Search Results

Search found 3786 results on 152 pages for 'instances'.

Page 14/152 | < Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >

  • Sending Data as Instances using Python Sockets

    - by Alice
    I'm working on the networking part of a 2 player game (similar to tetris), and I'm trying to pass the game grid from client to server and vice versa. However, when I tried using send(grid) I get a TypeError: send() argument 1 must be string or read-only buffer, not instance. Is there anyway to circumvent this, or do I have to convert my grid instance into a string and then interpret it from the other side? Thanks in advance!

    Read the article

  • Java : Singleton class instances in a Web based Application

    - by Preethi Jain
    I have this Singleton class inside a Web Application . public class MyDAO { private static MyDAO instance; private MyDAO() { } public static MyDAO getInstance() { if (instance == null) { instance = new MyDAO(); } return instance; } I will access it this way public void get_Data() { MyDAO dao = MyDAO.getInstance(); } How many Objects of MyDAO class will be created if there are 3 Users accessing the Application ?? Will there be one instance of MyDAO per User ??

    Read the article

  • Typeclass instances for unnamed types in Scala

    - by ncreep
    How would one encode the following constraint in Scala (pseudocode)? def foo(x: T forSome { type T has a Numeric[T] instance in scope }) = { val n= implicitly[...] // obtain the Numeric instance for x n.negate(x) // and use it with x } In words: I need a type class instance for my input argument, but I don't care about the argument's type, I just need to obtain the instance and use it on my argument. It doesn't have to be an existential type, but I need to avoid type parameters in the def's signature. Thanks.

    Read the article

  • Search for all instances of certain annotation type

    - by user1064918
    Suppose I have this annotation @Retention(RetentionPolicy.RUNTIME) @Target(ElementType.FIELD) public @interface Name { String value(); } This is going to be used as follows @Name("name1") public static Foo foo = new Foo(); I have multiples of these across my project source files. Is there an fairly simple way to search and collect all those "foo"s that're preceded by @Name? In other words, I'd like to write a method that would return a Set<Foo> containing these. Thanks!!!

    Read the article

  • Counting the instances of customers

    - by Mikae Combarado
    Say that I have a table with one column named CustomerId. The example of the instance of this table is : CustomerId 14 12 11 204 14 204 I want to write a query that counts the number of occurences of customer IDs. At the end, I would like to have a result like this : CustomerId NumberOfOccurences 14 2 12 1 11 1 204 2 14 1 I cannot think of a way to do this.

    Read the article

  • Objective C - creating concrete class instances from base class depending upon type

    - by indiantroy
    Just to give a real world example, say the base class is Vehicle and concrete classes are TwoWheeler and FourWheeler. Now the type of the vehicle - TwoWheeler or FourWheeler, is decided by the base class Vehicle. When I create an instance of TwoWheeler/FourWheeler using alloc-init method, it calls the super implementation like below to set the value of common properties defined in the Vehicle class and out of these properties one of them is type that actually decides if the type is TwoWheeler or FourWheeler. if (self = [super initWithDictionary:dict]){ [self setOtherAttributes:dict]; return self; } Now when I get a collection of vehicles some of them could be TwoWheeler and others will be FourWheeler. Hence I cannot directly create an instance of TwoWheeler or FourWheeler like this Vehicle *v = [[TwoWheeler alloc] initWithDictionary:dict]; Is there any way I can create an instance of base class and once I know the type, create an instance of child class depending upon type and return it. With the current implementation, it would result in infinite loop because I call super implementation from concrete class. What would be the perfect design to handle this scenario when I don't know which concrete class should be instantiated beforehand?

    Read the article

  • A Map of View instances?

    - by user291701
    Is it possible to keep references to views keyed off of their hashCode? Something like: Map<Integer, View> views; views.put(view1.hashCode(), view1); views.put(view2.hashCode(), view2); views.put(viewN.hashCode(), viewN); I have a few in my view hierarchy and am downloading images for each. I want to be able to iterate over them quickly, or see if I've already previously added one (hence the map).

    Read the article

  • mod_rewrite replace all instances of ampersand with %26 for later

    - by Supernovah
    Hey there! I want to simply not use ampersand in my URL so I can pass ampersands further down into my system when a file is requested. The problem is Apache deals with it differently. I don't know how I already rewrite the requested file to index.php?url=$1 so I can see what it was, but if it has an ampersand in there, it can't continue past it! how can I escape the ampersand or turn it into it's hex equal (%26)? <IfModule mod_rewrite.c> RewriteEngine On RewriteCond %{REQUEST_FILENAME} !-d RewriteCond %{REQUEST_FILENAME} !-f RewriteRule ^(.*)$ index.php?url=$1 [QSA,L] </IfModule>`

    Read the article

  • How to efficiently get all instances from deeper level in Cocoa model?

    - by Johan Kool
    In my Cocoa Mac app I have an instance A which contains an unordered set of instances B which in turn has an ordered set of instances C. An instance of C can only be in one instance B and B only in one A.   I would like to have an unordered set of all instances C available on instance A. I could enumerate over all instances B each time, but that seems expensive for something I need to do often. However, I am a bit worried that keeping track of instances C in A could become cumbersome and be the cause of  inconsistencies, for example if an instance C gets removed from B but not from A.  Solution 1 Use a NSMutableSet in A and add or remove C instances whenever I do the same operation in B.  Solution 2 Use a weak referenced NSHashTable in A. When deleting a C from B, it should disappear for A as well.  Solution 3 Use key value observing in A to keep track of changes in B, and update a NSMutableSet in A accordingly.  Solution 4 Simply iterate over all instances B to create the set whenever I need it.   Which way is best? Are there any other approaches that I missed?  NB I don't and won't use CoreData for this app.

    Read the article

  • mod_wsgi for multiple trac projects [Windows]

    - by fampinheiro
    Hello, I have a system with windows server 2008, Apache httpd 2.2 and trac 0.11 i'm using mod_wsgi so the apache server do the web server job. Integration with Trac after read this site i found that the most suitable solution was the following (i have in my httpd.conf the line Include conf/extra/httpd-trac.conf) httpd-trac.conf LoadModule wsgi_module modules/mod_wsgi.so WSGIDaemonProcess tracs processes=3 threads=25 maximum-requests=1000 RewriteEngine On RewriteCond %{REQUEST_URI} ^/trac/([^/]+) RewriteCond c:\Project\Services\Trac\%1\conf\trac.ini !-f RewriteRule . - [F] RewriteCond %{REQUEST_URI} ^/trac/([^/]+) RewriteRule . - [E=trac.env_path:c:\Project\Services\Trac\%1] WSGIScriptAliasMatch ^/trac/([^/]+) c:\Project\Trac\trac.wsgi <Directory c:\Project\Trac> WSGIProcessGroup tracs WSGIApplicationGroup %{GLOBAL} Order deny,allow Allow from all </Directory> the problem i encouter is the following: C:\Project\Apache\binhttpd.exe -k start Syntax error on line 3 of C:/Project/Apache/conf/extra/httpd-trac.conf: Invalid command 'WSGIDaemonProcess', perhaps misspelled or defined by a module not included in the server configuration The objective: My objective is to have multiple trac projects with diferente authentication information. If you have other solution than this please tell me =) Thank you for your help.

    Read the article

  • In a distributed environment, how can I configure log4j to log to different files for each JVM insta

    - by Renan Mozone
    My application runs on IBM WebSphere 6.1 Network Deployment. The application have several JSP files and Java classes. Today each host have only one JVM instance but my intention is to start another instance on each host. How can I configure log4j to log to different files for each JVM instance in the same host? I thought of using variable substitution on log4j XML configuration file but it only works with system properties. So, it is safe and recommended to set a custom system property just to store the JVM name? Anyone knows another strategy to achieve this in a 'elegant' way?

    Read the article

  • Outer class jframe is not hiding when calling the inner class jframe

    - by user2909960
    When i am calling the inner jframe, it is called, but outer jframe is not hiding. instead it gets overlapped. so what will be the solution for this. Is there any way to get out of this. As i tried when i am calling the inner class frame, the outer class frame is also called, and it is not hidden. package com.exp.example; import java.awt.Color; import java.awt.Container; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import javax.swing.JButton; import javax.swing.JFrame; import javax.swing.JLabel; import javax.swing.JTextField; @SuppressWarnings("serial") public class A extends JFrame implements ActionListener { JFrame rframe = new JFrame(); JLabel CFirstName; JTextField Cfname; JButton jbsubmit; Container cp; public A() { rframe.setSize(500, 200); rframe.setLocationRelativeTo(null); cp = getContentPane(); cp.setLayout(null); setSize(550, 300); rframe.setTitle("Outer Frame"); cp.setBackground(new Color(140, 180, 180)); CFirstName = new JLabel("First Name"); Cfname = new JTextField(10); jbsubmit = new JButton("PREVIEW"); CFirstName.setBounds(10, 20, 100, 35); Cfname.setBounds(150, 20, 150, 25); jbsubmit.setBounds(190, 110, 92, 25); cp.add(CFirstName); cp.add(Cfname); cp.add(jbsubmit); jbsubmit.addActionListener(this); rframe.add(cp); rframe.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); rframe.setVisible(true); } public void actionPerformed(ActionEvent ae) { String action = ae.getActionCommand(); if (action == "PREVIEW") { /* Write the code here * When we click on preview button the frame of outer class(class A) gets * deactivated(closed) and inner frame, frame of inner class(class B) gets visible. * it should not be overlapped. */ /* My Code */ new B(); rframe.setVisible(false); } } public class B { JFrame frm = new JFrame(); Container cp; public B() { frm.setSize(500, 200); frm.setLocationRelativeTo(null); cp = getContentPane(); cp.setLayout(null); setSize(550, 300); frm.setTitle("Inner Frame"); cp.setBackground(new Color(140, 180, 180)); JLabel cpn = new JLabel("hello"); cpn.setBounds(10, 20, 100, 35); cp.add(cpn); frm.add(cp); frm.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); frm.setVisible(true); } } public static void main(String[] args) { new A(); } }

    Read the article

  • run two apache servers on one computer

    - by harry_T
    I would like to run two XAMPP apache servers and mysql on one Windows computer. My first idea was to run one under directory XAMPP, the other under XAMPP_B. Why you ask? I have two applications that have to be in the "root" directory of localhost. Both servers do not have to be active at same time, so I don't think I will have any conflicts I will have to modify my.cnf in mySQL httpd.conf, apache_start and maybe other config files as well. Or maybe someone can suggest a better way...

    Read the article

  • Use of Java constructors in persistent entities

    - by Mr Morgan
    Hello I'm new to JPA and using persistence in Java anyway and I have two questions I can't quite work out: I have generated tags as: @JoinColumn(name = "UserName", referencedColumnName = "UserName") @ManyToOne(optional = false) private User userName; @JoinColumn(name = "DatasetNo", referencedColumnName = "DatasetNo") @ManyToOne(optional = false) private Dataset datasetNo; But in one of the constructors for the class, no reference is made to columns UserName or DatasetNo whereas all other columns in the class are referenced in the constructor. Can anyone tell me why this is? Both columns UserName and DatasetNo are 'foreign keys' on the entity Visualisation which corresponds to a database table of the same name. I can't quite work out the ORM. And when using entity classes, or POJO, is it better to have class variables like: private User userName; Where an instance of a class is specified or simply the key of that class instance like: private String userName; Thanks Mr Morgan.

    Read the article

  • Multiple WCF windows services on the same box - endpoint configuration

    - by David Belanger
    Hi, I have 2 windows services installed on a machine with different service names, they install and start fine. What's happening is that they're both listening to the same endpoints and thus competing for messages. I've tried to change the baseAddress to be different for both services without success. Here's my service host config: <configuration> <appSettings> <add key="ServiceName" value="Service - Service Host 1"/> </appSettings> <system.serviceModel> <bindings> <wsHttpBinding> <binding name="NoSecurityBinding"> <security mode="None"> <message establishSecurityContext="false"/> <transport clientCredentialType="None"/> </security> </binding> </wsHttpBinding> <basicHttpBinding> <binding name="NoSecurityBinding"> <security mode="None"> <transport clientCredentialType="None"/> </security> </binding> </basicHttpBinding> </bindings> <services> <service name="Lib.Interface.Service" behaviorConfiguration="Lib.Interface.ServiceBehavior"> <host> <baseAddresses> <add baseAddress="http://localhost:8000/Service"/> </baseAddresses> </host> <endpoint address="" binding="basicHttpBinding" bindingConfiguration="NoSecurityBinding" contract="Lib.Interface.IService"/> <endpoint address="mex" binding="mexHttpBinding" contract="IMetadataExchange"/> </service> </services> <behaviors> <serviceBehaviors> <behavior name="Lib.Interface.ServiceBehavior"> <serviceMetadata httpGetEnabled="True" policyVersion="Policy12"/> <serviceDebug includeExceptionDetailInFaults="False"/> </behavior> </serviceBehaviors> </behaviors> Any idea how I could set up the services (other than unique service names) so they're not conflicting with one another? Thanks.

    Read the article

  • jquery ui dialog open multiple dialog boxes using the same class on the button and the content div

    - by MichaelAntoni
    Hello there, i want to open multiple dialog boxes by using the same class on both the button and the content div. The below works but only for the first time. jQuery('.helpDialog').hide(); jQuery('.helpButton').click(function() { jQuery(this).next('.helpDialog').dialog({ autoOpen: true, title: 'Help', width: 500, height: 300, position: [180,10], draggable: true, resizable: false, modal: false }); return false; }); we know the reason for this http://blog.nemikor.com/2009/04/08/basic-usage-of-the-jquery-ui-dialog/ "the second call is ignored because the dialog has already been instantiated on that element." But when i fix that problem by trying the code below, the dialog box no longer opens. Can anyone help? Thanks in advance jQuery('.helpDialog').hide(); jQuery(function() { jQuery('.helpDialog').dialog({ autoOpen: false, modal: true, title: 'Info', width: 600, height: 400, position: [200,0], draggable: false }); }); jQuery('.helpButton').click(function() { jQuery(this).next('.helpDialog').dialog('open'); return false; });

    Read the article

  • Java: limit to nest classes?

    - by HH
    A very poor style to code but sometimes unavoidable. It is an extreme example. So is there some limit for nesting classes? are they equivalent? how do you deal with such situations? Create library? Code new FileObject().new Format().new Words().new Some().new Continue someThing; ((((new FileObject()).new Format()).new Words()).new Some()).new Continue someThing;

    Read the article

  • How to decide the optimal number of ruby thin/mongrel instances for a server, number of cores?

    - by Amala
    We are trying to deploy mongrel instances on a machine. What is the optimal number of mongrel instances for a server? Since an instance can handle concurrent connections, I do not see any benefit in starting more than 1 per core. Any more than that and the threads will just fight for CPU. Our predecessors have assigned 10 instances for 4 cores, but I think it will just cause CPU contention. Any definitive answers / opinions? I have seen this question: How many mongrel instances? But it is really not specific enough.

    Read the article

  • EC2 Auto-Scaling with Spot and On-Demand Instances?

    - by platforms
    I'm looking to optimize the cost of our auto-scaling EC2 groups by having them launch spot instances instead of on-demand instances. What I really want is to be able to keep some servers in the group as on-demand instances, regardless of what happens to the spot instance pricing market. Then I want any additional servers in the group, above my configured minimum, to be spot instances. I'm generally OK with the delay in adding servers via spot requests. I can't seem to find any way to do this and I've tried to scour the AWS documentation. It appears that an ASG can either be on-demand or spot, but not a hybrid. I could possibly manually add an on-demand instance to the Elastic Load Balancer assigned to the auto-scaling group, but then the load of that server would not be factored into the auto-scaling measurements and triggers. I suppose I could enter a ridiculously high bid price in order to ensure that I always get the servers I need, but then I look at the pricing history and see occasional large spikes. The AWS documentation is at odds with itself, since in one place it says that if you enter a server minimum, that number is "ensured" to be there. But then when you read about spot instances, there are no assurances. The price differential for spot is compelling, so I'd like to leverage that as much as I can while still maintaining an always-on baseline. Is this possible?

    Read the article

  • Get and set accessors do they protect different instances of a variable?

    - by Chris Halcrow
    The standard method of implementing get and set accessors in C# and VB.NET is to use a public property to set and retrieve the value of a corresponding private variable. Am I right in saying that this has no effect of different instances of a variable? By this I mean, if there are different instantiations of an object, then those instances and their properties are completely independent right? So I think my understanding is correct that setting a private variable is just a construct to be able to implement the get and set pattern? Never been 100% sure about this.

    Read the article

  • Is it safe to run multiple XNA ContentManager instances on multiple threads?

    - by Boinst
    My XNA project currently uses one ContentManager instance, and one dedicated background thread for loading all content. I wonder, would it be safe to have multiple ContentManager instances, each in it's own dedicated thread, loading different content at the same time? I'm prompted to ask this question because this article makes the following statement: If there are two textures created at the same time on different threads, they will clobber the other and you will end up with some garbage in the textures. I think that what the author is saying here, is that if I access one ContentManager simultaneously on two threads, I'll get garbage. But what if I have separate ContentManager instances for each thread? If no-one knows the answer already from experience, I'll go ahead and try it and see what happens.

    Read the article

  • Good way of handling class instances in game development?

    - by Bugster
    I'm a new indie game developer, and I've made a few games, but often times when coding I wonder "Is this the way most people do it? Am I doing it wrong?" because I'd like to become a game developer some day, and I really want to get rid of bad practices in time. The way I'm doing it right now is like this: #include <some libraries> #include "Some classes" int main() { Class1 a; Class2 b; Class3 c; a.init(); b.init(); c.init(); // game logic; } Now as I see the game grow, I have more and more classes to initialize and create instances of. This is clean but I'm not sure if this is standard practice. Is this a regular way of creating instances of your game classes or is there a cleaner and more efficient way to do it?

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

< Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >