Search Results

Search found 1226 results on 50 pages for 'kendo mvvm'.

Page 14/50 | < Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >

  • Workarounds for supporting MVVM in the Silverlight TreeView Control

    - by cibrax
    MVVM (Model-View-ViewModel) is the pattern that you will typically choose for building testable user interfaces either in WPF or Silverlight. This pattern basically relies on the data binding support in those two technologies for mapping an existing model class (the view model) to the different parts of the UI or view. Unfortunately, MVVM was not threated as first citizen for some of controls released out of the box in the Silverlight runtime or the Silverlight toolkit. That means that using data binding for implementing MVVM is not always something trivial and usually requires some customization in the existing controls. In ran into different problems myself trying to fully support data binding in controls like the tree view or the context menu or things like drag & drop.  For that reason, I decided to write this post to show how the tree view control or the tree view items can be customized to support data binding in many of its properties. In first place, you will typically use a tree view for showing hierarchical data so the view model somehow must reflect that hierarchy. An easy way to implement hierarchy in a model is to use a base item element like this one, public abstract class TreeItemModel { public abstract IEnumerable<TreeItemModel> Children; } You can later derive your concrete model classes from that base class. For example, public class CustomerModel { public string FullName { get; set; } public string Address { get; set; } public IEnumerable<OrderModel> Orders { get; set; } }   public class CustomerTreeItemModel : TreeItemModel { public CustomerTreeItemModel(CustomerModel customer) { }   public override IEnumerable<TreeItemModel> Children { get { // Return orders } } } The Children property in the CustomerTreeItem model implementation can return for instance an ObservableCollection<TreeItemModel> with the orders, so the tree view will automatically subscribe to all the changes in the collection. You can bind this model to the tree view control in the UI by using a Hierarchical data template. <e:TreeView x:Name="TreeView" ItemsSource="{Binding Customers}"> <e:TreeView.ItemTemplate> <sdk:HierarchicalDataTemplate ItemsSource="{Binding Children}"> <!-- TEMPLATE --> </sdk:HierarchicalDataTemplate> </e:TreeView.ItemTemplate> </e:TreeView> An interesting behavior with the Children property and the Hierarchical data template is that the Children property is only invoked before the expansion, so you can use lazy load at this point (The tree view control will not expand the whole tree in the first expansion). The problem with using MVVM in this control is that you can not bind properties in model with specific properties of the TreeView item such as IsSelected or IsExpanded. Here is where you need to customize the existing tree view control to support data binding in tree items. public class CustomTreeView : TreeView { public CustomTreeView() { }   protected override DependencyObject GetContainerForItemOverride() { CustomTreeViewItem tvi = new CustomTreeViewItem(); Binding expandedBinding = new Binding("IsExpanded"); expandedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsExpandedProperty, expandedBinding); Binding selectedBinding = new Binding("IsSelected"); selectedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsSelectedProperty, selectedBinding); return tvi; } }   public class CustomTreeViewItem : TreeViewItem { public CustomTreeViewItem() { }   protected override DependencyObject GetContainerForItemOverride() { CustomTreeViewItem tvi = new CustomTreeViewItem(); Binding expandedBinding = new Binding("IsExpanded"); expandedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsExpandedProperty, expandedBinding); Binding selectedBinding = new Binding("IsSelected"); selectedBinding.Mode = BindingMode.TwoWay; tvi.SetBinding(CustomTreeViewItem.IsSelectedProperty, selectedBinding); return tvi; } } You basically need to derive the TreeView and TreeViewItem controls to manually add a binding for the properties you need. In the example above, I am adding a binding for the “IsExpanded” and “IsSelected” properties in the items. The model for the tree items now needs to be extended to support those properties as well, public abstract class TreeItemModel : INotifyPropertyChanged { bool isExpanded = false; bool isSelected = false;   public abstract IEnumerable<TreeItemModel> Children { get; }   public bool IsExpanded { get { return isExpanded; } set { isExpanded = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("IsExpanded")); } }   public bool IsSelected { get { return isSelected; } set { isSelected = value; if (PropertyChanged != null) PropertyChanged(this, new PropertyChangedEventArgs("IsSelected")); } }   public event PropertyChangedEventHandler PropertyChanged; } However, as soon as you use this custom tree view control, you lose all the automatic styles from the built-in toolkit themes because they are tied to the control type (TreeView in this case).  The only ugly workaround I found so far for this problem is to copy the styles from the Toolkit source code and reuse them in the application.

    Read the article

  • Simple ViewModel Locator for MVVM: The Patients Have Left the Asylum

    Ive been toying with some ideas for MVVM lately. Along the way I have been dragging some friends like Glenn Block and Ward Bell along for the ride. Now, normally its not so bad, but when I get an idea in my head to challenge everything I can be interesting to work with :). These guys are great and I highly encourage you all to get your own personal Glenn and Ward bobble head dolls for your home. But back to MVVM Ive been exploring the world of View first again. The idea is simple: the View is created,...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Simple ViewModel Locator for MVVM: The Patients Have Left the Asylum

    Ive been toying with some ideas for MVVM lately. Along the way I have been dragging some friends like Glenn Block and Ward Bell along for the ride. Now, normally its not so bad, but when I get an idea in my head to challenge everything I can be interesting to work with :). These guys are great and I highly encourage you all to get your own personal Glenn and Ward bobble head dolls for your home. But back to MVVM Ive been exploring the world of View first again. The idea is simple: the View is created,...Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Yippy &ndash; the F# MVVM Pattern

    - by MarkPearl
    I did a recent post on implementing WPF with F#. Today I would like to expand on this posting to give a simple implementation of the MVVM pattern in F#. A good read about this topic can also be found on Dean Chalk’s blog although my example of the pattern is possibly simpler. With the MVVM pattern one typically has 3 segments, the view, viewmodel and model. With the beauty of WPF binding one is able to link the state based viewmodel to the view. In my implementation I have kept the same principles. I have a view (MainView.xaml), and and a ViewModel (MainViewModel.fs).     What I would really like to illustrate in this posting is the binding between the View and the ViewModel so I am going to jump to that… In Program.fs I have the following code… module Program open System open System.Windows open System.Windows.Controls open System.Windows.Markup open myViewModels // Create the View and bind it to the View Model let myView = Application.LoadComponent(new System.Uri("/FSharpWPF;component/MainView.xaml", System.UriKind.Relative)) :?> Window myView.DataContext <- new MainViewModel() :> obj // Application Entry point [<STAThread>] [<EntryPoint>] let main(_) = (new Application()).Run(myView) You can see that I have simply created the view (myView) and then created an instance of my viewmodel (MainViewModel) and then bound it to the data context with the code… myView.DataContext <- new MainViewModel() :> obj If I have a look at my viewmodel (MainViewModel) it looks like this… module myViewModels open System open System.Windows open System.Windows.Input open System.ComponentModel open ViewModelBase type MainViewModel() = // private variables let mutable _title = "Bound Data to Textbox" // public properties member x.Title with get() = _title and set(v) = _title <- v // public commands member x.MyCommand = new FuncCommand ( (fun d -> true), (fun e -> x.ShowMessage) ) // public methods member public x.ShowMessage = let msg = MessageBox.Show(x.Title) () I have exposed a few things, namely a property called Title that is mutable, a command and a method called ShowMessage that simply pops up a message box when called. If I then look at my view which I have created in xaml (MainView.xaml) it looks as follows… <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" Title="F# WPF MVVM" Height="350" Width="525"> <Grid> <Grid.RowDefinitions> <RowDefinition Height="Auto"/> <RowDefinition Height="Auto"/> <RowDefinition Height="*"/> </Grid.RowDefinitions> <TextBox Text="{Binding Path=Title, Mode=TwoWay}" Grid.Row="0"/> <Button Command="{Binding MyCommand}" Grid.Row="1"> <TextBlock Text="Click Me"/> </Button> </Grid> </Window>   It is also very simple. It has a button that’s command is bound to the MyCommand and a textbox that has its text bound to the Title property. One other module that I have created is my ViewModelBase. Right now it is used to store my commanding function but I would look to expand on it at a later stage to implement other commonly used functions… module ViewModelBase open System open System.Windows open System.Windows.Input open System.ComponentModel type FuncCommand (canExec:(obj -> bool),doExec:(obj -> unit)) = let cecEvent = new DelegateEvent<EventHandler>() interface ICommand with [<CLIEvent>] member x.CanExecuteChanged = cecEvent.Publish member x.CanExecute arg = canExec(arg) member x.Execute arg = doExec(arg) Put this all together and you have a basic project that implements the MVVM pattern in F#. For me this is quite exciting as it turned out to be a lot simpler to do than I originally thought possible. Also because I have my view in XAML I can use the XAML designer to design forms in F# which I believe is a much cleaner way to go rather than implementing it all in code. Finally if I look at my viewmodel code, it is actually quite clean and compact…

    Read the article

  • User prompts (MessageBox) with MVVM

    - by mukapu
    The problem statement: I am tired of thinking how to show a simple message box or user prompt and act based on the response in Model-View-View-Model (MVVM). Common approaches: - It's ok, let's just do this one thing from ViewModel and mock this out for unit testing - Design my own dialog, then what to do from there - Can I write something in view code behind, ah yes, that seems to be the only way out, as anyway MVVM is still not matured...  - and what not?   I am pretty much one among the few frustrated out in this world looking for some convincing answers. I think we can do it a little neater without having the feeling of violating any of our self defined rules! Solution: The Control - Implement a simple control with no designer visibility. - Allow a property to be bound to tell when to show the MessageBox - Provide command binding for possible user actions, Yes, No, Cancel... How do I Use? - Just place the necessary XAML tags in the view - Implement the command for all user actions in the View Model - Run unit tests on the commands

    Read the article

  • Navigation in a #WP7 application with MVVM Light

    - by Laurent Bugnion
    In MVVM applications, it can be a bit of a challenge to send instructions to the view (for example a page) from a viewmodel. Thankfully, we have good tools at our disposal to help with that. In his excellent series “MVVM Light Toolkit soup to nuts”, Jesse Liberty proposes one approach using the MVVM Light messaging infrastructure. While this works fine, I would like to show here another approach using what I call a “view service”, i.e. an abstracted service that is invoked from the viewmodel, and implemented on the view. Multiple kinds of view services In fact, I use view services quite often, and even started standardizing them for the Windows Phone 7 applications I work on. If there is interest, I will be happy to show other such view services, for example Animation services, responsible to start/stop animations on the view. Dialog service, in charge of displaying messages to the user and gathering feedback. Navigation service, in charge of navigating to a given page directly from the viewmodel. In this article, I will concentrate on the navigation service. The INavigationService interface In most WP7 apps, the navigation service is used in quite a straightforward way. We want to: Navigate to a given URI. Go back. Be notified when a navigation is taking place, and be able to cancel. The INavigationService interface is quite simple indeed: public interface INavigationService { event NavigatingCancelEventHandler Navigating; void NavigateTo(Uri pageUri); void GoBack(); } Obviously, this interface can be extended if necessary, but in most of the apps I worked on, I found that this covers my needs. The NavigationService class It is possible to nicely pack the navigation service into its own class. To do this, we need to remember that all the PhoneApplicationPage instances use the same instance of the navigation service, exposed through their NavigationService property. In fact, in a WP7 application, it is the main frame (RootFrame, of type PhoneApplicationFrame) that is responsible for this task. So, our implementation of the NavigationService class can leverage this. First the class will grab the PhoneApplicationFrame and store a reference to it. Also, it registers a handler for the Navigating event, and forwards the event to the listening viewmodels (if any). Then, the NavigateTo and the GoBack methods are implemented. They are quite simple, because they are in fact just a gateway to the PhoneApplicationFrame. The whole class is as follows: public class NavigationService : INavigationService { private PhoneApplicationFrame _mainFrame; public event NavigatingCancelEventHandler Navigating; public void NavigateTo(Uri pageUri) { if (EnsureMainFrame()) { _mainFrame.Navigate(pageUri); } } public void GoBack() { if (EnsureMainFrame() && _mainFrame.CanGoBack) { _mainFrame.GoBack(); } } private bool EnsureMainFrame() { if (_mainFrame != null) { return true; } _mainFrame = Application.Current.RootVisual as PhoneApplicationFrame; if (_mainFrame != null) { // Could be null if the app runs inside a design tool _mainFrame.Navigating += (s, e) => { if (Navigating != null) { Navigating(s, e); } }; return true; } return false; } } Exposing URIs I find that it is a good practice to expose each page’s URI as a constant. In MVVM Light applications, a good place to do that is the ViewModelLocator, which already acts like a central point of setup for the views and their viewmodels. Note that in some cases, it is necessary to expose the URL as a string, for instance when a query string needs to be passed to the view. So for example we could have: public static readonly Uri MainPageUri = new Uri("/MainPage.xaml", UriKind.Relative); public const string AnotherPageUrl = "/AnotherPage.xaml?param1={0}&param2={1}"; Creating and using the NavigationService Normally, we only need one instance of the NavigationService class. In cases where you use an IOC container, it is easy to simply register a singleton instance. For example, I am using a modified version of a super simple IOC container, and so I can register the navigation service as follows: SimpleIoc.Register<INavigationService, NavigationService>(); Then, it can be resolved where needed with: SimpleIoc.Resolve<INavigationService>(); Or (more frequently), I simply declare a parameter on the viewmodel constructor of type INavigationService and let the IOC container do its magic and inject the instance of the NavigationService when the viewmodel is created. On supported platforms (for example Silverlight 4), it is also possible to use MEF. Or, of course, we can simply instantiate the NavigationService in the ViewModelLocator, and pass this instance as a parameter of the viewmodels’ constructor, injected as a property, etc… Once the instance has been passed to the viewmodel, it can be used, for example with: NavigationService.NavigateTo(ViewModelLocator.ComparisonPageUri); Testing Thanks to the INavigationService interface, navigation can be mocked and tested when the viewmodel is put under unit test. Simply implement and inject a mock class, and assert that the methods are called as they should by the viewmodel. Conclusion As usual, there are multiple ways to code a solution answering your needs. I find that view services are a really neat way to delegate view-specific responsibilities such as animation, dialogs and of course navigation to other classes through an abstracted interface. In some cases, such as the NavigationService class exposed here, it is even possible to standardize the implementation and pack it in a class library for reuse. I hope that this sample is useful! Happy coding. Laurent   Laurent Bugnion (GalaSoft) Subscribe | Twitter | Facebook | Flickr | LinkedIn

    Read the article

  • How do I MVVM-ize this MouseDown code in my WPF 3D app?

    - by DanM
    In my view, I have: <UserControl x:Class ... MouseDown="UserControl_MouseDown"> <Viewport3D Name="Viewport" Grid.Column="0"> ... </Viewport3D > </UserControl> In my code-behind, I have: private void UserControl_MouseDown(object sender, MouseButtonEventArgs e) { ((MapPanelViewModel)DataContext).OnMouseDown(e, Viewport); } And in my view-model, I have: public void OnMouseDown(MouseEventArgs e, Viewport3D viewport) { var range = new LineRange(); var isValid = ViewportInfo.Point2DtoPoint3D(viewport, e.GetPosition(viewport), out range); if (!isValid) MouseCoordinates = "(no data)"; else { var point3D = range.PointFromZ(0); var point = ViewportInfo.Point3DtoPoint2D(viewport, point3D); MouseCoordinates = e.GetPosition(viewport).ToString() + "\n" + point3D + "\n" + point; } } I really don't have a good sense of how to handle mouse events with MVVM. I always just end up putting them in the code-behind and casting the DataContext as SomeViewModel, then passing the MouseEventArgs on to a handler in my view-model. That's bad enough already, but in this case, I'm actually passing in a control (a Viewport3D), which is necessary for translating coordinates between 2D and 3D. Any suggestions on how to make this more in tune with MVVM?

    Read the article

  • MVVM: Do I need Inheritance with ViewModels A + B ?

    - by Lisa
    Hello guys my first post on SO because EE sucks in the meantime ;P I am using wpf and mvvm in my desktop application. Scenario: I have a calendar with week A and week B which are rotating by every X week depending on the user settings. But the UserControl "week B" is only visible when the user sets the option "rotating weeks"... The UserControl with week A has a DataGrid and for week B I want to use the same UserControl of course. What I want to achieve is that all data entered/choosen by the user in the Week A is saved/backed by a ViewModel A and Model C. When the user wants a rotating weekly calendar plan I need also a ViewModel B and again Model C. The reason why I need to know what data entered by the user belongs to week A or week B is because I have to write the entered data in a certain order into the database = db.Write(weekA),db.Write(weekB),db.Write(weekA),etc... I am unsure how a solution could look like... What would you do to identify a ViewModel A or B so you know the order of how to write the data in the proper order into database? Any other suggestions are also welcome of course, maybe I think in the wrong direction its late here :) I am new to mvvm so please be patient.

    Read the article

  • Big smart ViewModels, dumb Views, and any model, the best MVVM approach?

    - by Edward Tanguay
    The following code is a refactoring of my previous MVVM approach (Fat Models, skinny ViewModels and dumb Views, the best MVVM approach?) in which I moved the logic and INotifyPropertyChanged implementation from the model back up into the ViewModel. This makes more sense, since as was pointed out, you often you have to use models that you either can't change or don't want to change and so your MVVM approach should be able to work with any model class as it happens to exist. This example still allows you to view the live data from your model in design mode in Visual Studio and Expression Blend which I think is significant since you could have a mock data store that the designer connects to which has e.g. the smallest and largest strings that the UI can possibly encounter so that he can adjust the design based on those extremes. Questions: I'm a bit surprised that I even have to "put a timer" in my ViewModel since it seems like that is a function of INotifyPropertyChanged, it seems redundant, but it was the only way I could get the XAML UI to constantly (once per second) reflect the state of my model. So it would be interesting to hear anyone who may have taken this approach if you encountered any disadvantages down the road, e.g. with threading or performance. The following code will work if you just copy the XAML and code behind into a new WPF project. XAML: <Window x:Class="TestMvvm73892.Window1" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:local="clr-namespace:TestMvvm73892" Title="Window1" Height="300" Width="300"> <Window.Resources> <ObjectDataProvider x:Key="DataSourceCustomer" ObjectType="{x:Type local:CustomerViewModel}" MethodName="GetCustomerViewModel"/> </Window.Resources> <DockPanel DataContext="{StaticResource DataSourceCustomer}"> <StackPanel DockPanel.Dock="Top" Orientation="Horizontal"> <TextBlock Text="{Binding Path=FirstName}"/> <TextBlock Text=" "/> <TextBlock Text="{Binding Path=LastName}"/> </StackPanel> <StackPanel DockPanel.Dock="Top" Orientation="Horizontal"> <TextBlock Text="{Binding Path=TimeOfMostRecentActivity}"/> </StackPanel> </DockPanel> </Window> Code Behind: using System; using System.Windows; using System.ComponentModel; using System.Threading; namespace TestMvvm73892 { public partial class Window1 : Window { public Window1() { InitializeComponent(); } } //view model public class CustomerViewModel : INotifyPropertyChanged { private string _firstName; private string _lastName; private DateTime _timeOfMostRecentActivity; private Timer _timer; public string FirstName { get { return _firstName; } set { _firstName = value; this.RaisePropertyChanged("FirstName"); } } public string LastName { get { return _lastName; } set { _lastName = value; this.RaisePropertyChanged("LastName"); } } public DateTime TimeOfMostRecentActivity { get { return _timeOfMostRecentActivity; } set { _timeOfMostRecentActivity = value; this.RaisePropertyChanged("TimeOfMostRecentActivity"); } } public CustomerViewModel() { _timer = new Timer(CheckForChangesInModel, null, 0, 1000); } private void CheckForChangesInModel(object state) { Customer currentCustomer = CustomerViewModel.GetCurrentCustomer(); MapFieldsFromModeltoViewModel(currentCustomer, this); } public static CustomerViewModel GetCustomerViewModel() { CustomerViewModel customerViewModel = new CustomerViewModel(); Customer currentCustomer = CustomerViewModel.GetCurrentCustomer(); MapFieldsFromModeltoViewModel(currentCustomer, customerViewModel); return customerViewModel; } public static void MapFieldsFromModeltoViewModel(Customer model, CustomerViewModel viewModel) { viewModel.FirstName = model.FirstName; viewModel.LastName = model.LastName; viewModel.TimeOfMostRecentActivity = model.TimeOfMostRecentActivity; } public static Customer GetCurrentCustomer() { return Customer.GetCurrentCustomer(); } //INotifyPropertyChanged implementation public event PropertyChangedEventHandler PropertyChanged; private void RaisePropertyChanged(string property) { if (PropertyChanged != null) { PropertyChanged(this, new PropertyChangedEventArgs(property)); } } } //model public class Customer { public string FirstName { get; set; } public string LastName { get; set; } public DateTime TimeOfMostRecentActivity { get; set; } public static Customer GetCurrentCustomer() { return new Customer { FirstName = "Jim", LastName = "Smith", TimeOfMostRecentActivity = DateTime.Now }; } } }

    Read the article

  • Examples of different architecture methodologies

    - by Lane
    Is there a resource or site which illustrates building the same application (desktop or web) using several different contrasting architectures? Such as MVP versus MVVM versus MVC, etc. It would be very helpful to see how they look side-by-side using real-world code instead of comparing written theory to written theory. I've often found that something can be described well in a book, but when you go to implement it, the subtleties and weaknesses of the theory become readily apparent.

    Read the article

  • How can we implement change notification propagation for WPF and SL in the MVVM pattern?

    - by Firoso
    Here's an example scenario targetting MVVM WPF/SL development: View data binds to view model Property "Target" "Target" exposes a field of an object called "data" that exists in the local application model, called "Original" when "Original" changes, it should raise notification to the view model and then propogate that change notification to the View. Here are the solutions I've come up with, but I don't like any of them all that much. I'm looking for other ideas, by the time we come up with something rock solid I'm certain Microsoft will have released .NET 5 with WPF/SL extensions for better tools for MVVM development. For now the question is, "What have you done to solve this problem and how has it worked out for you?" Option 1. Proposal: Attach a handler to data's PropertyChanged event that watches for string values of properties it cares about that might have changed, and raises the appropriate notification. Why I don't like it: Changes don't bubble naturally, objects must be explicitly watched, if data changes to a new source, events must be un-registered/registered. Why I kind of like it: I get explicit control over propogation of changes, and I don't have to use any types that belong at a higher level of the application such as dependancy properties. Option 2. Proposal: Attach a handler to data's PropertyChanged event that re-raises the event across all properties using the name property name. Why I don't like it: This is essentially the same as option 1, but less intelligent, and forces me to never change my property names, as they have to be the same as the property names on data Why I kind of like it: It's very easy to set up and I don't have to think about it... Then again if I try to think, and change names to things that make sense, I shoot myself in the foot, and then I have to think about it! Option 3. Proposal: Inherit my view model from dependancy object, and notify binding sources of changes directly. Why I don't like it: I'm not even 100% sure dependancy properties/objects can DO this, it was just a thought to look into. Also I don't personally feel that WPF/SL types like Dep Obj belong at the view model level. Why I kind of like it: IF it has the capability that I'm seeking then it's a good answer! minus that pesky layering issue. Option 4. Proposal: Use a consistant agent messaging system based off of Task Parallels DataFlow Library to propogate everything through linked pipelining. Why I don't like it: I've never tried this, and somehow I think it will be lacking, plus it requires me to think about my code completely differently all the way around. Why I kind of like it: It has the possiblity of allowing me to do some VERY fun manipulations with a push based data model and using ActionBlocks as validation AND setters to then privately change view model properties and explicitly control PropertyChanged notifications.

    Read the article

< Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >