Search Results

Search found 24149 results on 966 pages for 'visual studio package'.

Page 139/966 | < Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >

  • VS2008 VB project - Changing application type automatically adds references

    - by Stijn
    Visual Basic Create a new project with the Empty Project template (Visual Basic - Windows) Go to the project properties, and change the Application type by choosing something else or reselecting Windows Forms Application. When reselecting, Visual Studio will automatically add references to System.Deployment, System.Drawing and System.Windows.Forms C# Create a new project with the Empty Project template (Visual C# - Windows) Go to the project properties, and change the Application type to any of the choices. Visual studio will not add references. Question Is there a way to change this behaviour for Visual Basic?

    Read the article

  • documentation for a package in php?

    - by ajsie
    so in a folder PayPal i've got multiple classes for using their API. i want to make a documentation for how to use all the classes in a sequential way. so here is my questions: how do i create a package for them? cause above each class i used phpdoc tag @package PayPal. is a package in php just a folder? where do i put documentation for the package? there are best practices for this? a file in the folder named ...? how to put class- or package-specific examples, eg. step 1 bla bla, step 2 bla bla? thanks!

    Read the article

  • distributing R package with optional S4 syntax sugar

    - by mariotomo
    I've written a small package for logging, I'm distributing it through r-forge, recently I received some very interesting feedback on how to make it easier to use, but this functionality is based on stuff (setRefClass) that was added to R in 2.12. I'd like to keep distributing the package also for R-2.9, so I'm looking for a way to include or exclude the S4 syntactical sugar automatically, and include it when the library is loaded on a R = 2.12 system. one other option I see, that is to write a small S4 package that needs 2.12, imports the simpler logging package and exports the syntactically sugared interface... I don't like it too much, as I'd need to choose a different name for the S4 package.

    Read the article

  • What is Visual C++ 2005 Service Pack 1 Redistributable Package for?

    - by Stan
    I am using Poco library and when running my program on other machines which don't have VS2005 installed, I have to install "Microsoft Visual C++ 2005 Service Pack 1 Redistributable Package ATL Security Update", otherwise the the program will give error when launching. What is this redistributable package for? Is there any way to avoid installing this but still let my program running well? Also, there're so many vcredist_x86.exe out there. How can I know which one is necessary or not when getting error? Thanks.

    Read the article

  • Do you know about the Visual Studio 2010 Architecture Guidance?

    - by Martin Hinshelwood
    If you have not seen the Visual Studio 2010 Architectural Guidance from the Visual Studio ALM Rangers then you are missing out. I have been spelunking the TFS Guidance recently and I discovered the Visual Studio 2010 Architectural Guidance. This is not an in-depth look at the capabilities of the architectural tools that shipped with Visual Studio 2010 Ultimate, but is instead a set of samples that lead you by example through real world scenarios. There is practical guidance and checklists to help guide lead developers and architects through the common challenges in understanding both existing and new applications. The content concentrates on practical guidance for Visual Studio 2010 Ultimate and is focused on modelling tools. There is integration into Visual Studio so all you need to do to access it is select “Architecture | Visual Studio ALM Rangers – Architecture Guidance”. Figure: Accessing the Architecture guidance is easy This brings up an inline version of the documentation and a kind of Explorer that lets you pick the tasks you want to perform and takes you strait to that part of the Guidance. Figure: Access the Guidance from right within Visual Studio 2010 This is a big help when you just want to figure out how to do something and can’t be bothered searching for and through the content in the provided Word documents. The Question and Answer section is full of useful content and there are six Hands-On-Labs to sink your teeth into: Creating extensions with the feature extension Explore an Existing System Scenario Extensibility Layer Diagrams New Solution Scenario Reusable Architecture Scenario Validation an Architecture Scenario I’m sold! Where can i get my hands on this fantastic content? Download the Visual Studio 2010 Architecture Tooling Guidance and if you like it don’t forget to add a review to make the team that put it together in their spare time feel all the mere loved.

    Read the article

  • Code refactoring with Visual Studio 2010 Part-4

    - by Jalpesh P. Vadgama
    I have been writing few post with code refactoring features in Visual Studio 2010. This post also will be part of series and this post will be last of the series. In this post I am going explain two features 1) Encapsulate Field and 2) Extract Interface. Let’s explore both features in details. Encapsulate Field: This is a nice code refactoring feature provides by Visual Studio 2010. With help of this feature we can create properties from the existing private field of the class. Let’s take a simple example of Customer Class. In that I there are two private field called firstName and lastName. Below is the code for the class. public class Customer { private string firstName; private string lastName; public string Address { get; set; } public string City { get; set; } } Now lets encapsulate first field firstName with Encapsulate feature. So first select that field and goto refactor menu in Visual Studio 2010 and click on Encapsulate Field. Once you click that a dialog box will appear like following. Now once you click OK a preview dialog box will open as we have selected preview reference changes. I think its a good options to check that option to preview code that is being changed by IDE itself. Dialog will look like following. Once you click apply it create a new property called FirstName. Same way I have done for the lastName and now my customer class code look like following. public class Customer { private string firstName; public string FirstName { get { return firstName; } set { firstName = value; } } private string lastName; public string LastName { get { return lastName; } set { lastName = value; } } public string Address { get; set; } public string City { get; set; } } So you can see that its very easy to create properties with existing fields and you don’t have to change anything there in code it will change all the stuff itself. Extract Interface: When you are writing software prototype and You don’t know the future implementation of that then its a good practice to use interface there. I am going to explain here that How we can extract interface from the existing code without writing a single line of code with the help of code refactoring feature of Visual Studio 2010. For that I have create a Simple Repository class called CustomerRepository with three methods like following. public class CustomerRespository { public void Add() { // Some code to add customer } public void Update() { //some code to update customer } public void Delete() { //some code delete customer } } In above class there are three method Add,Update and Delete where we are going to implement some code for each one. Now I want to create a interface which I can use for my other entities in project. So let’s create a interface from the above class with the help of Visual Studio 2010. So first select class and goto refactor menu and click Extract Interface. It will open up dialog box like following. Here I have selected all the method for interface and Once I click OK then it will create a new file called ICustomerRespository where it has created a interface. Just like following. Here is a code for that interface. using System; namespace CodeRefractoring { interface ICustomerRespository { void Add(); void Delete(); void Update(); } } Now let's see the code for the our class. It will also changed like following to implement the interface. public class CustomerRespository : ICustomerRespository { public void Add() { // Some code to add customer } public void Update() { //some code to update customer } public void Delete() { //some code delete customer } } Isn't that great we have created a interface and implemented it without writing a single line of code. Hope you liked it. Stay tuned for more.. Till that Happy Programming.

    Read the article

  • How can I use apt-get to resolve package dependencies when there are multiple versions in the repository?

    - by user1165144
    I've package a-package.deb which depends on b-package.deb in version 1.0. Everything works fine. But now a b-package in version 1.1 gets added to the repository. I'd suspect that apt-get installs the a-package and version 1.0 of the b-package. What really happens is, that a-package won't get installed: # apt-get install a-package Reading package lists... Done Building dependency tree Reading state information... Done Some packages could not be installed. This may mean that you have requested an impossible situation or if you are using the unstable distribution that some required packages have not yet been created or been moved out of Incoming. The following information may help to resolve the situation: The following packages have unmet dependencies: a-package : Depends: b-package (= 1.0) but 1.1 is to be installed E: Unable to correct problems, you have held broken packages. Is there a workaround to fix the behavior? Is there other software to use, that can handle the dependencies as defined?

    Read the article

  • Do I lose the benefits of macro recording if I develop Excel apps in Visual Studio?

    - by DanM
    I've written lots of Excel macros in the past using the following development process: Record a macro. Open the VBA editor. Edit the macro. I'm now experimenting with a Visual Studio 2008 "Excel 2007 Add-In" project (C#), and I'm wondering if I will have to give up this development process. Questions: I know I can still record macros using Excel, but is there any way to access the resulting code in Visual Studio? Or do I just have to copy and paste then C#-ize it? What happens with my "Personal Macro Workbook"? Can I use the macros I have stored in there within C#? Or is there some way to convert them to C#? If there is some support for opening and editing VBA macros in Visual Studio, can you provide a very brief summary of how it works or point me to a good reference? Do you have any other tips for transitioning from writing macros in VBA using Excel's built-in editor to writing them in C# with Visual Studio?

    Read the article

  • Debian packaging of a Python package.

    - by chrisdew
    I need to write (or find) a script to create a Debian package (using python-support) from a Python package. The Python package will be pure Python (no C extensions). The Python package (for testing purposes) will just be a directory with an empty __init__.py file and a single Python module, package_test.py. The packaging script must use python-support to provide the correct bytecode for possible multiple installations of Python on a target platform. (i.e. v2.5 and v2.6 on Ubuntu Jaunty.) Most advice I find while googling are just examples nasty hacks that don't even use python-support or python-central. I have so far spent hours researching this, and the best I can come up with is to hack around the script from an existing open source project - but I don't know which bits are required for what I'm doing. Has anyone here made a Debian package out of a Python package in a reasonably non-hacky way? I'm starting to think that it will take me more than a week to go from no knowledge of Debian packaging and python-support to getting a working script. How long has it taken others? Any advice? Chris.

    Read the article

  • Invoking public method on a class in a different package via reflection

    - by KARASZI István
    I ran into the following problem. I have two different packages in package a I would like to call the implemented method of an interface in a package b but the implementing class has package visibility. So a simplifed code looks like this: package b; public final class Factory { public static B createB() { return new ImplB(); } public interface B { void method(); } static class ImplB implements B { public void method() { System.out.println("Called"); } } } and the Invoker: package a; import java.lang.reflect.Method; import b.Factory; import b.Factory.B; public final class Invoker { private static final Class<?>[] EMPTY_CLASS_ARRAY = new Class<?>[] {}; private static final Object[] EMPTY_OBJECT_ARRAY = new Object[] {}; public static void main(String... args) throws Exception { final B b = Factory.createB(); b.method(); final Method method = b.getClass().getDeclaredMethod("method", EMPTY_CLASS_ARRAY); method.invoke(b, EMPTY_OBJECT_ARRAY); } } When I start the program it prints out Called as expected and throws an Exception because the package visibility prohibits the calling of the discovered method. So my question is any way to solve this problem? Am I missing something in Java documentation or this is simply not possible although simply calling an implemented method is possible without reflection.

    Read the article

  • How does a java compiler resolve a non-imported name

    - by gexicide
    Consider I use a type X in my java compilation unit from package foo.bar and X is not defined in the compilation unit itself nor is it directly imported. How does a java compiler resolve X now efficiently? There are a few possibilities where X could reside: X might be imported via a star import a.b.* X might reside in the same package as the compilation unit X might be a language type, i.e. reside in java.lang The problem I see is especially (2.). Since X might be a package-private type, it is not even required that X resides in a compilation unit that is named X.java. Thus, the compiler must look into all entries of the class path and search for any classes in a package foo.bar, it then must read every class that is in package foo.bar to check whether X is included. That sounds very expensive. Especially when I compile only a single file, the compiler has to read dozens of class files only to find a type X. If I use a lot of star imports, this procedure has to be repeated for a lot of types (although class files won't be read twice, of course). So is it advisable to import also types from the same package to speed up the compilation process? Or is there a faster method for resolving an unimported type X which I was not able to find?

    Read the article

  • New features of C# 4.0

    This article covers New features of C# 4.0. Article has been divided into below sections. Introduction. Dynamic Lookup. Named and Optional Arguments. Features for COM interop. Variance. Relationship with Visual Basic. Resources. Other interested readings… 22 New Features of Visual Studio 2008 for .NET Professionals 50 New Features of SQL Server 2008 IIS 7.0 New features Introduction It is now close to a year since Microsoft Visual C# 3.0 shipped as part of Visual Studio 2008. In the VS Managed Languages team we are hard at work on creating the next version of the language (with the unsurprising working title of C# 4.0), and this document is a first public description of the planned language features as we currently see them. Please be advised that all this is in early stages of production and is subject to change. Part of the reason for sharing our plans in public so early is precisely to get the kind of feedback that will cause us to improve the final product before it rolls out. Simultaneously with the publication of this whitepaper, a first public CTP (community technology preview) of Visual Studio 2010 is going out as a Virtual PC image for everyone to try. Please use it to play and experiment with the features, and let us know of any thoughts you have. We ask for your understanding and patience working with very early bits, where especially new or newly implemented features do not have the quality or stability of a final product. The aim of the CTP is not to give you a productive work environment but to give you the best possible impression of what we are working on for the next release. The CTP contains a number of walkthroughs, some of which highlight the new language features of C# 4.0. Those are excellent for getting a hands-on guided tour through the details of some common scenarios for the features. You may consider this whitepaper a companion document to these walkthroughs, complementing them with a focus on the overall language features and how they work, as opposed to the specifics of the concrete scenarios. C# 4.0 The major theme for C# 4.0 is dynamic programming. Increasingly, objects are “dynamic” in the sense that their structure and behavior is not captured by a static type, or at least not one that the compiler knows about when compiling your program. Some examples include a. objects from dynamic programming languages, such as Python or Ruby b. COM objects accessed through IDispatch c. ordinary .NET types accessed through reflection d. objects with changing structure, such as HTML DOM objects While C# remains a statically typed language, we aim to vastly improve the interaction with such objects. A secondary theme is co-evolution with Visual Basic. Going forward we will aim to maintain the individual character of each language, but at the same time important new features should be introduced in both languages at the same time. They should be differentiated more by style and feel than by feature set. The new features in C# 4.0 fall into four groups: Dynamic lookup Dynamic lookup allows you to write method, operator and indexer calls, property and field accesses, and even object invocations which bypass the C# static type checking and instead gets resolved at runtime. Named and optional parameters Parameters in C# can now be specified as optional by providing a default value for them in a member declaration. When the member is invoked, optional arguments can be omitted. Furthermore, any argument can be passed by parameter name instead of position. COM specific interop features Dynamic lookup as well as named and optional parameters both help making programming against COM less painful than today. On top of that, however, we are adding a number of other small features that further improve the interop experience. Variance It used to be that an IEnumerable<string> wasn’t an IEnumerable<object>. Now it is – C# embraces type safe “co-and contravariance” and common BCL types are updated to take advantage of that. Dynamic Lookup Dynamic lookup allows you a unified approach to invoking things dynamically. With dynamic lookup, when you have an object in your hand you do not need to worry about whether it comes from COM, IronPython, the HTML DOM or reflection; you just apply operations to it and leave it to the runtime to figure out what exactly those operations mean for that particular object. This affords you enormous flexibility, and can greatly simplify your code, but it does come with a significant drawback: Static typing is not maintained for these operations. A dynamic object is assumed at compile time to support any operation, and only at runtime will you get an error if it wasn’t so. Oftentimes this will be no loss, because the object wouldn’t have a static type anyway, in other cases it is a tradeoff between brevity and safety. In order to facilitate this tradeoff, it is a design goal of C# to allow you to opt in or opt out of dynamic behavior on every single call. The dynamic type C# 4.0 introduces a new static type called dynamic. When you have an object of type dynamic you can “do things to it” that are resolved only at runtime: dynamic d = GetDynamicObject(…); d.M(7); The C# compiler allows you to call a method with any name and any arguments on d because it is of type dynamic. At runtime the actual object that d refers to will be examined to determine what it means to “call M with an int” on it. The type dynamic can be thought of as a special version of the type object, which signals that the object can be used dynamically. It is easy to opt in or out of dynamic behavior: any object can be implicitly converted to dynamic, “suspending belief” until runtime. Conversely, there is an “assignment conversion” from dynamic to any other type, which allows implicit conversion in assignment-like constructs: dynamic d = 7; // implicit conversion int i = d; // assignment conversion Dynamic operations Not only method calls, but also field and property accesses, indexer and operator calls and even delegate invocations can be dispatched dynamically: dynamic d = GetDynamicObject(…); d.M(7); // calling methods d.f = d.P; // getting and settings fields and properties d[“one”] = d[“two”]; // getting and setting thorugh indexers int i = d + 3; // calling operators string s = d(5,7); // invoking as a delegate The role of the C# compiler here is simply to package up the necessary information about “what is being done to d”, so that the runtime can pick it up and determine what the exact meaning of it is given an actual object d. Think of it as deferring part of the compiler’s job to runtime. The result of any dynamic operation is itself of type dynamic. Runtime lookup At runtime a dynamic operation is dispatched according to the nature of its target object d: COM objects If d is a COM object, the operation is dispatched dynamically through COM IDispatch. This allows calling to COM types that don’t have a Primary Interop Assembly (PIA), and relying on COM features that don’t have a counterpart in C#, such as indexed properties and default properties. Dynamic objects If d implements the interface IDynamicObject d itself is asked to perform the operation. Thus by implementing IDynamicObject a type can completely redefine the meaning of dynamic operations. This is used intensively by dynamic languages such as IronPython and IronRuby to implement their own dynamic object models. It will also be used by APIs, e.g. by the HTML DOM to allow direct access to the object’s properties using property syntax. Plain objects Otherwise d is a standard .NET object, and the operation will be dispatched using reflection on its type and a C# “runtime binder” which implements C#’s lookup and overload resolution semantics at runtime. This is essentially a part of the C# compiler running as a runtime component to “finish the work” on dynamic operations that was deferred by the static compiler. Example Assume the following code: dynamic d1 = new Foo(); dynamic d2 = new Bar(); string s; d1.M(s, d2, 3, null); Because the receiver of the call to M is dynamic, the C# compiler does not try to resolve the meaning of the call. Instead it stashes away information for the runtime about the call. This information (often referred to as the “payload”) is essentially equivalent to: “Perform an instance method call of M with the following arguments: 1. a string 2. a dynamic 3. a literal int 3 4. a literal object null” At runtime, assume that the actual type Foo of d1 is not a COM type and does not implement IDynamicObject. In this case the C# runtime binder picks up to finish the overload resolution job based on runtime type information, proceeding as follows: 1. Reflection is used to obtain the actual runtime types of the two objects, d1 and d2, that did not have a static type (or rather had the static type dynamic). The result is Foo for d1 and Bar for d2. 2. Method lookup and overload resolution is performed on the type Foo with the call M(string,Bar,3,null) using ordinary C# semantics. 3. If the method is found it is invoked; otherwise a runtime exception is thrown. Overload resolution with dynamic arguments Even if the receiver of a method call is of a static type, overload resolution can still happen at runtime. This can happen if one or more of the arguments have the type dynamic: Foo foo = new Foo(); dynamic d = new Bar(); var result = foo.M(d); The C# runtime binder will choose between the statically known overloads of M on Foo, based on the runtime type of d, namely Bar. The result is again of type dynamic. The Dynamic Language Runtime An important component in the underlying implementation of dynamic lookup is the Dynamic Language Runtime (DLR), which is a new API in .NET 4.0. The DLR provides most of the infrastructure behind not only C# dynamic lookup but also the implementation of several dynamic programming languages on .NET, such as IronPython and IronRuby. Through this common infrastructure a high degree of interoperability is ensured, but just as importantly the DLR provides excellent caching mechanisms which serve to greatly enhance the efficiency of runtime dispatch. To the user of dynamic lookup in C#, the DLR is invisible except for the improved efficiency. However, if you want to implement your own dynamically dispatched objects, the IDynamicObject interface allows you to interoperate with the DLR and plug in your own behavior. This is a rather advanced task, which requires you to understand a good deal more about the inner workings of the DLR. For API writers, however, it can definitely be worth the trouble in order to vastly improve the usability of e.g. a library representing an inherently dynamic domain. Open issues There are a few limitations and things that might work differently than you would expect. · The DLR allows objects to be created from objects that represent classes. However, the current implementation of C# doesn’t have syntax to support this. · Dynamic lookup will not be able to find extension methods. Whether extension methods apply or not depends on the static context of the call (i.e. which using clauses occur), and this context information is not currently kept as part of the payload. · Anonymous functions (i.e. lambda expressions) cannot appear as arguments to a dynamic method call. The compiler cannot bind (i.e. “understand”) an anonymous function without knowing what type it is converted to. One consequence of these limitations is that you cannot easily use LINQ queries over dynamic objects: dynamic collection = …; var result = collection.Select(e => e + 5); If the Select method is an extension method, dynamic lookup will not find it. Even if it is an instance method, the above does not compile, because a lambda expression cannot be passed as an argument to a dynamic operation. There are no plans to address these limitations in C# 4.0. Named and Optional Arguments Named and optional parameters are really two distinct features, but are often useful together. Optional parameters allow you to omit arguments to member invocations, whereas named arguments is a way to provide an argument using the name of the corresponding parameter instead of relying on its position in the parameter list. Some APIs, most notably COM interfaces such as the Office automation APIs, are written specifically with named and optional parameters in mind. Up until now it has been very painful to call into these APIs from C#, with sometimes as many as thirty arguments having to be explicitly passed, most of which have reasonable default values and could be omitted. Even in APIs for .NET however you sometimes find yourself compelled to write many overloads of a method with different combinations of parameters, in order to provide maximum usability to the callers. Optional parameters are a useful alternative for these situations. Optional parameters A parameter is declared optional simply by providing a default value for it: public void M(int x, int y = 5, int z = 7); Here y and z are optional parameters and can be omitted in calls: M(1, 2, 3); // ordinary call of M M(1, 2); // omitting z – equivalent to M(1, 2, 7) M(1); // omitting both y and z – equivalent to M(1, 5, 7) Named and optional arguments C# 4.0 does not permit you to omit arguments between commas as in M(1,,3). This could lead to highly unreadable comma-counting code. Instead any argument can be passed by name. Thus if you want to omit only y from a call of M you can write: M(1, z: 3); // passing z by name or M(x: 1, z: 3); // passing both x and z by name or even M(z: 3, x: 1); // reversing the order of arguments All forms are equivalent, except that arguments are always evaluated in the order they appear, so in the last example the 3 is evaluated before the 1. Optional and named arguments can be used not only with methods but also with indexers and constructors. Overload resolution Named and optional arguments affect overload resolution, but the changes are relatively simple: A signature is applicable if all its parameters are either optional or have exactly one corresponding argument (by name or position) in the call which is convertible to the parameter type. Betterness rules on conversions are only applied for arguments that are explicitly given – omitted optional arguments are ignored for betterness purposes. If two signatures are equally good, one that does not omit optional parameters is preferred. M(string s, int i = 1); M(object o); M(int i, string s = “Hello”); M(int i); M(5); Given these overloads, we can see the working of the rules above. M(string,int) is not applicable because 5 doesn’t convert to string. M(int,string) is applicable because its second parameter is optional, and so, obviously are M(object) and M(int). M(int,string) and M(int) are both better than M(object) because the conversion from 5 to int is better than the conversion from 5 to object. Finally M(int) is better than M(int,string) because no optional arguments are omitted. Thus the method that gets called is M(int). Features for COM interop Dynamic lookup as well as named and optional parameters greatly improve the experience of interoperating with COM APIs such as the Office Automation APIs. In order to remove even more of the speed bumps, a couple of small COM-specific features are also added to C# 4.0. Dynamic import Many COM methods accept and return variant types, which are represented in the PIAs as object. In the vast majority of cases, a programmer calling these methods already knows the static type of a returned object from context, but explicitly has to perform a cast on the returned value to make use of that knowledge. These casts are so common that they constitute a major nuisance. In order to facilitate a smoother experience, you can now choose to import these COM APIs in such a way that variants are instead represented using the type dynamic. In other words, from your point of view, COM signatures now have occurrences of dynamic instead of object in them. This means that you can easily access members directly off a returned object, or you can assign it to a strongly typed local variable without having to cast. To illustrate, you can now say excel.Cells[1, 1].Value = "Hello"; instead of ((Excel.Range)excel.Cells[1, 1]).Value2 = "Hello"; and Excel.Range range = excel.Cells[1, 1]; instead of Excel.Range range = (Excel.Range)excel.Cells[1, 1]; Compiling without PIAs Primary Interop Assemblies are large .NET assemblies generated from COM interfaces to facilitate strongly typed interoperability. They provide great support at design time, where your experience of the interop is as good as if the types where really defined in .NET. However, at runtime these large assemblies can easily bloat your program, and also cause versioning issues because they are distributed independently of your application. The no-PIA feature allows you to continue to use PIAs at design time without having them around at runtime. Instead, the C# compiler will bake the small part of the PIA that a program actually uses directly into its assembly. At runtime the PIA does not have to be loaded. Omitting ref Because of a different programming model, many COM APIs contain a lot of reference parameters. Contrary to refs in C#, these are typically not meant to mutate a passed-in argument for the subsequent benefit of the caller, but are simply another way of passing value parameters. It therefore seems unreasonable that a C# programmer should have to create temporary variables for all such ref parameters and pass these by reference. Instead, specifically for COM methods, the C# compiler will allow you to pass arguments by value to such a method, and will automatically generate temporary variables to hold the passed-in values, subsequently discarding these when the call returns. In this way the caller sees value semantics, and will not experience any side effects, but the called method still gets a reference. Open issues A few COM interface features still are not surfaced in C#. Most notably these include indexed properties and default properties. As mentioned above these will be respected if you access COM dynamically, but statically typed C# code will still not recognize them. There are currently no plans to address these remaining speed bumps in C# 4.0. Variance An aspect of generics that often comes across as surprising is that the following is illegal: IList<string> strings = new List<string>(); IList<object> objects = strings; The second assignment is disallowed because strings does not have the same element type as objects. There is a perfectly good reason for this. If it were allowed you could write: objects[0] = 5; string s = strings[0]; Allowing an int to be inserted into a list of strings and subsequently extracted as a string. This would be a breach of type safety. However, there are certain interfaces where the above cannot occur, notably where there is no way to insert an object into the collection. Such an interface is IEnumerable<T>. If instead you say: IEnumerable<object> objects = strings; There is no way we can put the wrong kind of thing into strings through objects, because objects doesn’t have a method that takes an element in. Variance is about allowing assignments such as this in cases where it is safe. The result is that a lot of situations that were previously surprising now just work. Covariance In .NET 4.0 the IEnumerable<T> interface will be declared in the following way: public interface IEnumerable<out T> : IEnumerable { IEnumerator<T> GetEnumerator(); } public interface IEnumerator<out T> : IEnumerator { bool MoveNext(); T Current { get; } } The “out” in these declarations signifies that the T can only occur in output position in the interface – the compiler will complain otherwise. In return for this restriction, the interface becomes “covariant” in T, which means that an IEnumerable<A> is considered an IEnumerable<B> if A has a reference conversion to B. As a result, any sequence of strings is also e.g. a sequence of objects. This is useful e.g. in many LINQ methods. Using the declarations above: var result = strings.Union(objects); // succeeds with an IEnumerable<object> This would previously have been disallowed, and you would have had to to some cumbersome wrapping to get the two sequences to have the same element type. Contravariance Type parameters can also have an “in” modifier, restricting them to occur only in input positions. An example is IComparer<T>: public interface IComparer<in T> { public int Compare(T left, T right); } The somewhat baffling result is that an IComparer<object> can in fact be considered an IComparer<string>! It makes sense when you think about it: If a comparer can compare any two objects, it can certainly also compare two strings. This property is referred to as contravariance. A generic type can have both in and out modifiers on its type parameters, as is the case with the Func<…> delegate types: public delegate TResult Func<in TArg, out TResult>(TArg arg); Obviously the argument only ever comes in, and the result only ever comes out. Therefore a Func<object,string> can in fact be used as a Func<string,object>. Limitations Variant type parameters can only be declared on interfaces and delegate types, due to a restriction in the CLR. Variance only applies when there is a reference conversion between the type arguments. For instance, an IEnumerable<int> is not an IEnumerable<object> because the conversion from int to object is a boxing conversion, not a reference conversion. Also please note that the CTP does not contain the new versions of the .NET types mentioned above. In order to experiment with variance you have to declare your own variant interfaces and delegate types. COM Example Here is a larger Office automation example that shows many of the new C# features in action. using System; using System.Diagnostics; using System.Linq; using Excel = Microsoft.Office.Interop.Excel; using Word = Microsoft.Office.Interop.Word; class Program { static void Main(string[] args) { var excel = new Excel.Application(); excel.Visible = true; excel.Workbooks.Add(); // optional arguments omitted excel.Cells[1, 1].Value = "Process Name"; // no casts; Value dynamically excel.Cells[1, 2].Value = "Memory Usage"; // accessed var processes = Process.GetProcesses() .OrderByDescending(p =&gt; p.WorkingSet) .Take(10); int i = 2; foreach (var p in processes) { excel.Cells[i, 1].Value = p.ProcessName; // no casts excel.Cells[i, 2].Value = p.WorkingSet; // no casts i++; } Excel.Range range = excel.Cells[1, 1]; // no casts Excel.Chart chart = excel.ActiveWorkbook.Charts. Add(After: excel.ActiveSheet); // named and optional arguments chart.ChartWizard( Source: range.CurrentRegion, Title: "Memory Usage in " + Environment.MachineName); //named+optional chart.ChartStyle = 45; chart.CopyPicture(Excel.XlPictureAppearance.xlScreen, Excel.XlCopyPictureFormat.xlBitmap, Excel.XlPictureAppearance.xlScreen); var word = new Word.Application(); word.Visible = true; word.Documents.Add(); // optional arguments word.Selection.Paste(); } } The code is much more terse and readable than the C# 3.0 counterpart. Note especially how the Value property is accessed dynamically. This is actually an indexed property, i.e. a property that takes an argument; something which C# does not understand. However the argument is optional. Since the access is dynamic, it goes through the runtime COM binder which knows to substitute the default value and call the indexed property. Thus, dynamic COM allows you to avoid accesses to the puzzling Value2 property of Excel ranges. Relationship with Visual Basic A number of the features introduced to C# 4.0 already exist or will be introduced in some form or other in Visual Basic: · Late binding in VB is similar in many ways to dynamic lookup in C#, and can be expected to make more use of the DLR in the future, leading to further parity with C#. · Named and optional arguments have been part of Visual Basic for a long time, and the C# version of the feature is explicitly engineered with maximal VB interoperability in mind. · NoPIA and variance are both being introduced to VB and C# at the same time. VB in turn is adding a number of features that have hitherto been a mainstay of C#. As a result future versions of C# and VB will have much better feature parity, for the benefit of everyone. Resources All available resources concerning C# 4.0 can be accessed through the C# Dev Center. Specifically, this white paper and other resources can be found at the Code Gallery site. Enjoy! span.fullpost {display:none;}

    Read the article

  • Aptitude command on fedora

    - by danielrutledge
    Hi, linux newbie here. I'm running Fedora 12 and I have a script for Ubuntu installing a bunch of packages using aptitude. I tried installing the packages using yum, but most of them aren't available. The packages aren't very new or complicated stuff, is there any way get packages through aptitude on fedora? Or am I just going to have to find the Fedora equivalent of each package manually, for example the first package installed is g++ and of course this has a fedora equivalent.

    Read the article

  • Error trying to get tmux 1.6 installed - E: Unable to locate package libevent

    - by Michael Durrant
    $ pwd $ /home/durrantm/Downloads/tmux-1.6 durrantm.../tmux-1.6$ ./configure && make checking for a BSD-compatible install... /usr/bin/install -c checking whether build environment is sane... yes ... ... configure: error: "libevent not found" durrantm.../tmux-1.6$ sudo apt-get install libevent Reading package lists... Done Building dependency tree Reading state information... Done E: Unable to locate package libevent

    Read the article

  • Can I install Microsoft Visual Web Developer w/o a SQL Server Express installation?

    - by lavinio
    When I attempt to install Microsoft Visual Web Developer 2010 Express, it forces an installation of SQL Server 2008 Express, which is okay. However, it forces it to have the instance name SQLEXPRESS instead being the default instance. I tried installing SQL Server 2008 Express first, but the Web Platform Installer 3.0 still wants to download and install the named instance, which then I have to uninstall. I'm putting together a guide that several others in my group will follow, so I'd like to not have to tell them to "install, then uninstall". So, is there any reasonable way to either (1) install VWD w/o SS, or (2) install VWD but configure SS do use the default instance?

    Read the article

  • Why does my DVD drive spin up every minute or so, spin down, and repeat (new Dell Studio 15 with Win

    - by cybergibbons
    We have just got a new Dell Studio 15 laptop running Windows 7 home premium with slot load DVD drive. If there is a DVD drive in the drive, every minute or so, the drive will spin up, make a couple of noises like it is reading something and then spin down. I think this is ruining battery life. There is no software running that is obviously accessing the drive. Any ideas to what it could be? Are there any tools I could use to try and identify the problem? Thanks.

    Read the article

  • Ubuntu equivalent to bugs.debian.org/<package>?

    - by jae
    In Debian, I can use the above URL to quickly see the open bugs for a package. In Ubuntu, it seems I have to go to launchpad, and click, click, click... which is . Is there a quick way to see all the bugs of a package in Ubuntu? One which doesn't require clicking through hell and back?

    Read the article

  • apt-get erroring because of a broken package

    - by MegaEduX
    Everytime I run apt-get install or update on my server I get the following error: (May not be exactly this because I am translating from portuguese) An error was found when processing: netatalk E: Sub-process /usr/bin/dpkg returned an error code (1) I am not trying to install that package. This error appeared when I tried to install that package, which failed to install, and it won't disappear. This doesn't prevent me from installing other packages. It installs them, just gives this error at the end.

    Read the article

  • What does compatibility option "Disable visual themes" do?

    - by user1306322
    "Disable desktop composition" flag disables Aero (transparent glass border) effect for the duration of the application's run, which seems like all there is to "visual themes", but toggling the "Disable visual themes" option doesn't seem to do anything. What exactly are these "visual themes"? How does disabling them affect the system? From what I can guess, a "visual theme" is a custom window border style around window content area created using hooks and WDM API calls, though I am prepared to be corrected. I'm talking about the checked option:

    Read the article

  • How to determine where debian package was sourced

    - by user169309
    How would I trace out which archive(s) in the sources.list a given installed deb package was or (could be) sourced from? I understand that the same package may be indexed by multiple archives. Does "aptitude" log any of this type of information when its installing packages? My aim is to pare down my current sources.list to the minimum set of archives needed to maintain the current set of installed packages.

    Read the article

  • Why does my Visual Studio 2010 default to a horizontal windows split if I quit then reopen it?

    - by Martin Doms
    I use Visual Studio 2010 Professional at work and up until a couple of weeks ago I have had no problems. But now whenever I open an instance of VS 2010 it defaults to horizontal split. I never split my windows horizontally, so this is very annoying. It happens consistently, every time on every project. Here is how VS2010 looked before I closed the window: I close it and reopen in that project, and: Arg! The only plugin I use is ReSharper, in case it's relevant.

    Read the article

  • ubuntu server can`t install any package on internet

    - by user963587
    I have a Ubuntu-server. I am trying to install Vsftpd but it shows the : Reading package lists... Done Building dependency tree Reading state information... Done E: Couldn't find package vsftpd After that I checked internet connection by ping 4.2.2.4 and there was no problem in internet connection. I tried to apt-get update but it was not possible it shows: Err http://us.archive.ubuntu.com lucid Release.gpg Temporary failure resolving 'us.archive.ubuntu.com'

    Read the article

  • How do I sync the Solution Explorer with the current File in Visual Studio?

    - by thepaulpage
    When I have an open code file in Visual Studio that I am editing I would like to keep that same file highlighted inside of the solution Explorer so that I know where I am at. What I'd really like is to change the focus to a different code file and the solution explorer to move to the file that I am editing. Further Explanation and example: I have a project with 2 files. Class1 and Class2. I open both files. The focus is on Class1. I click on the Class2 Tab, thereby changing the file that I am editing to Class2. Desired Behavior The solution explorer will highlight Class2.

    Read the article

  • Visual Studio LightSwitch: Yes, these are the droids you&rsquo;re looking for

    - by Jim Duffy
    With all the news and focus on the new features coming in Silverlight 5 I thought I’d take a few minutes to remind folks about the work that Microsoft has done on LightSwitch since the applications created by LightSwitch are Silverlight applications. LightSwitch makes it easier for non-coders to build business applications and easier for coders to maintain them. For those not familiar with LightSwitch, it is a new tool that provides a easier and quicker way for coder and non-coder types alike to create line-of-business applications for the desktop, the web, and the cloud. The target audience for this tool are those power-user types who create Access applications for their organization. While those Access applications fill an immediate need, they typically aren’t very scalable, extendable and/or maintainable by the development staff of the organization. LightSwitch creates applications based on technologies built into Visual Studio thus making it easier for corporate developers to extend and maintain them. LightSwitch is currently in beta but it will ultimately become a new addition to the Visual Studio line of products. Go ahead and download the beta to get a better idea of what the product can do for your organization. The LightSwitch Developer Center contains links to download the beta links to instructional videos links to tutorials links to the LightSwitch Training Kit Another quality resource for LightSwitch information is the Visual Studio LightSwitch Team Blog. My good friend Beth Massi is on the LightSwitch team and has additional valuable content on her blog. Have a day.

    Read the article

< Previous Page | 135 136 137 138 139 140 141 142 143 144 145 146  | Next Page >