Search Results

Search found 3786 results on 152 pages for 'instances'.

Page 15/152 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • Can I cycle through instances of a style selected via the MS Word styles pane?

    - by Deditos
    Often when I have many co-authors on a MS Word document I find that some of them don't use the styles I've defined for the document, but have achieved similar formatting manually. This results in many styles listed as "in use", each with perhaps only a handful of instances. Word will highlight these instances for me, but then find myself browsing the entire document to check whether they need correcting or are special cases. This can be a particular pain for a long document and when these style fragments occur in the white space between words or paragraphs. Is there a way to cycle through the highlighted instances of a particular style rather than having to hunt for them visually?

    Read the article

  • AWS: Should my EC2 and RDS instances be in the same Availability Zone?

    - by DOOManiac
    I just noticed that all of our EC2 instances are in zone us-west-2b, but our Multi-AZ RDS instance is in us-west-2a. Performance-wise everything seems to be okay, and it will be a hassle to "move" the instances to one place since you have to stop and re-create them all. However if either of the two zones goes down when we will have some downtime; if everything is in one zone then at least we have a higher chance of not being in the zone that has downtime... Is this something worth fixing, or am I over-thinking it? (I was about to purchase some EC2 Reserved Instances, which are tied to specific AZs, so I wanted to make sure before going through with it) Thanks!

    Read the article

  • Thin web server - single or multiple instances per IP address:port?

    - by wchrisjohnson
    I'm deploying a rack/sinatra/web socket app onto several servers and will use thin as the web server (http://code.macournoyer.com/thin/). There are almost no views to show, so I am not front-ending it with a traditional web server like Apache or nginx. In general, you see thin started and the underlying config file for it has the number of server instances to start, say 3, and the port to start with, say 5000. So, in my example, when thin starts, it starts up three instances on a range of ports, starting on port 5000. If I have a series of virtual machines, say 3, 6, 9, etc. that I treat as a cluster, would/should I choose to start a single thin instance on each VM, or multiple instances on each VM? Why? Thanks - Chris

    Read the article

  • Why do I need two Instances in Windows Azure?

    - by BuckWoody
    Windows Azure as a Platform as a Service (PaaS) means that there are various components you can use in it to solve a problem: Compute “Roles” - Computers running an OS and optionally IIS - you can have more than one "Instance" of a given Role Storage - Blobs, Tables and Queues for Storage Other Services - Things like the Service Bus, Azure Connection Services, SQL Azure and Caching It’s important to understand that some of these services are Stateless and others maintain State. Stateless means (at least in this case) that a system might disappear from one physical location and appear elsewhere. You can think of this as a cashier at the front of a store. If you’re in line, a cashier might take his break, and another person might replace him. As long as the order proceeds, you as the customer aren’t really affected except for the few seconds it takes to change them out. The cashier function in this example is stateless. The Compute Role Instances in Windows Azure are Stateless. To upgrade hardware, because of a fault or many other reasons, a Compute Role's Instance might stop on one physical server, and another will pick it up. This is done through the controlling fabric that Windows Azure uses to manage the systems. It’s important to note that storage in Azure does maintain State. Your data will not simply disappear - it is maintained - in fact, it’s maintained three times in a single datacenter and all those copies are replicated to another for safety. Going back to our example, storage is similar to the cash register itself. Even though a cashier leaves, the record of your payment is maintained. So if a Compute Role Instance can disappear and re-appear, the things running on that first Instance would stop working. If you wrote your code in a Stateless way, then another Role Instance simply re-starts that transaction and keeps working, just like the other cashier in the example. But if you only have one Instance of a Role, then when the Role Instance is re-started, or when you need to upgrade your own code, you can face downtime, since there’s only one. That means you should deploy at least two of each Role Instance not only for scale to handle load, but so that the first “cashier” has someone to replace them when they disappear. It’s not just a good idea - to gain the Service Level Agreement (SLA) for our uptime in Azure it’s a requirement. We point this out right in the Management Portal when you deploy the application: (Click to enlarge) When you deploy a Role Instance you can also set the “Upgrade Domain”. Placing Roles on separate Upgrade Domains means that you have a continuous service whenever you upgrade (more on upgrades in another post) - the process looks like this for two Roles. This example covers the scenario for upgrade, so you have four roles total - One Web and one Worker running the "older" code, and one of each running the new code. In all those Roles you want at least two instances, and this example shows that you're covered for High Availability and upgrade paths: The take-away is this - always plan for forward-facing Roles to have at least two copies. For Worker Roles that do background processing, there are ways to architect around this number, but it does affect the SLA if you have only one.

    Read the article

  • Replicating between Cloud and On-Premises using Oracle GoldenGate

    - by Ananth R. Tiru
    Do you have applications running on the cloud that you need to connect with the on premises systems. The most likely answer to this question is an astounding YES!  If so, then you understand the importance of keep the data fresh at all times across the cloud and on-premises environments. This is also one of the key focus areas for the new GoldenGate 12c release which we announced couple of week ago via a press release. Most enterprises have spent years avoiding the data “silos” that inhibit productivity. For example, an enterprise which has adopted a CRM strategy could be relying on an on-premises based marketing application used for developing and nurturing leads. At the same time it could be using a SaaS based Sales application to create opportunities and quotes. The sales and the marketing teams which use these systems need to be able to access and share the data in a reliable and cohesive way. This example can be extended to other applications areas such as HR, Supply Chain, and Finance and the demands the users place on getting a consistent view of the data. When it comes to moving data in hybrid environments some of the key requirements include minimal latency, reliability and security: Data must remain fresh. As data ages it becomes less relevant and less valuable—day-old data is often insufficient in today’s competitive landscape. Reliability must be guaranteed despite system or connectivity issues that can occur between the cloud and on-premises instances. Security is a key concern when replicating between cloud and on-premises instances. There are several options to consider when replicating between the cloud and on-premises instances. Option 1 – Secured network established between the cloud and on-premises A secured network is established between the cloud and on-premises which enables the applications (including replication software) running on the cloud and on-premises to have seamless connectivity to other applications irrespective of where they are physically located. Option 2 – Restricted network established between the cloud and on-premises A restricted network is established between the cloud and on-premises instances which enable certain ports (required by replication) be opened on both the cloud and on the on-premises instances and white lists the IP addresses of the cloud and on-premises instances. Option 3 – Restricted network access from on-premises and cloud through HTTP proxy This option can be considered when the ports required by the applications (including replication software) are not open and the cloud instance is not white listed on the on-premises instance. This option of tunneling through HTTP proxy may be only considered when proper security exceptions are obtained. Oracle GoldenGate Oracle GoldenGate is used for major Fortune 500 companies and other industry leaders worldwide to support mission-critical systems for data availability and integration. Oracle GoldenGate addresses the requirements for ensuring data consistency between cloud and on-premises instances, thus facilitating the business process to run effectively and reliably. The architecture diagram below illustrates the scenario where the cloud and the on-premises instance are connected using GoldenGate through a secured network In the above scenario, Oracle GoldenGate is installed and configured on both the cloud and the on-premises instances. On the cloud instance Oracle GoldenGate is installed and configured on the machine where the database instance can be accessed. Oracle GoldenGate can be configured for unidirectional or bi-directional replication between the cloud and on premises instances. The specific configuration details of Oracle GoldenGate processes will depend upon the option selected for establishing connectivity between the cloud and on-premises instances. The knowledge article (ID - 1588484.1) titled ' Replicating between Cloud and On-Premises using Oracle GoldenGate' discusses in detail the options for replicating between the cloud and on-premises instances. The article can be found on My Oracle Support. To learn more about Oracle GoldenGate 12c register for our launch webcast where we will go into these new features in more detail.   You may also want to download our white paper "Oracle GoldenGate 12c Release 1 New Features Overview" I would love to hear your requirements for replicating between on-premises and cloud instances, as well as your comments about the strategy discussed in the knowledge article to address your needs. Please post your comments in this blog or in the Oracle GoldenGate public forum - https://forums.oracle.com/community/developer/english/business_intelligence/system_management_and_integration/goldengate

    Read the article

  • Azure Grid Computing - Worker Roles as HPC Compute Nodes

    - by JoshReuben
    Overview ·        With HPC 2008 R2 SP1 You can add Azure worker roles as compute nodes in a local Windows HPC Server cluster. ·        The subscription for Windows Azure like any other Azure Service - charged for the time that the role instances are available, as well as for the compute and storage services that are used on the nodes. ·        Win-Win ? - Azure charges the computer hour cost (according to vm size) amortized over a month – so you save on purchasing compute node hardware. Microsoft wins because you need to purchase HPC to have a local head node for managing this compute cluster grid distributed in the cloud. ·        Blob storage is used to hold input & output files of each job. I can see how Parametric Sweep HPC jobs can be supported (where the same job is run multiple times on each node against different input units), but not MPI.NET (where different HPC Job instances function as coordinated agents and conduct master-slave inter-process communication), unless Azure is somehow tunneling MPI communication through inter-WorkerRole Azure Queues. ·        this is not the end of the story for Azure Grid Computing. If MS requires you to purchase a local HPC license (and administrate it), what's to stop a 3rd party from doing this and encapsulating exposing HPC WCF Broker Service to you for managing compute nodes? If MS doesn’t  provide head node as a service, someone else will! Process ·        requires creation of a worker node template that specifies a connection to an existing subscription for Windows Azure + an availability policy for the worker nodes. ·        After worker nodes are added to the cluster, you can start them, which provisions the Windows Azure role instances, and then bring them online to run HPC cluster jobs. ·        A Windows Azure worker role instance runs a HPC compatible Azure guest operating system which runs on the VMs that host your service. The guest operating system is updated monthly. You can choose to upgrade the guest OS for your service automatically each time an update is released - All role instances defined by your service will run on the guest operating system version that you specify. see Windows Azure Guest OS Releases and SDK Compatibility Matrix (http://go.microsoft.com/fwlink/?LinkId=190549). ·        use the hpcpack command to upload file packages and install files to run on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). Requirements ·        assuming you have an azure subscription account and the HPC head node installed and configured. ·        Install HPC Pack 2008 R2 SP 1 -  see Microsoft HPC Pack 2008 R2 Service Pack 1 Release Notes (http://go.microsoft.com/fwlink/?LinkID=202812). ·        Configure the head node to connect to the Internet - connectivity is provided by the connection of the head node to the enterprise network. You may need to configure a proxy client on the head node. Any cluster network topology (1-5) is supported). ·        Configure the firewall - allow outbound TCP traffic on the following ports: 80,       443, 5901, 5902, 7998, 7999 ·        Note: HPC Server  uses Admin Mode (Elevated Privileges) in Windows Azure to give the service administrator of the subscription the necessary privileges to initialize HPC cluster services on the worker nodes. ·        Obtain a Windows Azure subscription certificate - the Windows Azure subscription must be configured with a public subscription (API) certificate -a valid X.509 certificate with a key size of at least 2048 bits. Generate a self-sign certificate & upload a .cer file to the Windows Azure Portal Account page > Manage my API Certificates link. see Using the Windows Azure Service Management API (http://go.microsoft.com/fwlink/?LinkId=205526). ·        import the certificate with an associated private key on the HPC cluster head node - into the trusted root store of the local computer account. Obtain Windows Azure Connection Information for HPC Server ·        required for each worker node template ·        copy from azure portal - Get from: navigation pane > Hosted Services > Storage Accounts & CDN ·        Subscription ID - a 32-char hex string in the form xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx. In Properties pane. ·        Subscription certificate thumbprint - a 40-char hex string (you need to remove spaces). In Management Certificates > Properties pane. ·        Service name - the value of <ServiceName> configured in the public URL of the service (http://<ServiceName>.cloudapp.net). In Hosted Services > Properties pane. ·        Blob Storage account name - the value of <StorageAccountName> configured in the public URL of the account (http://<StorageAccountName>.blob.core.windows.net). In Storage Accounts > Properties pane. Import the Azure Subscription Certificate on the HPC Head Node ·        enable the services for Windows HPC Server  to authenticate properly with the Windows Azure subscription. ·        use the Certificates MMC snap-in to import the certificate to the Trusted Root Certification Authorities store of the local computer account. The certificate must be in PFX format (.pfx or .p12 file) with a private key that is protected by a password. ·        see Certificates (http://go.microsoft.com/fwlink/?LinkId=163918). ·        To open the certificates snapin: Run > mmc. File > Add/Remove Snap-in > certificates > Computer account > Local Computer ·        To import the certificate via wizard - Certificates > Trusted Root Certification Authorities > Certificates > All Tasks > Import ·        After the certificate is imported, it appears in the details pane in the Certificates snap-in. You can open the certificate to check its status. Configure a Proxy Client on the HPC Head Node ·        the following Windows HPC Server services must be able to communicate over the Internet (through the firewall) with the services for Windows Azure: HPCManagement, HPCScheduler, HPCBrokerWorker. ·        Create a Windows Azure Worker Node Template ·        Edit HPC node templates in HPC Node Template Editor. ·        Specify: 1) Windows Azure subscription connection info (unique service name) for adding a set of worker nodes to the cluster + 2)worker node availability policy – rules for deploying / removing worker role instances in Windows Azure o   HPC Cluster Manager > Configuration > Navigation Pane > Node Templates > Actions pane > New à Create Node Template Wizard or Edit à Node Template Editor o   Choose Node Template Type page - Windows Azure worker node template o   Specify Template Name page – template name & description o   Provide Connection Information page – Azure Subscription ID (text) & Subscription certificate (browse) o   Provide Service Information page - Azure service name + blob storage account name (optionally click Retrieve Connection Information to get list of available from azure – possible LRT). o   Configure Azure Availability Policy page - how Windows Azure worker nodes start / stop (online / offline the worker role instance -  add / remove) – manual / automatic o   for automatic - In the Configure Windows Azure Worker Availability Policy dialog -select days and hours for worker nodes to start / stop. ·        To validate the Windows Azure connection information, on the template's Connection Information tab > Validate connection information. ·        You can upload a file package to the storage account that is specified in the template - eg upload application or service files that will run on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). Add Azure Worker Nodes to the HPC Cluster ·        Use the Add Node Wizard – specify: 1) the worker node template, 2) The number of worker nodes   (within the quota of role instances in the azure subscription), and 3)           The VM size of the worker nodes : ExtraSmall, Small, Medium, Large, or ExtraLarge.  ·        to add worker nodes of different sizes, must run the Add Node Wizard separately for each size. ·        All worker nodes that are added to the cluster by using a specific worker node template define a set of worker nodes that will be deployed and managed together in Windows Azure when you start the nodes. This includes worker nodes that you add later by using the worker node template and, if you choose, worker nodes of different sizes. You cannot start, stop, or delete individual worker nodes. ·        To add Windows Azure worker nodes o   In HPC Cluster Manager: Node Management > Actions pane > Add Node à Add Node Wizard o   Select Deployment Method page - Add Azure Worker nodes o   Specify New Nodes page - select a worker node template, specify the number and size of the worker nodes ·        After you add worker nodes to the cluster, they are in the Not-Deployed state, and they have a health state of Unapproved. Before you can use the worker nodes to run jobs, you must start them and then bring them online. ·        Worker nodes are numbered consecutively in a naming series that begins with the root name AzureCN – this is non-configurable. Deploying Windows Azure Worker Nodes ·        To deploy the role instances in Windows Azure - start the worker nodes added to the HPC cluster and bring the nodes online so that they are available to run cluster jobs. This can be configured in the HPC Azure Worker Node Template – Azure Availability Policy -  to be automatic or manual. ·        The Start, Stop, and Delete actions take place on the set of worker nodes that are configured by a specific worker node template. You cannot perform one of these actions on a single worker node in a set. You also cannot perform a single action on two sets of worker nodes (specified by two different worker node templates). ·        ·          Starting a set of worker nodes deploys a set of worker role instances in Windows Azure, which can take some time to complete, depending on the number of worker nodes and the performance of Windows Azure. ·        To start worker nodes manually and bring them online o   In HPC Node Management > Navigation Pane > Nodes > List / Heat Map view - select one or more worker nodes. o   Actions pane > Start – in the Start Azure Worker Nodes dialog, select a node template. o   the state of the worker nodes changes from Not Deployed to track the provisioning progress – worker node Details Pane > Provisioning Log tab. o   If there were errors during the provisioning of one or more worker nodes, the state of those nodes is set to Unknown and the node health is set to Unapproved. To determine the reason for the failure, review the provisioning logs for the nodes. o   After a worker node starts successfully, the node state changes to Offline. To bring the nodes online, select the nodes that are in the Offline state > Bring Online. ·        Troubleshooting o   check node template. o   use telnet to test connectivity: telnet <ServiceName>.cloudapp.net 7999 o   check node status - Deployment status information appears in the service account information in the Windows Azure Portal - HPC queries this -  see  node status information for any failed nodes in HPC Node Management. ·        When role instances are deployed, file packages that were previously uploaded to the storage account using the hpcpack command are automatically installed. You can also upload file packages to storage after the worker nodes are started, and then manually install them on the worker nodes. see hpcpack (http://go.microsoft.com/fwlink/?LinkID=205514). ·        to remove a set of role instances in Windows Azure - stop the nodes by using HPC Cluster Manager (apply the Stop action). This deletes the role instances from the service and changes the state of the worker nodes in the HPC cluster to Not Deployed. ·        Each time that you start a set of worker nodes, two proxy role instances (size Small) are configured in Windows Azure to facilitate communication between HPC Cluster Manager and the worker nodes. The proxy role instances are not listed in HPC Cluster Manager after the worker nodes are added. However, the instances appear in the Windows Azure Portal. The proxy role instances incur charges in Windows Azure along with the worker node instances, and they count toward the quota of role instances in the subscription.

    Read the article

  • Is it bad practice to pass instances through several layers?

    - by Puckl
    In my program design, I often come to the point where I have to pass object instances through several classes. For example, if I have a controller that loads an audio file, and then passes it to a player, and the player passes it to the playerRunnable, which passes it again somewhere else etc. It looks kind of bad, but I don´t know how to avoid it. Or is it OK to do this? EDIT: Maybe the player example is not the best because I could load the file later, but in other cases that does not work.

    Read the article

  • Database Mail and SMO are indeed supported on 64-bit, Standard Edition instances of SQL Server 2012

    - by Argenis
      This is something that comes up rather regularly at forums, so I decided to create a quick post to make sure that folks out there can feel better about SQL Server 2012. If you read this Web article, “Features Supported By Editions of SQL Server 2012” as of time of writing this post, you will see that the article points out that these two features are not supported on x64 Standard Edition. This is NOT correct. It is most definitely a documentation bug – one that unfortunately has caused some customers to sit on a waiting pattern before upgrading to SQL Server 2012. Database Mail and SMO indeed work and are fully supported on SQL Server 2012 Standard Edition x64 instances. These features work as they should. I have contacted the documentation teams internally to make sure that this is reflected on next releases of said Web article.

    Read the article

  • What kind of performance issues does multiple instances of the exact same object have on a game?

    - by lggmonclar
    I'm fairly new to programming, and I've pretty much learned all the things I know on the go, while working on projects. The problem is that there some things that I just don't know where to begin searching. My question is about performance, and how can multiple instances of the same object affect it -- Specifically, I'm talking about XNA's "GraphicsDevice" class. I have it instanced on four different parts of my game, and in three of those, the object has the exact same values for all the attributes. So, in that case, should I be using the same instance of GraphicsDevice, passing it as a parameter, even if I use it in different classes? I apologize if the question seems redundant, but like I said, I've taught myself most of what I know, so there are quite a few "holes" in my learning process.

    Read the article

  • How to turn off the binary log for mysqld_multi instances?

    - by netvope
    MySQL supports running multiple mysqld on the same server. One of the ways is to use mysqld_multi. If the default MySQL server instance (as configured in the [mysqld] section in my.cnf) uses log-bin, it enables the binary log for all the other instances ([mysqld1], [mysqld2], etc). How can we override the setting for the other instances? We tried putting log-bin= or log-bin=OFF under [mysqld1], but that won't disable the binary log.

    Read the article

  • How to goup EC2 instances in order to delegate administrations to differents teams?

    - by Olivier
    Is it possible (using ARN) to make severals groups of instances. Then using differents policy to grant some access to a group of instance only and not the other instances? For example : { "Statement": [ { "Action": "ec2:*", "Effect": "Allow", "Resource": "*" }, { "Effect": "Allow", "Action": "elasticloadbalancing:*", "Resource": "*" }, { "Effect": "Allow", "Action": "cloudwatch:*", "Resource": "*" }, { "Effect": "Allow", "Action": "autoscaling:*", "Resource": "*" } ] } Instead of "*" could we use a group or something like that? like a specific subnet? a Tag? or whatever... Thanks for your help

    Read the article

  • How many Tomcat instances can one application server handle?

    - by NetworkUser
    My network engineer states I am part of a cluster where two apache application servers(512G RAM each) have 142 instances each of Tomcat (of which my company represents 6 each with 2G RAM). This seems like a lot and my latency issues move with the hour of the day - 7AM CST software functions fine, 10AM CST - system slows significantly this slowness continues until 6PM CST. My question is how many Tomcat instances can one application server handle?

    Read the article

  • Trying to build/install patched gtk3-engines-oxygen to test bugfix, get shared changelog.Debian.gz is different from other instances of package

    - by andlabs
    I want to just quickly test the patch in this bug report to gtk3-engines-oxygen so it can go upstream. I could test it either temporarily or permanently; I would just like to do it. I currently have the package installed. So far, I've tried: $ mkdir /tmp/o # keep everything self-contained $ cd /tmp/o $ apt-get source gtk3-engines-oxygen $ cd oxygen-gtk3-1.3.5/ $ patch -p1 < /path/to/patchfile $ dpkg-source --commit # to make debuild happy (name 'layout'; just save the default; this is a test) $ debuild -us -uc # bypass signature checks $ sudo debi ../oxygen-gtk3_1.3.5-0ubuntu1_amd64.changes According to some people on #ubuntu-packaging, this is what I have to do. It's this last step that's the problem; I'm getting (Reading database ... 503333 files and directories currently installed.) Preparing to unpack gtk3-engines-oxygen_1.3.5-0ubuntu1_amd64.deb ... Unpacking gtk3-engines-oxygen:amd64 (1.3.5-0ubuntu1) over (1.3.5-0ubuntu1) ... dpkg: error processing archive gtk3-engines-oxygen_1.3.5-0ubuntu1_amd64.deb (--install): trying to overwrite shared '/usr/share/doc/gtk3-engines-oxygen/changelog.Debian.gz', which is different from other instances of package gtk3-engines-oxygen:amd64 Errors were encountered while processing: gtk3-engines-oxygen_1.3.5-0ubuntu1_amd64.deb debi: debpkg -i failed What's going on? How do I fix it? Or am I doing this completely wrong (and ergo so are they)? I'm using Kubuntu 14.04 amd64. Thanks.

    Read the article

  • Why would Windows Task Scheduler spawn multiple instances of the same task that run into each other?

    - by swagner88
    Overview: I use Windows Task Scheduler to run automated tasks. Occasionally I will see that randomly a task has failed to perform its duties. When I check Task Scheduler to see what has occurred in the history log, I see that for some reason, when the tasks are triggered at their schedules, they are spawning several instances of themselves simultaneously which turns into a train wreck for the task and it either kills the other instances and tries to run the "first" one, or it just does not run at all as it believes another instance of itself is already running. Sometimes this occurs in the same tasks and then occasionally it happens with others. The fix is just to end all instances and start the task manually. Question: Why would one single task with one single schedule decide to spawn multiple instance of itself simultaneously? Note: I've got a separate user account set to run the tasks instead of myself. That user is indeed an admin on the machine that runs the tasks and the tasks are set to tun whether or not the user is logged on. Also, the machine is windows server 08 R2.

    Read the article

  • How do I setup JBoss 5.1.0.GA to run multiple instances?

    - by djangofan
    Does anyone have any experience or advice in setting up multiple JBoss 5.1.x instances on the same machine that has 1 network card? Here is what I did: Installed JBoss 5.1.0.GA into c:\myjboss 1.5. I copied the server/default directory to server/ports-01 and server/ports-02 so they have their own config. did I assume correctly? Ran .\run.bat -c ports-01 Ran .\run.bat -c ports-02 At this point there are 2 instances but the second instance doesn't load correctly because of what is probably a few port conflicts. For example: the http port ends up being 8080 for both instances, which it gets from line #49 in the C:\myjboss\server\all\conf\bindingservice.beans\META-INF\bindings-jboss-beans.xml file. Earlier in the server load it clearly gets the value from line#63 in that same file. I don't know why it gets part of the port config from line #49 and the other part from line#63. Confused. I also tried: .\run.bat -Djboss.service.binding.set=ports-01 -c ports-01 and it made little difference. Any ideas on what I am doing wrong?

    Read the article

  • is a factory pattern to prevent multuple instances for same object (instance that is Equal) good design?

    - by dsollen
    I have a number of objects storing state. There are essentially two types of fields. The ones that uniquly define what the object is (what node, what edge etc), and the oens that store state describing how these things are connected (this node is connected to these edges, this edge is part of these paths) etc. My model is updating the state variables using package methdos, so these objects all act as immutable to anyone not in Model scope. All Objects extend one base type. I've toyed with the idea of a Factory approch which accepts a Builder object and construct the applicable object. However, if an instance of the object already exists (ie would return true if I created the object defined by the builder and passed it to the equal method for the existing instance) the factory returns the current object instead of creating a new instance. Because the Equal method would only compare what uniquly defines the type of object (this is node A nto node B) but won't check the dynamic state stuff (node A is currently connected to nodes C and E) this would be a way of ensuring anyone that wants my Node A automatically knows it's state connections. More importantly it would prevent aliasing nightmares of someone trying to pass an instance of node A with different state then the node A in my model has. I've never heard of this pattern before, and it's a bit odd. I would have to do some overiding of serlization methods to make it work (ensure when I read in a serilized object I add it to my facotry list of known instances, and/or return an existing factory in it's place), as well as using a weakHashMap as if it was a weakHashSet to know rather an instance exists without worrying about a quasi-memory leak occuring. I don't know if this is too confusing or prone to it's own obscure bugs. One thing I know is that plugins interface with lowest level hardware. The plugins have to be able to return state taht is different then my memory; to tell my memory when it's own state is inconsistent. I believe this is possible despit their fetching objects that exist in my memory; we allow building of objects without checking their consistency with the model until the addToModel is called anyways; and the existing plugins design was written before all this extra state existed and worked fine without ever being aware of it. Should I just be using some other design to avoid this crazyness? (I have another question to that affect I'm posting).

    Read the article

  • Is there a factory pattern to prevent multiple instances for same object (instance that is Equal) good design?

    - by dsollen
    I have a number of objects storing state. There are essentially two types of fields. The ones that uniquely define what the object is (what node, what edge etc), and the others that store state describing how these things are connected (this node is connected to these edges, this edge is part of these paths) etc. My model is updating the state variables using package methods, so all these objects act as immutable to anyone not in Model scope. All Objects extend one base type. I've toyed with the idea of a Factory approach which accepts a Builder object and constructs the applicable object. However, if an instance of the object already exists (ie would return true if I created the object defined by the builder and passed it to the equal method for the existing instance) the factory returns the current object instead of creating a new instance. Because the Equal method would only compare what uniquely defines the type of object (this is node A to node B) but won't check the dynamic state stuff (node A is currently connected to nodes C and E) this would be a way of ensuring anyone that wants my Node A automatically knows its state connections. More importantly it would prevent aliasing nightmares of someone trying to pass an instance of node A with different state then the node A in my model has. I've never heard of this pattern before, and it's a bit odd. I would have to do some overriding of serialization methods to make it work (ensure that when I read in a serilized object I add it to my facotry list of known instances, and/or return an existing factory in its place), as well as using a weakHashMap as if it was a weakHashSet to know whether an instance exists without worrying about a quasi-memory leak occuring. I don't know if this is too confusing or prone to its own obscure bugs. One thing I know is that plugins interface with lowest level hardware. The plugins have to be able to return state that is different than my memory; to tell my memory when its own state is inconsistent. I believe this is possible despite their fetching objects that exist in my memory; we allow building of objects without checking their consistency with the model until the addToModel is called anyways; and the existing plugins design was written before all this extra state existed and worked fine without ever being aware of it. Should I just be using some other design to avoid this crazyness? (I have another question to that affect that I'm posting).

    Read the article

  • Get reference to all instances of jquery ui widget?

    - by Hailwood
    I am writing a jquery UI widget that simply wraps the bootstrap popover plugin, In the widget you can pass in the option 'singular', if this is passed in then it should call a function of all other instances of the plugin. something like $('#one').myWidget(); $('#two').myWidget(); $('#three').myWidget(); $('#four').myWidget(); $('#one').myWidget('show'); //stuff from widget one is now visible $('#two').myWidget('show'); //stuff from widget one and two are now visible $('#three').myWidget('show'); //stuff from widget one, two and three are now visible $('#two').myWidget('hide'); //stuff from widget one and three are now visible $('#four').myWidget('show', {singular:true}); //stuff from widget four is now visible So, I imagine the show function looking like: show: function(options){ options = options || {}; if(options.singular){ var instances = '????'; // how do I get all instances? $.each(instances, function(i, o){ o.myWidget('hide'); }); } this.element.popover('show'); } So, question being, how would I get a reference to all elements that have the myWidget widget on them?

    Read the article

  • NHibernate's ISQLQuery returns instances that are of an unexpected type.

    - by Frederik Gheysels
    Hi all, I'm using NHibernate 2.1.2.400, and I'm having an issue with a an ISQLQuery query. The reason why I use an ISQLQuery here, is that this query uses a table for which I have no entity mapped in NHibernate. The query looks like this: ISQLQuery query = session.CreateSQLQuery ( "select p.*, price.* " + "from prestation p left outer join prestationprice price on p.PrestationId = price.PrestationId " + "where p.Id IN ( select id from prestationregistry where ..."); 'Prestationregistry' is the table that is not known by NHibernate (unmapped, so therefore the native SQL Query). my code continues like this: query.AddEntity ("p", typeof(Prestation)); query.AddJoin ("price", typeof(PrestationPrice)); query.SetResultTransformer (Transformers.DistinctRootEntity); var result = query.List(); So far so good. I expect that I'm given a list of 'Prestation' instances as a result of this query, since I declared 'Prestation' as being the root-object that has to be returned by the AddEntity method. I also expect that the PrestationPrices for each Prestation are eagerly loaded by this query (hence the AddJoin method). To my surprise, the List() method returns a collection of PrestationPrice instances instead of Prestation instances. How come ? Am I doing something wrong ? And if so, could you be so kind to tell me what I'm doing wrong ? Edit: Additional Info: When I debug, and put a watch on the 'query' instance, I can see that the queryReturns member of the query contains 2 items: - one NativeSqlQueryRootReturn instance who'se ReturnEntityName is 'Prestation' - one NativeSqlQueryJoinReturn When I do not specify the 'DistinctRootEntity' result transformer, the query returns instances of 'Prestation' instead of PrestationPrice. However, it contains multiple copies of the same instance.

    Read the article

  • Can I use nginx to start EC2 instances on demand?

    - by Gabe Hollombe
    TL;DR - Is there a way to make nginx act as an elastic load balancer that will spin up EC2 instances on demand, allowing for the case when periods of no demand mean no instances will be running? Longer explanation - I have an nginx server that proxy_pass'es requests to a server on EC2. This server doesn't get many requests, so I'd like to keep the server spun down during periods of inactivity (I already have a script to do this). Then, when the instance is spun down and nginx gets a request for that instance, it will time out when trying to get a response from it. At this point, can I somehow trigger a shell command on the server to use EC2's command line tools to spin up the instance, then re-try the user's request after it has started?

    Read the article

  • How to persist changes to instances in the cloud.

    - by Peter NUnn
    Hi folks, I must be missing something here, but can someone clue me in on how to persist changes (such as software installs etc) on machines in the cloud (either EC2 or my own Eucalyptus cloud). I have instances running.. can attach extra disks to them etc., but every time I terminate the instance, all of my changes are lost the next time I run them. Now, this sort of makes sense in that the instances are virtual, but, there must be some way to make these changes persist. I'm just missing how its done. Thanks. Peter.

    Read the article

  • An international mobile app - Should I set up EC2 instances in multiple regions?

    - by ashiina
    I am currently trying to launch an mobile app for users around the world. It is not a spectacular launch which will get millions of users in weeks - just another individual developer releasing an app. I know enough about the techniques of managing timezones, internationalizing string, and what not ( the application layer ). But I cannot find any information on how I should manage my EC2 instances... Should I be setting up EC2 instances in different regions around the world? Is that a must-do, or is it an overkill? I'm aware that it's the ideal solution in terms of performance, but it becomes very tough managing servers in multiple regions. DB issues, AMI management, etc... I'd much rather NOT do so. So I would like to know the general best practice when launching an international app/website. Note: For static contents, I know it's better to use a CDN, so I'm planning on doing so.

    Read the article

  • How do I open 2 instances of the same file in notepad++ side by side with their own scrollbars in a single Notepad++ window?

    - by Qlidnaque
    I remember doing this a long time ago and have forgotten how I had done it. I like to do this when I have long html or php files to edit and I need part of the code from further down the file in a place nearer to the top, or when I want to compare different parts of the same file. There was a way to do this without opening two instances of Notepad++ and when I clicked on save, it made the saved changes in both instances of the opened file (whereas if I have 2 windows of Notepad++ opened simultaneously, it will prompt me to either update or not update the second opened instance if the first one was saved midway.)

    Read the article

  • How to get or Kill all instances from certain class?

    - by Ehab Sutan
    How can I get all instances from a certain class or kill all instances of certain class? For Example, I've a Class MyClass which I intantiate three times as m1, m2 and m3. Is there a way to get or kill all these instances? more clarification : when I've a "settings form" class. When the user click Settings button the application makes instance from this class. When he clicks the same button again it makes new instance. I want it show the 1st instance only and not making new instance

    Read the article

  • Scaling-out Your Services by Message Bus based WCF Transport Extension &ndash; Part 1 &ndash; Background

    - by Shaun
    Cloud computing gives us more flexibility on the computing resource, we can provision and deploy an application or service with multiple instances over multiple machines. With the increment of the service instances, how to balance the incoming message and workload would become a new challenge. Currently there are two approaches we can use to pass the incoming messages to the service instances, I would like call them dispatcher mode and pulling mode.   Dispatcher Mode The dispatcher mode introduces a role which takes the responsible to find the best service instance to process the request. The image below describes the sharp of this mode. There are four clients communicate with the service through the underlying transportation. For example, if we are using HTTP the clients might be connecting to the same service URL. On the server side there’s a dispatcher listening on this URL and try to retrieve all messages. When a message came in, the dispatcher will find a proper service instance to process it. There are three mechanism to find the instance: Round-robin: Dispatcher will always send the message to the next instance. For example, if the dispatcher sent the message to instance 2, then the next message will be sent to instance 3, regardless if instance 3 is busy or not at that moment. Random: Dispatcher will find a service instance randomly, and same as the round-robin mode it regardless if the instance is busy or not. Sticky: Dispatcher will send all related messages to the same service instance. This approach always being used if the service methods are state-ful or session-ful. But as you can see, all of these approaches are not really load balanced. The clients will send messages at any time, and each message might take different process duration on the server side. This means in some cases, some of the service instances are very busy while others are almost idle. For example, if we were using round-robin mode, it could be happened that most of the simple task messages were passed to instance 1 while the complex ones were sent to instance 3, even though instance 1 should be idle. This brings some problem in our architecture. The first one is that, the response to the clients might be longer than it should be. As it’s shown in the figure above, message 6 and 9 can be processed by instance 1 or instance 2, but in reality they were dispatched to the busy instance 3 since the dispatcher and round-robin mode. Secondly, if there are many requests came from the clients in a very short period, service instances might be filled by tons of pending tasks and some instances might be crashed. Third, if we are using some cloud platform to host our service instances, for example the Windows Azure, the computing resource is billed by service deployment period instead of the actual CPU usage. This means if any service instance is idle it is wasting our money! Last one, the dispatcher would be the bottleneck of our system since all incoming messages must be routed by the dispatcher. If we are using HTTP or TCP as the transport, the dispatcher would be a network load balance. If we wants more capacity, we have to scale-up, or buy a hardware load balance which is very expensive, as well as scaling-out the service instances. Pulling Mode Pulling mode doesn’t need a dispatcher to route the messages. All service instances are listening to the same transport and try to retrieve the next proper message to process if they are idle. Since there is no dispatcher in pulling mode, it requires some features on the transportation. The transportation must support multiple client connection and server listening. HTTP and TCP doesn’t allow multiple clients are listening on the same address and port, so it cannot be used in pulling mode directly. All messages in the transportation must be FIFO, which means the old message must be received before the new one. Message selection would be a plus on the transportation. This means both service and client can specify some selection criteria and just receive some specified kinds of messages. This feature is not mandatory but would be very useful when implementing the request reply and duplex WCF channel modes. Otherwise we must have a memory dictionary to store the reply messages. I will explain more about this in the following articles. Message bus, or the message queue would be best candidate as the transportation when using the pulling mode. First, it allows multiple application to listen on the same queue, and it’s FIFO. Some of the message bus also support the message selection, such as TIBCO EMS, RabbitMQ. Some others provide in memory dictionary which can store the reply messages, for example the Redis. The principle of pulling mode is to let the service instances self-managed. This means each instance will try to retrieve the next pending incoming message if they finished the current task. This gives us more benefit and can solve the problems we met with in the dispatcher mode. The incoming message will be received to the best instance to process, which means this will be very balanced. And it will not happen that some instances are busy while other are idle, since the idle one will retrieve more tasks to make them busy. Since all instances are try their best to be busy we can use less instances than dispatcher mode, which more cost effective. Since there’s no dispatcher in the system, there is no bottleneck. When we introduced more service instances, in dispatcher mode we have to change something to let the dispatcher know the new instances. But in pulling mode since all service instance are self-managed, there no extra change at all. If there are many incoming messages, since the message bus can queue them in the transportation, service instances would not be crashed. All above are the benefits using the pulling mode, but it will introduce some problem as well. The process tracking and debugging become more difficult. Since the service instances are self-managed, we cannot know which instance will process the message. So we need more information to support debug and track. Real-time response may not be supported. All service instances will process the next message after the current one has done, if we have some real-time request this may not be a good solution. Compare with the Pros and Cons above, the pulling mode would a better solution for the distributed system architecture. Because what we need more is the scalability, cost-effect and the self-management.   WCF and WCF Transport Extensibility Windows Communication Foundation (WCF) is a framework for building service-oriented applications. In the .NET world WCF is the best way to implement the service. In this series I’m going to demonstrate how to implement the pulling mode on top of a message bus by extending the WCF. I don’t want to deep into every related field in WCF but will highlight its transport extensibility. When we implemented an RPC foundation there are many aspects we need to deal with, for example the message encoding, encryption, authentication and message sending and receiving. In WCF, each aspect is represented by a channel. A message will be passed through all necessary channels and finally send to the underlying transportation. And on the other side the message will be received from the transport and though the same channels until the business logic. This mode is called “Channel Stack” in WCF, and the last channel in the channel stack must always be a transport channel, which takes the responsible for sending and receiving the messages. As we are going to implement the WCF over message bus and implement the pulling mode scaling-out solution, we need to create our own transport channel so that the client and service can exchange messages over our bus. Before we deep into the transport channel, let’s have a look on the message exchange patterns that WCF defines. Message exchange pattern (MEP) defines how client and service exchange the messages over the transportation. WCF defines 3 basic MEPs which are datagram, Request-Reply and Duplex. Datagram: Also known as one-way, or fire-forgot mode. The message sent from the client to the service, and no need any reply from the service. The client doesn’t care about the message result at all. Request-Reply: Very common used pattern. The client send the request message to the service and wait until the reply message comes from the service. Duplex: The client sent message to the service, when the service processing the message it can callback to the client. When callback the service would be like a client while the client would be like a service. In WCF, each MEP represent some channels associated. MEP Channels Datagram IInputChannel, IOutputChannel Request-Reply IRequestChannel, IReplyChannel Duplex IDuplexChannel And the channels are created by ChannelListener on the server side, and ChannelFactory on the client side. The ChannelListener and ChannelFactory are created by the TransportBindingElement. The TransportBindingElement is created by the Binding, which can be defined as a new binding or from a custom binding. For more information about the transport channel mode, please refer to the MSDN document. The figure below shows the transport channel objects when using the request-reply MEP. And this is the datagram MEP. And this is the duplex MEP. After investigated the WCF transport architecture, channel mode and MEP, we finally identified what we should do to extend our message bus based transport layer. They are: Binding: (Optional) Defines the channel elements in the channel stack and added our transport binding element at the bottom of the stack. But we can use the build-in CustomBinding as well. TransportBindingElement: Defines which MEP is supported in our transport and create the related ChannelListener and ChannelFactory. This also defines the scheme of the endpoint if using this transport. ChannelListener: Create the server side channel based on the MEP it’s. We can have one ChannelListener to create channels for all supported MEPs, or we can have ChannelListener for each MEP. In this series I will use the second approach. ChannelFactory: Create the client side channel based on the MEP it’s. We can have one ChannelFactory to create channels for all supported MEPs, or we can have ChannelFactory for each MEP. In this series I will use the second approach. Channels: Based on the MEPs we want to support, we need to implement the channels accordingly. For example, if we want our transport support Request-Reply mode we should implement IRequestChannel and IReplyChannel. In this series I will implement all 3 MEPs listed above one by one. Scaffold: In order to make our transport extension works we also need to implement some scaffold stuff. For example we need some classes to send and receive message though out message bus. We also need some codes to read and write the WCF message, etc.. These are not necessary but would be very useful in our example.   Message Bus There is only one thing remained before we can begin to implement our scaling-out support WCF transport, which is the message bus. As I mentioned above, the message bus must have some features to fulfill all the WCF MEPs. In my company we will be using TIBCO EMS, which is an enterprise message bus product. And I have said before we can use any message bus production if it’s satisfied with our requests. Here I would like to introduce an interface to separate the message bus from the WCF. This allows us to implement the bus operations by any kinds bus we are going to use. The interface would be like this. 1: public interface IBus : IDisposable 2: { 3: string SendRequest(string message, bool fromClient, string from, string to = null); 4:  5: void SendReply(string message, bool fromClient, string replyTo); 6:  7: BusMessage Receive(bool fromClient, string replyTo); 8: } There are only three methods for the bus interface. Let me explain one by one. The SendRequest method takes the responsible for sending the request message into the bus. The parameters description are: message: The WCF message content. fromClient: Indicates if this message was came from the client. from: The channel ID that this message was sent from. The channel ID will be generated when any kinds of channel was created, which will be explained in the following articles. to: The channel ID that this message should be received. In Request-Reply and Duplex MEP this is necessary since the reply message must be received by the channel which sent the related request message. The SendReply method takes the responsible for sending the reply message. It’s very similar as the previous one but no “from” parameter. This is because it’s no need to reply a reply message again in any MEPs. The Receive method takes the responsible for waiting for a incoming message, includes the request message and specified reply message. It returned a BusMessage object, which contains some information about the channel information. The code of the BusMessage class is 1: public class BusMessage 2: { 3: public string MessageID { get; private set; } 4: public string From { get; private set; } 5: public string ReplyTo { get; private set; } 6: public string Content { get; private set; } 7:  8: public BusMessage(string messageId, string fromChannelId, string replyToChannelId, string content) 9: { 10: MessageID = messageId; 11: From = fromChannelId; 12: ReplyTo = replyToChannelId; 13: Content = content; 14: } 15: } Now let’s implement a message bus based on the IBus interface. Since I don’t want you to buy and install the TIBCO EMS or any other message bus products, I will implement an in process memory bus. This bus is only for test and sample purpose. It can only be used if the service and client are in the same process. Very straightforward. 1: public class InProcMessageBus : IBus 2: { 3: private readonly ConcurrentDictionary<Guid, InProcMessageEntity> _queue; 4: private readonly object _lock; 5:  6: public InProcMessageBus() 7: { 8: _queue = new ConcurrentDictionary<Guid, InProcMessageEntity>(); 9: _lock = new object(); 10: } 11:  12: public string SendRequest(string message, bool fromClient, string from, string to = null) 13: { 14: var entity = new InProcMessageEntity(message, fromClient, from, to); 15: _queue.TryAdd(entity.ID, entity); 16: return entity.ID.ToString(); 17: } 18:  19: public void SendReply(string message, bool fromClient, string replyTo) 20: { 21: var entity = new InProcMessageEntity(message, fromClient, null, replyTo); 22: _queue.TryAdd(entity.ID, entity); 23: } 24:  25: public BusMessage Receive(bool fromClient, string replyTo) 26: { 27: InProcMessageEntity e = null; 28: while (true) 29: { 30: lock (_lock) 31: { 32: var entity = _queue 33: .Where(kvp => kvp.Value.FromClient == fromClient && (kvp.Value.To == replyTo || string.IsNullOrWhiteSpace(kvp.Value.To))) 34: .FirstOrDefault(); 35: if (entity.Key != Guid.Empty && entity.Value != null) 36: { 37: _queue.TryRemove(entity.Key, out e); 38: } 39: } 40: if (e == null) 41: { 42: Thread.Sleep(100); 43: } 44: else 45: { 46: return new BusMessage(e.ID.ToString(), e.From, e.To, e.Content); 47: } 48: } 49: } 50:  51: public void Dispose() 52: { 53: } 54: } The InProcMessageBus stores the messages in the objects of InProcMessageEntity, which can take some extra information beside the WCF message itself. 1: public class InProcMessageEntity 2: { 3: public Guid ID { get; set; } 4: public string Content { get; set; } 5: public bool FromClient { get; set; } 6: public string From { get; set; } 7: public string To { get; set; } 8:  9: public InProcMessageEntity() 10: : this(string.Empty, false, string.Empty, string.Empty) 11: { 12: } 13:  14: public InProcMessageEntity(string content, bool fromClient, string from, string to) 15: { 16: ID = Guid.NewGuid(); 17: Content = content; 18: FromClient = fromClient; 19: From = from; 20: To = to; 21: } 22: }   Summary OK, now I have all necessary stuff ready. The next step would be implementing our WCF message bus transport extension. In this post I described two scaling-out approaches on the service side especially if we are using the cloud platform: dispatcher mode and pulling mode. And I compared the Pros and Cons of them. Then I introduced the WCF channel stack, channel mode and the transport extension part, and identified what we should do to create our own WCF transport extension, to let our WCF services using pulling mode based on a message bus. And finally I provided some classes that need to be used in the future posts that working against an in process memory message bus, for the demonstration purpose only. In the next post I will begin to implement the transport extension step by step.   Hope this helps, Shaun All documents and related graphics, codes are provided "AS IS" without warranty of any kind. Copyright © Shaun Ziyan Xu. This work is licensed under the Creative Commons License.

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >