Search Results

Search found 33012 results on 1321 pages for 'method injection'.

Page 139/1321 | < Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >

  • Optional Parameters and Named Arguments in C# 4 (and a cool scenario w/ ASP.NET MVC 2)

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] This is the seventeenth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release. Today’s post covers two new language feature being added to C# 4.0 – optional parameters and named arguments – as well as a cool way you can take advantage of optional parameters (both in VB and C#) with ASP.NET MVC 2. Optional Parameters in C# 4.0 C# 4.0 now supports using optional parameters with methods, constructors, and indexers (note: VB has supported optional parameters for awhile). Parameters are optional when a default value is specified as part of a declaration.  For example, the method below takes two parameters – a “category” string parameter, and a “pageIndex” integer parameter.  The “pageIndex” parameter has a default value of 0, and as such is an optional parameter: When calling the above method we can explicitly pass two parameters to it: Or we can omit passing the second optional parameter – in which case the default value of 0 will be passed:   Note that VS 2010’s Intellisense indicates when a parameter is optional, as well as what its default value is when statement completion is displayed: Named Arguments and Optional Parameters in C# 4.0 C# 4.0 also now supports the concept of “named arguments”.  This allows you to explicitly name an argument you are passing to a method – instead of just identifying it by argument position.  For example, I could write the code below to explicitly identify the second argument passed to the GetProductsByCategory method by name (making its usage a little more explicit): Named arguments come in very useful when a method supports multiple optional parameters, and you want to specify which arguments you are passing.  For example, below we have a method DoSomething that takes two optional parameters: We could use named arguments to call the above method in any of the below ways: Because both parameters are optional, in cases where only one (or zero) parameters is specified then the default value for any non-specified arguments is passed. ASP.NET MVC 2 and Optional Parameters One nice usage scenario where we can now take advantage of the optional parameter support of VB and C# is with ASP.NET MVC 2’s input binding support to Action methods on Controller classes. For example, consider a scenario where we want to map URLs like “Products/Browse/Beverages” or “Products/Browse/Deserts” to a controller action method.  We could do this by writing a URL routing rule that maps the URLs to a method like so: We could then optionally use a “page” querystring value to indicate whether or not the results displayed by the Browse method should be paged – and if so which page of the results should be displayed.  For example: /Products/Browse/Beverages?page=2. With ASP.NET MVC 1 you would typically handle this scenario by adding a “page” parameter to the action method and make it a nullable int (which means it will be null if the “page” querystring value is not present).  You could then write code like below to convert the nullable int to an int – and assign it a default value if it was not present in the querystring: With ASP.NET MVC 2 you can now take advantage of the optional parameter support in VB and C# to express this behavior more concisely and clearly.  Simply declare the action method parameter as an optional parameter with a default value: C# VB If the “page” value is present in the querystring (e.g. /Products/Browse/Beverages?page=22) then it will be passed to the action method as an integer.  If the “page” value is not in the querystring (e.g. /Products/Browse/Beverages) then the default value of 0 will be passed to the action method.  This makes the code a little more concise and readable. Summary There are a bunch of great new language features coming to both C# and VB with VS 2010.  The above two features (optional parameters and named parameters) are but two of them.  I’ll blog about more in the weeks and months ahead. If you are looking for a good book that summarizes all the language features in C# (including C# 4.0), as well provides a nice summary of the core .NET class libraries, you might also want to check out the newly released C# 4.0 in a Nutshell book from O’Reilly: It does a very nice job of packing a lot of content in an easy to search and find samples format. Hope this helps, Scott

    Read the article

  • Fed Authentication Methods in OIF / IdP

    - by Damien Carru
    This article is a continuation of my previous entry where I explained how OIF/IdP leverages OAM to authenticate users at runtime: OIF/IdP internally forwards the user to OAM and indicates which Authentication Scheme should be used to challenge the user if needed OAM determine if the user should be challenged (user already authenticated, session timed out or not, session authentication level equal or higher than the level of the authentication scheme specified by OIF/IdP…) After identifying the user, OAM internally forwards the user back to OIF/IdP OIF/IdP can resume its operation In this article, I will discuss how OIF/IdP can be configured to map Federation Authentication Methods to OAM Authentication Schemes: When processing an Authn Request, where the SP requests a specific Federation Authentication Method with which the user should be challenged When sending an Assertion, where OIF/IdP sets the Federation Authentication Method in the Assertion Enjoy the reading! Overview The various Federation protocols support mechanisms allowing the partners to exchange information on: How the user should be challenged, when the SP/RP makes a request How the user was challenged, when the IdP/OP issues an SSO response When a remote SP partner redirects the user to OIF/IdP for Federation SSO, the message might contain data requesting how the user should be challenged by the IdP: this is treated as the Requested Federation Authentication Method. OIF/IdP will need to map that Requested Federation Authentication Method to a local Authentication Scheme, and then invoke OAM for user authentication/challenge with the mapped Authentication Scheme. OAM would authenticate the user if necessary with the scheme specified by OIF/IdP. Similarly, when an IdP issues an SSO response, most of the time it will need to include an identifier representing how the user was challenged: this is treated as the Federation Authentication Method. When OIF/IdP issues an Assertion, it will evaluate the Authentication Scheme with which OAM identified the user: If the Authentication Scheme can be mapped to a Federation Authentication Method, then OIF/IdP will use the result of that mapping in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled If the Authentication Scheme cannot be mapped, then OIF/IdP will set the Federation Authentication Method as the Authentication Scheme name in the outgoing SSO response: AuthenticationStatement in the SAML Assertion OpenID Response, if PAPE is enabled Mappings In OIF/IdP, the mapping between Federation Authentication Methods and Authentication Schemes has the following rules: One Federation Authentication Method can be mapped to several Authentication Schemes In a Federation Authentication Method <-> Authentication Schemes mapping, a single Authentication Scheme is marked as the default scheme that will be used to authenticate a user, if the SP/RP partner requests the user to be authenticated via a specific Federation Authentication Method An Authentication Scheme can be mapped to a single Federation Authentication Method Let’s examine the following example and the various use cases, based on the SAML 2.0 protocol: Mappings defined as: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport mapped to LDAPScheme, marked as the default scheme used for authentication BasicScheme urn:oasis:names:tc:SAML:2.0:ac:classes:X509 mapped to X509Scheme, marked as the default scheme used for authentication Use cases: SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:X509 as the RequestedAuthnContext: OIF/IdP will authenticate the use with X509Scheme since it is the default scheme mapped for that method. SP sends an AuthnRequest specifying urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the RequestedAuthnContext: OIF/IdP will authenticate the use with LDAPScheme since it is the default scheme mapped for that method, not the BasicScheme SP did not request any specific methods, and user was authenticated with BasisScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with LDAPScheme: OIF/IdP will issue an Assertion with urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport as the FederationAuthenticationMethod SP did not request any specific methods, and user was authenticated with BasisSessionlessScheme: OIF/IdP will issue an Assertion with BasisSessionlessScheme as the FederationAuthenticationMethod, since that scheme could not be mapped to any Federation Authentication Method (in this case, the administrator would need to correct that and create a mapping) Configuration Mapping Federation Authentication Methods to OAM Authentication Schemes is protocol dependent, since the methods are defined in the various protocols (SAML 2.0, SAML 1.1, OpenID 2.0). As such, the WLST commands to set those mappings will involve: Either the SP Partner Profile and affect all Partners referencing that profile, which do not override the Federation Authentication Method to OAM Authentication Scheme mappings Or the SP Partner entry, which will only affect the SP Partner It is important to note that if an SP Partner is configured to define one or more Federation Authentication Method to OAM Authentication Scheme mappings, then all the mappings defined in the SP Partner Profile will be ignored. Authentication Schemes As discussed in the previous article, during Federation SSO, OIF/IdP will internally forward the user to OAM for authentication/verification and specify which Authentication Scheme to use. OAM will determine if a user needs to be challenged: If the user is not authenticated yet If the user is authenticated but the session timed out If the user is authenticated, but the authentication scheme level of the original authentication is lower than the level of the authentication scheme requested by OIF/IdP So even though an SP requests a specific Federation Authentication Method to be used to challenge the user, if that method is mapped to an Authentication Scheme and that at runtime OAM deems that the user does not need to be challenged with that scheme (because the user is already authenticated, session did not time out, and the session authn level is equal or higher than the one for the specified Authentication Scheme), the flow won’t result in a challenge operation. Protocols SAML 2.0 The SAML 2.0 specifications define the following Federation Authentication Methods for SAML 2.0 flows: urn:oasis:names:tc:SAML:2.0:ac:classes:unspecified urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocol urn:oasis:names:tc:SAML:2.0:ac:classes:Telephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:PersonalTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:PreviousSession urn:oasis:names:tc:SAML:2.0:ac:classes:MobileOneFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:Smartcard urn:oasis:names:tc:SAML:2.0:ac:classes:Password urn:oasis:names:tc:SAML:2.0:ac:classes:InternetProtocolPassword urn:oasis:names:tc:SAML:2.0:ac:classes:X509 urn:oasis:names:tc:SAML:2.0:ac:classes:TLSClient urn:oasis:names:tc:SAML:2.0:ac:classes:PGP urn:oasis:names:tc:SAML:2.0:ac:classes:SPKI urn:oasis:names:tc:SAML:2.0:ac:classes:XMLDSig urn:oasis:names:tc:SAML:2.0:ac:classes:SoftwarePKI urn:oasis:names:tc:SAML:2.0:ac:classes:Kerberos urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport urn:oasis:names:tc:SAML:2.0:ac:classes:SecureRemotePassword urn:oasis:names:tc:SAML:2.0:ac:classes:NomadTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:AuthenticatedTelephony urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorUnregistered urn:oasis:names:tc:SAML:2.0:ac:classes:MobileTwoFactorContract urn:oasis:names:tc:SAML:2.0:ac:classes:SmartcardPKI urn:oasis:names:tc:SAML:2.0:ac:classes:TimeSyncToken Out of the box, OIF/IdP has the following mappings for the SAML 2.0 protocol: Only urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml20-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 2.0 An example of an AuthnRequest message sent by an SP to an IdP with the SP requesting a specific Federation Authentication Method to be used to challenge the user would be: <samlp:AuthnRequest xmlns:samlp="urn:oasis:names:tc:SAML:2.0:protocol" Destination="https://idp.com/oamfed/idp/samlv20" ID="id-8bWn-A9o4aoMl3Nhx1DuPOOjawc-" IssueInstant="2014-03-21T20:51:11Z" Version="2.0">  <saml:Issuer ...>https://acme.com/sp</saml:Issuer>  <samlp:NameIDPolicy AllowCreate="false" Format="urn:oasis:names:tc:SAML:1.1:nameid-format:unspecified"/>  <samlp:RequestedAuthnContext Comparison="minimum">    <saml:AuthnContextClassRef xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion">      urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport </saml:AuthnContextClassRef>  </samlp:RequestedAuthnContext></samlp:AuthnRequest> An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>    <samlp:Status>        <samlp:StatusCode Value="urn:oasis:names:tc:SAML:2.0:status:Success"/>    </samlp:Status>    <saml:Assertion ...>        <saml:Issuer ...>https://idp.com/oam/fed</saml:Issuer>        <dsig:Signature>            ...        </dsig:Signature>        <saml:Subject>            <saml:NameID ...>[email protected]</saml:NameID>            <saml:SubjectConfirmation Method="urn:oasis:names:tc:SAML:2.0:cm:bearer">                <saml:SubjectConfirmationData .../>            </saml:SubjectConfirmation>        </saml:Subject>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthnInstant="2014-03-21T20:53:55Z" SessionIndex="id-6i-Dm0yB-HekG6cejktwcKIFMzYE8Yrmqwfd0azz" SessionNotOnOrAfter="2014-03-21T21:53:55Z">            <saml:AuthnContext>                <saml:AuthnContextClassRef>                    urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport                </saml:AuthnContextClassRef>            </saml:AuthnContext>        </saml:AuthnStatement>    </saml:Assertion></samlp:Response> An administrator would be able to specify a mapping between a SAML 2.0 Federation Authentication Method and one or more OAM Authentication Schemes SAML 1.1 The SAML 1.1 specifications define the following Federation Authentication Methods for SAML 1.1 flows: urn:oasis:names:tc:SAML:1.0:am:unspecified urn:oasis:names:tc:SAML:1.0:am:HardwareToken urn:oasis:names:tc:SAML:1.0:am:password urn:oasis:names:tc:SAML:1.0:am:X509-PKI urn:ietf:rfc:2246 urn:oasis:names:tc:SAML:1.0:am:PGP urn:oasis:names:tc:SAML:1.0:am:SPKI urn:ietf:rfc:3075 urn:oasis:names:tc:SAML:1.0:am:XKMS urn:ietf:rfc:1510 urn:ietf:rfc:2945 Out of the box, OIF/IdP has the following mappings for the SAML 1.1 protocol: Only urn:oasis:names:tc:SAML:1.0:am:password is defined This Federation Authentication Method is mapped to: LDAPScheme, marked as the default scheme used for authentication FAAuthScheme BasicScheme BasicFAScheme This mapping is defined in the saml11-sp-partner-profile SP Partner Profile which is the default OOTB SP Partner Profile for SAML 1.1 An example of an Assertion issued by an IdP would be: <samlp:Response ...>    <samlp:Status>        <samlp:StatusCode Value="samlp:Success"/>    </samlp:Status>    <saml:Assertion Issuer="https://idp.com/oam/fed" ...>        <saml:Conditions ...>            <saml:AudienceRestriction>                <saml:Audience>https://acme.com/sp/ssov11</saml:Audience>            </saml:AudienceRestriction>        </saml:Conditions>        <saml:AuthnStatement AuthenticationInstant="2014-03-21T20:53:55Z" AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password">            <saml:Subject>                <saml:NameID ...>[email protected]</saml:NameID>                <saml:SubjectConfirmation>                   <saml:ConfirmationMethod>                       urn:oasis:names:tc:SAML:1.0:cm:bearer                   </saml:ConfirmationMethod>                </saml:SubjectConfirmation>            </saml:Subject>        </saml:AuthnStatement>        <dsig:Signature>            ...        </dsig:Signature>    </saml:Assertion></samlp:Response> Note: SAML 1.1 does not define an AuthnRequest message. An administrator would be able to specify a mapping between a SAML 1.1 Federation Authentication Method and one or more OAM Authentication Schemes OpenID 2.0 The OpenID 2.0 PAPE specifications define the following Federation Authentication Methods for OpenID 2.0 flows: http://schemas.openid.net/pape/policies/2007/06/phishing-resistant http://schemas.openid.net/pape/policies/2007/06/multi-factor http://schemas.openid.net/pape/policies/2007/06/multi-factor-physical Out of the box, OIF/IdP does not define any mappings for the OpenID 2.0 Federation Authentication Methods. For OpenID 2.0, the configuration will involve mapping a list of OpenID 2.0 policies to a list of Authentication Schemes. An example of an OpenID 2.0 Request message sent by an SP/RP to an IdP/OP would be: https://idp.com/openid?openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=checkid_setup&openid.claimed_id=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.identity=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0%2Fidentifier_select&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.realm=https%3A%2F%2Facme.com%2Fopenid&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_request&openid.ax.type.attr0=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.if_available=attr0&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.max_auth_age=0 An example of an Open ID 2.0 SSO Response issued by an IdP/OP would be: https://acme.com/openid?refid=id-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.ns=http%3A%2F%2Fspecs.openid.net%2Fauth%2F2.0&openid.mode=id_res&openid.op_endpoint=https%3A%2F%2Fidp.com%2Fopenid&openid.claimed_id=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.identity=https%3A%2F%2Fidp.com%2Fopenid%3Fid%3Did-38iCmmlAVEXPsFjnFVKArfn5RIiF75D5doorhEgqqPM%3D&openid.return_to=https%3A%2F%2Facme.com%2Fopenid%3Frefid%3Did-9PKVXZmRxAeDYcgLqPm36ClzOMA-&openid.response_nonce=2014-03-24T19%3A20%3A06Zid-YPa2kTNNFftZkgBb460jxJGblk2g--iNwPpDI7M1&openid.assoc_handle=id-6a5S6zhAKaRwQNUnjTKROREdAGSjWodG1el4xyz3&openid.ns.ax=http%3A%2F%2Fopenid.net%2Fsrv%2Fax%2F1.0&openid.ax.mode=fetch_response&openid.ax.type.attr0=http%3A%2F%2Fsession%2Fcount&openid.ax.value.attr0=1&openid.ax.type.attr1=http%3A%2F%2Fopenid.net%2Fschema%2FnamePerson%2Ffriendly&openid.ax.value.attr1=My+name+is+Bobby+Smith&openid.ax.type.attr2=http%3A%2F%2Fschemas.openid.net%2Fax%2Fapi%2Fuser_id&openid.ax.value.attr2=bob&openid.ax.type.attr3=http%3A%2F%2Faxschema.org%2Fcontact%2Femail&openid.ax.value.attr3=bob%40oracle.com&openid.ax.type.attr4=http%3A%2F%2Fsession%2Fipaddress&openid.ax.value.attr4=10.145.120.253&openid.ns.pape=http%3A%2F%2Fspecs.openid.net%2Fextensions%2Fpape%2F1.0&openid.pape.auth_time=2014-03-24T19%3A20%3A05Z&openid.pape.auth_policies=http%3A%2F%2Fschemas.openid.net%2Fpape%2Fpolicies%2F2007%2F06%2Fphishing-resistant&openid.signed=op_endpoint%2Cclaimed_id%2Cidentity%2Creturn_to%2Cresponse_nonce%2Cassoc_handle%2Cns.ax%2Cax.mode%2Cax.type.attr0%2Cax.value.attr0%2Cax.type.attr1%2Cax.value.attr1%2Cax.type.attr2%2Cax.value.attr2%2Cax.type.attr3%2Cax.value.attr3%2Cax.type.attr4%2Cax.value.attr4%2Cns.pape%2Cpape.auth_time%2Cpape.auth_policies&openid.sig=mYMgbGYSs22l8e%2FDom9NRPw15u8%3D In the next article, I will provide examples on how to configure OIF/IdP for the various protocols, to map OAM Authentication Schemes to Federation Authentication Methods.Cheers,Damien Carru

    Read the article

  • An abundance of LINQ queries and expressions using both the query and method syntax.

    - by nikolaosk
    In this post I will be writing LINQ queries against an array of strings, an array of integers.Moreover I will be using LINQ to query an SQL Server database. I can use LINQ against arrays since the array of strings/integers implement the IENumerable interface. I thought it would be a good idea to use both the method syntax and the query syntax. There are other places on the net where you can find examples of LINQ queries but I decided to create a big post using as many LINQ examples as possible. We...(read more)

    Read the article

  • What do the 4 keyboard input method systems in 10.04 mean?

    - by Android Eve
    I am trying to install another language support (in addition to the default US). Checking that language checkbox in "Install / Remove Languages..." wasn't too difficult. :) But now I want to add keyboard support, too, for that language. Again, I am prompted with a nice listbox with the following 4 options: none ibus lo-gtk th-gtk But I have no idea what these mean. I googled "ubuntu 10.04 keyboard input method system none ibus lo-gtk th-gtk" but all I could find was descriptions of problems, not an actual definition. Could you please point me to a webpage where I can learn about the meanings of these 4 different methods and +'s and -'s of each?

    Read the article

  • Z600 Workstation ACPI Fan Noise

    - by dpb
    Hi -- I have an HP z600 workstation that has the FAN running full when idle. In fact, after the boot, the fan never slows down or varies. I looked in dmesg, and noticed this: [ 1.516778] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.516781] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.516786] ACPI: Marking method _OSC as Serialized because of AE_ALREADY_EXISTS error [ 1.519868] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.519872] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624638] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624642] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624726] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624729] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624802] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624805] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624895] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624898] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.624977] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.624981] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.625070] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.625074] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS [ 1.625153] ACPI Error (dsfield-0143): [CAPD] Namespace lookup failure, AE_ALREADY_EXISTS [ 1.625157] ACPI Error (psparse-0537): Method parse/execution failed [\_SB_.PCI0._OSC] (Node ffff8801b8c4e3e0), AE_ALREADY_EXISTS Anyone know what could be done to fix this?

    Read the article

  • Understanding C# async / await (2) Awaitable / Awaiter Pattern

    - by Dixin
    What is awaitable Part 1 shows that any Task is awaitable. Actually there are other awaitable types. Here is an example: Task<int> task = new Task<int>(() => 0); int result = await task.ConfigureAwait(false); // Returns a ConfiguredTaskAwaitable<TResult>. The returned ConfiguredTaskAwaitable<TResult> struct is awaitable. And it is not Task at all: public struct ConfiguredTaskAwaitable<TResult> { private readonly ConfiguredTaskAwaiter m_configuredTaskAwaiter; internal ConfiguredTaskAwaitable(Task<TResult> task, bool continueOnCapturedContext) { this.m_configuredTaskAwaiter = new ConfiguredTaskAwaiter(task, continueOnCapturedContext); } public ConfiguredTaskAwaiter GetAwaiter() { return this.m_configuredTaskAwaiter; } } It has one GetAwaiter() method. Actually in part 1 we have seen that Task has GetAwaiter() method too: public class Task { public TaskAwaiter GetAwaiter() { return new TaskAwaiter(this); } } public class Task<TResult> : Task { public new TaskAwaiter<TResult> GetAwaiter() { return new TaskAwaiter<TResult>(this); } } Task.Yield() is a another example: await Task.Yield(); // Returns a YieldAwaitable. The returned YieldAwaitable is not Task either: public struct YieldAwaitable { public YieldAwaiter GetAwaiter() { return default(YieldAwaiter); } } Again, it just has one GetAwaiter() method. In this article, we will look at what is awaitable. The awaitable / awaiter pattern By observing different awaitable / awaiter types, we can tell that an object is awaitable if It has a GetAwaiter() method (instance method or extension method); Its GetAwaiter() method returns an awaiter. An object is an awaiter if: It implements INotifyCompletion or ICriticalNotifyCompletion interface; It has an IsCompleted, which has a getter and returns a Boolean; it has a GetResult() method, which returns void, or a result. This awaitable / awaiter pattern is very similar to the iteratable / iterator pattern. Here is the interface definitions of iteratable / iterator: public interface IEnumerable { IEnumerator GetEnumerator(); } public interface IEnumerator { object Current { get; } bool MoveNext(); void Reset(); } public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IDisposable, IEnumerator { T Current { get; } } In case you are not familiar with the out keyword, please find out the explanation in Understanding C# Covariance And Contravariance (2) Interfaces. The “missing” IAwaitable / IAwaiter interfaces Similar to IEnumerable and IEnumerator interfaces, awaitable / awaiter can be visualized by IAwaitable / IAwaiter interfaces too. This is the non-generic version: public interface IAwaitable { IAwaiter GetAwaiter(); } public interface IAwaiter : INotifyCompletion // or ICriticalNotifyCompletion { // INotifyCompletion has one method: void OnCompleted(Action continuation); // ICriticalNotifyCompletion implements INotifyCompletion, // also has this method: void UnsafeOnCompleted(Action continuation); bool IsCompleted { get; } void GetResult(); } Please notice GetResult() returns void here. Task.GetAwaiter() / TaskAwaiter.GetResult() is of such case. And this is the generic version: public interface IAwaitable<out TResult> { IAwaiter<TResult> GetAwaiter(); } public interface IAwaiter<out TResult> : INotifyCompletion // or ICriticalNotifyCompletion { bool IsCompleted { get; } TResult GetResult(); } Here the only difference is, GetResult() return a result. Task<TResult>.GetAwaiter() / TaskAwaiter<TResult>.GetResult() is of this case. Please notice .NET does not define these IAwaitable / IAwaiter interfaces at all. As an UI designer, I guess the reason is, IAwaitable interface will constraint GetAwaiter() to be instance method. Actually C# supports both GetAwaiter() instance method and GetAwaiter() extension method. Here I use these interfaces only for better visualizing what is awaitable / awaiter. Now, if looking at above ConfiguredTaskAwaitable / ConfiguredTaskAwaiter, YieldAwaitable / YieldAwaiter, Task / TaskAwaiter pairs again, they all “implicitly” implement these “missing” IAwaitable / IAwaiter interfaces. In the next part, we will see how to implement awaitable / awaiter. Await any function / action In C# await cannot be used with lambda. This code: int result = await (() => 0); will cause a compiler error: Cannot await 'lambda expression' This is easy to understand because this lambda expression (() => 0) may be a function or a expression tree. Obviously we mean function here, and we can tell compiler in this way: int result = await new Func<int>(() => 0); It causes an different error: Cannot await 'System.Func<int>' OK, now the compiler is complaining the type instead of syntax. With the understanding of the awaitable / awaiter pattern, Func<TResult> type can be easily made into awaitable. GetAwaiter() instance method, using IAwaitable / IAwaiter interfaces First, similar to above ConfiguredTaskAwaitable<TResult>, a FuncAwaitable<TResult> can be implemented to wrap Func<TResult>: internal struct FuncAwaitable<TResult> : IAwaitable<TResult> { private readonly Func<TResult> function; public FuncAwaitable(Func<TResult> function) { this.function = function; } public IAwaiter<TResult> GetAwaiter() { return new FuncAwaiter<TResult>(this.function); } } FuncAwaitable<TResult> wrapper is used to implement IAwaitable<TResult>, so it has one instance method, GetAwaiter(), which returns a IAwaiter<TResult>, which wraps that Func<TResult> too. FuncAwaiter<TResult> is used to implement IAwaiter<TResult>: public struct FuncAwaiter<TResult> : IAwaiter<TResult> { private readonly Task<TResult> task; public FuncAwaiter(Func<TResult> function) { this.task = new Task<TResult>(function); this.task.Start(); } bool IAwaiter<TResult>.IsCompleted { get { return this.task.IsCompleted; } } TResult IAwaiter<TResult>.GetResult() { return this.task.Result; } void INotifyCompletion.OnCompleted(Action continuation) { new Task(continuation).Start(); } } Now a function can be awaited in this way: int result = await new FuncAwaitable<int>(() => 0); GetAwaiter() extension method As IAwaitable shows, all that an awaitable needs is just a GetAwaiter() method. In above code, FuncAwaitable<TResult> is created as a wrapper of Func<TResult> and implements IAwaitable<TResult>, so that there is a  GetAwaiter() instance method. If a GetAwaiter() extension method  can be defined for Func<TResult>, then FuncAwaitable<TResult> is no longer needed: public static class FuncExtensions { public static IAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { return new FuncAwaiter<TResult>(function); } } So a Func<TResult> function can be directly awaited: int result = await new Func<int>(() => 0); Using the existing awaitable / awaiter - Task / TaskAwaiter Remember the most frequently used awaitable / awaiter - Task / TaskAwaiter. With Task / TaskAwaiter, FuncAwaitable / FuncAwaiter are no longer needed: public static class FuncExtensions { public static TaskAwaiter<TResult> GetAwaiter<TResult>(this Func<TResult> function) { Task<TResult> task = new Task<TResult>(function); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter<TResult>. } } Similarly, with this extension method: public static class ActionExtensions { public static TaskAwaiter GetAwaiter(this Action action) { Task task = new Task(action); task.Start(); return task.GetAwaiter(); // Returns a TaskAwaiter. } } an action can be awaited as well: await new Action(() => { }); Now any function / action can be awaited: await new Action(() => HelperMethods.IO()); // or: await new Action(HelperMethods.IO); If function / action has parameter(s), closure can be used: int arg0 = 0; int arg1 = 1; int result = await new Action(() => HelperMethods.IO(arg0, arg1)); Using Task.Run() The above code is used to demonstrate how awaitable / awaiter can be implemented. Because it is a common scenario to await a function / action, so .NET provides a built-in API: Task.Run(): public class Task2 { public static Task Run(Action action) { // The implementation is similar to: Task task = new Task(action); task.Start(); return task; } public static Task<TResult> Run<TResult>(Func<TResult> function) { // The implementation is similar to: Task<TResult> task = new Task<TResult>(function); task.Start(); return task; } } In reality, this is how we await a function: int result = await Task.Run(() => HelperMethods.IO(arg0, arg1)); and await a action: await Task.Run(() => HelperMethods.IO());

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is called MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been cleaned up so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# level syntax sugar. There is no difference to await a async method or a normal method. A method returning Task will be awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } The above code is already cleaned up, but there are still a lot of things. More clean up can be done, and the state machine can be very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> void IAsyncStateMachine.MoveNext() { try { switch (this.State) { // Orginal code is splitted by "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; IAsyncStateMachine this1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this1.MoveNext()); // Callback break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; IAsyncStateMachine this2 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => this2.MoveNext()); // Callback break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync_(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; (multiCallMethodAsyncStateMachine as IAsyncStateMachine).MoveNext(); // Original code are in this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clear - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback Since it is about callback, the simplification  can go even further – the entire state machine can be completely purged. Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is literally pretending to wait. In a await expression, a Task object will be return immediately so that caller is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Understanding C# async / await (1) Compilation

    - by Dixin
    Now the async / await keywords are in C#. Just like the async and ! in F#, this new C# feature provides great convenience. There are many nice documents talking about how to use async / await in specific scenarios, like using async methods in ASP.NET 4.5 and in ASP.NET MVC 4, etc. In this article we will look at the real code working behind the syntax sugar. According to MSDN: The async modifier indicates that the method, lambda expression, or anonymous method that it modifies is asynchronous. Since lambda expression / anonymous method will be compiled to normal method, we will focus on normal async method. Preparation First of all, Some helper methods need to make up. internal class HelperMethods { internal static int Method(int arg0, int arg1) { // Do some IO. WebClient client = new WebClient(); Enumerable.Repeat("http://weblogs.asp.net/dixin", 10) .Select(client.DownloadString).ToArray(); int result = arg0 + arg1; return result; } internal static Task<int> MethodTask(int arg0, int arg1) { Task<int> task = new Task<int>(() => Method(arg0, arg1)); task.Start(); // Hot task (started task) should always be returned. return task; } internal static void Before() { } internal static void Continuation1(int arg) { } internal static void Continuation2(int arg) { } } Here Method() is a long running method doing some IO. Then MethodTask() wraps it into a Task and return that Task. Nothing special here. Await something in async method Since MethodTask() returns Task, let’s try to await it: internal class AsyncMethods { internal static async Task<int> MethodAsync(int arg0, int arg1) { int result = await HelperMethods.MethodTask(arg0, arg1); return result; } } Because we used await in the method, async must be put on the method. Now we get the first async method. According to the naming convenience, it is named MethodAsync. Of course a async method can be awaited. So we have a CallMethodAsync() to call MethodAsync(): internal class AsyncMethods { internal static async Task<int> CallMethodAsync(int arg0, int arg1) { int result = await MethodAsync(arg0, arg1); return result; } } After compilation, MethodAsync() and CallMethodAsync() becomes the same logic. This is the code of MethodAsyc(): internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MethodAsync(int arg0, int arg1) { MethodAsyncStateMachine methodAsyncStateMachine = new MethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; methodAsyncStateMachine.Builder.Start(ref methodAsyncStateMachine); return methodAsyncStateMachine.Builder.Task; } } It just creates and starts a state machine, MethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Result; private TaskAwaiter<int> awaitor; void IAsyncStateMachine.MoveNext() { try { if (this.State != 0) { this.awaitor = HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaitor.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaitor, ref this); return; } } else { this.State = -1; } this.Result = this.awaitor.GetResult(); } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); return; } this.State = -2; this.Builder.SetResult(this.Result); } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine param0) { this.Builder.SetStateMachine(param0); } } The generated code has been refactored, so it is readable and can be compiled. Several things can be observed here: The async modifier is gone, which shows, unlike other modifiers (e.g. static), there is no such IL/CLR level “async” stuff. It becomes a AsyncStateMachineAttribute. This is similar to the compilation of extension method. The generated state machine is very similar to the state machine of C# yield syntax sugar. The local variables (arg0, arg1, result) are compiled to fields of the state machine. The real code (await HelperMethods.MethodTask(arg0, arg1)) is compiled into MoveNext(): HelperMethods.MethodTask(this.Arg0, this.Arg1).GetAwaiter(). CallMethodAsync() will create and start its own state machine CallMethodAsyncStateMachine: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(CallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> CallMethodAsync(int arg0, int arg1) { CallMethodAsyncStateMachine callMethodAsyncStateMachine = new CallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; callMethodAsyncStateMachine.Builder.Start(ref callMethodAsyncStateMachine); return callMethodAsyncStateMachine.Builder.Task; } } CallMethodAsyncStateMachine has the same logic as MethodAsyncStateMachine above. The detail of the state machine will be discussed soon. Now it is clear that: async /await is a C# language level syntax sugar. There is no difference to await a async method or a normal method. As long as a method returns Task, it is awaitable. State machine and continuation To demonstrate more details in the state machine, a more complex method is created: internal class AsyncMethods { internal static async Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; } } In this method: There are multiple awaits. There are code before the awaits, and continuation code after each await After compilation, this multi-await method becomes the same as above single-await methods: internal class CompiledAsyncMethods { [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, Builder = AsyncTaskMethodBuilder<int>.Create(), State = -1 }; multiCallMethodAsyncStateMachine.Builder.Start(ref multiCallMethodAsyncStateMachine); return multiCallMethodAsyncStateMachine.Builder.Task; } } It creates and starts one single state machine, MultiCallMethodAsyncStateMachine: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { public int State; public AsyncTaskMethodBuilder<int> Builder; public int Arg0; public int Arg1; public int Arg2; public int Arg3; public int ResultOfAwait1; public int ResultOfAwait2; public int ResultToReturn; private TaskAwaiter<int> awaiter; void IAsyncStateMachine.MoveNext() { try { switch (this.State) { case -1: HelperMethods.Before(); this.awaiter = AsyncMethods.MethodAsync(this.Arg0, this.Arg1).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 0; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 0: this.ResultOfAwait1 = this.awaiter.GetResult(); HelperMethods.Continuation1(this.ResultOfAwait1); this.awaiter = AsyncMethods.MethodAsync(this.Arg2, this.Arg3).GetAwaiter(); if (!this.awaiter.IsCompleted) { this.State = 1; this.Builder.AwaitUnsafeOnCompleted(ref this.awaiter, ref this); } break; case 1: this.ResultOfAwait2 = this.awaiter.GetResult(); HelperMethods.Continuation2(this.ResultOfAwait2); this.ResultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; this.State = -2; this.Builder.SetResult(this.ResultToReturn); break; } } catch (Exception exception) { this.State = -2; this.Builder.SetException(exception); } } [DebuggerHidden] void IAsyncStateMachine.SetStateMachine(IAsyncStateMachine stateMachine) { this.Builder.SetStateMachine(stateMachine); } } Once again, the above state machine code is already refactored, but it still has a lot of things. More clean up can be done if we only keep the core logic, and the state machine can become very simple: [CompilerGenerated] [StructLayout(LayoutKind.Auto)] internal struct MultiCallMethodAsyncStateMachine : IAsyncStateMachine { // State: // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End public int State; public TaskCompletionSource<int> ResultToReturn; // int resultToReturn ... public int Arg0; // int Arg0 public int Arg1; // int arg1 public int Arg2; // int arg2 public int Arg3; // int arg3 public int ResultOfAwait1; // int resultOfAwait1 ... public int ResultOfAwait2; // int resultOfAwait2 ... private Task<int> currentTaskToAwait; /// <summary> /// Moves the state machine to its next state. /// </summary> public void MoveNext() // IAsyncStateMachine member. { try { switch (this.State) { // Original code is split by "await"s into "case"s: // case -1: // HelperMethods.Before(); // MethodAsync(Arg0, arg1); // case 0: // int resultOfAwait1 = await ... // HelperMethods.Continuation1(resultOfAwait1); // MethodAsync(arg2, arg3); // case 1: // int resultOfAwait2 = await ... // HelperMethods.Continuation2(resultOfAwait2); // int resultToReturn = resultOfAwait1 + resultOfAwait2; // return resultToReturn; case -1: // -1 is begin. HelperMethods.Before(); // Code before 1st await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg0, this.Arg1); // 1st task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 0. this.State = 0; MultiCallMethodAsyncStateMachine that1 = this; // Cannot use "this" in lambda so create a local variable. this.currentTaskToAwait.ContinueWith(_ => that1.MoveNext()); break; case 0: // Now 1st await is done. this.ResultOfAwait1 = this.currentTaskToAwait.Result; // Get 1st await's result. HelperMethods.Continuation1(this.ResultOfAwait1); // Code after 1st await and before 2nd await. this.currentTaskToAwait = AsyncMethods.MethodAsync(this.Arg2, this.Arg3); // 2nd task to await // When this.currentTaskToAwait is done, run this.MoveNext() and go to case 1. this.State = 1; MultiCallMethodAsyncStateMachine that2 = this; this.currentTaskToAwait.ContinueWith(_ => that2.MoveNext()); break; case 1: // Now 2nd await is done. this.ResultOfAwait2 = this.currentTaskToAwait.Result; // Get 2nd await's result. HelperMethods.Continuation2(this.ResultOfAwait2); // Code after 2nd await. int resultToReturn = this.ResultOfAwait1 + this.ResultOfAwait2; // Code after 2nd await. // End with resultToReturn. this.State = -2; // -2 is end. this.ResultToReturn.SetResult(resultToReturn); break; } } catch (Exception exception) { // End with exception. this.State = -2; // -2 is end. this.ResultToReturn.SetException(exception); } } /// <summary> /// Configures the state machine with a heap-allocated replica. /// </summary> /// <param name="stateMachine">The heap-allocated replica.</param> [DebuggerHidden] public void SetStateMachine(IAsyncStateMachine stateMachine) // IAsyncStateMachine member. { // No core logic. } } Only Task and TaskCompletionSource are involved in this version. And MultiCallMethodAsync() can be simplified to: [DebuggerStepThrough] [AsyncStateMachine(typeof(MultiCallMethodAsyncStateMachine))] // async internal static /*async*/ Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { MultiCallMethodAsyncStateMachine multiCallMethodAsyncStateMachine = new MultiCallMethodAsyncStateMachine() { Arg0 = arg0, Arg1 = arg1, Arg2 = arg2, Arg3 = arg3, ResultToReturn = new TaskCompletionSource<int>(), // -1: Begin // 0: 1st await is done // 1: 2nd await is done // ... // -2: End State = -1 }; multiCallMethodAsyncStateMachine.MoveNext(); // Original code are moved into this method. return multiCallMethodAsyncStateMachine.ResultToReturn.Task; } Now the whole state machine becomes very clean - it is about callback: Original code are split into pieces by “await”s, and each piece is put into each “case” in the state machine. Here the 2 awaits split the code into 3 pieces, so there are 3 “case”s. The “piece”s are chained by callback, that is done by Builder.AwaitUnsafeOnCompleted(callback), or currentTaskToAwait.ContinueWith(callback) in the simplified code. A previous “piece” will end with a Task (which is to be awaited), when the task is done, it will callback the next “piece”. The state machine’s state works with the “case”s to ensure the code “piece”s executes one after another. Callback If we focus on the point of callback, the simplification  can go even further – the entire state machine can be completely purged, and we can just keep the code inside MoveNext(). Now MultiCallMethodAsync() becomes: internal static Task<int> MultiCallMethodAsync(int arg0, int arg1, int arg2, int arg3) { TaskCompletionSource<int> taskCompletionSource = new TaskCompletionSource<int>(); try { // Oringinal code begins. HelperMethods.Before(); MethodAsync(arg0, arg1).ContinueWith(await1 => { int resultOfAwait1 = await1.Result; HelperMethods.Continuation1(resultOfAwait1); MethodAsync(arg2, arg3).ContinueWith(await2 => { int resultOfAwait2 = await2.Result; HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; // Oringinal code ends. taskCompletionSource.SetResult(resultToReturn); }); }); } catch (Exception exception) { taskCompletionSource.SetException(exception); } return taskCompletionSource.Task; } Please compare with the original async / await code: HelperMethods.Before(); int resultOfAwait1 = await MethodAsync(arg0, arg1); HelperMethods.Continuation1(resultOfAwait1); int resultOfAwait2 = await MethodAsync(arg2, arg3); HelperMethods.Continuation2(resultOfAwait2); int resultToReturn = resultOfAwait1 + resultOfAwait2; return resultToReturn; Yeah that is the magic of C# async / await: Await is not to wait. In a await expression, a Task object will be return immediately so that execution is not blocked. The continuation code is compiled as that Task’s callback code. When that task is done, continuation code will execute. Please notice that many details inside the state machine are omitted for simplicity, like context caring, etc. If you want to have a detailed picture, please do check out the source code of AsyncTaskMethodBuilder and TaskAwaiter.

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • Is a cluster the most cost effective redundancy method for windows server 2003?

    - by Ryan
    We had a server with bad ram which caused a long outage while they figured it out and our client facing apps had to go down for a while. We are coming up with a solution for instant fail-over but are not sure what the most cost effective method would be. Is a windows server cluster the best method for this? Also note we are using Parallels Virtuozzo if that makes any difference here. We found Parallels has a documented method for setting this up but it said it required a Domain Controller as well as a Fiber connection to shared storage, is all that really needed? Thanks.

    Read the article

  • Why do we (really) program to interfaces?

    - by Kyle Burns
    One of the earliest lessons I was taught in Enterprise development was "always program against an interface".  This was back in the VB6 days and I quickly learned that no code would be allowed to move to the QA server unless my business objects and data access objects each are defined as an interface and have a matching implementation class.  Why?  "It's more reusable" was one answer.  "It doesn't tie you to a specific implementation" a slightly more knowing answer.  And let's not forget the discussion ending "it's a standard".  The problem with these responses was that senior people didn't really understand the reason we were doing the things we were doing and because of that, we were entirely unable to realize the intent behind the practice - we simply used interfaces and had a bunch of extra code to maintain to show for it. It wasn't until a few years later that I finally heard the term "Inversion of Control".  Simply put, "Inversion of Control" takes the creation of objects that used to be within the control (and therefore a responsibility of) of your component and moves it to some outside force.  For example, consider the following code which follows the old "always program against an interface" rule in the manner of many corporate development shops: 1: ICatalog catalog = new Catalog(); 2: Category[] categories = catalog.GetCategories(); In this example, I met the requirement of the rule by declaring the variable as ICatalog, but I didn't hit "it doesn't tie you to a specific implementation" because I explicitly created an instance of the concrete Catalog object.  If I want to test the functionality of the code I just wrote I have to have an environment in which Catalog can be created along with any of the resources upon which it depends (e.g. configuration files, database connections, etc) in order to test my functionality.  That's a lot of setup work and one of the things that I think ultimately discourages real buy-in of unit testing in many development shops. So how do I test my code without needing Catalog to work?  A very primitive approach I've seen is to change the line the instantiates catalog to read: 1: ICatalog catalog = new FakeCatalog();   once the test is run and passes, the code is switched back to the real thing.  This obviously poses a huge risk for introducing test code into production and in my opinion is worse than just keeping the dependency and its associated setup work.  Another popular approach is to make use of Factory methods which use an object whose "job" is to know how to obtain a valid instance of the object.  Using this approach, the code may look something like this: 1: ICatalog catalog = CatalogFactory.GetCatalog();   The code inside the factory is responsible for deciding "what kind" of catalog is needed.  This is a far better approach than the previous one, but it does make projects grow considerably because now in addition to the interface, the real implementation, and the fake implementation(s) for testing you have added a minimum of one factory (or at least a factory method) for each of your interfaces.  Once again, developers say "that's too complicated and has me writing a bunch of useless code" and quietly slip back into just creating a new Catalog and chalking any test failures up to "it will probably work on the server". This is where software intended specifically to facilitate Inversion of Control comes into play.  There are many libraries that take on the Inversion of Control responsibilities in .Net and most of them have many pros and cons.  From this point forward I'll discuss concepts from the standpoint of the Unity framework produced by Microsoft's Patterns and Practices team.  I'm primarily focusing on this library because it questions about it inspired this posting. At Unity's core and that of most any IoC framework is a catalog or registry of components.  This registry can be configured either through code or using the application's configuration file and in the most simple terms says "interface X maps to concrete implementation Y".  It can get much more complicated, but I want to keep things at the "what does it do" level instead of "how does it do it".  The object that exposes most of the Unity functionality is the UnityContainer.  This object exposes methods to configure the catalog as well as the Resolve<T> method which is used to obtain an instance of the type represented by T.  When using the Resolve<T> method, Unity does not necessarily have to just "new up" the requested object, but also can track dependencies of that object and ensure that the entire dependency chain is satisfied. There are three basic ways that I have seen Unity used within projects.  Those are through classes directly using the Unity container, classes requiring injection of dependencies, and classes making use of the Service Locator pattern. The first usage of Unity is when classes are aware of the Unity container and directly call its Resolve method whenever they need the services advertised by an interface.  The up side of this approach is that IoC is utilized, but the down side is that every class has to be aware that Unity is being used and tied directly to that implementation. Many developers don't like the idea of as close a tie to specific IoC implementation as is represented by using Unity within all of your classes and for the most part I agree that this isn't a good idea.  As an alternative, classes can be designed for Dependency Injection.  Dependency Injection is where a force outside the class itself manipulates the object to provide implementations of the interfaces that the class needs to interact with the outside world.  This is typically done either through constructor injection where the object has a constructor that accepts an instance of each interface it requires or through property setters accepting the service providers.  When using dependency, I lean toward the use of constructor injection because I view the constructor as being a much better way to "discover" what is required for the instance to be ready for use.  During resolution, Unity looks for an injection constructor and will attempt to resolve instances of each interface required by the constructor, throwing an exception of unable to meet the advertised needs of the class.  The up side of this approach is that the needs of the class are very clearly advertised and the class is unaware of which IoC container (if any) is being used.  The down side of this approach is that you're required to maintain the objects passed to the constructor as instance variables throughout the life of your object and that objects which coordinate with many external services require a lot of additional constructor arguments (this gets ugly and may indicate a need for refactoring). The final way that I've seen and used Unity is to make use of the ServiceLocator pattern, of which the Patterns and Practices team has also provided a Unity-compatible implementation.  When using the ServiceLocator, your class calls ServiceLocator.Retrieve in places where it would have called Resolve on the Unity container.  Like using Unity directly, it does tie you directly to the ServiceLocator implementation and makes your code aware that dependency injection is taking place, but it does have the up side of giving you the freedom to swap out the underlying IoC container if necessary.  I'm not hugely concerned with hiding IoC entirely from the class (I view this as a "nice to have"), so the single biggest problem that I see with the ServiceLocator approach is that it provides no way to proactively advertise needs in the way that constructor injection does, allowing more opportunity for difficult to track runtime errors. This blog entry has not been intended in any way to be a definitive work on IoC, but rather as something to spur thought about why we program to interfaces and some ways to reach the intended value of the practice instead of having it just complicate your code.  I hope that it helps somebody begin or continue a journey away from being a "Cargo Cult Programmer".

    Read the article

  • Is having a class have a handleAction(type) method bad practice?

    - by zhenka
    My web application became a little too complicated to do everything in a controller so I had to build large wrapper classes for ORM models. The possible actions a user can trigger are all similar and after a certain point I realized that the best way to go would be to just have constructor method receive action type as a parameter to take care of the small differences internally, as opposed to either passing many arguments or doing a lot of things in the controller. Is this a good practice? I can't really give details for privacy issues.

    Read the article

  • Using PreApplicationStartMethod for ASP.NET 4.0 Application to Initialize assemblies

    - by ChrisD
    Sometimes your ASP.NET application needs to hook up some code before even the Application is started. Assemblies supports a custom attribute called PreApplicationStartMethod which can be applied to any assembly that should be loaded to your ASP.NET application, and the ASP.NET engine will call the method you specify within it before actually running any of code defined in the application. Lets discuss how to use it using Steps : 1. Add an assembly to an application and add this custom attribute to the AssemblyInfo.cs. Remember, the method you speicify for initialize should be public static void method without any argument. Lets define a method Initialize. You need to write : [assembly:PreApplicationStartMethod(typeof(MyInitializer.InitializeType), "InitializeApp")] 2. After you define this to an assembly you need to add some code inside InitializeType.InitializeApp method within the assembly. public static class InitializeType {     public static void InitializeApp()     {           // Initialize application     } } 3. You must reference this class library so that when the application starts and ASP.NET starts loading the dependent assemblies, it will call the method InitializeApp automatically. Warning Even though you can use this attribute easily, you should be aware that you can define these kind of method in all of your assemblies that you reference, but there is no guarantee in what order each of the method to be called. Hence it is recommended to define this method to be isolated and without side effect of other dependent assemblies. The method InitializeApp will be called way before the Application_start event or even before the App_code is compiled. This attribute is mainly used to write code for registering assemblies or build providers. Read Documentation I hope this post would come helpful.

    Read the article

  • Is there an antipattern to describe this method of coding?

    - by P.Brian.Mackey
    I have a codebase where the programmer tended to wrap things up in areas that don't make sense. For example, given an Error log we have you can log via ErrorLog.Log(ex, "friendly message"); He added various other means to accomplish the exact same task. E.G. SomeClass.Log(ex, "friendly message"); Which simply turns around and calls the first method. This adds levels of complexity with no added benefit. Is there an anti-pattern to describe this?

    Read the article

  • protected abstract override Foo(); &ndash; er... what?

    - by Muljadi Budiman
    A couple of weeks back, a co-worker was pondering a situation he was facing.  He was looking at the following class hierarchy: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { } class FirstConcrete : SecondaryBase { } class SecondConcrete : SecondaryBase { } Basically, the first 2 classes are abstract classes, but the OriginalBase class has Test implemented as a virtual method.  What he needed was to force concrete class implementations to provide a proper body for the Test method, but he can’t do mark the method as abstract since it is already implemented in the OriginalBase class. One way to solve this is to hide the original implementation and then force further derived classes to properly implemented another method that will replace it.  The code will look like the following: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { protected sealed override void Test() { Test2(); } protected abstract void Test2(); } class FirstConcrete : SecondaryBase { // Have to override Test2 here } class SecondConcrete : SecondaryBase { // Have to override Test2 here } With the above code, SecondaryBase class will seal the Test method so it can no longer be overridden.  Then it also made an abstract method Test2 available, which will force the concrete classes to override and provide the proper implementation.  Calling Test will properly call the proper Test2 implementation in each respective concrete classes. I was wondering if there’s a way to tell the compiler to treat the Test method in SecondaryBase as abstract, and apparently you can, by combining the abstract and override keywords.  The code looks like the following: abstract class OriginalBase { protected virtual void Test() { } } abstract class SecondaryBase : OriginalBase { protected abstract override void Test(); } class FirstConcrete : SecondaryBase { // Have to override Test here } class SecondConcrete : SecondaryBase { // Have to override Test here } The method signature makes it look a bit funky, because most people will treat the override keyword to mean you then need to provide the implementation as well, but the effect is exactly as we desired.  The concepts are still valid: you’re overriding the Test method from its original implementation in the OriginalBase class, but you don’t want to implement it, rather you want to classes that derive from SecondaryBase to provide the proper implementation, so you also make it as an abstract method. I don’t think I’ve ever seen this before in the wild, so it was pretty neat to find that the compiler does support this case.

    Read the article

  • Java EE 7 Survey Results!

    - by reza_rahman
    On November 8th, the Java EE EG posted a survey to gather broad community feedback on a number of critical open issues. For reference, you can find the original survey here. We kept the survey open for about three weeks until November 30th. To our delight, over 1100 developers took time out of their busy lives to let their voices be heard! The results of the survey were sent to the EG on December 12th. The subsequent EG discussion is available here. The exact summary sent to the EG is available here. We would like to take this opportunity to thank each and every one the individuals who took the survey. It is very appreciated, encouraging and worth it's weight in gold. In particular, I tried to capture just some of the high-quality, intelligent, thoughtful and professional comments in the summary to the EG. I highly encourage you to continue to stay involved, perhaps through the Adopt-a-JSR program. We would also like to sincerely thank java.net, JavaLobby, TSS and InfoQ for helping spread the word about the survey. Below is a brief summary of the results... APIs to Add to Java EE 7 Full/Web Profile The first question asked which of the four new candidate APIs (WebSocket, JSON-P, JBatch and JCache) should be added to the Java EE 7 Full and Web profile respectively. As the following graph shows, there was significant support for adding all the new APIs to the full profile: Support is relatively the weakest for Batch 1.0, but still good. A lot of folks saw WebSocket 1.0 as a critical technology with comments such as this one: "A modern web application needs Web Sockets as first class citizens" While it is clearly seen as being important, a number of commenters expressed dissatisfaction with the lack of a higher-level JSON data binding API as illustrated by this comment: "How come we don't have a Data Binding API for JSON" JCache was also seen as being very important as expressed with comments like: "JCache should really be that foundational technology on which other specs have no fear to depend on" The results for the Web Profile is not surprising. While there is strong support for adding WebSocket 1.0 and JSON-P 1.0 to the Web Profile, support for adding JCache 1.0 and Batch 1.0 is relatively weak. There was actually significant opposition to adding Batch 1. 0 (with 51.8% casting a 'No' vote). Enabling CDI by Default The second question asked was whether CDI should be enabled in Java EE environments by default. A significant majority of 73.3% developers supported enabling CDI, only 13.8% opposed. Comments such as these two reflect a strong general support for CDI as well as a desire for better Java EE alignment with CDI: "CDI makes Java EE quite valuable!" "Would prefer to unify EJB, CDI and JSF lifecycles" There is, however, a palpable concern around the performance impact of enabling CDI by default as exemplified by this comment: "Java EE projects in most cases use CDI, hence it is sensible to enable CDI by default when creating a Java EE application. However, there are several issues if CDI is enabled by default: scanning can be slow - not all libs use CDI (hence, scanning is not needed)" Another significant concern appears to be around backwards compatibility and conflict with other JSR 330 implementations like Spring: "I am leaning towards yes, however can easily imagine situations where errors would be caused by automatically activating CDI, especially in cases of backward compatibility where another DI engine (such as Spring and the like) happens to use the same mechanics to inject dependencies and in that case there would be an overlap in injections and probably an uncertain outcome" Some commenters such as this one attempt to suggest solutions to these potential issues: "If you have Spring in use and use javax.inject.Inject then you might get some unexpected behavior that could be equally confusing. I guess there will be a way to switch CDI off. I'm tempted to say yes but am cautious for this reason" Consistent Usage of @Inject The third question was around using CDI/JSR 330 @Inject consistently vs. allowing JSRs to create their own injection annotations. A slight majority of 53.3% developers supported using @Inject consistently across JSRs. 28.8% said using custom injection annotations is OK, while 18.0% were not sure. The vast majority of commenters were strongly supportive of CDI and general Java EE alignment with CDI as illistrated by these comments: "Dependency Injection should be standard from now on in EE. It should use CDI as that is the DI mechanism in EE and is quite powerful. Having a new JSR specific DI mechanism to deal with just means more reflection, more proxies. JSRs should also be constructed to allow some of their objects Injectable. @Inject @TransactionalCache or @Inject @JMXBean etc...they should define the annotations and stereotypes to make their code less procedural. Dog food it. If there is a shortcoming in CDI for a JSR fix it and we will all be grateful" "We're trying to make this a comprehensive platform, right? Injection should be a fundamental part of the platform; everything else should build on the same common infrastructure. Each-having-their-own is just a recipe for chaos and having to learn the same thing 10 different ways" Expanding the Use of @Stereotype The fourth question was about expanding CDI @Stereotype to cover annotations across Java EE beyond just CDI. A significant majority of 62.3% developers supported expanding the use of @Stereotype, only 13.3% opposed. A majority of commenters supported the idea as well as the theme of general CDI/Java EE alignment as expressed in these examples: "Just like defining new types for (compositions of) existing classes, stereotypes can help make software development easier" "This is especially important if many EJB services are decoupled from the EJB component model and can be applied via individual annotations to Java EE components. @Stateless is a nicely compact annotation. Code will not improve if that will have to be applied in the future as @Transactional, @Pooled, @Secured, @Singlethreaded, @...." Some, however, expressed concerns around increased complexity such as this commenter: "Could be very convenient, but I'm afraid if it wouldn't make some important class annotations less visible" Expanding Interceptor Use The final set of questions was about expanding interceptors further across Java EE... A very solid 96.3% of developers wanted to expand interceptor use to all Java EE components. 35.7% even wanted to expand interceptors to other Java EE managed classes. Most developers (54.9%) were not sure if there is any place that injection is supported that should not support interceptors. 32.8% thought any place that supports injection should also support interceptors. Only 12.2% were certain that there are places where injection should be supported but not interceptors. The comments reflected the diversity of opinions, generally supportive of interceptors: "I think interceptors are as fundamental as injection and should be available anywhere in the platform" "The whole usage of interceptors still needs to take hold in Java programming, but it is a powerful technology that needs some time in the Sun. Basically it should become part of Java SE, maybe the next step after lambas?" A distinct chain of thought separated interceptors from filters and listeners: "I think that the Servlet API already provides a rich set of possibilities to hook yourself into different Servlet container events. I don't find a need to 'pollute' the Servlet model with the Interceptors API"

    Read the article

  • Is there an application or method to log of data transfers?

    - by Gaurav_Java
    My friend asked me for some files that I let him take from my system. I did not see he doing that. Then I was left with a doubt: what extra files or data did he take from my system? I was thinking is here any application or method which shows what data is copied to which USB (if name available then shows name or otherwise device id) and what data is being copied to Ubuntu machine . It is some like history of USB and System data. I think this feature exists in KDE This will really useful in may ways. It provides real time and monitoring utility to monitor USB mass storage devices activities on any machine.

    Read the article

  • Reliable method for google analytics tracking for print advertising campaign?

    - by chrisjlee
    A client is looking to track advertising clicks through a newspaper ad to measure success. They have rigid business requirements that it will be a unique domain... e.g. foowidgetsnews.net instead of foodwidgets.com/contact-form-page.php What is the most reliable method of building redirected url to a landing page so it will be tracked in google analytics as a direct hit from the newspaper? Finally, we would like to track the foowidgetsnews.net as the main url in google analytics because 301 redirect isn't tracked in google analytics like the way we would like it to.

    Read the article

  • Is the php method md5() secure? Can it be used for passwords? [migrated]

    - by awiebe
    So executing a php script causes the form values to be sent to the server, and then they are processed. If you want to store a password in your db than you want it to be a cryptographic hash(so your client side is secure, can you generate an md5 using php securely( without submitting the user:password pair in the clear), or is there an alternative standard method of doing this, without having the unecrypted pasword leaving the clients machine? Sorry if this is a stupid question I'm kind of new at this. I think this can be done somehow using https, and on that note if a site's login page does not use https, does that mean that while the databse storage is secure, the transportation is not?

