullCount ## 2014-05-12 17:00:32.868 1.161 0 0 ## 2014-05-12 17:00:33.178 1.472 1 0 ## 2014-05-12 17:00:33.677 1.969 2 0 ## 2014-05-12 17:00:35.538 3.830 3 0 ## 2014-05-12 17:00:37.811 6.103 4 0 ## 2014-05-12 17:00:41.427 9.720 5 0 ## UserTime SysTime RealTime BeforeSize AfterSize ## 2014-05-12 17:00:32.868 0.11 0.04 0.02 8192 1400 ## 2014-05-12 17:00:33.178 0.05 0.01 0.02 5496 1672 ## 2014-05-12 17:00:33.677 0.04 0.01 0.01 5768 2557 ## 2014-05-12 17:00:35.538 0.21 0.05 0.04 22528 4907 ## 2014-05-12 17:00:37.811 0.08 0.01 0.02 24576 7072 ## 2014-05-12 17:00:41.427 0.26 0.06 0.04 43008 14336 ## TotalSize Delta ## 2014-05-12 17:00:32.868 9437184 6792 ## 2014-05-12 17:00:33.178 9437184 3824 ## 2014-05-12 17:00:33.677 9437184 3211 ## 2014-05-12 17:00:35.538 9437184 17621 ## 2014-05-12 17:00:37.811 9437184 17504 ## 2014-05-12 17:00:41.427 9437184 28672 Example of Two Benchmark Runs in One Log File The data in the following graph is from a different log file, not the one of primary interest to this article. I’m including this image because it is an example of idle periods followed by busy periods. It would be uninteresting to average the rate of garbage collection over the entire log file period. More interesting would be the rate of garbage collect in the two busy periods. Are they the same or different? Your production data may be similar, for example, bursts when employees return from lunch and idle times on weekend evenings, etc. Once the data is in an R Time Series, you can analyze isolated time windows. Clipping the Time Series data Flashing back to our test case… Viewing the data as a time series is interesting. You can see that the work intensive time period is between 9:00 PM and 3:00 AM. Lets clip the data to the interesting period:     par(mfrow=c(2,1)) plot(g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Complete Log File", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") clipped.g1gc.z=window(g1gc.z, start=as.POSIXct("2014-05-12 21:00:00"), end=as.POSIXct("2014-05-13 03:00:00")) plot(clipped.g1gc.z$UserTime, type="h", main="User Time per GC\nTime: Limited to Benchmark Execution", xlab="Time of Day", ylab="CPU Seconds per GC", col="#1b9e77") box(which = "outer", lty = "solid") Cumulative Incremental and Full GC count Here is the cumulative incremental and full GC count. When the line is very steep, it indicates that the GCs are repeating very quickly. Notice that the scale on the Y axis is different for full vs. incremental. plot(clipped.g1gc.z[,c(2:3)], main="Cumulative Incremental and Full GC count", xlab="Time of Day", col="#1b9e77") GC Analysis of Benchmark Execution using Time Series data In the following series of 3 graphs: The “After Size” show the amount of heap space in use after each garbage collection. Many Java objects are still referenced, i.e. alive, during each garbage collection. This may indicate that the application has a memory leak, or may indicate that the application has a very large memory footprint. Typically, an application's memory footprint plateau's in the early stage of execution. One would expect this graph to have a flat top. The steep decline in the heap space may indicate that the application crashed after 2:00. The second graph shows that the outliers in real execution time, discussed above, occur near 2:00. when the Java heap seems to be quite full. The third graph shows that Full GCs are infrequent during the first few hours of execution. The rate of Full GC's, (the slope of the cummulative Full GC line), changes near midnight.   plot(clipped.g1gc.z[,c("AfterSize","RealTime","FullCount")], xlab="Time of Day", col=c("#1b9e77","red","#1b9e77")) GC Analysis of heap recovered Each GC trace includes the amount of heap space in use before and after the individual GC event. During garbage coolection, unreferenced objects are identified, the space holding the unreferenced objects is freed, and thus, the difference in before and after usage indicates how much space has been freed. The following box plot and bar chart both demonstrate the same point - the amount of heap space freed per garbage colloection is surprisingly low. par(mfrow=c(2,1)) boxplot(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", horizontal = TRUE, col="red") hist(as.vector(clipped.g1gc.z$Delta), main="Amount of Heap Recovered per GC Pass", xlab="Size in KB", breaks=100, col="red") box(which = "outer", lty = "solid") This graph is the most interesting. The dark blue area shows how much heap is occupied by referenced Java objects. This represents memory that holds live data. The red fringe at the top shows how much data was recovered after each garbage collection. barplot(clipped.g1gc.z[,c("AfterSize","Delta")], col=c("#7570b3","#e7298a"), xlab="Time of Day", border=NA) legend("topleft", c("Live Objects","Heap Recovered on GC"), fill=c("#7570b3","#e7298a")) box(which = "outer", lty = "solid") When I discuss the data in the log files with the customer, I will ask for an explaination for the large amount of referenced data resident in the Java heap. There are two are posibilities: There is a memory leak and the amount of space required to hold referenced objects will continue to grow, limited only by the maximum heap size. After the maximum heap size is reached, the JVM will throw an “Out of Memory” exception every time that the application tries to allocate a new object. If this is the case, the aplication needs to be debugged to identify why old objects are referenced when they are no longer needed. The application has a legitimate requirement to keep a large amount of data in memory. The customer may want to further increase the maximum heap size. Another possible solution would be to partition the application across multiple cluster nodes, where each node has responsibility for managing a unique subset of the data. Conclusion In conclusion, R is a very powerful tool for the analysis of Java garbage collection log files. The primary difficulty is data cleansing so that information can be read into an R data frame. Once the data has been read into R, a rich set of tools may be used for thorough evaluation.

    Read the article

  • Jqplot ajax request

    - by Moozy
    I'm trying to do a dynamic content load for JQplot charts, but something is wrong: this is my javascript code: $(document).ready(function(){ var ajaxDataRenderer = function(url, plot, options) { var ret = null; $.ajax({ // have to use synchronous here, else the function // will return before the data is fetched async: false, url: url, dataType:"json", success: function(data) { ret = data; console.warn(data); } }); return ret; }; // The url for our json data var jsonurl = "getData.php"; var plot1 = $.jqplot('chart1', jsonurl, { title:'Data Point Highlighting', dataRenderer: ajaxDataRenderer, dataRendererOptions: { unusedOptionalUrl: jsonurl }, axes:{ xaxis: { renderer:$.jqplot.DateAxisRenderer, min: '11/01/2012', max: '11/30/2012', tickOptions:{formatString:'%b %#d'}, tickInterval:'5 days' }, yaxis:{ tickOptions:{ formatString:'%.2f' } } }, highlighter: { show: true, sizeAdjust: 7.5 }, cursor: { show: false } }); }); </script> and it is displaying the chart, but it is not displaying the values, looklike its not getting my data. output of: console.warn(data); is: [["11-01-2012",0],["11-02-2012",0],["11-03-2012",0],["11-04-2012",0],["11-05-2012",0],["11-06-2012",0],["11-07-2012",0],["11-08-2012",0],["11-09-2012",0],["11-10-2012",0],["11-11-2012",0],["11-12-2012",0],["11-13-2012",0],["11-14-2012",0],["11-15-2012",2],["11-16-2012",5],["11-17-2012",0],["11-18-2012",1],["11-19-2012",0],["11-20-2012",0],["11-21-2012",0],["11-22-2012",0],["11-23-2012",0],["11-24-2012",0],["11-25-2012",1],["11-26-2012",0],["11-27-2012",0],["11-28-2012",0],["11-29-2012",0],["11-30-2012",0]]

    Read the article

  • Jquery to hightlight elements in a list

    - by John
    Hi I have a ol list: <ol> <li class="group1">item 1</li> <li class="group1">item 2</li> <li class="group2"> item 3</li> <li class="group3">item 4</li> <li class="group1">item 5</li> <li class="group3"> item 6</li> <ol> and a set of checkboxes which correspond to the class names <input type="checkbox" value="group1" />group 1 <input type="checkbox" value="group2" />group 2 <input type="checkbox" value="group3" />group 3 What I want to happen is that when a user clicks on a checkbox to 'tick' it, any li rows which are not checked are fadedOut (change opacity) and then any rows which have the class which matches the value of the checkbox are highlighter (background colour changed to yellow). So for example if group 3 was clicked, item 4 and item 6 would be highlighted. Then if group 2 was clicked item 3 would be highlighted (item 4 and 6 would remain highlighted). If group 2 was un-ticked, item 3 would become faded out although item 4 and 6 would remain highlighted. The code I have at the moment is: $('input').click(function(){ input = $(this); classVal = "." + input.val(); elements = $(classVal ); if (input.is(':checked')) { elements.css("background-color", "#FFFF00"); } else { elements.css("background-color", ""); } }); This handles the highlighting but does not do the fading of the unchecked elements. I know I can change the opacity using css("opacity", 0.33) or fadeTo("slow", 0.33) but not sure how to handle this in the code and where to put it. If any of my other code can be tidied up also please let me know Thanks

    Read the article

  • An online php debugger/code editor

    - by Zirak
    It's a simple deal: I'm sometimes in places where I don't have my laptop, and find myself with spare time and an idea for a project. But unfortunately, I can't do anything about it. I tried a variety of solutions, which include running IDEs (like phpstorm or Aptana) on a disc-on-key or cd (very slow and unappealing), trying several online solutions (like http://phpanywhere.net) and found that all of them are either buggy, overloaded or underloaded with features, just difficult to use, require FTP etc etc. All that is required here is a syntax highlighting and debugging alerts; no actual running of code. So the question is split into two: 1)Do you know of a good online php editor that you've used and enjoyed? 2)If no, then how would you go about making one? The second one seems a bit general, so I'll try and expand...It might be a good idea; if you can't find one, make one. The question is about the concept of making a syntax highlighter (shouldn't be too difficult), and the difficult part of catching php errors WITHOUT executing any php code. Thank you in advance.

    Read the article

  • Special Characters in JS, how to use "/" character

    - by user1461222
    I've vbulletin 4.2.0 i added an special button to it's editor with this article; http://www.vbulletinguru.com/2012/add-a-new-toolbar-button-to-ckeditor-tutorial/ The thing i want to do is add an syntax highlighter code with this button. When i use below code it's working fine; CKEDITOR.plugins.add( 'YourPluginName', { init: function( editor ) { editor.addCommand( 'SayHello', { exec : function( editor ) { editor.insertHtml( "Hello from my plugin" ); } }); editor.ui.addButton( 'YourPluginName', { label: 'My Button Tooltip', command: 'SayHello', icon: this.path + 'YourPluginImage.png' } ); } } ); so i changed this code to this, because i wannt to add specific text like below; CKEDITOR.plugins.add( 'DKODU', { init: function( editor ) { editor.addCommand( 'SayHello', { exec : function( editor ) { editor.insertHtml( '[kod=delphi][/kod]' ); } }); editor.ui.addButton( 'DKODU', { label: 'My Button Tooltip', command: 'SayHello', icon: this.path + 'star.png' } ); } } ); after update the code when i press the button nothings happen, i checked with google and this site but i couldn't figure it out i think i made mistake with some special characters but i couldn't find what's the problem. If i made some mistakes when i publish this question forgive me and also forgive me for my bad english, thanks.

    Read the article

  • How do I add the go language to gitg's list of viewable sources?

    - by Hotei
    Hoping a 'git' guru will help out here. I am just beginning to "git" for the first time and have (among other things :-) ) git and gitg installed from Ubuntu 10.4 / AMD64 distribution (ie. maybe not 'latest' version but not ancient). I am trying to look at the go code I've committed via gitg and in the "tree tab" it says :Cannot display file content as text. However, the "details tab" shows the diffs of the same file just fine. I know gitg's "tree tab" is working because I can use the tree view on *.c / *.html / *.txt etc just fine. Is there a way to tweak gitg into understanding that "*.go" is just text? A little more context: Installed gitg version is 0.0.5 - ie a version behind latest - 0.0.6 - source of which I am looking thru now. I do have a working /usr/share/gtksourceview-2.0/language-specs/ go.lang. It works just fine as highlighter in gedit. It appears that gitg may require displayable files to have a mime type of "text/plain", so I added that to go.lang No joy. gitg still fails on *.go I'm relatively sure the fix is simple, just don't know where to look.

    Read the article

  • "2d Search" in Solr or how to get the best item of the multivalued field 'items'?

    - by Karussell
    The title is a bit awkward but I couldn't found a better one. My problem is as follows: I have several users stored as documents and I am storing several key-value-pairs or items (which have an id) for each document. Now, if I apply highlighting I can get the first n items. If you have several hundreds of such items this highlighting is necessary and works nicely. But there are two problems: The highlighted text won't contain the id and so retrieving additional information of the highlighted item text is ugly. E.g. you need to store the id in the text so that the highlighter returns it. Adding the id to the hl.fl parameter does not help. You will not get the most relevant n-items. You will get the first n items ... So how can I find the best items of a documents with multiple such items? I will now add my own findings as answers, but as I will point out. Each of them has its drawbacks. Hopefully anyone of you can point me to a better solution.

    Read the article

  • Using FiddlerCore to capture HTTP Requests with .NET

    - by Rick Strahl
    Over the last few weeks I’ve been working on my Web load testing utility West Wind WebSurge. One of the key components of a load testing tool is the ability to capture URLs effectively so that you can play them back later under load. One of the options in WebSurge for capturing URLs is to use its built-in capture tool which acts as an HTTP proxy to capture any HTTP and HTTPS traffic from most Windows HTTP clients, including Web Browsers as well as standalone Windows applications and services. To make this happen, I used Eric Lawrence’s awesome FiddlerCore library, which provides most of the functionality of his desktop Fiddler application, all rolled into an easy to use library that you can plug into your own applications. FiddlerCore makes it almost too easy to capture HTTP content! For WebSurge I needed to capture all HTTP traffic in order to capture the full HTTP request – URL, headers and any content posted by the client. The result of what I ended up creating is this semi-generic capture form: In this post I’m going to demonstrate how easy it is to use FiddlerCore to build this HTTP Capture Form.  If you want to jump right in here are the links to get Telerik’s Fiddler Core and the code for the demo provided here. FiddlerCore Download FiddlerCore on NuGet Show me the Code (WebSurge Integration code from GitHub) Download the WinForms Sample Form West Wind Web Surge (example implementation in live app) Note that FiddlerCore is bound by a license for commercial usage – see license.txt in the FiddlerCore distribution for details. Integrating FiddlerCore FiddlerCore is a library that simply plugs into your application. You can download it from the Telerik site and manually add the assemblies to your project, or you can simply install the NuGet package via:       PM> Install-Package FiddlerCore The library consists of the FiddlerCore.dll as well as a couple of support libraries (CertMaker.dll and BCMakeCert.dll) that are used for installing SSL certificates. I’ll have more on SSL captures and certificate installation later in this post. But first let’s see how easy it is to use FiddlerCore to capture HTTP content by looking at how to build the above capture form. Capturing HTTP Content Once the library is installed it’s super easy to hook up Fiddler functionality. Fiddler includes a number of static class methods on the FiddlerApplication object that can be called to hook up callback events as well as actual start monitoring HTTP URLs. In the following code directly lifted from WebSurge, I configure a few filter options on Form level object, from the user inputs shown on the form by assigning it to a capture options object. In the live application these settings are persisted configuration values, but in the demo they are one time values initialized and set on the form. Once these options are set, I hook up the AfterSessionComplete event to capture every URL that passes through the proxy after the request is completed and start up the Proxy service:void Start() { if (tbIgnoreResources.Checked) CaptureConfiguration.IgnoreResources = true; else CaptureConfiguration.IgnoreResources = false; string strProcId = txtProcessId.Text; if (strProcId.Contains('-')) strProcId = strProcId.Substring(strProcId.IndexOf('-') + 1).Trim(); strProcId = strProcId.Trim(); int procId = 0; if (!string.IsNullOrEmpty(strProcId)) { if (!int.TryParse(strProcId, out procId)) procId = 0; } CaptureConfiguration.ProcessId = procId; CaptureConfiguration.CaptureDomain = txtCaptureDomain.Text; FiddlerApplication.AfterSessionComplete += FiddlerApplication_AfterSessionComplete; FiddlerApplication.Startup(8888, true, true, true); } The key lines for FiddlerCore are just the last two lines of code that include the event hookup code as well as the Startup() method call. Here I only hook up to the AfterSessionComplete event but there are a number of other events that hook various stages of the HTTP request cycle you can also hook into. Other events include BeforeRequest, BeforeResponse, RequestHeadersAvailable, ResponseHeadersAvailable and so on. In my case I want to capture the request data and I actually have several options to capture this data. AfterSessionComplete is the last event that fires in the request sequence and it’s the most common choice to capture all request and response data. I could have used several other events, but AfterSessionComplete is one place where you can look both at the request and response data, so this will be the most common place to hook into if you’re capturing content. The implementation of AfterSessionComplete is responsible for capturing all HTTP request headers and it looks something like this:private void FiddlerApplication_AfterSessionComplete(Session sess) { // Ignore HTTPS connect requests if (sess.RequestMethod == "CONNECT") return; if (CaptureConfiguration.ProcessId > 0) { if (sess.LocalProcessID != 0 && sess.LocalProcessID != CaptureConfiguration.ProcessId) return; } if (!string.IsNullOrEmpty(CaptureConfiguration.CaptureDomain)) { if (sess.hostname.ToLower() != CaptureConfiguration.CaptureDomain.Trim().ToLower()) return; } if (CaptureConfiguration.IgnoreResources) { string url = sess.fullUrl.ToLower(); var extensions = CaptureConfiguration.ExtensionFilterExclusions; foreach (var ext in extensions) { if (url.Contains(ext)) return; } var filters = CaptureConfiguration.UrlFilterExclusions; foreach (var urlFilter in filters) { if (url.Contains(urlFilter)) return; } } if (sess == null || sess.oRequest == null || sess.oRequest.headers == null) return; string headers = sess.oRequest.headers.ToString(); var reqBody = sess.GetRequestBodyAsString(); // if you wanted to capture the response //string respHeaders = session.oResponse.headers.ToString(); //var respBody = session.GetResponseBodyAsString(); // replace the HTTP line to inject full URL string firstLine = sess.RequestMethod + " " + sess.fullUrl + " " + sess.oRequest.headers.HTTPVersion; int at = headers.IndexOf("\r\n"); if (at < 0) return; headers = firstLine + "\r\n" + headers.Substring(at + 1); string output = headers + "\r\n" + (!string.IsNullOrEmpty(reqBody) ? reqBody + "\r\n" : string.Empty) + Separator + "\r\n\r\n"; BeginInvoke(new Action<string>((text) => { txtCapture.AppendText(text); UpdateButtonStatus(); }), output); } The code starts by filtering out some requests based on the CaptureOptions I set before the capture is started. These options/filters are applied when requests actually come in. This is very useful to help narrow down the requests that are captured for playback based on options the user picked. I find it useful to limit requests to a certain domain for captures, as well as filtering out some request types like static resources – images, css, scripts etc. This is of course optional, but I think it’s a common scenario and WebSurge makes good use of this feature. AfterSessionComplete like other FiddlerCore events, provides a Session object parameter which contains all the request and response details. There are oRequest and oResponse objects to hold their respective data. In my case I’m interested in the raw request headers and body only, as you can see in the commented code you can also retrieve the response headers and body. Here the code captures the request headers and body and simply appends the output to the textbox on the screen. Note that the Fiddler events are asynchronous, so in order to display the content in the UI they have to be marshaled back the UI thread with BeginInvoke, which here simply takes the generated headers and appends it to the existing textbox test on the form. As each request is processed, the headers are captured and appended to the bottom of the textbox resulting in a Session HTTP capture in the format that Web Surge internally supports, which is basically raw request headers with a customized 1st HTTP Header line that includes the full URL rather than a server relative URL. When the capture is done the user can either copy the raw HTTP session to the clipboard, or directly save it to file. This raw capture format is the same format WebSurge and also Fiddler use to import/export request data. While this code is application specific, it demonstrates the kind of logic that you can easily apply to the request capture process, which is one of the reasonsof why FiddlerCore is so powerful. You get to choose what content you want to look up as part of your own application logic and you can then decide how to capture or use that data as part of your application. The actual captured data in this case is only a string. The user can edit the data by hand or in the the case of WebSurge, save it to disk and automatically open the captured session as a new load test. Stopping the FiddlerCore Proxy Finally to stop capturing requests you simply disconnect the event handler and call the FiddlerApplication.ShutDown() method:void Stop() { FiddlerApplication.AfterSessionComplete -= FiddlerApplication_AfterSessionComplete; if (FiddlerApplication.IsStarted()) FiddlerApplication.Shutdown(); } As you can see, adding HTTP capture functionality to an application is very straight forward. FiddlerCore offers tons of features I’m not even touching on here – I suspect basic captures are the most common scenario, but a lot of different things can be done with FiddlerCore’s simple API interface. Sky’s the limit! The source code for this sample capture form (WinForms) is provided as part of this article. Adding Fiddler Certificates with FiddlerCore One of the sticking points in West Wind WebSurge has been that if you wanted to capture HTTPS/SSL traffic, you needed to have the full version of Fiddler and have HTTPS decryption enabled. Essentially you had to use Fiddler to configure HTTPS decryption and the associated installation of the Fiddler local client certificate that is used for local decryption of incoming SSL traffic. While this works just fine, requiring to have Fiddler installed and then using a separate application to configure the SSL functionality isn’t ideal. Fortunately FiddlerCore actually includes the tools to register the Fiddler Certificate directly using FiddlerCore. Why does Fiddler need a Certificate in the first Place? Fiddler and FiddlerCore are essentially HTTP proxies which means they inject themselves into the HTTP conversation by re-routing HTTP traffic to a special HTTP port (8888 by default for Fiddler) and then forward the HTTP data to the original client. Fiddler injects itself as the system proxy in using the WinInet Windows settings  which are the same settings that Internet Explorer uses and that are configured in the Windows and Internet Explorer Internet Settings dialog. Most HTTP clients running on Windows pick up and apply these system level Proxy settings before establishing new HTTP connections and that’s why most clients automatically work once Fiddler – or FiddlerCore/WebSurge are running. For plain HTTP requests this just works – Fiddler intercepts the HTTP requests on the proxy port and then forwards them to the original port (80 for HTTP and 443 for SSL typically but it could be any port). For SSL however, this is not quite as simple – Fiddler can easily act as an HTTPS/SSL client to capture inbound requests from the server, but when it forwards the request to the client it has to also act as an SSL server and provide a certificate that the client trusts. This won’t be the original certificate from the remote site, but rather a custom local certificate that effectively simulates an SSL connection between the proxy and the client. If there is no custom certificate configured for Fiddler the SSL request fails with a certificate validation error. The key for this to work is that a custom certificate has to be installed that the HTTPS client trusts on the local machine. For a much more detailed description of the process you can check out Eric Lawrence’s blog post on Certificates. If you’re using the desktop version of Fiddler you can install a local certificate into the Windows certificate store. Fiddler proper does this from the Options menu: This operation does several things: It installs the Fiddler Root Certificate It sets trust to this Root Certificate A new client certificate is generated for each HTTPS site monitored Certificate Installation with FiddlerCore You can also provide this same functionality using FiddlerCore which includes a CertMaker class. Using CertMaker is straight forward to use and it provides an easy way to create some simple helpers that can install and uninstall a Fiddler Root certificate:public static bool InstallCertificate() { if (!CertMaker.rootCertExists()) { if (!CertMaker.createRootCert()) return false; if (!CertMaker.trustRootCert()) return false; } return true; } public static bool UninstallCertificate() { if (CertMaker.rootCertExists()) { if (!CertMaker.removeFiddlerGeneratedCerts(true)) return false; } return true; } InstallCertificate() works by first checking whether the root certificate is already installed and if it isn’t goes ahead and creates a new one. The process of creating the certificate is a two step process – first the actual certificate is created and then it’s moved into the certificate store to become trusted. I’m not sure why you’d ever split these operations up since a cert created without trust isn’t going to be of much value, but there are two distinct steps. When you trigger the trustRootCert() method, a message box will pop up on the desktop that lets you know that you’re about to trust a local private certificate. This is a security feature to ensure that you really want to trust the Fiddler root since you are essentially installing a man in the middle certificate. It’s quite safe to use this generated root certificate, because it’s been specifically generated for your machine and thus is not usable from external sources, the only way to use this certificate in a trusted way is from the local machine. IOW, unless somebody has physical access to your machine, there’s no useful way to hijack this certificate and use it for nefarious purposes (see Eric’s post for more details). Once the Root certificate has been installed, FiddlerCore/Fiddler create new certificates for each site that is connected to with HTTPS. You can end up with quite a few temporary certificates in your certificate store. To uninstall you can either use Fiddler and simply uncheck the Decrypt HTTPS traffic option followed by the remove Fiddler certificates button, or you can use FiddlerCore’s CertMaker.removeFiddlerGeneratedCerts() which removes the root cert and any of the intermediary certificates Fiddler created. Keep in mind that when you uninstall you uninstall the certificate for both FiddlerCore and Fiddler, so use UninstallCertificate() with care and realize that you might affect the Fiddler application’s operation by doing so as well. When to check for an installed Certificate Note that the check to see if the root certificate exists is pretty fast, while the actual process of installing the certificate is a relatively slow operation that even on a fast machine takes a few seconds. Further the trust operation pops up a message box so you probably don’t want to install the certificate repeatedly. Since the check for the root certificate is fast, you can easily put a call to InstallCertificate() in any capture startup code – in which case the certificate installation only triggers when a certificate is in fact not installed. Personally I like to make certificate installation explicit – just like Fiddler does, so in WebSurge I use a small drop down option on the menu to install or uninstall the SSL certificate:   This code calls the InstallCertificate and UnInstallCertificate functions respectively – the experience with this is similar to what you get in Fiddler with the extra dialog box popping up to prompt confirmation for installation of the root certificate. Once the cert is installed you can then capture SSL requests. There’s a gotcha however… Gotcha: FiddlerCore Certificates don’t stick by Default When I originally tried to use the Fiddler certificate installation I ran into an odd problem. I was able to install the certificate and immediately after installation was able to capture HTTPS requests. Then I would exit the application and come back in and try the same HTTPS capture again and it would fail due to a missing certificate. CertMaker.rootCertExists() would return false after every restart and if re-installed the certificate a new certificate would get added to the certificate store resulting in a bunch of duplicated root certificates with different keys. What the heck? CertMaker and BcMakeCert create non-sticky CertificatesI turns out that FiddlerCore by default uses different components from what the full version of Fiddler uses. Fiddler uses a Windows utility called MakeCert.exe to create the Fiddler Root certificate. FiddlerCore however installs the CertMaker.dll and BCMakeCert.dll assemblies, which use a different crypto library (Bouncy Castle) for certificate creation than MakeCert.exe which uses the Windows Crypto API. The assemblies provide support for non-windows operation for Fiddler under Mono, as well as support for some non-Windows certificate platforms like iOS and Android for decryption. The bottom line is that the FiddlerCore provided bouncy castle assemblies are not sticky by default as the certificates created with them are not cached as they are in Fiddler proper. To get certificates to ‘stick’ you have to explicitly cache the certificates in Fiddler’s internal preferences. A cache aware version of InstallCertificate looks something like this:public static bool InstallCertificate() { if (!CertMaker.rootCertExists()) { if (!CertMaker.createRootCert()) return false; if (!CertMaker.trustRootCert()) return false; App.Configuration.UrlCapture.Cert = FiddlerApplication.Prefs.GetStringPref("fiddler.certmaker.bc.cert", null); App.Configuration.UrlCapture.Key = FiddlerApplication.Prefs.GetStringPref("fiddler.certmaker.bc.key", null); } return true; } public static bool UninstallCertificate() { if (CertMaker.rootCertExists()) { if (!CertMaker.removeFiddlerGeneratedCerts(true)) return false; } App.Configuration.UrlCapture.Cert = null; App.Configuration.UrlCapture.Key = null; return true; } In this code I store the Fiddler cert and private key in an application configuration settings that’s stored with the application settings (App.Configuration.UrlCapture object). These settings automatically persist when WebSurge is shut down. The values are read out of Fiddler’s internal preferences store which is set after a new certificate has been created. Likewise I clear out the configuration settings when the certificate is uninstalled. In order for these setting to be used you have to also load the configuration settings into the Fiddler preferences *before* a call to rootCertExists() is made. I do this in the capture form’s constructor:public FiddlerCapture(StressTestForm form) { InitializeComponent(); CaptureConfiguration = App.Configuration.UrlCapture; MainForm = form; if (!string.IsNullOrEmpty(App.Configuration.UrlCapture.Cert)) { FiddlerApplication.Prefs.SetStringPref("fiddler.certmaker.bc.key", App.Configuration.UrlCapture.Key); FiddlerApplication.Prefs.SetStringPref("fiddler.certmaker.bc.cert", App.Configuration.UrlCapture.Cert); }} This is kind of a drag to do and not documented anywhere that I could find, so hopefully this will save you some grief if you want to work with the stock certificate logic that installs with FiddlerCore. MakeCert provides sticky Certificates and the same functionality as Fiddler But there’s actually an easier way. If you want to skip the above Fiddler preference configuration code in your application you can choose to distribute MakeCert.exe instead of certmaker.dll and bcmakecert.dll. When you use MakeCert.exe, the certificates settings are stored in Windows so they are available without any custom configuration inside of your application. It’s easier to integrate and as long as you run on Windows and you don’t need to support iOS or Android devices is simply easier to deal with. To integrate into your project, you can remove the reference to CertMaker.dll (and the BcMakeCert.dll assembly) from your project. Instead copy MakeCert.exe into your output folder. To make sure MakeCert.exe gets pushed out, include MakeCert.exe in your project and set the Build Action to None, and Copy to Output Directory to Copy if newer. Note that the CertMaker.dll reference in the project has been removed and on disk the files for Certmaker.dll, as well as the BCMakeCert.dll files on disk. Keep in mind that these DLLs are resources of the FiddlerCore NuGet package, so updating the package may end up pushing those files back into your project. Once MakeCert.exe is distributed FiddlerCore checks for it first before using the assemblies so as long as MakeCert.exe exists it’ll be used for certificate creation (at least on Windows). Summary FiddlerCore is a pretty sweet tool, and it’s absolutely awesome that we get to plug in most of the functionality of Fiddler right into our own applications. A few years back I tried to build this sort of functionality myself for an app and ended up giving up because it’s a big job to get HTTP right – especially if you need to support SSL. FiddlerCore now provides that functionality as a turnkey solution that can be plugged into your own apps easily. The only downside is FiddlerCore’s documentation for more advanced features like certificate installation which is pretty sketchy. While for the most part FiddlerCore’s feature set is easy to work with without any documentation, advanced features are often not intuitive to gleam by just using Intellisense or the FiddlerCore help file reference (which is not terribly useful). While Eric Lawrence is very responsive on his forum and on Twitter, there simply isn’t much useful documentation on Fiddler/FiddlerCore available online. If you run into trouble the forum is probably the first place to look and then ask a question if you can’t find the answer. The best documentation you can find is Eric’s Fiddler Book which covers a ton of functionality of Fiddler and FiddlerCore. The book is a great reference to Fiddler’s feature set as well as providing great insights into the HTTP protocol. The second half of the book that gets into the innards of HTTP is an excellent read for anybody who wants to know more about some of the more arcane aspects and special behaviors of HTTP – it’s well worth the read. While the book has tons of information in a very readable format, it’s unfortunately not a great reference as it’s hard to find things in the book and because it’s not available online you can’t electronically search for the great content in it. But it’s hard to complain about any of this given the obvious effort and love that’s gone into this awesome product for all of these years. A mighty big thanks to Eric Lawrence  for having created this useful tool that so many of us use all the time, and also to Telerik for picking up Fiddler/FiddlerCore and providing Eric the resources to support and improve this wonderful tool full time and keeping it free for all. Kudos! Resources FiddlerCore Download FiddlerCore NuGet Fiddler Capture Sample Form Fiddler Capture Form in West Wind WebSurge (GitHub) Eric Lawrence’s Fiddler Book© Rick Strahl, West Wind Technologies, 2005-2014Posted in .NET  HTTP   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

< Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >