Search Results

Search found 614 results on 25 pages for 'vectors'.

Page 14/25 | < Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >

  • iPhone/Mac - C++ vector or NSMutableArray

    - by satyam
    I'm creating an application for iPhone which needs to handle large data. So, I would like to know which one will be better to use : C++ Vectors or ObjectiveC's NSMutableArray? Which one will be faster to access elements, delete elements, add elements etc. Can some one guide me please?

    Read the article

  • write a MIDI file in C++

    - by mrbuxley
    Hi I Have some problems finding the right information about this and would be glad if someone could point me in the right direction. How do you code a midifile? e.g. how can I write a snippet that plays a random tone for 1 second. Basically what I would need to get done is representing differnet midi melodys as vectors of some sort? How can I do this..

    Read the article

  • projection / view matrix: the object is bigger than it should and depth does not affect vertices

    - by Francesco Noferi
    I'm currently trying to write a C 3D software rendering engine from scratch just for fun and to have an insight on what OpenGL does behind the scene and what 90's programmers had to do on DOS. I have written my own matrix library and tested it without noticing any issues, but when I tried projecting the vertices of a simple 2x2 cube at 0,0 as seen by a basic camera at 0,0,10, the cube seems to appear way bigger than the application's window. If I scale the vertices' coordinates down by 8 times I can see a proper cube centered on the screen. This cube doesn't seem to be in perspective: wheen seen from the front, the back vertices pe rfectly overlap with the front ones, so I'm quite sure it's not correct. this is how I create the view and projection matrices (vec4_initd initializes the vectors with w=0, vec4_initw initializes the vectors with w=1): void mat4_lookatlh(mat4 *m, const vec4 *pos, const vec4 *target, const vec4 *updirection) { vec4 fwd, right, up; // fwd = norm(pos - target) fwd = *target; vec4_sub(&fwd, pos); vec4_norm(&fwd); // right = norm(cross(updirection, fwd)) vec4_cross(updirection, &fwd, &right); vec4_norm(&right); // up = cross(right, forward) vec4_cross(&fwd, &right, &up); // orientation and translation matrices combined vec4_initd(&m->a, right.x, up.x, fwd.x); vec4_initd(&m->b, right.y, up.y, fwd.y); vec4_initd(&m->c, right.z, up.z, fwd.z); vec4_initw(&m->d, -vec4_dot(&right, pos), -vec4_dot(&up, pos), -vec4_dot(&fwd, pos)); } void mat4_perspectivefovrh(mat4 *m, float fovdegrees, float aspectratio, float near, float far) { float h = 1.f / tanf(ftoradians(fovdegrees / 2.f)); float w = h / aspectratio; vec4_initd(&m->a, w, 0.f, 0.f); vec4_initd(&m->b, 0.f, h, 0.f); vec4_initw(&m->c, 0.f, 0.f, -far / (near - far)); vec4_initd(&m->d, 0.f, 0.f, (near * far) / (near - far)); } this is how I project my vertices: void device_project(device *d, const vec4 *coord, const mat4 *transform, int *projx, int *projy) { vec4 result; mat4_mul(transform, coord, &result); *projx = result.x * d->w + d->w / 2; *projy = result.y * d->h + d->h / 2; } void device_rendervertices(device *d, const camera *camera, const mesh meshes[], int nmeshes, const rgba *color) { int i, j; mat4 view, projection, world, transform, projview; mat4 translation, rotx, roty, rotz, transrotz, transrotzy; int projx, projy; // vec4_unity = (0.f, 1.f, 0.f, 0.f) mat4_lookatlh(&view, &camera->pos, &camera->target, &vec4_unity); mat4_perspectivefovrh(&projection, 45.f, (float)d->w / (float)d->h, 0.1f, 1.f); for (i = 0; i < nmeshes; i++) { // world matrix = translation * rotz * roty * rotx mat4_translatev(&translation, meshes[i].pos); mat4_rotatex(&rotx, ftoradians(meshes[i].rotx)); mat4_rotatey(&roty, ftoradians(meshes[i].roty)); mat4_rotatez(&rotz, ftoradians(meshes[i].rotz)); mat4_mulm(&translation, &rotz, &transrotz); // transrotz = translation * rotz mat4_mulm(&transrotz, &roty, &transrotzy); // transrotzy = transrotz * roty = translation * rotz * roty mat4_mulm(&transrotzy, &rotx, &world); // world = transrotzy * rotx = translation * rotz * roty * rotx // transform matrix mat4_mulm(&projection, &view, &projview); // projview = projection * view mat4_mulm(&projview, &world, &transform); // transform = projview * world = projection * view * world for (j = 0; j < meshes[i].nvertices; j++) { device_project(d, &meshes[i].vertices[j], &transform, &projx, &projy); device_putpixel(d, projx, projy, color); } } } this is how the cube and camera are initialized: // test mesh cube = &meshlist[0]; mesh_init(cube, "Cube", 8); cube->rotx = 0.f; cube->roty = 0.f; cube->rotz = 0.f; vec4_initw(&cube->pos, 0.f, 0.f, 0.f); vec4_initw(&cube->vertices[0], -1.f, 1.f, 1.f); vec4_initw(&cube->vertices[1], 1.f, 1.f, 1.f); vec4_initw(&cube->vertices[2], -1.f, -1.f, 1.f); vec4_initw(&cube->vertices[3], -1.f, -1.f, -1.f); vec4_initw(&cube->vertices[4], -1.f, 1.f, -1.f); vec4_initw(&cube->vertices[5], 1.f, 1.f, -1.f); vec4_initw(&cube->vertices[6], 1.f, -1.f, 1.f); vec4_initw(&cube->vertices[7], 1.f, -1.f, -1.f); // main camera vec4_initw(&maincamera.pos, 0.f, 0.f, 10.f); maincamera.target = vec4_zerow; and, just to be sure, this is how I compute matrix multiplications: void mat4_mul(const mat4 *m, const vec4 *va, vec4 *vb) { vb->x = m->a.x * va->x + m->b.x * va->y + m->c.x * va->z + m->d.x * va->w; vb->y = m->a.y * va->x + m->b.y * va->y + m->c.y * va->z + m->d.y * va->w; vb->z = m->a.z * va->x + m->b.z * va->y + m->c.z * va->z + m->d.z * va->w; vb->w = m->a.w * va->x + m->b.w * va->y + m->c.w * va->z + m->d.w * va->w; } void mat4_mulm(const mat4 *ma, const mat4 *mb, mat4 *mc) { mat4_mul(ma, &mb->a, &mc->a); mat4_mul(ma, &mb->b, &mc->b); mat4_mul(ma, &mb->c, &mc->c); mat4_mul(ma, &mb->d, &mc->d); }

    Read the article

  • AndEngine Physics Editor loading level

    - by Khawar Raza
    I have created a .pes file using PhysicsEditor and imported as xml and have added to my project. When I parsed it and created bodies, it is showing strange behavior. The mapping of bodies that I created in PhysicsEditor is totally different what I see in my application means the shapes I draw in PhysicsEditor are rendering differently in my app. Here is my xml and code to parse and add bodies to scene. PhysicsEditor XML file: <?xml version="1.0" encoding="UTF-8"?> <!-- created with http://www.physicseditor.de --> <bodydef version="1.0"> <bodies numBodies="1"> <body name="car_path" dynamic="false" numFixtures="1"> <fixture density="2" friction="1" restitution="0" filter_categoryBits="1" filter_groupIndex="0" filter_maskBits="65535" isSensor="false" type="POLYGON" numPolygons="20" > <polygon numVertexes="6"> <vertex x="277.0000" y="152.0000" /> <vertex x="356.0000" y="172.0000" /> <vertex x="413.0000" y="194.0000" /> <vertex x="476.0000" y="223.0000" /> <vertex x="173.0000" y="232.0000" /> <vertex x="174.0000" y="148.0000" /> </polygon> <polygon numVertexes="4"> <vertex x="1556.0000" y="221.0000" /> <vertex x="1142.0000" y="94.0000" /> <vertex x="1255.0000" y="-15.0000" /> <vertex x="1554.0000" y="-14.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="-192.0000" y="177.0000" /> <vertex x="-888.0000" y="139.0000" /> <vertex x="-549.0000" y="-125.0000" /> </polygon> <polygon numVertexes="6"> <vertex x="1762.0000" y="24.0000" /> <vertex x="1862.0000" y="27.0000" /> <vertex x="1927.0000" y="68.0000" /> <vertex x="2078.0000" y="222.0000" /> <vertex x="1643.0000" y="212.0000" /> <vertex x="1642.0000" y="38.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="-1150.0000" y="146.0000" /> <vertex x="-1776.0000" y="140.0000" /> <vertex x="-1476.0000" y="-25.0000" /> </polygon> <polygon numVertexes="4"> <vertex x="-2799.0000" y="103.0000" /> <vertex x="-2684.0000" y="223.0000" /> <vertex x="-3112.0000" y="256.0000" /> <vertex x="-3108.0000" y="98.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="3112.0000" y="255.0000" /> <vertex x="2422.0000" y="222.0000" /> <vertex x="3120.0000" y="-71.0000" /> </polygon> <polygon numVertexes="4"> <vertex x="1142.0000" y="94.0000" /> <vertex x="1556.0000" y="221.0000" /> <vertex x="709.0000" y="226.0000" /> <vertex x="911.0000" y="93.0000" /> </polygon> <polygon numVertexes="6"> <vertex x="-2111.0000" y="89.0000" /> <vertex x="-2067.0000" y="94.0000" /> <vertex x="-2002.0000" y="139.0000" /> <vertex x="-2344.0000" y="223.0000" /> <vertex x="-2196.0000" y="112.0000" /> <vertex x="-2153.0000" y="91.0000" /> </polygon> <polygon numVertexes="4"> <vertex x="105.0000" y="233.0000" /> <vertex x="-94.0000" y="178.0000" /> <vertex x="69.0000" y="106.0000" /> <vertex x="91.0000" y="104.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="-2002.0000" y="139.0000" /> <vertex x="-2067.0000" y="94.0000" /> <vertex x="-2032.0000" y="110.0000" /> </polygon> <polygon numVertexes="4"> <vertex x="-1150.0000" y="146.0000" /> <vertex x="105.0000" y="233.0000" /> <vertex x="-2344.0000" y="223.0000" /> <vertex x="-2002.0000" y="139.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="413.0000" y="194.0000" /> <vertex x="356.0000" y="172.0000" /> <vertex x="376.0000" y="176.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="105.0000" y="233.0000" /> <vertex x="-192.0000" y="177.0000" /> <vertex x="-94.0000" y="178.0000" /> </polygon> <polygon numVertexes="4"> <vertex x="105.0000" y="233.0000" /> <vertex x="-1150.0000" y="146.0000" /> <vertex x="-888.0000" y="139.0000" /> <vertex x="-192.0000" y="177.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="3112.0000" y="255.0000" /> <vertex x="-3112.0000" y="256.0000" /> <vertex x="-2684.0000" y="223.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="3112.0000" y="255.0000" /> <vertex x="1556.0000" y="221.0000" /> <vertex x="1643.0000" y="212.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="709.0000" y="226.0000" /> <vertex x="173.0000" y="232.0000" /> <vertex x="476.0000" y="223.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="3112.0000" y="255.0000" /> <vertex x="2078.0000" y="222.0000" /> <vertex x="2422.0000" y="222.0000" /> </polygon> <polygon numVertexes="3"> <vertex x="3112.0000" y="255.0000" /> <vertex x="105.0000" y="233.0000" /> <vertex x="173.0000" y="232.0000" /> </polygon> </fixture> </body> </bodies> <metadata> <format>1</format> <ptm_ratio></ptm_ratio> </metadata> </bodydef> And here is my code: private void loadLevel() { // TODO Auto-generated method stub AssetManager assetManager = getAssets(); try { InputStream stream = assetManager.open("tmx/path1.xml"); if(stream != null) { try { DocumentBuilderFactory dbf = DocumentBuilderFactory.newInstance(); dbf.setValidating(false); dbf.setIgnoringComments(false); dbf.setIgnoringElementContentWhitespace(true); dbf.setNamespaceAware(true); DocumentBuilder db = null; db = dbf.newDocumentBuilder(); Document document = db.parse(stream); Element root = document.getDocumentElement(); NodeList bodiesNodeList = root.getElementsByTagName("bodies"); for(int i = 0; i < bodiesNodeList.getLength(); i++) { BodyDef bodyDef = new BodyDef(); bodyDef.type = BodyType.StaticBody; bodyDef.fixedRotation = true; Element bodiesElement = (Element)bodiesNodeList.item(i); NodeList bodyList = bodiesElement.getElementsByTagName("body"); for(int j = 0; j < bodyList.getLength(); j++) { Element bodyElement = (Element)bodyList.item(j); Body body = mPhysicsWorld.createBody(bodyDef); NodeList fixtureList = bodyElement.getElementsByTagName("fixture"); for(int k = 0; k < fixtureList.getLength(); k++) { Element fixtureElement = (Element)fixtureList.item(k); FixtureDef fixtureDef = new FixtureDef(); if(fixtureElement != null) { String density = fixtureElement.getAttribute("density"); String friction = fixtureElement.getAttribute("friction"); String restitution = fixtureElement.getAttribute("restitution"); fixtureDef = PhysicsFactory.createFixtureDef(Float.parseFloat(density), Float.parseFloat(friction), Float.parseFloat(restitution)); } NodeList polygonList = fixtureElement.getElementsByTagName("polygon"); if(polygonList != null && polygonList.getLength() > 0) { for(int m = 0; m < polygonList.getLength(); m++) { PolygonShape polyShape = new PolygonShape(); Element polygonElement = (Element)polygonList.item(m); NodeList vertexList = polygonElement.getElementsByTagName("vertex"); if(vertexList != null && vertexList.getLength() > 0) { Vector2 [] vectors = new Vector2[vertexList.getLength()]; for(int n = 0; n < vertexList.getLength(); n++) { Element vertexElement = (Element)vertexList.item(n); if(vertexElement != null) { float x = Float.parseFloat(vertexElement.getAttribute("x")); float y = Float.parseFloat(vertexElement.getAttribute("y")); vectors[n] = new Vector2(x/PIXEL_TO_METER_RATIO_DEFAULT, y/PIXEL_TO_METER_RATIO_DEFAULT); } } polyShape.set(vectors); fixtureDef.shape = polyShape; } body.createFixture(fixtureDef); } } } mScene.attachChild(bgSprite); mPhysicsWorld.registerPhysicsConnector(new PhysicsConnector(bgSprite, body, false, false)); } } } catch(Exception e) { e.printStackTrace(); } } } catch (IOException e) { // TODO Auto-generated catch block e.printStackTrace(); } } Any idea where I am going wrong?

    Read the article

  • Convert OpenGL code to DirectX

    - by Fredrik Boston Westman
    First of all, this is kind of a follow up question on @byte56 excellent anwser on this question concerning picking algorithms. I'm trying to convert one of his code examples to directX 11 however I have run into some problems ( I can pick but the picking is way off), and I wanted to make sure I had done it right before moving on and checking the rest of my code. I am not that familiar with openGl but I can imagine openGl has different coordinations systems, and functions that alters how you must implement to code a bit. The getPickRay function on the answer linked is what I'm trying to convert. This is the part of my code that I think is giving me trouble when converting from openGl to directX Because I'm unsure on how their different coordination systems differs from one another. PRVecX = ((( 2.0f * mouseX) / ClientWidth ) - 1 ) * tan((viewAngle)/2); PRVecY = (1-(( 2.0f * mouseY) / ClientHeight)) * tan((viewAngle)/2); Another thing that I am unsure about is this part: XMVECTOR worldSpaceNear = XMVector3TransformCoord(cameraSpaceNear, invMat); XMVECTOR worldSpaceFar = XMVector3TransformCoord(cameraSpaceFar, invMat); A couple of notes: The mouse coordinates are already converted so that the top left corner of the client window would be (0,0) and the bottom right (800,600) ( or whatever resolution you would have) The viewAngle is the same angle that I used when setting the camera view with XMMatrixPerspectiveFovLH. I removed the variables aspectRatio and zoomFactor because I assumed that they were related to some specific function of his game. To summarize it up to questions : Does the openGL coordination system differ in such a way that this equation in the first of my code examples wouldn't be valid when used in DirectX 11 ( with its respective screen coordination system)? Is the openGL method Matrix4f.transform(a, b, c) equal to the directX method c = XMVector3TransformCoord(b,a)? (where a is a matrix and b,c are vectors). Because I know when it comes to matrices order is important.

    Read the article

  • Points on lines where the two lines are the closest together

    - by James Bedford
    Hey guys, I'm trying to find the points on two lines where the two lines are the closest. I've implemented the following method (Points and Vectors are as you'd expect, and a Line consists of a Point on the line and a non-normalized direction Vector from that point): void CDClosestPointsOnTwoLines(Line line1, Line line2, Point* closestPoints) { closestPoints[0] = line1.pointOnLine; closestPoints[1] = line2.pointOnLine; Vector d1 = line1.direction; Vector d2 = line2.direction; float a = d1.dot(d1); float b = d1.dot(d2); float e = d2.dot(d2); float d = a*e - b*b; if (d != 0) // If the two lines are not parallel. { Vector r = Vector(line1.pointOnLine) - Vector(line2.pointOnLine); float c = d1.dot(r); float f = d2.dot(r); float s = (b*f - c*e) / d; float t = (a*f - b*c) / d; closestPoints[0] = line1.positionOnLine(s); closestPoints[1] = line2.positionOnLine(t); } else { printf("Lines were parallel.\n"); } } I'm using OpenGL to draw three lines that move around the world, the third of which should be the line that most closely connects the other two lines, the two end points of which are calculated using this function. The problem is that the first point of closestPoints after this function is called will lie on line1, but the second point won't lie on line2, let alone at the closest point on line2! I've checked over the function many times but I can't see where the mistake in my implementation is. I've checked my dot product function, scalar multiplication, subtraction, positionOnLine() etc. etc. So my assumption is that the problem is within this method implementation. If it helps to find the answer, this is function supposed to be an implementation of section 5.1.8 from 'Real-Time Collision Detection' by Christer Ericson. Many thanks for any help!

    Read the article

  • vector quality of svg and pdf

    - by Kasper
    I'm converting pdf files to svg as it is easier to use svg files on webpages. I first thought the quality of svg must be similar to pdf, as they are both vector graphics. However, now I look a little better on it, it seems that pdf is a bit superior: (https://dl.dropboxusercontent.com/u/58922976/Photos/1.png) I wonder if I could change this in some way. Is this because pdf vectors are just better quality ? Or is this because chrome renders svg in lower quality than adobe reader renders pdf ? Is this a setting in the svg file that I could change ? Here is the pdf file: https://dl.dropboxusercontent.com/u/58922976/syllabusLinAlg2012.59.pdf And here is the svg file: (https://dl.dropboxusercontent.com/u/58922976/syllabusLinAlg2012.59.svg) I've made this svg file in illustrator, and only chrome is able to use the embedded svg fonts. So firefox and internet explorer won't give the expected result.

    Read the article

  • How do I classify using GLCM and SVM Classifier in Matlab?

    - by Gomathi
    I'm on a project of liver tumor segmentation and classification. I used Region Growing and FCM for liver and tumor segmentation respectively. Then, I used Gray Level Co-occurence matrix for texture feature extraction. I have to use Support Vector Machine for Classification. But I don't know how to normalize the feature vectors. Can anyone tell how to program it in Matlab? To the GLCM program, I gave the tumor segmented image as input. Was I correct? If so, I think, then, my output will also be correct. My glcm coding, as far as I have tried is, I = imread('fzliver3.jpg'); GLCM = graycomatrix(I,'Offset',[2 0;0 2]); stats = graycoprops(GLCM,'all') t1= struct2array(stats) I2 = imread('fzliver4.jpg'); GLCM2 = graycomatrix(I2,'Offset',[2 0;0 2]); stats2 = graycoprops(GLCM2,'all') t2= struct2array(stats2) I3 = imread('fzliver5.jpg'); GLCM3 = graycomatrix(I3,'Offset',[2 0;0 2]); stats3 = graycoprops(GLCM3,'all') t3= struct2array(stats3) t=[t1;t2;t3] xmin = min(t); xmax = max(t); scale = xmax-xmin; tf=(x-xmin)/scale Was this a correct implementation? Also, I get an error at the last line. My output is: stats = Contrast: [0.0510 0.0503] Correlation: [0.9513 0.9519] Energy: [0.8988 0.8988] Homogeneity: [0.9930 0.9935] t1 = Columns 1 through 6 0.0510 0.0503 0.9513 0.9519 0.8988 0.8988 Columns 7 through 8 0.9930 0.9935 stats2 = Contrast: [0.0345 0.0339] Correlation: [0.8223 0.8255] Energy: [0.9616 0.9617] Homogeneity: [0.9957 0.9957] t2 = Columns 1 through 6 0.0345 0.0339 0.8223 0.8255 0.9616 0.9617 Columns 7 through 8 0.9957 0.9957 stats3 = Contrast: [0.0230 0.0246] Correlation: [0.7450 0.7270] Energy: [0.9815 0.9813] Homogeneity: [0.9971 0.9970] t3 = Columns 1 through 6 0.0230 0.0246 0.7450 0.7270 0.9815 0.9813 Columns 7 through 8 0.9971 0.9970 t = Columns 1 through 6 0.0510 0.0503 0.9513 0.9519 0.8988 0.8988 0.0345 0.0339 0.8223 0.8255 0.9616 0.9617 0.0230 0.0246 0.7450 0.7270 0.9815 0.9813 Columns 7 through 8 0.9930 0.9935 0.9957 0.9957 0.9971 0.9970 ??? Error using ==> minus Matrix dimensions must agree. The images are:

    Read the article

  • Converting to and from local and world 3D coordinate spaces?

    - by James Bedford
    Hey guys, I've been following a guide I found here (http://knol.google.com/k/matrices-for-3d-applications-view-transformation) on constructing a matrix that will allow me to 3D coordinates to an object's local coordinate space, and back again. I've tried to implement these two matrices using my object's look, side, up and location vectors and it seems to be working for the first three coordinates. I'm a little confused as to what I should expect for the w coordinate. Here are couple of examples from the print outs I've made of the matricies that are constructed. I'm passing a test vector of [9, 8, 14, 1] each time to see if I can convert both ways: Basic example: localize matrix: Matrix: 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 5.237297 -45.530716 11.021271 1.000000 globalize matrix: Matrix: 0.000000 0.000000 1.000000 0.000000 -0.000000 1.000000 0.000000 0.000000 1.000000 0.000000 0.000000 0.000000 -11.021271 -45.530716 -5.237297 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(14.000000, 8.000000, 9.000000, -161.812256) worldTest: Vector4f(9.000000, 8.000000, 14.000000, -727.491455) More complicated example: localize matrix: Matrix: 0.052504 -0.000689 -0.998258 0.000000 0.052431 0.998260 0.002068 0.000000 0.997241 -0.052486 0.052486 0.000000 58.806095 2.979346 -39.396252 1.000000 globalize matrix: Matrix: 0.052504 0.052431 0.997241 0.000000 -0.000689 0.998260 -0.052486 0.000000 -0.998258 0.002068 0.052486 0.000000 -42.413120 5.975957 -56.419727 1.000000 test: Vector4f(9.000000, 8.000000, 14.000000, 1.000000) localTest: Vector4f(-13.508600, 8.486917, 9.290090, 2.542114) worldTest: Vector4f(9.000190, 7.993863, 13.990230, 102.057129) As you can see in the more complicated example, the coordinates after converting both ways loose some precision, but this isn't a problem. I'm just wondering how I should deal with the last (w) coordinate? Should I just set it to 1 after performing the matrix multiplication, or does it look like I've done something wrong? Thanks in advance for your help!

    Read the article

  • Oscillating Sprite Movement in XNA

    - by Nick Van Hoogenstyn
    I'm working on a 2d game and am looking to make a sprite move horizontally across the screen in XNA while oscillating vertically (basically I want the movement to look like a sin wave). Currently for movement I'm using two vectors, one for speed and one for direction. My update function for sprites just contains this: Position += direction * speed * (float)t.ElapsedGameTime.TotalSeconds; How could I utilize this setup to create the desired movement? I'm assuming I'd call Math.Sin or Math.Cos, but I'm unsure of where to start to make this sort of thing happened. My attempt looked like this: public override void Update(GameTime t) { double msElapsed = t.TotalGameTime.Milliseconds; mDirection.Y = (float)Math.Sin(msElapsed); if (mDirection.Y >= 0) mSpeed.Y = moveSpeed; else mSpeed.Y = -moveSpeed; base.Update(t, mSpeed, mDirection); } moveSpeed is just some constant positive integer. With this, the sprite simply just continuously moves downward until it's off screen. Can anyone give me some info on what I'm doing wrong here? I've never tried something like this so if I'm doing things completely wrong, let me know!

    Read the article

  • Extreme Optimization Numerical Libraries for .NET – Part 1 of n

    - by JoshReuben
    While many of my colleagues are fascinated in constructing the ultimate ViewModel or ServiceBus, I feel that this kind of plumbing code is re-invented far too many times – at some point in the near future, it will be out of the box standard infra. How many times have you been to a customer site and built a different variation of the same kind of code frameworks? How many times can you abstract Prism or reliable and discoverable WCF communication? As the bar is raised for whats bundled with the framework and more tasks become declarative, automated and configurable, Information Systems will expose a higher level of abstraction, forcing software engineers to focus on more advanced computer science and algorithmic tasks. I've spent the better half of the past decade building skills in .NET and expanding my mathematical horizons by working through the Schaums guides. In this series I am going to examine how these skillsets come together in the implementation provided by ExtremeOptimization. Download the trial version here: http://www.extremeoptimization.com/downloads.aspx Overview The library implements a set of algorithms for: linear algebra, complex numbers, numerical integration and differentiation, solving equations, optimization, random numbers, regression, ANOVA, statistical distributions, hypothesis tests. EONumLib combines three libraries in one - organized in a consistent namespace hierarchy. Mathematics Library - Extreme.Mathematics namespace Vector and Matrix Library - Extreme.Mathematics.LinearAlgebra namespace Statistics Library - Extreme.Statistics namespace System Requirements -.NET framework 4.0  Mathematics Library The classes are organized into the following namespace hierarchy: Extreme.Mathematics – common data types, exception types, and delegates. Extreme.Mathematics.Calculus - numerical integration and differentiation of functions. Extreme.Mathematics.Curves - points, lines and curves, including polynomials and Chebyshev approximations. curve fitting and interpolation. Extreme.Mathematics.Generic - generic arithmetic & linear algebra. Extreme.Mathematics.EquationSolvers - root finding algorithms. Extreme.Mathematics.LinearAlgebra - vectors , matrices , matrix decompositions, solvers for simultaneous linear equations and least squares. Extreme.Mathematics.Optimization – multi-d function optimization + linear programming. Extreme.Mathematics.SignalProcessing - one and two-dimensional discrete Fourier transforms. Extreme.Mathematics.SpecialFunctions

    Read the article

  • Panning with the OpenGL Camera / View Matrix

    - by Pris
    I'm gonna try this again I've been trying to setup a simple camera class with OpenGL but I'm completely lost and I've made zero progress creating anything useful. I'm using modern OpenGL and the glm library for matrix math. To get the most basic thing I can think of down, I'd like to pan an arbitrarily positioned camera around. That means move it along its own Up and Side axes. Here's a picture of a randomly positioned camera looking at an object: It should be clear what the Up (Green) and Side (Red) vectors on the camera are. Even though the picture shows otherwise, assume that the Model matrix is just the identity matrix. Here's what I do to try and get it to work: Step 1: Create my View/Camera matrix (going to refer to it as the View matrix from now on) using glm::lookAt(). Step 2: Capture mouse X and Y positions. Step 3: Create a translation matrix mapping changes in the X mouse position to the camera's Side vector, and mapping changes in the Y mouse position to the camera's Up vector. I get the Side vector from the first column of the View matrix. I get the Up vector from the second column of the View matrix. Step 4: Apply the translation: viewMatrix = glm::translate(viewMatrix,translationVector); But this doesn't work. I see that the mouse movement is mapped to some kind of perpendicular axes, but they're definitely not moving as you'd expect with respect to the camera. Could someone please explain what I'm doing wrong and point me in the right direction with this camera stuff?

    Read the article

  • How to fix issue with my 3D first person camera?

    - by dxCUDA
    My camera moves and rotates, but relative to the worlds origin, instead of the players. I am having difficulty rotating the camera and then translating the camera in the direction relative to the camera facing angle. I have been able to translate the camera and rotate relative to the players origin, but not then rotate and translate in the direction relative to the cameras facing direction. My goal is to have a standard FPS-style camera. float yaw, pitch, roll; D3DXMATRIX rotationMatrix; D3DXVECTOR3 Direction; D3DXMATRIX matRotAxis,matRotZ; D3DXVECTOR3 RotAxis; // Set the yaw (Y axis), pitch (X axis), and roll (Z axis) rotations in radians. pitch = m_rotationX * 0.0174532925f; yaw = m_rotationY * 0.0174532925f; roll = m_rotationZ * 0.0174532925f; up = D3DXVECTOR3(0.0f, 1.0f, 0.0f);//Create the up vector //Build eye ,lookat and rotation vectors from player input data eye = D3DXVECTOR3(m_fCameraX, m_fCameraY, m_fCameraZ); lookat = D3DXVECTOR3(m_fLookatX, m_fLookatY, m_fLookatZ); rotation = D3DXVECTOR3(m_rotationX, m_rotationY, m_rotationZ); D3DXVECTOR3 camera[3] = {eye,//Eye lookat,//LookAt up };//Up RotAxis.x = pitch; RotAxis.y = yaw; RotAxis.z = roll; D3DXVec3Normalize(&Direction, &(camera[1] - camera[0]));//Direction vector D3DXVec3Cross(&RotAxis, &Direction, &camera[2]);//Strafe vector D3DXVec3Normalize(&RotAxis, &RotAxis); // Create the rotation matrix from the yaw, pitch, and roll values. D3DXMatrixRotationYawPitchRoll(&matRotAxis, pitch,yaw, roll); //rotate direction D3DXVec3TransformCoord(&Direction,&Direction,&matRotAxis); //Translate up vector D3DXVec3TransformCoord(&camera[2], &camera[2], &matRotAxis); //Translate in the direction of player rotation D3DXVec3TransformCoord(&camera[0], &camera[0], &matRotAxis); camera[1] = Direction + camera[0];//Avoid gimble locking D3DXMatrixLookAtLH(&in_viewMatrix, &camera[0], &camera[1], &camera[2]);

    Read the article

  • Understanding normal maps on terrain

    - by JohnB
    I'm having trouble understanding some of the math behind normal map textures even though I've got it to work using borrowed code, I want to understand it. I have a terrain based on a heightmap. I'm generating a mesh of triangles at load time and rendering that mesh. Now for each vertex I need to calculate a normal, a tangent, and a bitangent. My understanding is as follows, have I got this right? normal is a unit vector facing outwards from the surface of the triangle. For a vertex I take the average of the normals of the triangles using that vertex. tangent is a unit vector in the direction of the 'u' coordinates of the texture map. As my texture u,v coordinates follow the x and y coordinates of the terrain, then my understanding is that this vector is simply the vector along the surface in the x direction. So should be able to calculate this as simply the difference between vertices in the x direction to get a vector, (and normalize it). bitangent is a unit vector in the direction of the 'v' coordinates of the texture map. As my texture u,v coordinates follow the x and y coordinates of the terrain, then my understanding is that this vector is simply the vector along the surface in the y direction. So should be able to calculate this as simply the difference between vertices in the y direction to get a vector, (and normalize it). However the code I have borrowed seems much more complicated than this and takes into account the actual values of u, and v at each vertex which I don't understand the need for as they increase in exactly the same direction as x, and y. I implemented what I thought from above, and it simply doesn't work, the normals are clearly not working for lighting. Have I misunderstood something? Or can someone explain to me the physical meaning of the tangent and bitangent vectors when applied to a mesh generated from a hightmap like this, when u and v texture coordinates map along the x and y directions. Thanks for any help understanding this.

    Read the article

  • How can I move along an angled collision at a constant speed?

    - by Raven Dreamer
    I have, for all intents and purposes, a Triangle class that objects in my scene can collide with (In actuality, the right side of a parallelogram). My collision detection and resolution code works fine for the purposes of preventing a gameobject from entering into the space of the Triangle, instead directing the movement along the edge. The trouble is, the maximum speed along the x and y axis is not equivalent in my game, and moving along the Y axis (up or down) should take twice as long as an equivalent distance along the X axis (left or right). Unfortunately, these speeds apply to the collision resolution too, and movement along the blue path above progresses twice as fast. What can I do in my collision resolution to make sure that the speedlimit for Y axis movement is obeyed in the latter case? Collision Resolution for this case below (vecInput and velocity are the position and velocity vectors of the game object): // y = mx+c lowY = 2*vecInput.x + parag.rightYIntercept ; ... else { // y = mx+c // vecInput.y = 2(x) + RightYIntercept // (vecInput.y - RightYIntercept) / 2 = x; //if velocity.Y (positive) greater than velocity.X (negative) //pushing from bottom, so push right. if(velocity.y > -1*velocity.x) { vecInput = new Vector2((vecInput.y - parag.rightYIntercept)/2, vecInput.y); Debug.Log("adjusted rightwards"); } else { vecInput = new Vector2( vecInput.x, lowY); Debug.Log("adjusted downwards"); } }

    Read the article

  • How Do I Search For Struct Items In A Vector? [migrated]

    - by Vladimir Marenus
    I'm attempting to create an inventory system using a vector implementation, but I seem to be having some troubles. I'm running into issues using a struct I made. NOTE: This isn't actually in a game code, this is a separate Solution I am using to test my knowledge of vectors and structs! struct aItem { string itemName; int damage; }; int main() { aItem healingPotion; healingPotion.itemName = "Healing Potion"; healingPotion.damage= 6; aItem fireballPotion; fireballPotion.itemName = "Potion of Fiery Balls"; fireballPotion.damage = -2; vector<aItem> inventory; inventory.push_back(healingPotion); inventory.push_back(healingPotion); inventory.push_back(healingPotion); inventory.push_back(fireballPotion); if(find(inventory.begin(), inventory.end(), fireballPotion) != inventory.end()) { cout << "Found"; } system("PAUSE"); return 0; } The preceeding code gives me the following error: 1c:\program files (x86)\microsoft visual studio 11.0\vc\include\xutility(3186): error C2678: binary '==' : no operator found which takes a left-hand operand of type 'aItem' (or there is no acceptable conversion) There is more to the error, if you need it please let me know. I bet it's something small and silly, but I've been thumping at it for over two hours. Thanks in advance!

    Read the article

  • Making a 2D game with responsive resolution

    - by alexandervrs
    I am making a 2D game, however I wish for it to be resolution agnostic. My target resolution i.e. where things look as intended is 1600 x 900. My ideas are: Make the HUD stay fixed to the sides no matter what resolution, use different size for HUD graphics under a certain resolution and another under a certain large one. Use large HD PNG sprites/backgrounds which are a power of 2, so they scale nicely. No vectors. Use the player's native resolution. Scale the game area (not the HUD) to fit (resulting zooming in some and cropping the game area sides if necessary for widescreen, no stretch), but always fill the screen. Have a min and max resolution limit for small and very large displays where you will just change the resolution(?) or scale up/down to fit. What I am a bit confused though is what math formula I would use to scale the game area correctly based on the resolution no matter the aspect ratio, fully fit in a square screen and with some clip to the sides for widescreen. Pseudocode would help as well. :)

    Read the article

  • Eculidean space and vector magnitude

    - by Starkers
    Below we have distances from the origin calculated in two different ways, giving the Euclidean distance, the Manhattan distance and the Chebyshev distance. Euclidean distance is what we use to calculate the magnitude of vectors in 2D/3D games, and that makes sense to me: Let's say we have a vector that gives us the range a spaceship with limited fuel can travel. If we calculated this with Manhattan metric, our ship could travel a distance of X if it were travelling horizontally or vertically, however the second it attempted to travel diagonally it could only tavel X/2! So like I say, Euclidean distance does make sense. However, I still don't quite get how we calculate 'real' distances from the vector's magnitude. Here are two points, purple at (2,2) and green at (3,3). We can take two points away from each other to derive a vector. Let's create a vector to describe the magnitude and direction of purple from green: |d| = purple - green |d| = (purple.x, purple.y) - (green.x, green.y) |d| = (2, 2) - (3, 3) |d| = <-1,-1> Let's derive the magnitude of the vector via Pythagoras to get a Euclidean measurement: euc_magnitude = sqrt((x*x)+(y*y)) euc_magnitude = sqrt((-1*-1)+(-1*-1)) euc_magnitude = sqrt((1)+(1)) euc_magnitude = sqrt(2) euc_magnitude = 1.41 Now, if the answer had been 1, that would make sense to me, because 1 unit (in the direction described by the vector) from the green is bang on the purple. But it's not. It's 1.41. 1.41 units is the direction described, to me at least, makes us overshoot the purple by almost half a unit: So what do we do to the magnitude to allow us to calculate real distances on our point graph? Worth noting I'm a beginner just working my way through theory. Haven't programmed a game in my life!

    Read the article

  • How can a large, Fortran-based number crunching codebase be modernized?

    - by Dave Mateer
    A friend in academia asked me for advice (I'm a C# business application developer). He has a legacy codebase which he wrote in Fortran in the medical imaging field. It does a huge amount of number crunching using vectors. He uses a cluster (30ish cores) and has now gone towards a single workstation with 500ish GPUS in it. However where to go next with the codebase so: Other people can maintain it over next 10 year cycle Get faster at tweaking the software Can run on different infrastructures without recompiles After some research from me (this is a super interesting area) some options are: Use Python and CUDA from Nvidia Rewrite in a functional language. For example, F# or Haskell Go cloud based and use something like Hadoop and Java Learn C What has been your experience with this? What should my friend be looking at to modernize his codebase? UPDATE: Thanks @Mark and everyone who has answered. The reasons my friend is asking this question is that it's a perfect time in the projects lifecycle to do a review. Bringing research assistants up to speed in Fortran takes time (I like C#, and especially the tooling and can't imagine going back to older languages!!) I liked the suggestion of keeping the pure number crunching in Fortran, but wrapping it in something newer. Perhaps Python as that seems to be getting a stronghold in academia as a general-purpose programming language that is fairly easy to pick up. See Medical Imaging and a guy who has written a Fortran wrapper for CUDA, Can I legally publish my Fortran 90 wrappers to Nvidias' CUFFT library (from the CUDA SDK)?.

    Read the article

  • How to limit click'n'drag movement to an area?

    - by Vexille
    I apologize for the somewhat generic title. I'm really don't have much clue about how to accomplish what I'm trying to do, which is making it harder even to research a possible solution. I'm trying to implement a path marker of sorts (maybe there's a most suitable name for it, but this is the best I could come up with). In front of the player there will be a path marker, which will determine how the player will move once he finishes planning his turn. The player may click and drag the marker to the position they choose, but the marker can only be moved within a defined working area (the gray bit). So I'm now stuck with two problems: First of all, how exactly should I define that workable area? I can imagine maybe two vectors that have the player as a starting point to form the workable angle, and maybe those two arcs could come from circles that have their center where the player is, but I definetly don't know how to put this all together. And secondly, after I've defined the area where the marker can be placed, how can I enforce that the marker should only stay within that area? For example, if the player clicks and drags the marker around, it may move freely within the working area, but must not leave the boundaries of the area. So for example, if the player starts dragging the marker upwards, it will move upwards until it hits he end of the working area (first diagram below), but if after that the player starts dragging sideways, the marker must follow the drag while still within the area (second diagram below). I hope this wasn't all too confusing. Thanks, guys.

    Read the article

  • How can I resolve collisions at different speeds, depending on the direction?

    - by Raven Dreamer
    I have, for all intents and purposes, a Triangle class that objects in my scene can collide with (In actuality, the right side of a parallelogram). My collision detection and resolution code works fine for the purposes of preventing a gameobject from entering into the space of the Triangle, instead directing the movement along the edge. The trouble is, the maximum speed along the x and y axis is not equivalent in my game, and moving along the Y axis (up or down) should take twice as long as an equivalent distance along the X axis (left or right). Unfortunately, these speeds apply to the collision resolution too, and movement along the blue path above progresses twice as fast. What can I do in my collision resolution to make sure that the speedlimit for Y axis movement is obeyed in the latter case? Collision Resolution for this case below (vecInput and velocity are the position and velocity vectors of the game object): // y = mx+c // solve for y. M = 2, x = input's x coord, c = rightYIntercept lowY = 2*vecInput.x + parag.rightYIntercept ; ... else { // y = mx+c // vecInput.y = 2(x) + RightYIntercept // (vecInput.y - RightYIntercept) / 2 = x; //if velocity.Y (positive) greater than velocity.X (negative) //pushing from bottom, so push right. if(velocity.y > -1*velocity.x) { //change the input vector's x position to match the //y position on the shape's edge. Formula for line: Y = MX+C // M is 2, C is rightYIntercept, y is the input y, solve for X. vecInput = new Vector2((vecInput.y - parag.rightYIntercept)/2, vecInput.y); Debug.Log("adjusted rightwards"); } else { vecInput = new Vector2( vecInput.x, lowY); Debug.Log("adjusted downwards"); } }

    Read the article

  • Understanding math used to determine if vector is clockwise / counterclockwise from your vector

    - by MTLPhil
    I'm reading Programming Game AI by Example by Mat Buckland. In the Math & Physics primer chapter there's a listing of the declaration of a class used to represent 2D vectors. This class contains a method called Sign. It's implementation is as follows //------------------------ Sign ------------------------------------------ // // returns positive if v2 is clockwise of this vector, // minus if anticlockwise (Y axis pointing down, X axis to right) //------------------------------------------------------------------------ enum {clockwise = 1, anticlockwise = -1}; inline int Vector2D::Sign(const Vector2D& v2)const { if (y*v2.x > x*v2.y) { return anticlockwise; } else { return clockwise; } } Can someone explain the vector rules that make this hold true? What do the values of y*v2.x and x*v2.y that are being compared actually represent? I'd like to have a solid understanding of why this works rather than just accepting that it does without figuring it out. I feel like it's something really obvious that I'm just not catching on to. Thanks for your help.

    Read the article

  • How do I create a camera?

    - by Morphex
    I am trying to create a generic camera class for a game engine, which works for different types of cameras (Orbital, GDoF, FPS), but I have no idea how to go about it. I have read about quaternions and matrices, but I do not understand how to implement it. Particularly, it seems you need "Up", "Forward" and "Right" vectors, a Quaternion for rotations, and View and Projection matrices. For example, an FPS camera only rotates around the World Y and the Right Axis of the camera; the 6DoF rotates always around its own axis, and the orbital is just translating for a set distance and making it look always at a fixed target point. The concepts are there; implementing this is not trivial for me. SharpDX seems to have has already Matrices and Quaternions implemented, but I don't know how to use them to create a camera. Can anyone point me on what am I missing, what I got wrong? I would really enjoy if you could give a tutorial, some piece of code, or just plain explanation of the concepts.

    Read the article

  • How do I classify using SVM Classifier in Matlab?

    - by Gomathi
    I'm on a project of liver tumor segmentation and classification. I used Region Growing and FCM for liver and tumor segmentation respectively. Then, I used Gray Level Co-occurence matrix for texture feature extraction. I have to use Support Vector Machine for Classification. But I don't know how to normalize the feature vectors. Can anyone tell how to program it in Matlab? To the GLCM program, I gave the tumor segmented image as input. Was I correct? If so, I think, then, my output will also be correct. I gave the parameters exactly as in the example provided in the documentation itself. The output I obtained was stats = autoc: [1.857855266614132e+000 1.857955341199538e+000] contr: [5.103143332457753e-002 5.030548650257343e-002] corrm: [9.512661919561399e-001 9.519459060378332e-001] corrp: [9.512661919561385e-001 9.519459060378338e-001] cprom: [7.885631654779597e+001 7.905268525471267e+001] cshad: [1.219440700252286e+001 1.220659371449108e+001] dissi: [2.037387269065756e-002 1.935418927908687e-002] energ: [8.987753042491253e-001 8.988459843719526e-001] entro: [2.759187341212805e-001 2.743152140681436e-001] homom: [9.930016927881388e-001 9.935307908219834e-001] homop: [9.925660617240367e-001 9.930960070222014e-001] maxpr: [9.474275457490587e-001 9.474466930429607e-001] sosvh: [1.847174384255155e+000 1.846913030238459e+000] savgh: [2.332207337361002e+000 2.332108469591401e+000] svarh: [6.311174784234007e+000 6.314794324825067e+000] senth: [2.663144677055123e-001 2.653725436772341e-001] dvarh: [5.103143332457753e-002 5.030548650257344e-002] denth: [7.573115918713391e-002 7.073380266499811e-002] inf1h: [-8.199645492654247e-001 -8.265514568489666e-001] inf2h: [5.643539051044213e-001 5.661543271625117e-001] indnc: [9.980238521073823e-001 9.981394883569174e-001] idmnc: [9.993275086521848e-001 9.993404634013308e-001] The thing is, I run the program for three images. But all three gave me the same output. When I used graycoprops() stat = Contrast: 4.721877658740964e+005 Correlation: -3.282870417955449e-003 Energy: 8.647689474127760e-006 Homogeneity: 8.194621855726478e-003 stat = Contrast: 2.817160447307697e+004 Correlation: 2.113032196952781e-005 Energy: 4.124904827799189e-004 Homogeneity: 2.513567163994905e-002 stat = Contrast: 7.086638436309059e+004 Correlation: 2.459637878221028e-002 Energy: 4.640677159445994e-004 Homogeneity: 1.158305728309460e-002 The images are:

    Read the article

  • XNA 4.0 2D sidescroller variable terrain heightmap for walking/collision

    - by JiminyCricket
    I've been fooling around with moving on sloped tiles in XNA and it is semi-working but not completely satisfactory. I also have been thinking that having sets of predetermined slopes might not give me terrain that looks "organic" enough. There is also the problem of having to construct several different types of tile for each slope when they're chained together (only 45 degree tiles will chain perfectly as I understand it). I had thought of somehow scanning for connected chains of sloped tiles and treating it as a new large triangle, as I was having trouble with glitching at the edges where sloped tiles connect. But, this leads back to the problem of limiting the curvature of the terrain. So...what I'd like to do now is create a simple image or texture of the terrain of a level (or section of the level) and generate a simple heightmap (of the Y's for each X) for the terrain. The player's Y position would then just be updated based on their X position. Is there a simple way of doing this (or a better way of solving this problem)? The main problem I can see with this method is the case where there are areas above the ground that can be walked on. Maybe there is a way to just map all walkable ground areas? I've been looking at this helpful bit of code: http://thirdpartyninjas.com/blog/2010/07/28/sloped-platform-collision/ but need a way to generate the actual points/vectors.

    Read the article

< Previous Page | 10 11 12 13 14 15 16 17 18 19 20 21  | Next Page >