Search Results

Search found 12184 results on 488 pages for 'named parameters'.

Page 140/488 | < Previous Page | 136 137 138 139 140 141 142 143 144 145 146 147  | Next Page >

  • Changing CSS with jQuery syntax in Silverlight using jLight

    - by Timmy Kokke
    Lately I’ve ran into situations where I had to change elements or had to request a value in the DOM from Silverlight. jLight, which was introduced in an earlier article, can help with that. jQuery offers great ways to change CSS during runtime. Silverlight can access the DOM, but it isn’t as easy as jQuery. All examples shown in this article can be looked at in this online demo. The code can be downloaded here.   Part 1: The easy stuff Selecting and changing properties is pretty straight forward. Setting the text color in all <B> </B> elements can be done using the following code:   jQuery.Select("b").Css("color", "red");   The Css() method is an extension method on jQueryObject which is return by the jQuery.Select() method. The Css() method takes to parameters. The first is the Css style property. All properties used in Css can be entered in this string. The second parameter is the value you want to give the property. In this case the property is “color” and it is changed to “red”. To specify which element you want to select you can add a :selector parameter to the Select() method as shown in the next example.   jQuery.Select("b:first").Css("font-family", "sans-serif");   The “:first” pseudo-class selector selects only the first element. This example changes the “font-family” property of the first <B></B> element to “sans-serif”. To make use of intellisense in Visual Studio I’ve added a extension methods to help with the pseudo-classes. In the example below the “font-weight” of every “Even” <LI></LI> is set to “bold”.   jQuery.Select("li".Even()).Css("font-weight", "bold");   Because the Css() extension method returns a jQueryObject it is possible to chain calls to Css(). The following example show setting the “color”, “background-color” and the “font-size” of all headers in one go.   jQuery.Select(":header").Css("color", "#12FF70") .Css("background-color", "yellow") .Css("font-size", "25px");   Part 2: More complex stuff In only a few cases you need to change only one style property. More often you want to change an entire set op style properties all in one go.  You could chain a lot of Css() methods together. A better way is to add a class to a stylesheet and define all properties in there. With the AddClass() method you can set a style class to a set of elements. This example shows how to add the “demostyle” class to all <B></B> in the document.   jQuery.Select("b").AddClass("demostyle");   Removing the class works in the same way:   jQuery.Select("b").RemoveClass("demostyle");   jLight is build for interacting with to the DOM from Silverlight using jQuery. A jQueryObjectCss object can be used to define different sets of style properties in Silverlight. The over 60 most common Css style properties are defined in the jQueryObjectCss class. A string indexer can be used to access all style properties ( CssObject1[“background-color”] equals CssObject1.BackgroundColor). In the code below, two jQueryObjectCss objects are defined and instantiated.   private jQueryObjectCss CssObject1; private jQueryObjectCss CssObject2;   public Demo2() { CssObject1 = new jQueryObjectCss { BackgroundColor = "Lime", Color="Black", FontSize = "12pt", FontFamily = "sans-serif", FontWeight = "bold", MarginLeft = 150, LineHeight = "28px", Border = "Solid 1px #880000" }; CssObject2 = new jQueryObjectCss { FontStyle = "Italic", FontSize = "48", Color = "#225522" }; InitializeComponent(); }   Now instead of chaining to set all different properties you can just pass one of the jQueryObjectCss objects to the Css() method. In this case all <LI></LI> elements are set to match this object.   jQuery.Select("li").Css(CssObject1); When using the jQueryObjectCss objects chaining is still possible. In the following example all headers are given a blue backgroundcolor and the last is set to match CssObject2.   jQuery.Select(":header").Css(new jQueryObjectCss{BackgroundColor = "Blue"}) .Eq(-1).Css(CssObject2);   Part 3: The fun stuff Having Silverlight call JavaScript and than having JavaScript to call Silverlight requires a lot of plumbing code. Everything has to be registered and strings are passed back and forth to execute the JavaScript. jLight makes this kind of stuff so easy, it becomes fun to use. In a lot of situations jQuery can call a function to decide what to do, setting a style class based on complex expressions for example. jLight can do the same, but the callback methods are defined in Silverlight. This example calls the function() method for each <LI></LI> element. The callback method has to take a jQueryObject, an integer and a string as parameters. In this case jLight differs a bit from the actual jQuery implementation. jQuery uses only the index and the className parameters. A jQueryObject is added to make it simpler to access the attributes and properties of the element. If the text of the listitem starts with a ‘D’ or an ‘M’ the class is set. Otherwise null is returned and nothing happens.   private void button1_Click(object sender, RoutedEventArgs e) { jQuery.Select("li").AddClass(function); }   private string function(jQueryObject obj, int index, string className) { if (obj.Text[0] == 'D' || obj.Text[0] == 'M') return "demostyle"; return null; }   The last thing I would like to demonstrate uses even more Silverlight and less jLight, but demonstrates the power of the combination. Animating a style property using a Storyboard with easing functions. First a dependency property is defined. In this case it is a double named Intensity. By handling the changed event the color is set using jQuery.   public double Intensity { get { return (double)GetValue(IntensityProperty); } set { SetValue(IntensityProperty, value); } }   public static readonly DependencyProperty IntensityProperty = DependencyProperty.Register("Intensity", typeof(double), typeof(Demo3), new PropertyMetadata(0.0, IntensityChanged));   private static void IntensityChanged(DependencyObject d, DependencyPropertyChangedEventArgs e) { var i = (byte)(double)e.NewValue; jQuery.Select("span").Css("color", string.Format("#{0:X2}{0:X2}{0:X2}", i)); }   An animation has to be created. This code defines a Storyboard with one keyframe that uses a bounce ease as an easing function. The animation is set to target the Intensity dependency property defined earlier.   private Storyboard CreateAnimation(double value) { Storyboard storyboard = new Storyboard(); var da = new DoubleAnimationUsingKeyFrames(); var d = new EasingDoubleKeyFrame { EasingFunction = new BounceEase(), KeyTime = KeyTime.FromTimeSpan(TimeSpan.FromSeconds(1.0)), Value = value }; da.KeyFrames.Add(d); Storyboard.SetTarget(da, this); Storyboard.SetTargetProperty(da, new PropertyPath(Demo3.IntensityProperty)); storyboard.Children.Add(da); return storyboard; }   Initially the Intensity is set to 128 which results in a gray color. When one of the buttons is pressed, a new animation is created an played. One to animate to black, and one to animate to white.   public Demo3() { InitializeComponent(); Intensity = 128; }   private void button2_Click(object sender, RoutedEventArgs e) { CreateAnimation(255).Begin(); }   private void button3_Click(object sender, RoutedEventArgs e) { CreateAnimation(0).Begin(); }   Conclusion As you can see jLight can make the life of a Silverlight developer a lot easier when accessing the DOM. Almost all jQuery functions that are defined in jLight use the same constructions as described above. I’ve tried to stay as close as possible to the real jQuery. Having JavaScript perform callbacks to Silverlight using jLight will be described in more detail in a future tutorial about AJAX or eventing.

    Read the article

  • iOS - pass UIImage to shader as texture

    - by martin pilch
    I am trying to pass UIImage to GLSL shader. The fragment shader is: varying highp vec2 textureCoordinate; uniform sampler2D inputImageTexture; uniform sampler2D inputImageTexture2; void main() { highp vec4 color = texture2D(inputImageTexture, textureCoordinate); highp vec4 color2 = texture2D(inputImageTexture2, textureCoordinate); gl_FragColor = color * color2; } What I want to do is send images from camera and do multiply blend with texture. When I just send data from camera, everything is fine. So problem should be with sending another texture to shader. I am doing it this way: - (void)setTexture:(UIImage*)image forUniform:(NSString*)uniform { CGSize sizeOfImage = [image size]; CGFloat scaleOfImage = [image scale]; CGSize pixelSizeOfImage = CGSizeMake(scaleOfImage * sizeOfImage.width, scaleOfImage * sizeOfImage.height); //create context GLubyte * spriteData = (GLubyte *)malloc(pixelSizeOfImage.width * pixelSizeOfImage.height * 4 * sizeof(GLubyte)); CGContextRef spriteContext = CGBitmapContextCreate(spriteData, pixelSizeOfImage.width, pixelSizeOfImage.height, 8, pixelSizeOfImage.width * 4, CGImageGetColorSpace(image.CGImage), kCGImageAlphaPremultipliedLast); //draw image into context CGContextDrawImage(spriteContext, CGRectMake(0.0, 0.0, pixelSizeOfImage.width, pixelSizeOfImage.height), image.CGImage); //get uniform of texture GLuint uniformIndex = glGetUniformLocation(__programPointer, [uniform UTF8String]); //generate texture GLuint textureIndex; glGenTextures(1, &textureIndex); glBindTexture(GL_TEXTURE_2D, textureIndex); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); //create texture glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA, pixelSizeOfImage.width, pixelSizeOfImage.height, 0, GL_RGBA, GL_UNSIGNED_BYTE, spriteData); glActiveTexture(GL_TEXTURE1); glBindTexture(GL_TEXTURE_2D, textureIndex); //"send" to shader glUniform1i(uniformIndex, 1); free(spriteData); CGContextRelease(spriteContext); } Uniform for texture is fine, glGetUniformLocation function do not returns -1. The texture is PNG file of resolution 2000x2000 pixels. PROBLEM: When the texture is passed to shader, I have got "black screen". Maybe problem are parameters of the CGContext or parameters of the function glTexImage2D Thank you

    Read the article

  • Using the ASP.NET Cache to cache data in a Model or Business Object layer, without a dependency on System.Web in the layer - Part One.

    - by Rhames
    ASP.NET applications can make use of the System.Web.Caching.Cache object to cache data and prevent repeated expensive calls to a database or other store. However, ideally an application should make use of caching at the point where data is retrieved from the database, which typically is inside a Business Objects or Model layer. One of the key features of using a UI pattern such as Model-View-Presenter (MVP) or Model-View-Controller (MVC) is that the Model and Presenter (or Controller) layers are developed without any knowledge of the UI layer. Introducing a dependency on System.Web into the Model layer would break this independence of the Model from the View. This article gives a solution to this problem, using dependency injection to inject the caching implementation into the Model layer at runtime. This allows caching to be used within the Model layer, without any knowledge of the actual caching mechanism that will be used. Create a sample application to use the caching solution Create a test SQL Server database This solution uses a SQL Server database with the same Sales data used in my previous post on calculating running totals. The advantage of using this data is that it gives nice slow queries that will exaggerate the effect of using caching! To create the data, first create a new SQL database called CacheSample. Next run the following script to create the Sale table and populate it: USE CacheSample GO   CREATE TABLE Sale(DayCount smallint, Sales money) CREATE CLUSTERED INDEX ndx_DayCount ON Sale(DayCount) go INSERT Sale VALUES (1,120) INSERT Sale VALUES (2,60) INSERT Sale VALUES (3,125) INSERT Sale VALUES (4,40)   DECLARE @DayCount smallint, @Sales money SET @DayCount = 5 SET @Sales = 10   WHILE @DayCount < 5000  BEGIN  INSERT Sale VALUES (@DayCount,@Sales)  SET @DayCount = @DayCount + 1  SET @Sales = @Sales + 15  END Next create a stored procedure to calculate the running total, and return a specified number of rows from the Sale table, using the following script: USE [CacheSample] GO   SET ANSI_NULLS ON GO   SET QUOTED_IDENTIFIER ON GO   -- ============================================= -- Author:        Robin -- Create date: -- Description:   -- ============================================= CREATE PROCEDURE [dbo].[spGetRunningTotals]       -- Add the parameters for the stored procedure here       @HighestDayCount smallint = null AS BEGIN       -- SET NOCOUNT ON added to prevent extra result sets from       -- interfering with SELECT statements.       SET NOCOUNT ON;         IF @HighestDayCount IS NULL             SELECT @HighestDayCount = MAX(DayCount) FROM dbo.Sale                   DECLARE @SaleTbl TABLE (DayCount smallint, Sales money, RunningTotal money)         DECLARE @DayCount smallint,                   @Sales money,                   @RunningTotal money         SET @RunningTotal = 0       SET @DayCount = 0         DECLARE rt_cursor CURSOR       FOR       SELECT DayCount, Sales       FROM Sale       ORDER BY DayCount         OPEN rt_cursor         FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales         WHILE @@FETCH_STATUS = 0 AND @DayCount <= @HighestDayCount        BEGIN        SET @RunningTotal = @RunningTotal + @Sales        INSERT @SaleTbl VALUES (@DayCount,@Sales,@RunningTotal)        FETCH NEXT FROM rt_cursor INTO @DayCount,@Sales        END         CLOSE rt_cursor       DEALLOCATE rt_cursor         SELECT DayCount, Sales, RunningTotal       FROM @SaleTbl   END   GO   Create the Sample ASP.NET application In Visual Studio create a new solution and add a class library project called CacheSample.BusinessObjects and an ASP.NET web application called CacheSample.UI. The CacheSample.BusinessObjects project will contain a single class to represent a Sale data item, with all the code to retrieve the sales from the database included in it for simplicity (normally I would at least have a separate Repository or other object that is responsible for retrieving data, and probably a data access layer as well, but for this sample I want to keep it simple). The C# code for the Sale class is shown below: using System; using System.Collections.Generic; using System.Data; using System.Data.SqlClient;   namespace CacheSample.BusinessObjects {     public class Sale     {         public Int16 DayCount { get; set; }         public decimal Sales { get; set; }         public decimal RunningTotal { get; set; }           public static IEnumerable<Sale> GetSales(int? highestDayCount)         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager .ConnectionStrings["CacheSample"].ConnectionString;               using(SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         }     } }   The static GetSale() method makes a call to the spGetRunningTotals stored procedure and then reads each row from the returned SqlDataReader into an instance of the Sale class, it then returns a List of the Sale objects, as IEnnumerable<Sale>. A reference to System.Configuration needs to be added to the CacheSample.BusinessObjects project so that the connection string can be read from the web.config file. In the CacheSample.UI ASP.NET project, create a single web page called ShowSales.aspx, and make this the default start up page. This page will contain a single button to call the GetSales() method and a label to display the results. The html mark up and the C# code behind are shown below: ShowSales.aspx <%@ Page Language="C#" AutoEventWireup="true" CodeBehind="ShowSales.aspx.cs" Inherits="CacheSample.UI.ShowSales" %>   <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">   <html xmlns="http://www.w3.org/1999/xhtml"> <head runat="server">     <title>Cache Sample - Show All Sales</title> </head> <body>     <form id="form1" runat="server">     <div>         <asp:Button ID="btnTest1" runat="server" onclick="btnTest1_Click"             Text="Get All Sales" />         &nbsp;&nbsp;&nbsp;         <asp:Label ID="lblResults" runat="server"></asp:Label>         </div>     </form> </body> </html>   ShowSales.aspx.cs using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.UI; using System.Web.UI.WebControls;   using CacheSample.BusinessObjects;   namespace CacheSample.UI {     public partial class ShowSales : System.Web.UI.Page     {         protected void Page_Load(object sender, EventArgs e)         {         }           protected void btnTest1_Click(object sender, EventArgs e)         {             System.Diagnostics.Stopwatch stopWatch = new System.Diagnostics.Stopwatch();             stopWatch.Start();               var sales = Sale.GetSales(null);               var lastSales = sales.Last();               stopWatch.Stop();               lblResults.Text = string.Format( "Count of Sales: {0}, Last DayCount: {1}, Total Sales: {2}. Query took {3} ms", sales.Count(), lastSales.DayCount, lastSales.RunningTotal, stopWatch.ElapsedMilliseconds);         }       } }   Finally we need to add a connection string to the CacheSample SQL Server database, called CacheSample, to the web.config file: <?xmlversion="1.0"?>   <configuration>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   Run the application and click the button a few times to see how long each call to the database takes. On my system, each query takes about 450ms. Next I shall look at a solution to use the ASP.NET caching to cache the data returned by the query, so that subsequent requests to the GetSales() method are much faster. Adding Data Caching Support I am going to create my caching support in a separate project called CacheSample.Caching, so the next step is to add a class library to the solution. We shall be using the application configuration to define the implementation of our caching system, so we need a reference to System.Configuration adding to the project. ICacheProvider<T> Interface The first step in adding caching to our application is to define an interface, called ICacheProvider, in the CacheSample.Caching project, with methods to retrieve any data from the cache or to retrieve the data from the data source if it is not present in the cache. Dependency Injection will then be used to inject an implementation of this interface at runtime, allowing the users of the interface (i.e. the CacheSample.BusinessObjects project) to be completely unaware of how the caching is actually implemented. As data of any type maybe retrieved from the data source, it makes sense to use generics in the interface, with a generic type parameter defining the data type associated with a particular instance of the cache interface implementation. The C# code for the ICacheProvider interface is shown below: using System; using System.Collections.Generic;   namespace CacheSample.Caching {     public interface ICacheProvider     {     }       public interface ICacheProvider<T> : ICacheProvider     {         T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);           IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry);     } }   The empty non-generic interface will be used as a type in a Dictionary generic collection later to store instances of the ICacheProvider<T> implementation for reuse, I prefer to use a base interface when doing this, as I think the alternative of using object makes for less clear code. The ICacheProvider<T> interface defines two overloaded Fetch methods, the difference between these is that one will return a single instance of the type T and the other will return an IEnumerable<T>, providing support for easy caching of collections of data items. Both methods will take a key parameter, which will uniquely identify the cached data, a delegate of type Func<T> or Func<IEnumerable<T>> which will provide the code to retrieve the data from the store if it is not present in the cache, and absolute or relative expiry policies to define when a cached item should expire. Note that at present there is no support for cache dependencies, but I shall be showing a method of adding this in part two of this article. CacheProviderFactory Class We need a mechanism of creating instances of our ICacheProvider<T> interface, using Dependency Injection to get the implementation of the interface. To do this we shall create a CacheProviderFactory static class in the CacheSample.Caching project. This factory will provide a generic static method called GetCacheProvider<T>(), which shall return instances of ICacheProvider<T>. We can then call this factory method with the relevant data type (for example the Sale class in the CacheSample.BusinessObject project) to get a instance of ICacheProvider for that type (e.g. call CacheProviderFactory.GetCacheProvider<Sale>() to get the ICacheProvider<Sale> implementation). The C# code for the CacheProviderFactory is shown below: using System; using System.Collections.Generic;   using CacheSample.Caching.Configuration;   namespace CacheSample.Caching {     public static class CacheProviderFactory     {         private static Dictionary<Type, ICacheProvider> cacheProviders = new Dictionary<Type, ICacheProvider>();         private static object syncRoot = new object();           ///<summary>         /// Factory method to create or retrieve an implementation of the  /// ICacheProvider interface for type <typeparamref name="T"/>.         ///</summary>         ///<typeparam name="T">  /// The type that this cache provider instance will work with  ///</typeparam>         ///<returns>An instance of the implementation of ICacheProvider for type  ///<typeparamref name="T"/>, as specified by the application  /// configuration</returns>         public static ICacheProvider<T> GetCacheProvider<T>()         {             ICacheProvider<T> cacheProvider = null;             // Get the Type reference for the type parameter T             Type typeOfT = typeof(T);               // Lock the access to the cacheProviders dictionary             // so multiple threads can work with it             lock (syncRoot)             {                 // First check if an instance of the ICacheProvider implementation  // already exists in the cacheProviders dictionary for the type T                 if (cacheProviders.ContainsKey(typeOfT))                     cacheProvider = (ICacheProvider<T>)cacheProviders[typeOfT];                 else                 {                     // There is not already an instance of the ICacheProvider in       // cacheProviders for the type T                     // so we need to create one                       // Get the Type reference for the application's implementation of       // ICacheProvider from the configuration                     Type cacheProviderType = Type.GetType(CacheProviderConfigurationSection.Current. CacheProviderType);                     if (cacheProviderType != null)                     {                         // Now get a Type reference for the Cache Provider with the                         // type T generic parameter                         Type typeOfCacheProviderTypeForT = cacheProviderType.MakeGenericType(new Type[] { typeOfT });                         if (typeOfCacheProviderTypeForT != null)                         {                             // Create the instance of the Cache Provider and add it to // the cacheProviders dictionary for future use                             cacheProvider = (ICacheProvider<T>)Activator. CreateInstance(typeOfCacheProviderTypeForT);                             cacheProviders.Add(typeOfT, cacheProvider);                         }                     }                 }             }               return cacheProvider;                 }     } }   As this code uses Activator.CreateInstance() to create instances of the ICacheProvider<T> implementation, which is a slow process, the factory class maintains a Dictionary of the previously created instances so that a cache provider needs to be created only once for each type. The type of the implementation of ICacheProvider<T> is read from a custom configuration section in the application configuration file, via the CacheProviderConfigurationSection class, which is described below. CacheProviderConfigurationSection Class The implementation of ICacheProvider<T> will be specified in a custom configuration section in the application’s configuration. To handle this create a folder in the CacheSample.Caching project called Configuration, and add a class called CacheProviderConfigurationSection to this folder. This class will extend the System.Configuration.ConfigurationSection class, and will contain a single string property called CacheProviderType. The C# code for this class is shown below: using System; using System.Configuration;   namespace CacheSample.Caching.Configuration {     internal class CacheProviderConfigurationSection : ConfigurationSection     {         public static CacheProviderConfigurationSection Current         {             get             {                 return (CacheProviderConfigurationSection) ConfigurationManager.GetSection("cacheProvider");             }         }           [ConfigurationProperty("type", IsRequired=true)]         public string CacheProviderType         {             get             {                 return (string)this["type"];             }         }     } }   Adding Data Caching to the Sales Class We now have enough code in place to add caching to the GetSales() method in the CacheSample.BusinessObjects.Sale class, even though we do not yet have an implementation of the ICacheProvider<T> interface. We need to add a reference to the CacheSample.Caching project to CacheSample.BusinessObjects so that we can use the ICacheProvider<T> interface within the GetSales() method. Once the reference is added, we can first create a unique string key based on the method name and the parameter value, so that the same cache key is used for repeated calls to the method with the same parameter values. Then we get an instance of the cache provider for the Sales type, using the CacheProviderFactory, and pass the existing code to retrieve the data from the database as the retrievalMethod delegate in a call to the Cache Provider Fetch() method. The C# code for the modified GetSales() method is shown below: public static IEnumerable<Sale> GetSales(int? highestDayCount) {     string cacheKey = string.Format("CacheSample.BusinessObjects.GetSalesWithCache({0})", highestDayCount);       return CacheSample.Caching.CacheProviderFactory. GetCacheProvider<Sale>().Fetch(cacheKey,         delegate()         {             List<Sale> sales = new List<Sale>();               SqlParameter highestDayCountParameter = new SqlParameter("@HighestDayCount", SqlDbType.SmallInt);             if (highestDayCount.HasValue)                 highestDayCountParameter.Value = highestDayCount;             else                 highestDayCountParameter.Value = DBNull.Value;               string connectionStr = System.Configuration.ConfigurationManager. ConnectionStrings["CacheSample"].ConnectionString;               using (SqlConnection sqlConn = new SqlConnection(connectionStr))             using (SqlCommand sqlCmd = sqlConn.CreateCommand())             {                 sqlCmd.CommandText = "spGetRunningTotals";                 sqlCmd.CommandType = CommandType.StoredProcedure;                 sqlCmd.Parameters.Add(highestDayCountParameter);                   sqlConn.Open();                   using (SqlDataReader dr = sqlCmd.ExecuteReader())                 {                     while (dr.Read())                     {                         Sale newSale = new Sale();                         newSale.DayCount = dr.GetInt16(0);                         newSale.Sales = dr.GetDecimal(1);                         newSale.RunningTotal = dr.GetDecimal(2);                           sales.Add(newSale);                     }                 }             }               return sales;         },         null,         new TimeSpan(0, 10, 0)); }     This example passes the code to retrieve the Sales data from the database to the Cache Provider as an anonymous method, however it could also be written as a lambda. The main advantage of using an anonymous function (method or lambda) is that the code inside the anonymous function can access the parameters passed to the GetSales() method. Finally the absolute expiry is set to null, and the relative expiry set to 10 minutes, to indicate that the cache entry should be removed 10 minutes after the last request for the data. As the ICacheProvider<T> has a Fetch() method that returns IEnumerable<T>, we can simply return the results of the Fetch() method to the caller of the GetSales() method. This should be all that is needed for the GetSales() method to now retrieve data from a cache after the first time the data has be retrieved from the database. Implementing a ASP.NET Cache Provider The final step is to actually implement the ICacheProvider<T> interface, and add the implementation details to the web.config file for the dependency injection. The cache provider implementation needs to have access to System.Web. Therefore it could be placed in the CacheSample.UI project, or in its own project that has a reference to System.Web. Implementing the Cache Provider in a separate project is my favoured approach. Create a new project inside the solution called CacheSample.CacheProvider, and add references to System.Web and CacheSample.Caching to this project. Add a class to the project called AspNetCacheProvider. Make the class a generic class by adding the generic parameter <T> and indicate that the class implements ICacheProvider<T>. The C# code for the AspNetCacheProvider class is shown below: using System; using System.Collections.Generic; using System.Linq; using System.Web; using System.Web.Caching;   using CacheSample.Caching;   namespace CacheSample.CacheProvider {     public class AspNetCacheProvider<T> : ICacheProvider<T>     {         #region ICacheProvider<T> Members           public T Fetch(string key, Func<T> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<T>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           public IEnumerable<T> Fetch(string key, Func<IEnumerable<T>> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             return FetchAndCache<IEnumerable<T>>(key, retrieveData, absoluteExpiry, relativeExpiry);         }           #endregion           #region Helper Methods           private U FetchAndCache<U>(string key, Func<U> retrieveData, DateTime? absoluteExpiry, TimeSpan? relativeExpiry)         {             U value;             if (!TryGetValue<U>(key, out value))             {                 value = retrieveData();                 if (!absoluteExpiry.HasValue)                     absoluteExpiry = Cache.NoAbsoluteExpiration;                   if (!relativeExpiry.HasValue)                     relativeExpiry = Cache.NoSlidingExpiration;                   HttpContext.Current.Cache.Insert(key, value, null, absoluteExpiry.Value, relativeExpiry.Value);             }             return value;         }           private bool TryGetValue<U>(string key, out U value)         {             object cachedValue = HttpContext.Current.Cache.Get(key);             if (cachedValue == null)             {                 value = default(U);                 return false;             }             else             {                 try                 {                     value = (U)cachedValue;                     return true;                 }                 catch                 {                     value = default(U);                     return false;                 }             }         }           #endregion       } }   The two interface Fetch() methods call a private method called FetchAndCache(). This method first checks for a element in the HttpContext.Current.Cache with the specified cache key, and if so tries to cast this to the specified type (either T or IEnumerable<T>). If the cached element is found, the FetchAndCache() method simply returns it. If it is not found in the cache, the method calls the retrievalMethod delegate to get the data from the data source, and then adds this to the HttpContext.Current.Cache. The final step is to add the AspNetCacheProvider class to the relevant custom configuration section in the CacheSample.UI.Web.Config file. To do this there needs to be a <configSections> element added as the first element in <configuration>. This will match a custom section called <cacheProvider> with the CacheProviderConfigurationSection. Then we add a <cacheProvider> element, with a type property set to the fully qualified assembly name of the AspNetCacheProvider class, as shown below: <?xmlversion="1.0"?>   <configuration>  <configSections>     <sectionname="cacheProvider" type="CacheSample.Base.Configuration.CacheProviderConfigurationSection, CacheSample.Base" />  </configSections>    <connectionStrings>     <addname="CacheSample"          connectionString="data source=.\SQLEXPRESS;Integrated Security=SSPI;Initial Catalog=CacheSample"          providerName="System.Data.SqlClient" />  </connectionStrings>    <cacheProvidertype="CacheSample.CacheProvider.AspNetCacheProvider`1, CacheSample.CacheProvider, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null">  </cacheProvider>    <system.web>     <compilationdebug="true"targetFramework="4.0" />  </system.web>   </configuration>   One point to note is that the fully qualified assembly name of the AspNetCacheProvider class includes the notation `1 after the class name, which indicates that it is a generic class with a single generic type parameter. The CacheSample.UI project needs to have references added to CacheSample.Caching and CacheSample.CacheProvider so that the actual application is aware of the relevant cache provider implementation. Conclusion After implementing this solution, you should have a working cache provider mechanism, that will allow the middle and data access layers to implement caching support when retrieving data, without any knowledge of the actually caching implementation. If the UI is not ASP.NET based, if for example it is Winforms or WPF, the implementation of ICacheProvider<T> would be written around whatever technology is available. It could even be a standalone caching system that takes full responsibility for adding and removing items from a global store. The next part of this article will show how this caching mechanism may be extended to provide support for cache dependencies, such as the System.Web.Caching.SqlCacheDependency. Another possible extension would be to cache the cache provider implementations instead of storing them in a static Dictionary in the CacheProviderFactory. This would prevent a build up of seldom used cache providers in the application memory, as they could be removed from the cache if not used often enough, although in reality there are probably unlikely to be vast numbers of cache provider implementation instances, as most applications do not have a massive number of business object or model types.

    Read the article

  • VBUG Manchester March 3rd 2010 - Slides and examples

    - by MartinBell
    At the VBUG meeting in Manchester on 3rd March, I was scheduled to talk about Table Valued Parameters, but when I got there the guys wanted something more general so I talked about some of the new features of SQL 2008. The presentation is here and the TVP demo project is here . My blog postings on TVPs are listed at http://sqlblogcasts.com/blogs/martinbell/archive/tags/TVP/default.aspx . Information about the new date and time data types http://sqlblogcasts.com/blogs/martinbell/archive/2009/05/15...(read more)

    Read the article

  • Performing an upgrade from TFS 2008 to TFS 2010

    - by Enrique Lima
    I recently had to go through the process of migrating a TFS 2008 SP1 to a TFS 2010 environment. I will go into the details of the tasks that I went through, but first I want to explain why I define it as a migration and not an upgrade. When this environment was setup, based on support and limitations for TFS 2008, we used a 32 bit platform for the TFS Application Tier and Build Servers.  The Data Tier, since we were installing SP1 for TFS 2008, was done as a 64 bit installation.  We knew at that point that TFS 2010 was in the picture so that served as further motivation to make that a 64bit install of SQL Server.  The SQL Server at that point was a single instance (Default) installation too.  We had a pretty good strategy in place for backups of the databases supporting the environment (and this made the migration so much smoother), so we were pretty familiar with the databases and the purpose they serve. I am sure many of you that have gone through a TFS 2008 installation have encountered challenges and trials.  And likely even more so if you, like me, needed to configure your deployment for SSL.  So, frankly I was a little concerned about the process of migrating.  They say practice makes perfect, and this environment I worked on is in some way my brain child, so I was not ready nor willing for this to be a failure or something that would impact my client’s work. Prior to going through the migration process, we did the install of the environment.  The Data Tier was the same, with a new Named instance in place to host the 2010 install.  The Application Tier was in place too, and we did the DefaultCollection configuration to test and validate all components were in place as they should. Anyway, on to the tasks for the migration (thanks to Martin Hinselwood for his very thorough documentation): Close access to TFS 2008, you want to make sure all code is checked in and ready to go.  We stated a difference of 8 hours between code lock and the start of migration to give time for any unexpected delay.  How do we close access?  Stop IIS. Backup your databases.  Which ones? TfsActivityLogging TfsBuild TfsIntegration TfsVersionControl TfsWorkItemTracking TfsWorkItemTrackingAttachments Restore the databases to the new Named Instance (make sure you keep the same names) Now comes the fun part! The actual import/migration of the databases.  A couple of things happen here. The TfsIntegration database will be scanned, the other databases will be checked to validate they exist.  Those databases will go through a process of data being extracted and transferred to the TfsVersionControl database to then be renamed to Tfs_<Collection>. You will be using a tool called tfsconfig and the option import. This tool is located in the TFS 2010 installation path (C:\Program Files\Microsoft Team Foundation Server 2010\Tools),  the command to use is as follows:    tfsconfig import /sqlinstance:<instance> /collectionName:<name> /confirmed Where <instance> is going to be the SQL Server instance where you restored the databases to.  <name> is the name you will give the collection. And to explain /confirmed, well this means you have done a backup of the databases, why?  well remember you are going to merge the databases you restored when you execute the tfsconfig import command. The process will go through about 200 tasks, once it completes go to Team Foundation Server Administration Console and validate your imported databases and contents. We’ll keep this manageable, so the next post is about how to complete that implementation with the SSL configuration.

    Read the article

  • JWT Token Security with Fusion Sales Cloud

    - by asantaga
    When integrating SalesCloud with a 3rd party application you often need to pass the users identity to the 3rd party application so that  The 3rd party application knows who the user is The 3rd party application needs to be able to do WebService callbacks to Sales Cloud as that user.  Until recently without using SAML, this wasn't easily possible and one workaround was to pass the username, potentially even the password, from Sales Cloud to the 3rd party application using URL parameters.. With Oracle Fusion R8 we now have a proper solution and that is called "JWT Token support". This is based on the industry JSON Web Token standard , for more information see here JWT Works by allowing the user the ability to generate a token (lasts a short period of time) for a specific application. This token is then passed to the 3rd party application as a GET parameter.  The 3rd party application can then call into SalesCloud and use this token for all webservice calls, the calls will be executed as the user who generated the token in the first place, or they can call a special HR WebService (UserService-findSelfUserDetails() ) with the token and Fusion will respond with the users details. Some more details  The following will go through the scenario that you want to embed a 3rd party application within a WebContent frame (iFrame) within the opportunity screen.  1. Define your application using the topology manager in setup and maintenance  See this documentation link on topology manager 2. From within your groovy script which defines the iFrame you wish to embed, write some code which looks like this : def thirdpartyapplicationurl = oracle.topologyManager.client.deployedInfo.DeployedInfoProvider.getEndPoint("My3rdPartyApplication" )def crmkey= (new oracle.apps.fnd.applcore.common.SecuredTokenBean().getTrustToken())def url = thirdpartyapplicationurl +"param1="+OptyId+"&jwt ="+crmkeyreturn (url)  This snippet generates a URL which contains The Hostname/endpoint of the 3rd party application Two Parameters The opportunityId stored in parameter "param1" The JWT Token store in  parameter "jwt" 3. From your 3rd Party Application you now have two options Execute a webservice call by first setting the header parameter "Authentication" to the JWT token. The webservice call will be executed against Fusion Applications "As" the user who execute the process To find out "Who you are" , set the header parameter to "Authentication" and execute the special webservice call findSelfUserDetails(), in the UserDetailsService For more information  Oracle Sales Cloud Documentation , specific chapter on JWT Token OTN samples, specifically the Rich UI With JWT Token Sample Oracle Fusion Applications General Documentation

    Read the article

  • Kickstart file is ignored by the installer

    - by Nuz
    I have fallowed this guide to create a kickstart file to install ubuntu automatically. However the problem is that when I boot the menu item label autoinstall menu label ^Auto install kernel /casper/vmlinuz append file=/cdrom/preseed/ubuntu.seed boot=casper initrd=/casper/initrd.lz file=/cdrom/ks.cfg -- it doesn't start the installer. I've tried using automatic-ubiquity as one of the parameters, but still it seems that kickstart file isn't used. Is there a way to make this work, or is there another way (preferably without using network, like FAI).

    Read the article

  • C#/.NET Little Wonders: The Generic Func Delegates

    - by James Michael Hare
    Once again, in this series of posts I look at the parts of the .NET Framework that may seem trivial, but can help improve your code by making it easier to write and maintain. The index of all my past little wonders posts can be found here. Back in one of my three original “Little Wonders” Trilogy of posts, I had listed generic delegates as one of the Little Wonders of .NET.  Later, someone posted a comment saying said that they would love more detail on the generic delegates and their uses, since my original entry just scratched the surface of them. Last week, I began our look at some of the handy generic delegates built into .NET with a description of delegates in general, and the Action family of delegates.  For this week, I’ll launch into a look at the Func family of generic delegates and how they can be used to support generic, reusable algorithms and classes. Quick Delegate Recap Delegates are similar to function pointers in C++ in that they allow you to store a reference to a method.  They can store references to either static or instance methods, and can actually be used to chain several methods together in one delegate. Delegates are very type-safe and can be satisfied with any standard method, anonymous method, or a lambda expression.  They can also be null as well (refers to no method), so care should be taken to make sure that the delegate is not null before you invoke it. Delegates are defined using the keyword delegate, where the delegate’s type name is placed where you would typically place the method name: 1: // This delegate matches any method that takes string, returns nothing 2: public delegate void Log(string message); This delegate defines a delegate type named Log that can be used to store references to any method(s) that satisfies its signature (whether instance, static, lambda expression, etc.). Delegate instances then can be assigned zero (null) or more methods using the operator = which replaces the existing delegate chain, or by using the operator += which adds a method to the end of a delegate chain: 1: // creates a delegate instance named currentLogger defaulted to Console.WriteLine (static method) 2: Log currentLogger = Console.Out.WriteLine; 3:  4: // invokes the delegate, which writes to the console out 5: currentLogger("Hi Standard Out!"); 6:  7: // append a delegate to Console.Error.WriteLine to go to std error 8: currentLogger += Console.Error.WriteLine; 9:  10: // invokes the delegate chain and writes message to std out and std err 11: currentLogger("Hi Standard Out and Error!"); While delegates give us a lot of power, it can be cumbersome to re-create fairly standard delegate definitions repeatedly, for this purpose the generic delegates were introduced in various stages in .NET.  These support various method types with particular signatures. Note: a caveat with generic delegates is that while they can support multiple parameters, they do not match methods that contains ref or out parameters. If you want to a delegate to represent methods that takes ref or out parameters, you will need to create a custom delegate. We’ve got the Func… delegates Just like it’s cousin, the Action delegate family, the Func delegate family gives us a lot of power to use generic delegates to make classes and algorithms more generic.  Using them keeps us from having to define a new delegate type when need to make a class or algorithm generic. Remember that the point of the Action delegate family was to be able to perform an “action” on an item, with no return results.  Thus Action delegates can be used to represent most methods that take 0 to 16 arguments but return void.  You can assign a method The Func delegate family was introduced in .NET 3.5 with the advent of LINQ, and gives us the power to define a function that can be called on 0 to 16 arguments and returns a result.  Thus, the main difference between Action and Func, from a delegate perspective, is that Actions return nothing, but Funcs return a result. The Func family of delegates have signatures as follows: Func<TResult> – matches a method that takes no arguments, and returns value of type TResult. Func<T, TResult> – matches a method that takes an argument of type T, and returns value of type TResult. Func<T1, T2, TResult> – matches a method that takes arguments of type T1 and T2, and returns value of type TResult. Func<T1, T2, …, TResult> – and so on up to 16 arguments, and returns value of type TResult. These are handy because they quickly allow you to be able to specify that a method or class you design will perform a function to produce a result as long as the method you specify meets the signature. For example, let’s say you were designing a generic aggregator, and you wanted to allow the user to define how the values will be aggregated into the result (i.e. Sum, Min, Max, etc…).  To do this, we would ask the user of our class to pass in a method that would take the current total, the next value, and produce a new total.  A class like this could look like: 1: public sealed class Aggregator<TValue, TResult> 2: { 3: // holds method that takes previous result, combines with next value, creates new result 4: private Func<TResult, TValue, TResult> _aggregationMethod; 5:  6: // gets or sets the current result of aggregation 7: public TResult Result { get; private set; } 8:  9: // construct the aggregator given the method to use to aggregate values 10: public Aggregator(Func<TResult, TValue, TResult> aggregationMethod = null) 11: { 12: if (aggregationMethod == null) throw new ArgumentNullException("aggregationMethod"); 13:  14: _aggregationMethod = aggregationMethod; 15: } 16:  17: // method to add next value 18: public void Aggregate(TValue nextValue) 19: { 20: // performs the aggregation method function on the current result and next and sets to current result 21: Result = _aggregationMethod(Result, nextValue); 22: } 23: } Of course, LINQ already has an Aggregate extension method, but that works on a sequence of IEnumerable<T>, whereas this is designed to work more with aggregating single results over time (such as keeping track of a max response time for a service). We could then use this generic aggregator to find the sum of a series of values over time, or the max of a series of values over time (among other things): 1: // creates an aggregator that adds the next to the total to sum the values 2: var sumAggregator = new Aggregator<int, int>((total, next) => total + next); 3:  4: // creates an aggregator (using static method) that returns the max of previous result and next 5: var maxAggregator = new Aggregator<int, int>(Math.Max); So, if we were timing the response time of a web method every time it was called, we could pass that response time to both of these aggregators to get an idea of the total time spent in that web method, and the max time spent in any one call to the web method: 1: // total will be 13 and max 13 2: int responseTime = 13; 3: sumAggregator.Aggregate(responseTime); 4: maxAggregator.Aggregate(responseTime); 5:  6: // total will be 20 and max still 13 7: responseTime = 7; 8: sumAggregator.Aggregate(responseTime); 9: maxAggregator.Aggregate(responseTime); 10:  11: // total will be 40 and max now 20 12: responseTime = 20; 13: sumAggregator.Aggregate(responseTime); 14: maxAggregator.Aggregate(responseTime); The Func delegate family is useful for making generic algorithms and classes, and in particular allows the caller of the method or user of the class to specify a function to be performed in order to generate a result. What is the result of a Func delegate chain? If you remember, we said earlier that you can assign multiple methods to a delegate by using the += operator to chain them.  So how does this affect delegates such as Func that return a value, when applied to something like the code below? 1: Func<int, int, int> combo = null; 2:  3: // What if we wanted to aggregate the sum and max together? 4: combo += (total, next) => total + next; 5: combo += Math.Max; 6:  7: // what is the result? 8: var comboAggregator = new Aggregator<int, int>(combo); Well, in .NET if you chain multiple methods in a delegate, they will all get invoked, but the result of the delegate is the result of the last method invoked in the chain.  Thus, this aggregator would always result in the Math.Max() result.  The other chained method (the sum) gets executed first, but it’s result is thrown away: 1: // result is 13 2: int responseTime = 13; 3: comboAggregator.Aggregate(responseTime); 4:  5: // result is still 13 6: responseTime = 7; 7: comboAggregator.Aggregate(responseTime); 8:  9: // result is now 20 10: responseTime = 20; 11: comboAggregator.Aggregate(responseTime); So remember, you can chain multiple Func (or other delegates that return values) together, but if you do so you will only get the last executed result. Func delegates and co-variance/contra-variance in .NET 4.0 Just like the Action delegate, as of .NET 4.0, the Func delegate family is contra-variant on its arguments.  In addition, it is co-variant on its return type.  To support this, in .NET 4.0 the signatures of the Func delegates changed to: Func<out TResult> – matches a method that takes no arguments, and returns value of type TResult (or a more derived type). Func<in T, out TResult> – matches a method that takes an argument of type T (or a less derived type), and returns value of type TResult(or a more derived type). Func<in T1, in T2, out TResult> – matches a method that takes arguments of type T1 and T2 (or less derived types), and returns value of type TResult (or a more derived type). Func<in T1, in T2, …, out TResult> – and so on up to 16 arguments, and returns value of type TResult (or a more derived type). Notice the addition of the in and out keywords before each of the generic type placeholders.  As we saw last week, the in keyword is used to specify that a generic type can be contra-variant -- it can match the given type or a type that is less derived.  However, the out keyword, is used to specify that a generic type can be co-variant -- it can match the given type or a type that is more derived. On contra-variance, if you are saying you need an function that will accept a string, you can just as easily give it an function that accepts an object.  In other words, if you say “give me an function that will process dogs”, I could pass you a method that will process any animal, because all dogs are animals.  On the co-variance side, if you are saying you need a function that returns an object, you can just as easily pass it a function that returns a string because any string returned from the given method can be accepted by a delegate expecting an object result, since string is more derived.  Once again, in other words, if you say “give me a method that creates an animal”, I can pass you a method that will create a dog, because all dogs are animals. It really all makes sense, you can pass a more specific thing to a less specific parameter, and you can return a more specific thing as a less specific result.  In other words, pay attention to the direction the item travels (parameters go in, results come out).  Keeping that in mind, you can always pass more specific things in and return more specific things out. For example, in the code below, we have a method that takes a Func<object> to generate an object, but we can pass it a Func<string> because the return type of object can obviously accept a return value of string as well: 1: // since Func<object> is co-variant, this will access Func<string>, etc... 2: public static string Sequence(int count, Func<object> generator) 3: { 4: var builder = new StringBuilder(); 5:  6: for (int i=0; i<count; i++) 7: { 8: object value = generator(); 9: builder.Append(value); 10: } 11:  12: return builder.ToString(); 13: } Even though the method above takes a Func<object>, we can pass a Func<string> because the TResult type placeholder is co-variant and accepts types that are more derived as well: 1: // delegate that's typed to return string. 2: Func<string> stringGenerator = () => DateTime.Now.ToString(); 3:  4: // This will work in .NET 4.0, but not in previous versions 5: Sequence(100, stringGenerator); Previous versions of .NET implemented some forms of co-variance and contra-variance before, but .NET 4.0 goes one step further and allows you to pass or assign an Func<A, BResult> to a Func<Y, ZResult> as long as A is less derived (or same) as Y, and BResult is more derived (or same) as ZResult. Sidebar: The Func and the Predicate A method that takes one argument and returns a bool is generally thought of as a predicate.  Predicates are used to examine an item and determine whether that item satisfies a particular condition.  Predicates are typically unary, but you may also have binary and other predicates as well. Predicates are often used to filter results, such as in the LINQ Where() extension method: 1: var numbers = new[] { 1, 2, 4, 13, 8, 10, 27 }; 2:  3: // call Where() using a predicate which determines if the number is even 4: var evens = numbers.Where(num => num % 2 == 0); As of .NET 3.5, predicates are typically represented as Func<T, bool> where T is the type of the item to examine.  Previous to .NET 3.5, there was a Predicate<T> type that tended to be used (which we’ll discuss next week) and is still supported, but most developers recommend using Func<T, bool> now, as it prevents confusion with overloads that accept unary predicates and binary predicates, etc.: 1: // this seems more confusing as an overload set, because of Predicate vs Func 2: public static SomeMethod(Predicate<int> unaryPredicate) { } 3: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } 4:  5: // this seems more consistent as an overload set, since just uses Func 6: public static SomeMethod(Func<int, bool> unaryPredicate) { } 7: public static SomeMethod(Func<int, int, bool> binaryPredicate) { } Also, even though Predicate<T> and Func<T, bool> match the same signatures, they are separate types!  Thus you cannot assign a Predicate<T> instance to a Func<T, bool> instance and vice versa: 1: // the same method, lambda expression, etc can be assigned to both 2: Predicate<int> isEven = i => (i % 2) == 0; 3: Func<int, bool> alsoIsEven = i => (i % 2) == 0; 4:  5: // but the delegate instances cannot be directly assigned, strongly typed! 6: // ERROR: cannot convert type... 7: isEven = alsoIsEven; 8:  9: // however, you can assign by wrapping in a new instance: 10: isEven = new Predicate<int>(alsoIsEven); 11: alsoIsEven = new Func<int, bool>(isEven); So, the general advice that seems to come from most developers is that Predicate<T> is still supported, but we should use Func<T, bool> for consistency in .NET 3.5 and above. Sidebar: Func as a Generator for Unit Testing One area of difficulty in unit testing can be unit testing code that is based on time of day.  We’d still want to unit test our code to make sure the logic is accurate, but we don’t want the results of our unit tests to be dependent on the time they are run. One way (of many) around this is to create an internal generator that will produce the “current” time of day.  This would default to returning result from DateTime.Now (or some other method), but we could inject specific times for our unit testing.  Generators are typically methods that return (generate) a value for use in a class/method. For example, say we are creating a CacheItem<T> class that represents an item in the cache, and we want to make sure the item shows as expired if the age is more than 30 seconds.  Such a class could look like: 1: // responsible for maintaining an item of type T in the cache 2: public sealed class CacheItem<T> 3: { 4: // helper method that returns the current time 5: private static Func<DateTime> _timeGenerator = () => DateTime.Now; 6:  7: // allows internal access to the time generator 8: internal static Func<DateTime> TimeGenerator 9: { 10: get { return _timeGenerator; } 11: set { _timeGenerator = value; } 12: } 13:  14: // time the item was cached 15: public DateTime CachedTime { get; private set; } 16:  17: // the item cached 18: public T Value { get; private set; } 19:  20: // item is expired if older than 30 seconds 21: public bool IsExpired 22: { 23: get { return _timeGenerator() - CachedTime > TimeSpan.FromSeconds(30.0); } 24: } 25:  26: // creates the new cached item, setting cached time to "current" time 27: public CacheItem(T value) 28: { 29: Value = value; 30: CachedTime = _timeGenerator(); 31: } 32: } Then, we can use this construct to unit test our CacheItem<T> without any time dependencies: 1: var baseTime = DateTime.Now; 2:  3: // start with current time stored above (so doesn't drift) 4: CacheItem<int>.TimeGenerator = () => baseTime; 5:  6: var target = new CacheItem<int>(13); 7:  8: // now add 15 seconds, should still be non-expired 9: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(15); 10:  11: Assert.IsFalse(target.IsExpired); 12:  13: // now add 31 seconds, should now be expired 14: CacheItem<int>.TimeGenerator = () => baseTime.AddSeconds(31); 15:  16: Assert.IsTrue(target.IsExpired); Now we can unit test for 1 second before, 1 second after, 1 millisecond before, 1 day after, etc.  Func delegates can be a handy tool for this type of value generation to support more testable code.  Summary Generic delegates give us a lot of power to make truly generic algorithms and classes.  The Func family of delegates is a great way to be able to specify functions to calculate a result based on 0-16 arguments.  Stay tuned in the weeks that follow for other generic delegates in the .NET Framework!   Tweet Technorati Tags: .NET, C#, CSharp, Little Wonders, Generics, Func, Delegates

    Read the article

  • Using the fsc mount option with nfsroot kernel parameter to allow FS-cache

    - by meanderix
    I'm PXE-booting a Ubuntu 10.10 system, where I specify the kernel parameters as follows: append root=/dev/nfs initrd=ubuntu-boot/initrd.img-2.6.35-24-generic nfsroot=11.22.33.44:/data/nfsroot,fsc ip=dhcp rw I need to use the mount option 'fsc' in order to use FS-cache functionality (the cachefilesd package.) However, when I try this I get the following error upon boot: nfsmount: bad option 'fsc' Why doesn't nfsmount permit this option? (It works fine when you mount manually with "mount -o fsc" after booting up.)

    Read the article

  • Extending Currying: Partial Functions in Javascript

    - by kerry
    Last week I posted about function currying in javascript.  This week I am taking it a step further by adding the ability to call partial functions. Suppose we have a graphing application that will pull data via Ajax and perform some calculation to update a graph.  Using a method with the signature ‘updateGraph(id,value)’. To do this, we have do something like this: 1: for(var i=0;i<objects.length;i++) { 2: Ajax.request('/some/data',{id:objects[i].id},function(json) { 3: updateGraph(json.id, json.value); 4: } 5: } This works fine.  But, using this method we need to return the id in the json response from the server.  This works fine, but is not that elegant and increase network traffic. Using partial function currying we can bind the id parameter and add the second parameter later (when returning from the asynchronous call).  To do this, we will need the updated curry method.  I have added support for sending additional parameters at runtime for curried methods. 1: Function.prototype.curry = function(scope) { 2: scope = scope || window 3: var args = []; 4: for (var i=1, len = arguments.length; i < len; ++i) { 5: args.push(arguments[i]); 6: } 7: var m = this; 8: return function() { 9: for (var i=0, len = arguments.length; i < len; ++i) { 10: args.push(arguments[i]); 11: } 12: return m.apply(scope, args); 13: }; 14: } To partially curry this method we will call the curry method with the id parameter, then the request will callback on it with just the value.  Any additional parameters are appended to the method call. 1: for(var i=0;i<objects.length;i++) { 2: var id=objects[i].id; 3: Ajax.request('/some/data',{id: id}, updateGraph.curry(id)); 4: } As you can see, partial currying gives is a very useful tool and this simple method should be a part of every developer’s toolbox.

    Read the article

  • URL routing similar to Facebook (related to AJAX and the URL)

    - by Guilherme Cardoso
    In this article i'm gonna show you how i do when i have to update some content with AJAX and i have to change the URL. First, let's see an example to understand it better. If the user is reading a News with Id 1 and he clicked on another News with Id 2, if we update the content with AJAX the user is now reading the News Id 2 but the URL remains the same, for example: http://localhost/News/Read/1 Now let's see another example from Facebook. If i'm reading my profile and i click on Photos, Facebook updates it with AJAX and the URL switch to: http://www.facebook.com/guilhermegeek#!/guilhermegeek?sk=photos If we enter on that URL, it's mapped to: http://www.facebook.com/guilhermegeek?sk=photos The trick here is the parameters that we use after the #!. Those parameters are never sent to the server side, so we handle them on the client side (javascript).In the example of Facebook, he receives my profile name (guilhermegeek) and the action is to read photos. A few time ago i've written an article in my Portuguese blog explaining how to use an alternative to clients with javascript disabled. Like this: <a onclick="javascript:ReadNews(id);" href="#!News/Read/@id/">Title</a> When the user enter the link of that news, my function Read(); fills the News in the page. Then, i add the #!News/Read/@id/ to my URL. It's gonna stay something like this: http://localhost/News/Read/1#!News/Read/2 As i explained before, the News that the user is reading has the Id 2.The next step is to use javascript to check if the URL that the user typed has other News Id, because if we enter on the above URL our controller will get the Id 1 (everything after to the # isn't sent to the server side). $(document).ready(function () {             var h = window.location.hash;             if (h != null) {                 var parts = window.location.href.split('#!');                 if (parts.length > 1) {                     window.location.replace("http://localhost/" + parts[1]);                 }             }    }); It's pretty simple. I'm cutting everything after the #!, then i redirect the user to a new page. So, it's gonna stay:http://localhost/News/Read/2

    Read the article

  • Per-vertex position/normal and per-index texture coordinate

    - by Boreal
    In my game, I have a mesh with a vertex buffer and index buffer up and running. The vertex buffer stores a Vector3 for the position and a Vector2 for the UV coordinate for each vertex. The index buffer is a list of ushorts. It works well, but I want to be able to use 3 discrete texture coordinates per triangle. I assume I have to create another vertex buffer, but how do I even use it? Here is my vertex/index buffer creation code: // vertices is a Vertex[] // indices is a ushort[] // VertexDefs stores the vertex size (sizeof(float) * 5) // vertex data numVertices = vertices.Length; DataStream data = new DataStream(VertexDefs.size * numVertices, true, true); data.WriteRange<Vertex>(vertices); data.Position = 0; // vertex buffer parameters BufferDescription vbDesc = new BufferDescription() { BindFlags = BindFlags.VertexBuffer, CpuAccessFlags = CpuAccessFlags.None, OptionFlags = ResourceOptionFlags.None, SizeInBytes = VertexDefs.size * numVertices, StructureByteStride = VertexDefs.size, Usage = ResourceUsage.Default }; // create vertex buffer vertexBuffer = new Buffer(Graphics.device, data, vbDesc); vertexBufferBinding = new VertexBufferBinding(vertexBuffer, VertexDefs.size, 0); data.Dispose(); // index data numIndices = indices.Length; data = new DataStream(sizeof(ushort) * numIndices, true, true); data.WriteRange<ushort>(indices); data.Position = 0; // index buffer parameters BufferDescription ibDesc = new BufferDescription() { BindFlags = BindFlags.IndexBuffer, CpuAccessFlags = CpuAccessFlags.None, OptionFlags = ResourceOptionFlags.None, SizeInBytes = sizeof(ushort) * numIndices, StructureByteStride = sizeof(ushort), Usage = ResourceUsage.Default }; // create index buffer indexBuffer = new Buffer(Graphics.device, data, ibDesc); data.Dispose(); Engine.Log(MessageType.Success, string.Format("Mesh created with {0} vertices and {1} indices", numVertices, numIndices)); And my drawing code: // ShaderEffect, ShaderTechnique, and ShaderPass all store effect data // e is of type ShaderEffect // get the technique ShaderTechnique t; if(!e.techniques.TryGetValue(techniqueName, out t)) return; // effect variables e.SetMatrix("worldView", worldView); e.SetMatrix("projection", projection); e.SetResource("diffuseMap", texture); e.SetSampler("textureSampler", sampler); // set per-mesh/technique settings Graphics.context.InputAssembler.SetVertexBuffers(0, vertexBufferBinding); Graphics.context.InputAssembler.SetIndexBuffer(indexBuffer, SlimDX.DXGI.Format.R16_UInt, 0); Graphics.context.PixelShader.SetSampler(sampler, 0); // render for each pass foreach(ShaderPass p in t.passes) { Graphics.context.InputAssembler.InputLayout = p.layout; p.pass.Apply(Graphics.context); Graphics.context.DrawIndexed(numIndices, 0, 0); } How can I do this?

    Read the article

  • Silverlight Cream for December 08, 2010 -- #1005

    - by Dave Campbell
    In this Issue: Peter Kuhn, David Anson, Jesse Liberty, Mike Taulty(-2-, -3-), Kunal Chowdhury, Jeremy Likness, Martin Krüger, Beth Massi(-2-, -3-)/ Above the Fold: Silverlight: "Rebuilding the PDC 2010 Silverlight Application (Part 1)" Mike Taulty WP7: "WP7: Glossy text block custom control" Martin Krüger Lightswitch: "How to Create a Screen with Multiple Search Parameters in LightSwitch" Beth Massi From SilverlightCream.com: Requirements of and pitfalls in Windows Phone 7 serialization Peter Kuhn discusses Data Contract Serializer issuses on WP7 and how to work around them. Managed implementation of CRC32 and MD5 algorithms updated; new release of ComputeFileHashes for Silverlight, WPF, and the command-line! David Anson ties up some loose ends from a prior post on hash functions, and updates his CRC32 and MD5 algorithms. Windows Phone From Scratch #9 – Visual State Jesse Liberty's latest Windows Phone from Scratch tutorial up... and is on the Visual State... he extends a Button and codes up the State Transitions. Rebuilding the PDC 2010 Silverlight Application (Part 1) Mike Taulty has taken the time to rebuild the PDC2010 Silverlight App that folks wanted the source for... and he's taking multiple posts to explain the heck out of it. This first one is mostly infrastructure. Rebuilding the PDC 2010 Silverlight Application (Part 2) In the 2nd post of the series, Mike Taulty is handling the In/Out of Browser business because he eventually is going to be going OOB. Rebuilding the PDC 2010 Silverlight Application (Part 3) Part 3 finds Mike Taulty delving into WCF Data Services and getting some data on the screen. Paginating Records in Silverlight DataGrid using PagedCollectionView Kunal Chowdhury continues with his investigation of the PagedCollectionView with this post on Pagination of your data. Old School Silverlight Effects If you haven't seen Jeremy Likness' 'Old School' Effects page yet, go just for the entertainment... you'll find yourself hanging around for the code :) WP7: Glossy text block custom control Martin Krüger's latest post is a very cool custom control for WP7 that displays Glossy text... it ain't Metro, but it looks pretty nice... some of it almost like etched text. How to Create a Screen with Multiple Search Parameters in LightSwitch Looks like Beth Massi got a few Lightswitch posts in while I wasn't looking. First up is this one on a multiple-parameter search screen. Adding Static Images and Logos to LightSwitch Applications In the 2nd post, Beth Massi shows how to add your own static images and logos to Lightswitch apps... in response to reader questions. Getting the Most out of LightSwitch Summary Properties In her latest post, Beth Massi explains what Summary Properties are in Lightswitch and how to use them to get the best results for your users. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • Box2D networking

    - by spacevillain
    I am trying to make a simple sync between two box2d rooms, where you can drag boxes using the mouse. So every time player clicks (and holds the mousedown) a box, I try send joint parameters to server, and server sends them to other clients. When mouseup occurs, I send command to delete joint. The problem is that sync breaks too often. Is my way radically wrong, or it just needs some tweaks? http://www.youtube.com/watch?v=eTN2Gwj6_Lc Source code https://github.com/agentcooper/Box2d-networking

    Read the article

  • qemu -cdrom ubuntu.iso -boot d -net nic,model=virtio -m 1024 -curses

    - by Gert Cuykens
    How do I disable frame buffers in Ubuntu 13.10 Saucy kernel, I tried all kinds of kernel parameters but none work? DEFAULT ramdisk LABEL ramdisk kernel /casper/vmlinuz append boot=casper toram initrd=/casper/initrd.img -- vesafb.nonsense=1 LABEL isotest kernel /casper/vmlinuz append boot=casper integrity-check initrd=/casper/initrd.img -- vesafb.nonsense=1 LABEL memtest kernel /install/memtest append - DISPLAY isolinux.txt TIMEOUT 300 PROMPT 1

    Read the article

  • Using DB_PARAMS to Tune the EP_LOAD_SALES Performance

    - by user702295
    The DB_PARAMS table can be used to tune the EP_LOAD_SALES performance.  The AWR report supplied shows 16 CPUs so I imaging that you can run with 8 or more parallel threads.  This can be done by setting the following DB_PARAMS parameters.  Note that most of parameter changes are just changing a 2 or 4 into an 8: DBHintEp_Load_SalesUseParallel = TRUE DBHintEp_Load_SalesUseParallelDML = TRUE DBHintEp_Load_SalesInsertErr = + parallel(@T_SRC_SALES@ 8) full(@T_SRC_SALES@) DBHintEp_Load_SalesInsertLd  = + parallel(@T_SRC_SALES@ 8) DBHintEp_Load_SalesMergeSALES_DATA = + parallel(@T_SRC_SALES_LD@ 8) full(@T_SRC_SALES_LD@) DBHintMdp_AddUpdateIs_Fictive0SD = + parallel(s 8 ) DBHintMdp_AddUpdateIs_Fictive2SD = + parallel(s 8 )

    Read the article

  • SharePoint 2010 Hosting :: Sending SMS Alerts in SharePoint 2010 Over Office Mobile Service Protocol (OMS)

    - by mbridge
    In this post, I want to share the exciting news of SharePoint's 2010 new feature. Finally it's possible to send SMS directly from SharePoint to mobile phones. The advantages of sending SMS instead of Email messages are obvious: SMS alerts or reminders that are received on mobile phones are more preferred than Email messages that can be lost in the mass of spam. The interface is standard as it's very similar to previous versions of the product. Adjustments are easy to do, simply enter the address of the Office Mobile Service (OMS) web-service which you want to use for sending messages, then specify the connection parameters. Further details on Office Mobile Service is available below. The Test Service button checks if OMS web-service is accessible using provided URL (user name and password are not verified). This check is needed because OMS web-service URL depends on the mobile operator and country. It's now possible to select the method of sending alerts in alerts settings. Email option is selected by default. Alerts delivery method is displayed in the list of existing alerts. Office Mobile Service (OMS) SharePoint 2010 uses exterior servers similar to SMTP servers for sending SMS alerts. However, Microsoft started development and promotion of their own protocol instead of using existing ones. That is how Office Mobile Service (OMS) appeared. This open protocol enables clients to send text and multimedia messages (mobile messages) remotely to the server which processes these messages and delivers them to mobile phones.  Typical scenario of utilizing this protocol is data transfer between computer application and mobile phone. The recipient can answer messages and the server in return will deliver the answer by SMTP protocol, i.e. by email.  Key quality of this protocol is that it's built on base of HTPP(S) and SOAP protocols.     This means that in fact SMS gateway must support typified web-service. What do you get from web-service? What you get is the ability to send SMS from any platform you want.  The protocol is being developed at the moment and version 0.2 from 08/28/2009 was available when the article was published.  For promotion of their protocol and simplifying server search, Microsoft represented web-service http://messaging.office.microsoft.com/HostingProviders.aspx that helps to receive the list of providers, which supports OMS protocol and message delivery to your operator.  All you need to do is decide which provider to use, complete the agreement, then adjust the SharePoint connection parameters and start working.  Some providers advertise themselves not only for clients but for mobile operators as well. They offer automatic adding to the list of the Office Mobile Service Providers.  To view the full specifications of OMS, please go to http://msdn.microsoft.com/en-us/library/dd774103.aspx.

    Read the article

  • using sp_addrolemember

    - by Derek Dieter
    To add a user or group to a role, you need to use sp_addrolemember. This procedure is easy to use as it only accepts two parameters, the role name, and the username (or group). Roles are utilized in order to provide a layer of abstraction from permissions from being applied directly to users. While [...]

    Read the article

  • PivotViewer demo for photographers

    - by Marco Russo (SQLBI)
    I have a friend (Sandro Rizzetto) that is also a photographer. A good one, but his job is in IT. For these reasons, after reading some posts of mines, he built a PivotViewer page to navigate its photo database. You can drilldown by category, date, lens, focal, iso, shutter speed and many other parameters. The result is awesome and is visible here . If you are interested in technical details and comments about the meaning of the data, read his blog here (it is in Italian)....(read more)

    Read the article

  • Linking to BIP reports from BIEE Analyses

    - by Tim Dexter
    Bryan found a great blog post from Fiston over on the OBIEEStuff blog. It covers the ability to link to a BIP report from a BIEE analyses report with the ability to pass parameters to it. I have doubled checked and you need to be on OBIEE 11.1.1.5 to see the 'Shared Report Link' mentioned in Fiston's post when you open a BIP report from the /analytics side of the house. Enjoy! OBIEE to BIP trick

    Read the article

  • A System Monitoring Tool Primer

    <b>CertCities:</b> "Linux comes with a number of utilities that can be used to monitor one or more of these performance parameters. The following sections introduce a few of these utilities and show how to understand the information presented by them"

    Read the article

  • Action delegate in C#

    - by Jalpesh P. Vadgama
    In last few posts about I have written lots of things about delegates and this post is also part of that series. In this post we are going to learn about Action delegates in C#.  Following is a list of post related to delegates. Delegates in C#. Multicast Delegates in C#. Func Delegates in C#. Action Delegates in c#: As per MSDN action delegates used to pass a method as parameter without explicitly declaring custom delegates. Action Delegates are used to encapsulate method that does not have return value. C# 4.0 Action delegates have following different variants like following. It can take up to 16 parameters. Action – It will be no parameter and does not return any value. Action(T) Action(T1,T2) Action(T1,T2,T3) Action(T1,T2,T3,T4) Action(T1,T2,T3,T4,T5) Action(T1,T2,T3,T4,T5,T6) Action(T1,T2,T3,T4,T5,T6,T7) Action(T1,T2,T3,T4,T5,T6,T7,T8) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15) Action(T1,T2,T3,T4,T5,T6,T7,T8,T9,T10,T11,T12,T13,T14,T15,T16) So for this Action delegate you can have up to 16 parameters for Action.  Sound interesting!!… Enough theory now. It’s time to implement real code. Following is a code for that. using System; using System.Collections.Generic; namespace DelegateExample { class Program { static void Main(string[] args) { Action<String> Print = p => Console.WriteLine(p); Action<String,String> PrintAnother = (p1,p2)=> Console.WriteLine(string.Format("{0} {1}",p1,p2)); Print("Hello"); PrintAnother("Hello","World"); } } } In the above code you can see that I have created two Action delegate Print and PrintAnother. Print have one string parameter and its printing that. While PrintAnother have two string parameter and printing both the strings via Console.Writeline. Now it’s time to run example and following is the output as expected. That’s it. Hope you liked it. Stay tuned for more updates!!

    Read the article

  • Process Rules!

    - by Ajay Khanna
    One of the key components of a process is “Business Rule”. Business rule takes many forms inside your process definition and in a way is a manifestation of your company’s business policy. Business rules inside the process are used for policy enforcement, governance, decision management, operations efficiency etc. Following are some basic types of rules that can be a part of your process. 1. Process conditions:  These are defined as the process gateways that determine a path process will take depending on the process parameters. For Example, if discount >10% go to approval path : if discount < 10% auto-approve order. 2. Data rules: These business rules are defined as facts in decision table or knowledge base. The process captures all required parameters and submits those to RETE based rules engine. Rules engine processes the data and returns the result back. For example, rules determining your insurance eligibility. 3. Event rules: Here the system is monitoring the various events and events patterns that are emerging inside the process or external to the process. You can define actions or alerts to be triggered when a certain pattern of events emerges over a specified time period. Such types of rules need Complex Event Processing and are used in applications like Credit Card Fraud detection or Utility Demand Response. 4. User Interface Rules: In order to add dynamic behavior to UI or to keep users from making mistakes and enforcing policy, another mechanism available is UI rules. They are evaluated as the end user is filling out the web forms. These may include enabling and disabling of UI as per business policy. An example could be, if the age of a user is less than 13 years, disable credit card field and enable parental approval required checkbox. Your process may include many of such rule types. Oracle OpenWorld provides a unique opportunity to listen to Oracle Business Process Management Experts and Customers.  We will discuss business rules during various sessions in Oracle OpenWorld. Two of the sessions specifically focused on business rules are listed below: Accelerating an Implementation of Complex Worldwide Business Approval Rules Wednesday, Oct 3, 10:15 AM Moscone South – 305 Oracle Business Rules Use Cases Design and Testing Wednesday, Oct 3, 3:30 PM Marriott Marquis - Golden Gate C3   Oracle Business Process Management Track covers a variety of topics, and speakers covering technology, methodology and best practices. You can see the list of Business process Management sessions here. Come back to this blog for more coverage from Oracle OpenWorld!

    Read the article

  • Improve the business logic

    - by Victor
    In my application,I have a feature like this: The user wants to add a new address to the database. Before adding the address, he needs to perform a search(using input parameters like country,city,street etc) and when the list comes up, he will manually check if the address he wants to add is present or not. If present, he will not add the address. Is there a way to make this process better. maybe somehow eliminate a step, avoid need for manual verification etc.

    Read the article

< Previous Page | 136 137 138 139 140 141 142 143 144 145 146 147  | Next Page >