    Read the article

  • Using Unity – Part 4

    - by nmarun
    In this part, I’ll be discussing about constructor and property or setter injection. I’ve created a new class – Product3: 1: public class Product3 : IProduct 2: { 3: public string Name { get; set; } 4: [Dependency] 5: public IDistributor Distributor { get; set; } 6: public ILogger Logger { get; set; } 7:  8: public Product3(ILogger logger) 9: { 10: Logger = logger; 11: Name = "Product 1"; 12: } 13:  14: public string WriteProductDetails() 15: { 16: StringBuilder productDetails = new StringBuilder(); 17: productDetails.AppendFormat("{0}<br/>", Name); 18: productDetails.AppendFormat("{0}<br/>", Logger.WriteLog()); 19: productDetails.AppendFormat("{0}<br/>", Distributor.WriteDistributorDetails()); 20: return productDetails.ToString(); 21: } 22: } This version has a property of type IDistributor and takes a constructor parameter of type ILogger. The IDistributor property has a Dependency attribute (Microsoft.Practices.Unity namespace) applied to it. IDistributor and its implementation are shown below: 1: public interface IDistributor 2: { 3: string WriteDistributorDetails(); 4: } 5:  6: public class Distributor : IDistributor 7: { 8: public List<string> DistributorNames = new List<string>(); 9:  10: public Distributor() 11: { 12: DistributorNames.Add("Distributor1"); 13: DistributorNames.Add("Distributor2"); 14: DistributorNames.Add("Distributor3"); 15: DistributorNames.Add("Distributor4"); 16: } 17: public string WriteDistributorDetails() 18: { 19: StringBuilder distributors = new StringBuilder(); 20: for (int i = 0; i < DistributorNames.Count; i++) 21: { 22: distributors.AppendFormat("{0}<br/>", DistributorNames[i]); 23: } 24: return distributors.ToString(); 25: } 26: } ILogger and the FileLogger have the following definition: 1: public interface ILogger 2: { 3: string WriteLog(); 4: } 5:  6: public class FileLogger : ILogger 7: { 8: public string WriteLog() 9: { 10: return string.Format("Type: {0}", GetType()); 11: } 12: } The Unity container creates an instance of the dependent class (the Distributor class) within the scope of the target object (an instance of Product3 class that will be called by doing a Resolve<IProduct>() in the calling code) and assign this dependent object to the attributed property of the target object. To add to it, property injection is a form of optional injection of dependent objects.The dependent object instance is generated before the container returns the target object. Unlike constructor injection, you must apply the appropriate attribute in the target class to initiate property injection. Let’s see how to change the config file to make this work. The first step is to add all the type aliases: 1: <typeAlias alias="Product3" type="ProductModel.Product3, ProductModel"/> 2: <typeAlias alias="ILogger" type="ProductModel.ILogger, ProductModel"/> 3: <typeAlias alias="FileLogger" type="ProductModel.FileLogger, ProductModel"/> 4: <typeAlias alias="IDistributor" type="ProductModel.IDistributor, ProductModel"/> 5: <typeAlias alias="Distributor" type="ProductModel.Distributor, ProductModel"/> Now define mappings for these aliases: 1: <type type="ILogger" mapTo="FileLogger" /> 2: <type type="IDistributor" mapTo="Distributor" /> Next step is to define the constructor and property injection in the config file: 1: <type type="IProduct" mapTo="Product3" name="ComplexProduct"> 2: <typeConfig extensionType="Microsoft.Practices.Unity.Configuration.TypeInjectionElement, Microsoft.Practices.Unity.Configuration"> 3: <constructor> 4: <param name="logger" parameterType="ILogger" /> 5: </constructor> 6: <property name="Distributor" propertyType="IDistributor"> 7: <dependency /> 8: </property> 9: </typeConfig> 10: </type> There you see a constructor element that tells there’s a property named ‘logger’ that is of type ILogger. By default, the type of ILogger gets resolved to type FileLogger. There’s also a property named ‘Distributor’ which is of type IDistributor and which will get resolved to type Distributor. On the calling side, I’ve added a new button, whose click event does the following: 1: protected void InjectionButton_Click(object sender, EventArgs e) 2: { 3: unityContainer.RegisterType<IProduct, Product3>(); 4: IProduct product3 = unityContainer.Resolve<IProduct>(); 5: productDetailsLabel.Text = product3.WriteProductDetails(); 6: } This renders the following output: This completes the part for constructor and property injection. In the next blog, I’ll talk about Arrays and Generics. Please see the code used here.

    Read the article

  • Is there a name for a testing method where you compare a set of very different designs?

    - by DVK
    "A/B testing" is defined as "a method of marketing testing by which a baseline control sample is compared to a variety of single-variable test samples in order to improve response rates". The point here, of course, is to know which small single-variable changes are more optimal, with the goal of finding the local optimum. However, one can also envision a somewhat related but different scenario for testing the response rate of major re-designs: take a baseline control design, take one or more completely different designs, and run test samples on those redesigns to compare response rates. As a practical but contrived example, imagine testing a set of designs for the same website, one being minimalist "googly" design, one being cluttered "Amazony" design, and one being an artsy "designy" design (e.g. maximum use of design elements unlike Google but minimal simultaneously presented information, like Google but unlike Amazon) Is there an official name for such testing? It's definitely not A/B testing, since the main component of it (finding local optimum by testing single-variable small changes that can be attributed to response shift) is not present. This is more about trying to compare a set of local optimums, and compare to see which one works better as a global optimum. It's not a multivriable, A/B/N or any other such testing since you don't really have specific variables that can be attributed, just different designs.

    Read the article

  • How lookaheads are propagated in "channel" method of building LALR parser?

    - by greenoldman
    The method is described in Dragon Book, however I read about it in ""Parsing Techniques" by D.Grune and C.J.H.Jacobs". I start from my understanding of building channels for NFA: channels are built once, they are like water channels with current you "drop" lookahead symbols in right places (sources) of the channel, and they propagate with "current" when symbol propagates, there are no barriers (the only sufficient things for propagation are presence of channel and direction/current); i.e. lookahead cannot just die out of the blue Is that right? If I am correct, then eof lookahead should be present in all states, because the source of it is the start production, and all other production states are reachable from start state. How the DFA is made out of this NFA is not perfectly clear for me -- the authors of the mentioned book write about preserving channels, but I see no purpose, if you propagated lookaheads. If the channels have to be preserved, are they cut off from the source if the DFA state does not include source NFA state? I assume no -- the channels still runs between DFA states, not only within given DFA state. In the effect eof should still be present in all items in all states. But when you take a look at DFA presented in book (pdf is from errata): DFA for LALR (fig. 9.34 in the book, p.301) you will see there are items without eof in lookahead. The grammar for this DFA is: S -> E E -> E - T E -> T T -> ( E ) T -> n So how it was computed, when eof was dropped, and on what condition? Update It is textual pdf, so two interesting states (in DFA; # is eof): State 1: S--- >•E[#] E--- >•E-T[#-] E--- >•T[#-] T--- >•n[#-] T--- >•(E)[#-] State 6: T--- >(•E)[#-)] E--- >•E-T[-)] E--- >•T[-)] T--- >•n[-)] T--- >•(E)[-)] Arc from 1 to 6 is labeled (.

    Read the article

  • Is defining every method/state per object in a series of UML diagrams representative of MDA in general?

    - by Max
    I am currently working on a project where we use a framework that combines code generation and ORM together with UML to develop software. Methods are added to UML classes and are generated into partial classes where "stuff happens". For example, an UML class "Content" could have the method DeleteFromFileSystem(void). Which could be implemented like this: public partial class Content { public void DeleteFromFileSystem() { File.Delete(...); } } All methods are designed like this. Everything happens in these gargantuan logic-bomb domain classes. Is this how MDA or DDD or similar usually is done? For now my impression of MDA/DDD (which this has been called by higherups) is that it severely stunts my productivity (everything must be done The Way) and that it hinders maintenance work since all logic are roped, entrenched, interspersed into the mentioned gargantuan bombs. Please refrain from interpreting this as a rant - I am merely curious if this is typical MDA or some sort of extreme MDA UPDATE Concerning the example above, in my opinion Content shouldn't handle deleting itself as such. What if we change from local storage to Amazon S3, in that case we would have to reimplement this functionality scattered over multiple places instead of one single interface which we can provide a second implementation for.

    Read the article

  • What is the best approach to solve a factory method problem which has to be an instance?

    - by Iago
    I have to add new funcionality in a web service legacy project and I'm thinking what is the best approach for a concrete situation. The web service is simple: It receives a XML file, unmarshalling, generates response's objects, marshalling and finally it sends the response as a XML file. For every XML files received, the web service always responds with the same XML structure. What I have to do is to generate a different XML file according to the XML received. So I have a controller class which has all marshalling/unmarshalling operations, but this controller class has to be an instance. Depending on XML received I need some marshalling methods or others. Trying to make few changes on legacy source, what is the best approach? My first approach was to do a factory method pattern with the controller class, but this class has to be an instance. I want to keep, as far as it goes, this structure: classController.doMarshalling(); I think this one is a bit smelly: if(XMLReceived.isTypeOne()) classController.doMarshallingOne(); else if(XMLReceived.isTypeTwo()) classController.doMarshallingTwo(); else if(XMLReceived.isTypeThree()) classController.doMarshallingThree(); else if ... I hope my question is well understood

    Read the article

  • Should I make a seperate unit test for a method, if it only modifies the parent state?

    - by Dante
    Should classes, that modify the state of the parent class, but not itself, be unit tested separately? And by separately, I mean putting the test in the corresponding unit test class, that tests that specific class. I'm developing a library based on chained methods, that return a new instance of a new type in most cases, where a chained method is called. The returned instances only modify the root parent state, but not itself. Overly simplified example, to get the point across: public class BoxedRabbits { private readonly Box _box; public BoxedRabbits(Box box) { _box = box; } public void SetCount(int count) { _box.Items += count; } } public class Box { public int Items { get; set; } public BoxedRabbits AddRabbits() { return new BoxedRabbits(this); } } var box = new Box(); box.AddRabbits().SetCount(14); Say, if I write a unit test under the Box class unit tests: box.AddRabbits().SetCount(14) I could effectively say, that I've already tested the BoxedRabbits class as well. Is this the wrong way of approaching this, even though it's far simpler to first write a test for the above call, then to first write a unit test for the BoxedRabbits separately?

    Read the article

< Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >