Search Results

Search found 4775 results on 191 pages for 'databound lists'.

Page 145/191 | < Previous Page | 141 142 143 144 145 146 147 148 149 150 151 152  | Next Page >

  • "No such file or directory"?

    - by user1509541
    Ok, so I have a VDS laying around, and I thought I would turn it into a TF2 game server. When I connect to my server through PuTTY, and use wget to download the package "hldsupdatetool.bin" from Steampowered.com. I go to run it and it says "No such file or directory found". When I use "ls" to see what files are in directory, it lists "hldsupdatetool.bin" as being in the directory. So, why is it saying it's not there? This has been a headache for the past 2 days. It's returning: root@10004:~# wget http://www.steampowered.com/download/hldsupdatetool.bin --2012-07-08 06:04:49-- http://www.steampowered.com/download/hldsupdatetool.bin Resolving www.steampowered.com... 208.64.202.68 Connecting to www.steampowered.com|208.64.202.68|:80... connected. HTTP request sent, awaiting response... 200 OK Length: 3513408 (3.4M) [application/octet-stream] Saving to: “hldsupdatetool.bin.3” 100%[======================================>] 3,513,408 2.45M/s in 1.4s 2012-07-08 06:04:51 (2.45 MB/s) - “hldsupdatetool.bin.3” saved [3513408/3513408] root@10004:~# chmod +x hldsupdatetool.bin.3 root@10004:~# ./hldsupdatetool.bin.3 -bash: ./hldsupdatetool.bin.3: No such file or directory root@10004:~# More: root@10004:~# ls ffmpeg-packages hldsupdatetool.bin.1 hldsupdatetool.bin.3 hldsupdatetool.bin hldsupdatetool.bin.2 setup.sh root@10004:~# ls -la total 13828 drwx------ 4 root root 4096 Jul 8 06:04 . drwxr-xr-x 21 root root 4096 Jul 8 05:57 .. -rw------- 1 root root 8799 Jul 8 06:26 .bash_history -rw-r--r-- 1 root root 570 Jan 31 2010 .bashrc -rw-r--r-- 1 root root 4 Jul 2 19:39 .custombuild drwxr-xr-x 2 root root 4096 Jul 4 18:49 ffmpeg-packages ---x--xrwx 1 root root 3513408 Sep 2 2005 hldsupdatetool.bin -rwxr-xr-x 1 root root 3513408 Sep 2 2005 hldsupdatetool.bin.1 -rw-r--r-- 1 root root 3513408 Sep 2 2005 hldsupdatetool.bin.2 -rwxr-xr-x 1 root root 3513408 Sep 2 2005 hldsupdatetool.bin.3 -rw-r--r-- 1 root root 140 Nov 19 2007 .profile -rw------- 1 root root 1024 Jul 2 19:49 .rnd -rwxr-xr-x 1 root root 38866 May 23 22:02 setup.sh drwxr-xr-x 2 root root 4096 Jul 2 19:44 .ssh root@10004:~#

    Read the article

  • Information on the BMPP File Extension/Format

    - by Angel Brighteyes
    I am looking for information on the file type BMPp. Namely I need an application that can create this file type, preferably open source or free. Wikipedia says for BMP File Format that 'BMPp' is a "type code", which is the "mechanism used by pre-OSX Macs ... to denote a files format..." (Look in the little info-box of general information under "Type code"). Continuing my research, I found an old 2009 archived mailing list "Re: Incorrect png file type 'PNG' that talks about something related to another problem a developer is having. In the response he talks about there being variant file types, and lists BMPp as being linked to an old version of Graphics Converter. The company Lemkesoft sells Graphics Converter, which I am not willing to purchase. I can't imagine that the only program in existence to make a BMPp file is that program. There has got to be another way to make that file type, other than creating a BMP file and just renaming it to BMPp (unless of course it is really that easy)? This is the first time I've run into this file format, and it took a bit on Google, Bing, and Wikipedia to find the information that I've posted here. Any further help would be appreciated.

    Read the article

  • Incorrect Internal DNS Resolution

    - by user167016
    I'm having a DNS issue. Server 2008 R2. The first clue was that after being off the network for a month, I could no longer Remote Desktop into my workstation by name, it wouldn't find it. Both via VPN and internally. But if I connect using its IP, that works. Now I notice in the server's Share and Storage Management, in Manage Sessions, it's displaying the incorrect computer name for some users. So I try, for one example: Ping -a 192.168.16.81 Pinging BOBS_COMPUTER.ourdomain.local [192.168.16.81] with 32 bytes of data: - replies all successful Then I try Ping RICHARDS_COMPUTER Pinging RICHARDS_COMPUTER.ourdomain.local [192.168.16.81] with 32 bytes of data: -all replies successful In DHCP, .81 belongs to RICHARDS_COMPUTER I did try flushdns. Not sure if this is related, apologies if it's not, but when I try to connect, I also get prompted: "The identity of the remote computer cannot be verified. Do you want to connect anyway? The remote computer could not be authenticated due to problems with its security certificate. It may be unsafe to proceed.." It then lists the correct name as the name in the certificate from the remote computer, but claims that the certificate is not from a trusted authority. Any thoughts are most appreciated!

    Read the article

  • apt unable to install particular version of package (but gives no error)

    - by Arc2009
    I'd like to install particular version of libstd++6 with following command: # apt-get install libstdc++6=4.9.0-8 -V Reading package lists... Done Building dependency tree Reading state information... Done The following extra packages will be installed: libstdc++6 (4.8.2-16) 0 upgraded, 0 newly installed, 0 to remove and 216 not upgraded. It gives no error, but apt keeps version that was already installed. And also it refers to this package as "extra". There's no apt preferences set in /etc/apt/preferences.d. And the desirable version is definetely available through our local mirror. (If I try to run "apt-get download libstdc++6=4.9.0-8" it will download exactly desirable version.) System info: # cat /etc/issue.net "Debian GNU/Linux jessie/sid" # uname -a Linux www27 3.13-1-amd64 #1 SMP Debian 3.13.7-1 (2014-03-25) x86_64 GNU/Linux. # dpkg -l |egrep -i "apt|dpkg" ii apt 0.9.16.1 amd64 commandline package manager ii dpkg 1.17.6 amd64 Debian package management system Any suggestions?

    Read the article

  • Windows-7 Ultimate 64 bit wont connect to my wired/wireless networks

    - by A302
    Windows 7 Ultimate 64 bit. Everything was working fine & then just stopped working. The nic card Realtek PCIe GBE Family Controller is enabled but does not connect to my router (cables & router ports are good). Wireless Atheros AR5007EG is enabled but the connection is limited (encryption type / key have been verified). A laptop running XP can connect both wired / wireless. SSID is not being broadcast, connect to network if it is not broadcasting is checked. Have checked services.msc for Bonjour & did not see it listed. Network & sharing center does not list any active networks. Device manager lists both devices as functioning properly. Router configuration has not been changed. Virus scan has not found anything. I would like to fix this rather than using Acronis to do a system restore. Thanks in advance for any advice offered in solving this. 26 Jan, the nic card & wireless are working using PCLinux OS Live CD. It appears that the problem is Windows 7 related.

    Read the article

  • Allocating More Than 4 GB Of Memory

    - by TPatti
    I am facing an issue with memory allocation. I have: Host OS: Microsoft Windows XP - Professional x64 Edition - Version 2003 - Service Pack 2. Host Physical Memory: 8 GB Guest OS: Red Hat Enterprise Linux WS release 4 (Nahant Update 5). I am not sure if it is 32 or 64 bits. The lsb_release -a command says that argument LSB Version: core-3.0-ia32, so I guess that would be 32 bits... VMware Player Version: 2.5.2 build-156735 I would like that VMware Player could allocate more that 4 GB, but when I go to the setting, it only lists 4 GB. If I choose the "About" option, it actually says that I have 8 GB installed in the host machine. This VMware image created by someone else and provided to me, apparently done with VMware Workstation 5. Why can't I allocate 8 GB? Where is the problem? In the WMware Player Version, Guest OS or Host OS? How can I solve this? I understand that for this version of player there isn't one version for 32 and another for 64 bits.

    Read the article

  • How many iptables block rules is too many

    - by mhost
    We have a server with a Quad-Core AMD Opteron Processor 2378. It acts as our firewall for several servers. I've been asked to block all IPs from China. In a separate network, we have some small VPS machines (256MB and 512MB). I've been asked to block china on those VPS's as well. I've looked online and found lists which requires 4500 block rules. My question is will putting in all 4500 rules be a problem? I know iptables can handle far more rules than that, what I am concerned about is since these are blocks that I don't want to have access to any port, I need to put these rules before any allow. This means all legitimate traffic needs to be compared to all those rules before getting through. Will the traffic be noticeably slower after implementing this? Will those small VPS's be able to handle processing that many rules for every new packet (I'll put an established allow before the blocks)? My question is not How many rules can iptables support?, its about the effect that these rules will have on load and speed. Thanks.

    Read the article

  • What Logs / Process Stats to monitor on a Ubuntu FTP server?

    - by Adam Salkin
    I am administering a server with Ubuntu Server which is running pureFTP. So far all is well, but I would like to know what I should be monitoring so that I can spot any potential stability and security issues. I'm not looking for sophisticated software, more an idea of what logs and process statistics are most useful for checking on the health of the system. I'm thinking that I can look at various parameters output from the "ps" command and compare to see if I have things like memory leaks. But I would like to know what experienced admins do. Also, how do I do a disk check so that when I reboot, I don't get a message saying something like "disk not checked for x days, forcing check" which delays the reboot? I assume there is command that I can run as a cron job late at night. How often should it be run? What things should I be looking at to spot intrusion attempts? The only shell access is SSH on a non-standard port through UFW firewall, and I regularly do a grep on auth.log for "Fail" or "Invalid". Is there anything else I should look at? I was logging the firewall (UFW) but I have very few open ports (FTP and SSH on a non standard port) so looking at lists of IP's that have been blocked did not seem useful. Many thanks

    Read the article

  • How can I tell System Restore in WIndows 7 recovery console to use my recovered backup drive's restore point data?

    - by Rich Shealer
    My Windows 7 desktop PC failed to boot. It would get to a grayish screen with a mouse and would only respond to the power button. After much examination I found that the problem was not a failed drive as running CHKDSK from the Recovery Console on my main drives passed without any errors. I had been installing various Java version in the days before the failure so I decided to use a restore point to roll backwards. I have an external SATA drive controller with two 2 TB drives mirrored using the Windows mirroring function. My system has been backing up to this drive regularly. The problem is I accidently broke the mirror when testing to see if this drive system might have been causing my boot issue. Connecting it to another machine showed two dynamic drives that were invalid. In the end I reformatted one as an NTFS basic disc and used recovery software on the other to copy all of the files to the reformatted drive. I had to copy the restore points into the new drive's System Volume Information folder by granting rights to that user. I moved the drive back to the original machine and rebooted. I can see my new drive, it even uses the same drive letter as it did in normal mode. Running System Restore it lists a new Automatic Restore point created while sitting at the RC along with all of my backups. Selecting the backup I want (or any other) I get a dialog. The backup drive could not be found. System Restore is looking for restore points on your backup. Make sure the backup drive is on and connected to this computer and then click OK. What do I need to do to allow system restore to see the restore points?

    Read the article

  • How can I use apt-get to resolve package dependencies when there are multiple versions in the repository?

    - by user1165144
    I've package a-package.deb which depends on b-package.deb in version 1.0. Everything works fine. But now a b-package in version 1.1 gets added to the repository. I'd suspect that apt-get installs the a-package and version 1.0 of the b-package. What really happens is, that a-package won't get installed: # apt-get install a-package Reading package lists... Done Building dependency tree Reading state information... Done Some packages could not be installed. This may mean that you have requested an impossible situation or if you are using the unstable distribution that some required packages have not yet been created or been moved out of Incoming. The following information may help to resolve the situation: The following packages have unmet dependencies: a-package : Depends: b-package (= 1.0) but 1.1 is to be installed E: Unable to correct problems, you have held broken packages. Is there a workaround to fix the behavior? Is there other software to use, that can handle the dependencies as defined?

    Read the article

  • How can I write an excel formula to do row based calculations; where certain conditions need to be met?

    - by BDY
    I am given: An excel sheet contains around 200 tasks (described in rows 2-201 in Column A). Each task can be elegible for a max of two projects (There are 4 projects in total, called "P1-P4" - drop down lists in Columns B and D); and this with a specific %-rate allocation (columns C & E - Column C refers to the Project Column B, and Column E refers to the Project in Column D). Column F shows the amount of work days spent on each task. Example in row 2: Task 1 (Column A); P1 (Column B) ; 80% (Column C) ; P3 (Column D) ; 20% (Column E) ; 3 (Column F) I need to know the sum of the working days spent on Project P3 respecting the %-rate for elegibility. I know how to calculate it for each Task (each Row) - e.g. for Task 1: =IF(B2="P3";C2*F2)+IF(D2="P3";E2*F2) However instead of repeating this for each task, I need a formula that adds them all together. Unfortunately the following formula shows me an error: =IF(B2:B201="P3";C2:C201*F2:F201)+IF(D2:D201="P3";E2:E201*F2:F201) Can anyone help please? Thank you!!

    Read the article

  • Build-Essentials installation failing

    - by Brickman
    I am having trouble accessing the several critical header files that show to be a part of the build process. The "Ubuntu Software Center" shows "Build Essentials" as installed: Next I did the following two commands, which did not improve the problem: ~$ sudo apt-get install build-essential [sudo] password for: Reading package lists... Done Building dependency tree Reading state information... Done build-essential is already the newest version. 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. :~$ sudo apt-get install -f Reading package lists... Done Building dependency tree Reading state information... Done 0 upgraded, 0 newly installed, 0 to remove and 0 not upgraded. :~$ Dump of headers after installation attempts. > /usr/include/boost/interprocess/detail/atomic.hpp > /usr/include/boost/interprocess/smart_ptr/detail/sp_counted_base_atomic.hpp > /usr/include/qt4/Qt/qatomic.h /usr/include/qt4/Qt/qbasicatomic.h > /usr/include/qt4/QtCore/qatomic.h > /usr/include/qt4/QtCore/qbasicatomic.h > /usr/share/doc/git-annex/html/bugs/git_annex_unlock_is_not_atomic.html > /usr/src/linux-headers-3.11.0-15/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-15/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-15/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-15-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-17/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-17/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-17-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-18/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-18/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-18-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-19/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-19/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-19-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-20/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-20/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-20-generic/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/h8300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.11.0-22/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.11.0-22/include/linux/atomic.h > /usr/src/linux-headers-3.11.0-22-generic/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/alpha/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arm/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/arm64/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/avr32/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/blackfin/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/cris/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/frv/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/hexagon/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/ia64/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/m32r/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/m68k/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/metag/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/microblaze/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/mips/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/mn10300/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/parisc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/powerpc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/s390/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/score/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/sh/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/sparc/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/tile/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/x86/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/arch/xtensa/include/asm/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-headers-3.14.4-031404/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-headers-3.14.4-031404/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404-generic/include/linux/atomic.h > /usr/src/linux-headers-3.14.4-031404-lowlatency/include/linux/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/alpha/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arm/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/arm64/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/avr32/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/blackfin/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/arch-v10/arch/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/arch-v32/arch/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/cris/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/frv/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/h8300/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/hexagon/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/ia64/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/m32r/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/m68k/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/metag/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/microblaze/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/mips/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/mn10300/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/parisc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/powerpc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/s390/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/score/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/sh/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/sparc/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/tile/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/x86/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/arch/xtensa/include/asm/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/ext2-atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/asm-generic/bitops/non-atomic.h > /usr/src/linux-lts-saucy-3.11.0/include/linux/atomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng/lib/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng/wrapper/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng-modules/lib/ringbuffer/vatomic.h > /usr/src/linux-lts-saucy-3.11.0/ubuntu/lttng-modules/wrapper/ringbuffer/vatomic.h Yes, I know there are multiple headers of the same type here, but they are different versions. Version "linux-headers-3.14.4-031404" shows to be the latest. Ubuntu shows "Nothing needed to be installed." However, the following C/C++ headers files show to be missing for Eclipse and QT4. #include <linux/version.h> #include <linux/module.h> #include <linux/socket.h> #include <linux/miscdevice.h> #include <linux/list.h> #include <linux/vmalloc.h> #include <linux/slab.h> #include <linux/init.h> #include <asm/uaccess.h> #include <asm/atomic.h> #include <linux/delay.h> #include <linux/usb.h> This problem appears on my 32-bit version of Ubuntu and on both of my 64-bit versions. What I am doing wrong?

    Read the article

  • CodePlex Daily Summary for Thursday, January 13, 2011

    CodePlex Daily Summary for Thursday, January 13, 2011Popular ReleasesMVC Music Store: MVC Music Store v2.0: This is the 2.0 release of the MVC Music Store Tutorial. This tutorial is updated for ASP.NET MVC 3 and Entity Framework Code-First, and contains fixes and improvements based on feedback and common questions from previous releases. The main download, MvcMusicStore-v2.0.zip, contains everything you need to build the sample application, including A detailed tutorial document in PDF format Assets you will need to build the project, including images, a stylesheet, and a pre-populated databas...Free Silverlight & WPF Chart Control - Visifire: Visifire SL and WPF Charts v3.6.7 GA Released: Hi, Today we are releasing Visifire 3.6.7 GA with the following feature: * Inlines property has been implemented in Title. Also, this release contains fix for the following bugs: * In Column and Bar chart DataPoint’s label properties were not working as expected at real-time if marker enabled was set to true. * 3D Column and Bar chart were not rendered properly if AxisMinimum property was set in x-axis. You can download Visifire v3.6.7 here. Cheers, Team VisifireFluent Validation for .NET: 2.0: Changes since 2.0 RC Fix typo in the name of FallbackAwareResourceAccessorBuilder Fix issue #7062 - allow validator selectors to work against nullable properties with overriden names. Fix error in German localization. Better support for client-side validation messages in MVC integration. All changes since 1.3 Allow custom MVC ModelValidators to be added to the FVModelValidatorProvider Support resource provider for custom property validators through the new IResourceAccessorBuilder ...EnhSim: EnhSim 2.3.2 ALPHA: 2.3.1 ALPHAThis release supports WoW patch 4.03a at level 85 To use this release, you must have the Microsoft Visual C++ 2010 Redistributable Package installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=A7B7A05E-6DE6-4D3A-A423-37BF0912DB84 To use the GUI you must have the .NET 4.0 Framework installed. This can be downloaded from http://www.microsoft.com/downloads/en/details.aspx?FamilyID=9cfb2d51-5ff4-4491-b0e5-b386f32c0992 - Quick update to ...ASP.NET MVC Project Awesome, jQuery Ajax helpers (controls): 1.6: A rich set of helpers (controls) that you can use to build highly responsive and interactive Ajax-enabled Web applications. These helpers include Autocomplete, AjaxDropdown, Lookup, Confirm Dialog, Popup Form, Popup and Pager new stuff: paging for the lookup lookup with multiselect changes: the css classes used by the framework where renamed to be more standard the lookup controller requries an item.ascx (no more ViewData["structure"]), and LookupList action renamed to Search all the...pwTools: pwTools: Changelog v1.0 base release??????????: All-In-One Code Framework ??? 2011-01-12: 2011???????All-In-One Code Framework(??) 2011?1??????!!http://i3.codeplex.com/Project/Download/FileDownload.aspx?ProjectName=1code&DownloadId=128165 ?????release?,???????ASP.NET, AJAX, WinForm, Windows Shell????13?Sample Code。???,??????????sample code。 ?????:http://blog.csdn.net/sjb5201/archive/2011/01/13/6135037.aspx ??,??????MSDN????????????。 http://social.msdn.microsoft.com/Forums/zh-CN/codezhchs/threads ?????????????????,??Email ????patterns & practices – Enterprise Library: Enterprise Library 5.0 - Extensibility Labs: This is a preview release of the Hands-on Labs to help you learn and practice different ways the Enterprise Library can be extended. Learning MapCustom exception handler (estimated time to complete: 1 hr 15 mins) Custom logging trace listener (1 hr) Custom configuration source (registry-based) (30 mins) System requirementsEnterprise Library 5.0 / Unity 2.0 installed SQL Express 2008 installed Visual Studio 2010 Pro (or better) installed AuthorsChris Tavares, Microsoft Corporation ...Orchard Project: Orchard 1.0: Orchard Release Notes Build: 1.0.20 Published: 1/12/2010 How to Install OrchardTo install the Orchard tech preview using Web PI, follow these instructions: http://www.orchardproject.net/docs/Installing-Orchard.ashx Web PI will detect your hardware environment and install the application. --OR-- Alternatively, to install the release manually, download the Orchard.Web.1.0.20.zip file. The zip contents are pre-built and ready-to-run. Simply extract the contents of the Orchard folder from ...Umbraco CMS: Umbraco 4.6.1: The Umbraco 4.6.1 (codename JUNO) release contains many new features focusing on an improved installation experience, a number of robust developer features, and contains nearly 200 bug fixes since the 4.5.2 release. Getting Started A great place to start is with our Getting Started Guide: Getting Started Guide: http://umbraco.codeplex.com/Project/Download/FileDownload.aspx?DownloadId=197051 Make sure to check the free foundation videos on how to get started building Umbraco sites. They're ...Google URL Shortener API for .NET: Google URL Shortener API v1: According follow specification: http://code.google.com/apis/urlshortener/v1/reference.htmlStyleCop for ReSharper: StyleCop for ReSharper 5.1.14986.000: A considerable amount of work has gone into this release: Features: Huge focus on performance around the violation scanning subsystem: - caching added to reduce IO operations around reading and merging of settings files - caching added to reduce creation of expensive objects Users should notice condsiderable perf boost and a decrease in memory usage. Bug Fixes: - StyleCop's new ObjectBasedEnvironment object does not resolve the StyleCop installation path, thus it does not return the ...SQL Monitor - tracking sql server activities: SQL Monitor 3.1 beta 1: 1. support alert message template 2. dynamic toolbar commands depending on functionality 3. fixed some bugs 4. refactored part of the code, now more stable and more clean upFacebook C# SDK: 4.2.1: - Authentication bug fixes - Updated Json.Net to version 4.0.0 - BREAKING CHANGE: Removed cookieSupport config setting, now automatic. This download is also availible on NuGet: Facebook FacebookWeb FacebookWebMvcHawkeye - The .Net Runtime Object Editor: Hawkeye 1.2.5: In the case you are running an x86 Windows and you installed Release 1.2.4, you should consider upgrading to this release (1.2.5) as it appears Hawkeye is broken on x86 OS. I apologize for the inconvenience, but it appears Hawkeye 1.2.4 (and probably previous versions) doesn't run on x86 Windows (See issue http://hawkeye.codeplex.com/workitem/7791). This maintenance release fixes this broken behavior. This release comes in two flavors: Hawkeye.125.N2 is the standard .NET 2 build, was compile...Phalanger - The PHP Language Compiler for the .NET Framework: 2.0 (January 2011): Another release build for daily use; it contains many new features, enhanced compatibility with latest PHP opensource applications and several issue fixes. To improve the performance of your application using MySQL, please use Managed MySQL Extension for Phalanger. Changes made within this release include following: New features available only in Phalanger. Full support of Multi-Script-Assemblies was implemented; you can build your application into several DLLs now. Deploy them separately t...AutoLoL: AutoLoL v1.5.3: A message will be displayed when there's an update available Shows a list of recent mastery files in the Editor Tab (requested by quite a few people) Updater: Update information is now scrollable Added a buton to launch AutoLoL after updating is finished Updated the UI to match that of AutoLoL Fix: Detects and resolves 'Read Only' state on Version.xmlTweetSharp: TweetSharp v2.0.0.0 - Preview 7: Documentation for this release may be found at http://tweetsharp.codeplex.com/wikipage?title=UserGuide&referringTitle=Documentation. Note: This code is currently preview quality. Preview 7 ChangesFixes the regression issue in OAuth from Preview 6 Preview 6 ChangesMaintenance release with user reported fixes Preview 5 ChangesMaintenance release with user reported fixes Third Party Library VersionsHammock v1.0.6: http://hammock.codeplex.com Json.NET 3.5 Release 8: http://json.codeplex.comExtended WPF Toolkit: Extended WPF Toolkit - 1.3.0: What's in the 1.3.0 Release?BusyIndicator ButtonSpinner ChildWindow ColorPicker - Updated (Breaking Changes) DateTimeUpDown - New Control Magnifier - New Control MaskedTextBox - New Control MessageBox NumericUpDown RichTextBox RichTextBoxFormatBar - Updated .NET 3.5 binaries and SourcePlease note: The Extended WPF Toolkit 3.5 is dependent on .NET Framework 3.5 and the WPFToolkit. You must install .NET Framework 3.5 and the WPFToolkit in order to use any features in the To...Ionics Isapi Rewrite Filter: 2.1 latest stable: V2.1 is stable, and is in maintenance mode. This is v2.1.1.25. It is a bug-fix release. There are no new features. 28629 29172 28722 27626 28074 29164 27659 27900 many documentation updates and fixes proper x64 build environment. This release includes x64 binaries in zip form, but no x64 MSI file. You'll have to manually install x64 servers, following the instructions in the documentation.New Projects4chan: Project for educational purposesAE.Net.Mail - POP/IMAP Client: C# POP/IMAP client libraryAlmathy: Application communautaire pour le partage de données basée sur le protocole XMPP. Discussion instantanée, mail, échange de données, travaux partagés. Développée en C#, utilisant les Windows Forms.AMK - Associação Metropolitana de Kendo: Projeto do site versão 2011 da Associação Metropolitana de Kendo. O site contará com: - Cadastro de atletas e eventos; - Controle de cadastro junto a CBK e histórico de graduações; - Calendário de treinos; Será desenvolvido usando .NET, MVC2, Entity Framework, SQL Server, JQueryAzke: New: Azke is a portal developed with ASP.NET MVC and MySQL. Old: Azke is a portal developed with ASP.net and MySQL.BuildScreen: A standalone Windows application to displays project build statuses from TeamCity. It can be used on a large screen for the whole development team to watch their build statuses as well as on a developer machine.CardOnline: CardOnline GameLobby GameCAudioEndpointVolume: The CAudioEndpointVolume implements the IAudioEndpointVolume Interface to control the master volume in Visual Basic 6.0 for Windows Vista and later operating systems.Cloudy - Online Storage Library: The goal of Cloudy is to be an online storage library to enable access for the most common storage services : DropBox, Skydrive, Google Docs, Azure Blob Storage and Amazon S3. It'll work in .NET 3.5 and up, Silverlight and Windows Phone 7 (WP7).ContentManager: Content Manger for SAP Kpro exports the data pool of a content-server by PHIOS-Lists (txt-files) into local binary files. Afterwards this files can be imported in a SAP content-repository . The whole List of the PHIOS Keys can also be downloaded an splitted in practical units.CSWFKrad: private FrameworkDiego: Diegodoomhjx_javalib: this is my lib for the java project.Eve Planetary Interaction: Eve Planetary InteractionEventWall: EventWall allows you to show related blogposts and tweets on the big screen. Just configure the hashtag and blog RSS feeds and you're done.Google URL Shortener API for .NET: Google URL Shortener API for .NET is a wrapper for the Google Project below: http://code.google.com/apis/urlshortener/v1/reference.html With Google URL Shortener API, you may shorten urls and get some analytics information about this. It's developer in C# 4.0 and VS2010. HtmlDeploy: A project to compile asp's Master page into pure html files. The idea is to use jQuery templating to do all the "if" and "for" when it comes to generating html output. Inventory Management System: Inventory Management System is a Silverlight-based system. It aims to manage and control the input raw material activites, output of finished goods of a small inventory.koplamp kapot: demo project voor AzureMSAccess SVN: Access SVN adds to Microsoft Access (MS Access) support for SVN Source controlMultiConvert: console based utility primary to convert solid edge files into data exchange formats like *.stp and *.dxf. It's using the API of the original software and can't be run alone. The goal of this project is creating routines with desired pre-instructions for batch conversionsNGN Image Getter: Nationalgeographic has really stunning photos! They allow to download them via website. This program automates that process.OOD CRM: Project CRM for Object Oriented Development final examsOpen NOS Client: Open NOS Rest ClientopenEHR.NET: openEHR.NET is a C# implementation of openEHR (http://openehr.org) Reference Model (RM) and Archetype Model (AM) specifications (Release 1.0.1). It allows you to build openEHR applications by composing RM objects, validate against AM objects and serialise to/from XML.OpenGL Flow Designer: OpenGL Flow Designer allows writing pseudo-C code to build OpenGL pipeline and preview results immediately.Orchard Translation Manager: An Orchard module that aims at facilitating the creation and management of translations of the Orchard CMS and its extensions.pwTools: A set of tools for viewing/editing some perfect world client/server filesServerStatusMobile: Server availability monitoring application for windows mobile 6.5.x running on WVGA (480x800) devices. Supports autorun, vibration & notification when server became unavailable, text log files for each server. .NET Compact Framework 3.5 required for running this applicationSimple Silverlight Multiple File Uploader: The project allows you to achieve multiple file uploading in Silverlight without complex, complicated, or third-party applications. In just two core classes, it's very simple to understand, use, and extend. Snos: Projet Snos linker Snes multi SupportT-4 Templates for ASP.NET Web Form Databound Control Friendly Logical Layers: This open source project includes a set of T-4 templates to enable you to build logical layers (i.e. DAL/BLL) with just few clicks! The logical layers implemented here are based on Entity Framework 4.0, ASP.NET Web Form Data Bound control friendly and fully unit testable.The Media Store: The Media StoreUM: source control for the um projecturBook - Your Address Book Manager: urBook is and Address Book Manager that can merge all your contacts on all web services you use with your phone contacts to have one consistent Address Book for all your contacts and to update back your web services contacts with the one consistent address bookWindows Phone Certificate Installer: Helps install Trusted Root Certificates on Windows Phone 7 to enable SSL requests. Intended to allow developers to use localhost web servers during development without requiring the purchase of an SSL certificate. Especially helpful for ws-trust secured web service development.

    Read the article

  • value types in the vm

    - by john.rose
    value types in the vm p.p1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} p.p2 {margin: 0.0px 0.0px 14.0px 0.0px; font: 14.0px Times} p.p3 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times} p.p4 {margin: 0.0px 0.0px 15.0px 0.0px; font: 14.0px Times} p.p5 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier} p.p6 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Courier; min-height: 17.0px} p.p7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p8 {margin: 0.0px 0.0px 0.0px 36.0px; text-indent: -36.0px; font: 14.0px Times; min-height: 18.0px} p.p9 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; min-height: 18.0px} p.p10 {margin: 0.0px 0.0px 12.0px 0.0px; font: 14.0px Times; color: #000000} li.li1 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times} li.li7 {margin: 0.0px 0.0px 0.0px 0.0px; font: 14.0px Times; min-height: 18.0px} span.s1 {font: 14.0px Courier} span.s2 {color: #000000} span.s3 {font: 14.0px Courier; color: #000000} ol.ol1 {list-style-type: decimal} Or, enduring values for a changing world. Introduction A value type is a data type which, generally speaking, is designed for being passed by value in and out of methods, and stored by value in data structures. The only value types which the Java language directly supports are the eight primitive types. Java indirectly and approximately supports value types, if they are implemented in terms of classes. For example, both Integer and String may be viewed as value types, especially if their usage is restricted to avoid operations appropriate to Object. In this note, we propose a definition of value types in terms of a design pattern for Java classes, accompanied by a set of usage restrictions. We also sketch the relation of such value types to tuple types (which are a JVM-level notion), and point out JVM optimizations that can apply to value types. This note is a thought experiment to extend the JVM’s performance model in support of value types. The demonstration has two phases.  Initially the extension can simply use design patterns, within the current bytecode architecture, and in today’s Java language. But if the performance model is to be realized in practice, it will probably require new JVM bytecode features, changes to the Java language, or both.  We will look at a few possibilities for these new features. An Axiom of Value In the context of the JVM, a value type is a data type equipped with construction, assignment, and equality operations, and a set of typed components, such that, whenever two variables of the value type produce equal corresponding values for their components, the values of the two variables cannot be distinguished by any JVM operation. Here are some corollaries: A value type is immutable, since otherwise a copy could be constructed and the original could be modified in one of its components, allowing the copies to be distinguished. Changing the component of a value type requires construction of a new value. The equals and hashCode operations are strictly component-wise. If a value type is represented by a JVM reference, that reference cannot be successfully synchronized on, and cannot be usefully compared for reference equality. A value type can be viewed in terms of what it doesn’t do. We can say that a value type omits all value-unsafe operations, which could violate the constraints on value types.  These operations, which are ordinarily allowed for Java object types, are pointer equality comparison (the acmp instruction), synchronization (the monitor instructions), all the wait and notify methods of class Object, and non-trivial finalize methods. The clone method is also value-unsafe, although for value types it could be treated as the identity function. Finally, and most importantly, any side effect on an object (however visible) also counts as an value-unsafe operation. A value type may have methods, but such methods must not change the components of the value. It is reasonable and useful to define methods like toString, equals, and hashCode on value types, and also methods which are specifically valuable to users of the value type. Representations of Value Value types have two natural representations in the JVM, unboxed and boxed. An unboxed value consists of the components, as simple variables. For example, the complex number x=(1+2i), in rectangular coordinate form, may be represented in unboxed form by the following pair of variables: /*Complex x = Complex.valueOf(1.0, 2.0):*/ double x_re = 1.0, x_im = 2.0; These variables might be locals, parameters, or fields. Their association as components of a single value is not defined to the JVM. Here is a sample computation which computes the norm of the difference between two complex numbers: double distance(/*Complex x:*/ double x_re, double x_im,         /*Complex y:*/ double y_re, double y_im) {     /*Complex z = x.minus(y):*/     double z_re = x_re - y_re, z_im = x_im - y_im;     /*return z.abs():*/     return Math.sqrt(z_re*z_re + z_im*z_im); } A boxed representation groups component values under a single object reference. The reference is to a ‘wrapper class’ that carries the component values in its fields. (A primitive type can naturally be equated with a trivial value type with just one component of that type. In that view, the wrapper class Integer can serve as a boxed representation of value type int.) The unboxed representation of complex numbers is practical for many uses, but it fails to cover several major use cases: return values, array elements, and generic APIs. The two components of a complex number cannot be directly returned from a Java function, since Java does not support multiple return values. The same story applies to array elements: Java has no ’array of structs’ feature. (Double-length arrays are a possible workaround for complex numbers, but not for value types with heterogeneous components.) By generic APIs I mean both those which use generic types, like Arrays.asList and those which have special case support for primitive types, like String.valueOf and PrintStream.println. Those APIs do not support unboxed values, and offer some problems to boxed values. Any ’real’ JVM type should have a story for returns, arrays, and API interoperability. The basic problem here is that value types fall between primitive types and object types. Value types are clearly more complex than primitive types, and object types are slightly too complicated. Objects are a little bit dangerous to use as value carriers, since object references can be compared for pointer equality, and can be synchronized on. Also, as many Java programmers have observed, there is often a performance cost to using wrapper objects, even on modern JVMs. Even so, wrapper classes are a good starting point for talking about value types. If there were a set of structural rules and restrictions which would prevent value-unsafe operations on value types, wrapper classes would provide a good notation for defining value types. This note attempts to define such rules and restrictions. Let’s Start Coding Now it is time to look at some real code. Here is a definition, written in Java, of a complex number value type. @ValueSafe public final class Complex implements java.io.Serializable {     // immutable component structure:     public final double re, im;     private Complex(double re, double im) {         this.re = re; this.im = im;     }     // interoperability methods:     public String toString() { return "Complex("+re+","+im+")"; }     public List<Double> asList() { return Arrays.asList(re, im); }     public boolean equals(Complex c) {         return re == c.re && im == c.im;     }     public boolean equals(@ValueSafe Object x) {         return x instanceof Complex && equals((Complex) x);     }     public int hashCode() {         return 31*Double.valueOf(re).hashCode()                 + Double.valueOf(im).hashCode();     }     // factory methods:     public static Complex valueOf(double re, double im) {         return new Complex(re, im);     }     public Complex changeRe(double re2) { return valueOf(re2, im); }     public Complex changeIm(double im2) { return valueOf(re, im2); }     public static Complex cast(@ValueSafe Object x) {         return x == null ? ZERO : (Complex) x;     }     // utility methods and constants:     public Complex plus(Complex c)  { return new Complex(re+c.re, im+c.im); }     public Complex minus(Complex c) { return new Complex(re-c.re, im-c.im); }     public double abs() { return Math.sqrt(re*re + im*im); }     public static final Complex PI = valueOf(Math.PI, 0.0);     public static final Complex ZERO = valueOf(0.0, 0.0); } This is not a minimal definition, because it includes some utility methods and other optional parts.  The essential elements are as follows: The class is marked as a value type with an annotation. The class is final, because it does not make sense to create subclasses of value types. The fields of the class are all non-private and final.  (I.e., the type is immutable and structurally transparent.) From the supertype Object, all public non-final methods are overridden. The constructor is private. Beyond these bare essentials, we can observe the following features in this example, which are likely to be typical of all value types: One or more factory methods are responsible for value creation, including a component-wise valueOf method. There are utility methods for complex arithmetic and instance creation, such as plus and changeIm. There are static utility constants, such as PI. The type is serializable, using the default mechanisms. There are methods for converting to and from dynamically typed references, such as asList and cast. The Rules In order to use value types properly, the programmer must avoid value-unsafe operations.  A helpful Java compiler should issue errors (or at least warnings) for code which provably applies value-unsafe operations, and should issue warnings for code which might be correct but does not provably avoid value-unsafe operations.  No such compilers exist today, but to simplify our account here, we will pretend that they do exist. A value-safe type is any class, interface, or type parameter marked with the @ValueSafe annotation, or any subtype of a value-safe type.  If a value-safe class is marked final, it is in fact a value type.  All other value-safe classes must be abstract.  The non-static fields of a value class must be non-public and final, and all its constructors must be private. Under the above rules, a standard interface could be helpful to define value types like Complex.  Here is an example: @ValueSafe public interface ValueType extends java.io.Serializable {     // All methods listed here must get redefined.     // Definitions must be value-safe, which means     // they may depend on component values only.     List<? extends Object> asList();     int hashCode();     boolean equals(@ValueSafe Object c);     String toString(); } //@ValueSafe inherited from supertype: public final class Complex implements ValueType { … The main advantage of such a conventional interface is that (unlike an annotation) it is reified in the runtime type system.  It could appear as an element type or parameter bound, for facilities which are designed to work on value types only.  More broadly, it might assist the JVM to perform dynamic enforcement of the rules for value types. Besides types, the annotation @ValueSafe can mark fields, parameters, local variables, and methods.  (This is redundant when the type is also value-safe, but may be useful when the type is Object or another supertype of a value type.)  Working forward from these annotations, an expression E is defined as value-safe if it satisfies one or more of the following: The type of E is a value-safe type. E names a field, parameter, or local variable whose declaration is marked @ValueSafe. E is a call to a method whose declaration is marked @ValueSafe. E is an assignment to a value-safe variable, field reference, or array reference. E is a cast to a value-safe type from a value-safe expression. E is a conditional expression E0 ? E1 : E2, and both E1 and E2 are value-safe. Assignments to value-safe expressions and initializations of value-safe names must take their values from value-safe expressions. A value-safe expression may not be the subject of a value-unsafe operation.  In particular, it cannot be synchronized on, nor can it be compared with the “==” operator, not even with a null or with another value-safe type. In a program where all of these rules are followed, no value-type value will be subject to a value-unsafe operation.  Thus, the prime axiom of value types will be satisfied, that no two value type will be distinguishable as long as their component values are equal. More Code To illustrate these rules, here are some usage examples for Complex: Complex pi = Complex.valueOf(Math.PI, 0); Complex zero = pi.changeRe(0);  //zero = pi; zero.re = 0; ValueType vtype = pi; @SuppressWarnings("value-unsafe")   Object obj = pi; @ValueSafe Object obj2 = pi; obj2 = new Object();  // ok List<Complex> clist = new ArrayList<Complex>(); clist.add(pi);  // (ok assuming List.add param is @ValueSafe) List<ValueType> vlist = new ArrayList<ValueType>(); vlist.add(pi);  // (ok) List<Object> olist = new ArrayList<Object>(); olist.add(pi);  // warning: "value-unsafe" boolean z = pi.equals(zero); boolean z1 = (pi == zero);  // error: reference comparison on value type boolean z2 = (pi == null);  // error: reference comparison on value type boolean z3 = (pi == obj2);  // error: reference comparison on value type synchronized (pi) { }  // error: synch of value, unpredictable result synchronized (obj2) { }  // unpredictable result Complex qq = pi; qq = null;  // possible NPE; warning: “null-unsafe" qq = (Complex) obj;  // warning: “null-unsafe" qq = Complex.cast(obj);  // OK @SuppressWarnings("null-unsafe")   Complex empty = null;  // possible NPE qq = empty;  // possible NPE (null pollution) The Payoffs It follows from this that either the JVM or the java compiler can replace boxed value-type values with unboxed ones, without affecting normal computations.  Fields and variables of value types can be split into their unboxed components.  Non-static methods on value types can be transformed into static methods which take the components as value parameters. Some common questions arise around this point in any discussion of value types. Why burden the programmer with all these extra rules?  Why not detect programs automagically and perform unboxing transparently?  The answer is that it is easy to break the rules accidently unless they are agreed to by the programmer and enforced.  Automatic unboxing optimizations are tantalizing but (so far) unreachable ideal.  In the current state of the art, it is possible exhibit benchmarks in which automatic unboxing provides the desired effects, but it is not possible to provide a JVM with a performance model that assures the programmer when unboxing will occur.  This is why I’m writing this note, to enlist help from, and provide assurances to, the programmer.  Basically, I’m shooting for a good set of user-supplied “pragmas” to frame the desired optimization. Again, the important thing is that the unboxing must be done reliably, or else programmers will have no reason to work with the extra complexity of the value-safety rules.  There must be a reasonably stable performance model, wherein using a value type has approximately the same performance characteristics as writing the unboxed components as separate Java variables. There are some rough corners to the present scheme.  Since Java fields and array elements are initialized to null, value-type computations which incorporate uninitialized variables can produce null pointer exceptions.  One workaround for this is to require such variables to be null-tested, and the result replaced with a suitable all-zero value of the value type.  That is what the “cast” method does above. Generically typed APIs like List<T> will continue to manipulate boxed values always, at least until we figure out how to do reification of generic type instances.  Use of such APIs will elicit warnings until their type parameters (and/or relevant members) are annotated or typed as value-safe.  Retrofitting List<T> is likely to expose flaws in the present scheme, which we will need to engineer around.  Here are a couple of first approaches: public interface java.util.List<@ValueSafe T> extends Collection<T> { … public interface java.util.List<T extends Object|ValueType> extends Collection<T> { … (The second approach would require disjunctive types, in which value-safety is “contagious” from the constituent types.) With more transformations, the return value types of methods can also be unboxed.  This may require significant bytecode-level transformations, and would work best in the presence of a bytecode representation for multiple value groups, which I have proposed elsewhere under the title “Tuples in the VM”. But for starters, the JVM can apply this transformation under the covers, to internally compiled methods.  This would give a way to express multiple return values and structured return values, which is a significant pain-point for Java programmers, especially those who work with low-level structure types favored by modern vector and graphics processors.  The lack of multiple return values has a strong distorting effect on many Java APIs. Even if the JVM fails to unbox a value, there is still potential benefit to the value type.  Clustered computing systems something have copy operations (serialization or something similar) which apply implicitly to command operands.  When copying JVM objects, it is extremely helpful to know when an object’s identity is important or not.  If an object reference is a copied operand, the system may have to create a proxy handle which points back to the original object, so that side effects are visible.  Proxies must be managed carefully, and this can be expensive.  On the other hand, value types are exactly those types which a JVM can “copy and forget” with no downside. Array types are crucial to bulk data interfaces.  (As data sizes and rates increase, bulk data becomes more important than scalar data, so arrays are definitely accompanying us into the future of computing.)  Value types are very helpful for adding structure to bulk data, so a successful value type mechanism will make it easier for us to express richer forms of bulk data. Unboxing arrays (i.e., arrays containing unboxed values) will provide better cache and memory density, and more direct data movement within clustered or heterogeneous computing systems.  They require the deepest transformations, relative to today’s JVM.  There is an impedance mismatch between value-type arrays and Java’s covariant array typing, so compromises will need to be struck with existing Java semantics.  It is probably worth the effort, since arrays of unboxed value types are inherently more memory-efficient than standard Java arrays, which rely on dependent pointer chains. It may be sufficient to extend the “value-safe” concept to array declarations, and allow low-level transformations to change value-safe array declarations from the standard boxed form into an unboxed tuple-based form.  Such value-safe arrays would not be convertible to Object[] arrays.  Certain connection points, such as Arrays.copyOf and System.arraycopy might need additional input/output combinations, to allow smooth conversion between arrays with boxed and unboxed elements. Alternatively, the correct solution may have to wait until we have enough reification of generic types, and enough operator overloading, to enable an overhaul of Java arrays. Implicit Method Definitions The example of class Complex above may be unattractively complex.  I believe most or all of the elements of the example class are required by the logic of value types. If this is true, a programmer who writes a value type will have to write lots of error-prone boilerplate code.  On the other hand, I think nearly all of the code (except for the domain-specific parts like plus and minus) can be implicitly generated. Java has a rule for implicitly defining a class’s constructor, if no it defines no constructors explicitly.  Likewise, there are rules for providing default access modifiers for interface members.  Because of the highly regular structure of value types, it might be reasonable to perform similar implicit transformations on value types.  Here’s an example of a “highly implicit” definition of a complex number type: public class Complex implements ValueType {  // implicitly final     public double re, im;  // implicitly public final     //implicit methods are defined elementwise from te fields:     //  toString, asList, equals(2), hashCode, valueOf, cast     //optionally, explicit methods (plus, abs, etc.) would go here } In other words, with the right defaults, a simple value type definition can be a one-liner.  The observant reader will have noticed the similarities (and suitable differences) between the explicit methods above and the corresponding methods for List<T>. Another way to abbreviate such a class would be to make an annotation the primary trigger of the functionality, and to add the interface(s) implicitly: public @ValueType class Complex { … // implicitly final, implements ValueType (But to me it seems better to communicate the “magic” via an interface, even if it is rooted in an annotation.) Implicitly Defined Value Types So far we have been working with nominal value types, which is to say that the sequence of typed components is associated with a name and additional methods that convey the intention of the programmer.  A simple ordered pair of floating point numbers can be variously interpreted as (to name a few possibilities) a rectangular or polar complex number or Cartesian point.  The name and the methods convey the intended meaning. But what if we need a truly simple ordered pair of floating point numbers, without any further conceptual baggage?  Perhaps we are writing a method (like “divideAndRemainder”) which naturally returns a pair of numbers instead of a single number.  Wrapping the pair of numbers in a nominal type (like “QuotientAndRemainder”) makes as little sense as wrapping a single return value in a nominal type (like “Quotient”).  What we need here are structural value types commonly known as tuples. For the present discussion, let us assign a conventional, JVM-friendly name to tuples, roughly as follows: public class java.lang.tuple.$DD extends java.lang.tuple.Tuple {      double $1, $2; } Here the component names are fixed and all the required methods are defined implicitly.  The supertype is an abstract class which has suitable shared declarations.  The name itself mentions a JVM-style method parameter descriptor, which may be “cracked” to determine the number and types of the component fields. The odd thing about such a tuple type (and structural types in general) is it must be instantiated lazily, in response to linkage requests from one or more classes that need it.  The JVM and/or its class loaders must be prepared to spin a tuple type on demand, given a simple name reference, $xyz, where the xyz is cracked into a series of component types.  (Specifics of naming and name mangling need some tasteful engineering.) Tuples also seem to demand, even more than nominal types, some support from the language.  (This is probably because notations for non-nominal types work best as combinations of punctuation and type names, rather than named constructors like Function3 or Tuple2.)  At a minimum, languages with tuples usually (I think) have some sort of simple bracket notation for creating tuples, and a corresponding pattern-matching syntax (or “destructuring bind”) for taking tuples apart, at least when they are parameter lists.  Designing such a syntax is no simple thing, because it ought to play well with nominal value types, and also with pre-existing Java features, such as method parameter lists, implicit conversions, generic types, and reflection.  That is a task for another day. Other Use Cases Besides complex numbers and simple tuples there are many use cases for value types.  Many tuple-like types have natural value-type representations. These include rational numbers, point locations and pixel colors, and various kinds of dates and addresses. Other types have a variable-length ‘tail’ of internal values. The most common example of this is String, which is (mathematically) a sequence of UTF-16 character values. Similarly, bit vectors, multiple-precision numbers, and polynomials are composed of sequences of values. Such types include, in their representation, a reference to a variable-sized data structure (often an array) which (somehow) represents the sequence of values. The value type may also include ’header’ information. Variable-sized values often have a length distribution which favors short lengths. In that case, the design of the value type can make the first few values in the sequence be direct ’header’ fields of the value type. In the common case where the header is enough to represent the whole value, the tail can be a shared null value, or even just a null reference. Note that the tail need not be an immutable object, as long as the header type encapsulates it well enough. This is the case with String, where the tail is a mutable (but never mutated) character array. Field types and their order must be a globally visible part of the API.  The structure of the value type must be transparent enough to have a globally consistent unboxed representation, so that all callers and callees agree about the type and order of components  that appear as parameters, return types, and array elements.  This is a trade-off between efficiency and encapsulation, which is forced on us when we remove an indirection enjoyed by boxed representations.  A JVM-only transformation would not care about such visibility, but a bytecode transformation would need to take care that (say) the components of complex numbers would not get swapped after a redefinition of Complex and a partial recompile.  Perhaps constant pool references to value types need to declare the field order as assumed by each API user. This brings up the delicate status of private fields in a value type.  It must always be possible to load, store, and copy value types as coordinated groups, and the JVM performs those movements by moving individual scalar values between locals and stack.  If a component field is not public, what is to prevent hostile code from plucking it out of the tuple using a rogue aload or astore instruction?  Nothing but the verifier, so we may need to give it more smarts, so that it treats value types as inseparable groups of stack slots or locals (something like long or double). My initial thought was to make the fields always public, which would make the security problem moot.  But public is not always the right answer; consider the case of String, where the underlying mutable character array must be encapsulated to prevent security holes.  I believe we can win back both sides of the tradeoff, by training the verifier never to split up the components in an unboxed value.  Just as the verifier encapsulates the two halves of a 64-bit primitive, it can encapsulate the the header and body of an unboxed String, so that no code other than that of class String itself can take apart the values. Similar to String, we could build an efficient multi-precision decimal type along these lines: public final class DecimalValue extends ValueType {     protected final long header;     protected private final BigInteger digits;     public DecimalValue valueOf(int value, int scale) {         assert(scale >= 0);         return new DecimalValue(((long)value << 32) + scale, null);     }     public DecimalValue valueOf(long value, int scale) {         if (value == (int) value)             return valueOf((int)value, scale);         return new DecimalValue(-scale, new BigInteger(value));     } } Values of this type would be passed between methods as two machine words. Small values (those with a significand which fits into 32 bits) would be represented without any heap data at all, unless the DecimalValue itself were boxed. (Note the tension between encapsulation and unboxing in this case.  It would be better if the header and digits fields were private, but depending on where the unboxing information must “leak”, it is probably safer to make a public revelation of the internal structure.) Note that, although an array of Complex can be faked with a double-length array of double, there is no easy way to fake an array of unboxed DecimalValues.  (Either an array of boxed values or a transposed pair of homogeneous arrays would be reasonable fallbacks, in a current JVM.)  Getting the full benefit of unboxing and arrays will require some new JVM magic. Although the JVM emphasizes portability, system dependent code will benefit from using machine-level types larger than 64 bits.  For example, the back end of a linear algebra package might benefit from value types like Float4 which map to stock vector types.  This is probably only worthwhile if the unboxing arrays can be packed with such values. More Daydreams A more finely-divided design for dynamic enforcement of value safety could feature separate marker interfaces for each invariant.  An empty marker interface Unsynchronizable could cause suitable exceptions for monitor instructions on objects in marked classes.  More radically, a Interchangeable marker interface could cause JVM primitives that are sensitive to object identity to raise exceptions; the strangest result would be that the acmp instruction would have to be specified as raising an exception. @ValueSafe public interface ValueType extends java.io.Serializable,         Unsynchronizable, Interchangeable { … public class Complex implements ValueType {     // inherits Serializable, Unsynchronizable, Interchangeable, @ValueSafe     … It seems possible that Integer and the other wrapper types could be retro-fitted as value-safe types.  This is a major change, since wrapper objects would be unsynchronizable and their references interchangeable.  It is likely that code which violates value-safety for wrapper types exists but is uncommon.  It is less plausible to retro-fit String, since the prominent operation String.intern is often used with value-unsafe code. We should also reconsider the distinction between boxed and unboxed values in code.  The design presented above obscures that distinction.  As another thought experiment, we could imagine making a first class distinction in the type system between boxed and unboxed representations.  Since only primitive types are named with a lower-case initial letter, we could define that the capitalized version of a value type name always refers to the boxed representation, while the initial lower-case variant always refers to boxed.  For example: complex pi = complex.valueOf(Math.PI, 0); Complex boxPi = pi;  // convert to boxed myList.add(boxPi); complex z = myList.get(0);  // unbox Such a convention could perhaps absorb the current difference between int and Integer, double and Double. It might also allow the programmer to express a helpful distinction among array types. As said above, array types are crucial to bulk data interfaces, but are limited in the JVM.  Extending arrays beyond the present limitations is worth thinking about; for example, the Maxine JVM implementation has a hybrid object/array type.  Something like this which can also accommodate value type components seems worthwhile.  On the other hand, does it make sense for value types to contain short arrays?  And why should random-access arrays be the end of our design process, when bulk data is often sequentially accessed, and it might make sense to have heterogeneous streams of data as the natural “jumbo” data structure.  These considerations must wait for another day and another note. More Work It seems to me that a good sequence for introducing such value types would be as follows: Add the value-safety restrictions to an experimental version of javac. Code some sample applications with value types, including Complex and DecimalValue. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. A staggered roll-out like this would decouple language changes from bytecode changes, which is always a convenient thing. A similar investigation should be applied (concurrently) to array types.  In this case, it seems to me that the starting point is in the JVM: Add an experimental unboxing array data structure to a production JVM, perhaps along the lines of Maxine hybrids.  No bytecode or language support is required at first; everything can be done with encapsulated unsafe operations and/or method handles. Create an experimental JVM which internally unboxes value types but does not require new bytecodes to do so.  Ensure the feasibility of the performance model for the sample applications. Add tuple-like bytecodes (with or without generic type reification) to a major revision of the JVM, and teach the Java compiler to switch in the new bytecodes without code changes. That’s enough musing me for now.  Back to work!

    Read the article

  • UpdatePanel, Repeater, DataBinding Problem

    - by Gordon Carpenter-Thompson
    In a user control, I've got a Repeater inside of an UpdatePanel (which id displayed inside of a ModalPopupExtender. The Repeater is databound using an array list of MyDTO objects. There are two buttons for each Item in the list. Upon binding the ImageURL and CommandArgument are set. This code works fine the first time around but the CommandArgument is wrong thereafter. It seems like the display is updated correctly but the DTO isn't and the CommandArgument sent is the one that has just been removed. Can anybody spot any problems with the code? ASCX <asp:UpdatePanel ID="ViewDataDetail" runat="server" ChildrenAsTriggers="true"> <Triggers> <asp:PostBackTrigger ControlID="ViewDataCloseButton" /> <asp:AsyncPostBackTrigger ControlID="DataRepeater" /> </Triggers> <ContentTemplate> <table width="100%" id="DataResults"> <asp:Repeater ID="DataRepeater" runat="server" OnItemCommand="DataRepeater_ItemCommand" OnItemDataBound="DataRepeater_ItemDataBound"> <HeaderTemplate> <tr> <th><b>Name</b></th> <th><b>&nbsp;</b></th> </tr> </HeaderTemplate> <ItemTemplate> <tr> <td> <b><%#((MyDTO)Container.DataItem).Name%></b> </td> <td> <asp:ImageButton CausesValidation="false" ID="DeleteData" CommandName="Delete" runat="server" /> <asp:ImageButton CausesValidation="false" ID="RunData" CommandName="Run" runat="server" /> </td> </tr> <tr> <td colspan="2"> <table> <tr> <td>Description : </td> <td><%#((MyDTO)Container.DataItem).Description%></td> </tr> <tr> <td>Search Text : </td> <td><%#((MyDTO)Container.DataItem).Text%></td> </tr> </table> </td> </tr> </ItemTemplate> </asp:Repeater> </table> </ContentTemplate> </asp:UpdatePanel> Code-Behind public DeleteData DeleteDataDelegate; public RetrieveData PopulateDataDelegate; public delegate ArrayList RetrieveData(); public delegate void DeleteData(String sData); protected void Page_Load(object sender, EventArgs e) { //load the initial data.. if (!Page.IsPostBack) { if (PopulateDataDelegate != null) { this.DataRepeater.DataSource = this.PopulateDataDelegate(); this.DataRepeater.DataBind(); } } } protected void DataRepeater_ItemCommand(object source, RepeaterCommandEventArgs e) { if (e.CommandName == "Delete") { if (DeleteDataDelegate != null) { DeleteDataDelegate((String)e.CommandArgument); BindDataToRepeater(); } } else if (e.CommandName == "Run") { String sRunning = (String)e.CommandArgument; this.ViewDataModalPopupExtender.Hide(); } } protected void DataRepeater_ItemDataBound(object source, RepeaterItemEventArgs e) { RepeaterItem item = e.Item; if (item != null && item.DataItem != null) { MyDTO oQuery = (MyDTO)item.DataItem; ImageButton oDeleteControl = (ImageButton) item.FindControl("DeleteData"); ImageButton oRunControl = (ImageButton)item.FindControl("RunData"); if (oDeleteControl != null && oRunControl !=null) { oRunControl.ImageUrl = "button_expand.gif"; oRunControl.CommandArgument = "MyID"; oDeleteControl.ImageUrl = "btn_remove.gif"; oDeleteControl.CommandArgument = "MyID"; } } } public void BindDataToRepeater() { this.DataRepeater.DataSource = this.PopulateDataDelegate(); this.DataRepeater.DataBind(); } public void ShowModal(object sender, EventArgs e) { BindDataToRepeater(); this.ViewDataModalPopupExtender.Show(); }

    Read the article

  • Two-way databinding of a custom templated asp.net control

    - by Jason
    I hate long code snippets and I'm sorry about this one, but it turns out that this asp.net stuff can't get much shorter and it's so specific that I haven't been able to generalize it without a full code listing. I just want simple two-way, declarative, edit-only databinding to a single instance of an object. Not a list of objects of a type with a bunch of NotImplementedExceptions for Add, Delete, and Select, but just a single view-state persisted object. This is certainly something that can be done but I've struggled with an implementation for years. This newest, closest implementation was inspired by this article from 4-Guys-From-Rolla. Unfortunately, after implementing, I'm getting the following error and I don't know what I'm missing: System.InvalidOperationException: Databinding methods such as Eval(), XPath(), and Bind() can only be used in the context of a databound control. If I don't use Bind(), and only use Eval() functionality, it works. In that way, the error is especially confusing. Update: Actually, using Eval() does NOT work, but using <%# Container.SampleString %> works. However, Eval("SampleString") gives the same error. That leads me back to this article I found earlier but had discarded. Now I believe it might be related, though I haven't cracked it yet ... Here's the simplified codeset that still produces the error: using System.ComponentModel; namespace System.Web.UI.WebControls.Special { public class SampleFormData { public string SampleString = "Sample String Data"; public int SampleInt = -1; } [ToolboxItem(false)] public class SampleSpecificFormDataContainer : DataBoundControl, INamingContainer { SampleSpecificEntryForm entryForm; internal SampleSpecificEntryForm EntryForm { get { return entryForm; } } [Bindable(true), Category("Data")] public string SampleString { get { return entryForm.FormData.SampleString; } set { entryForm.FormData.SampleString = value; } } [Bindable(true), Category("Data")] public int SampleInt { get { return entryForm.FormData.SampleInt; } set { entryForm.FormData.SampleInt = value; } } internal SampleSpecificFormDataContainer(SampleSpecificEntryForm entryForm) { this.entryForm = entryForm; } } public class SampleSpecificEntryForm : WebControl, INamingContainer { #region Template private IBindableTemplate formTemplate = null; [Browsable(false), DefaultValue(null), TemplateContainer(typeof(SampleSpecificFormDataContainer), ComponentModel.BindingDirection.TwoWay), PersistenceMode(PersistenceMode.InnerProperty)] public virtual IBindableTemplate FormTemplate { get { return formTemplate; } set { formTemplate = value; } } #endregion #region Viewstate SampleFormData FormDataVS { get { return (ViewState["FormData"] as SampleFormData) ?? new SampleFormData(); } set { ViewState["FormData"] = value; SaveViewState(); } } #endregion public override ControlCollection Controls { get { EnsureChildControls(); return base.Controls; } } private SampleSpecificFormDataContainer formDataContainer = null; [Browsable(false), DesignerSerializationVisibility(DesignerSerializationVisibility.Hidden)] public SampleSpecificFormDataContainer FormDataContainer { get { EnsureChildControls(); return formDataContainer; } } [Bindable(true), Browsable(false)] public SampleFormData FormData { get { return FormDataVS; } set { FormDataVS = value; } } protected override void CreateChildControls() { if (!this.ChildControlsCreated) { Controls.Clear(); formDataContainer = new SampleSpecificFormDataContainer(this); Controls.Add(formDataContainer); FormTemplate.InstantiateIn(formDataContainer); this.ChildControlsCreated = true; } } public override void DataBind() { CreateChildControls(); base.DataBind(); } } } With an ASP.NET page the following: <%@ Page Title="Home Page" Language="C#" MasterPageFile="~/Site.master" AutoEventWireup="true" CodeBehind="Default2.aspx.cs" Inherits="EntryFormTest._Default2" EnableEventValidation="false" %> <%@ Register Assembly="EntryForm" Namespace="System.Web.UI.WebControls.Special" TagPrefix="cc1" %> <asp:Content ID="HeaderContent" runat="server" ContentPlaceHolderID="HeadContent"> </asp:Content> <asp:Content ID="BodyContent" runat="server" ContentPlaceHolderID="MainContent"> <h2> Welcome to ASP.NET! </h2> <cc1:SampleSpecificEntryForm ID="EntryForm1" runat="server"> <FormTemplate> <asp:TextBox ID="TextBox1" runat="server" Text='<%# Bind("SampleString") %>'></asp:TextBox><br /> <h3>(<%# Container.SampleString %>)</h3><br /> <asp:Button ID="Button1" runat="server" Text="Button" /> </FormTemplate> </cc1:SampleSpecificEntryForm> </asp:Content> Default2.aspx.cs using System; namespace EntryFormTest { public partial class _Default2 : System.Web.UI.Page { protected void Page_Load(object sender, EventArgs e) { EntryForm1.DataBind(); } } } Thanks for any help!

    Read the article

  • MVVM - implementing 'IsDirty' functionality to a ModelView in order to save data

    - by Brendan
    Hi, Being new to WPF & MVVM I struggling with some basic functionality. Let me first explain what I am after, and then attach some example code... I have a screen showing a list of users, and I display the details of the selected user on the right-hand side with editable textboxes. I then have a Save button which is DataBound, but I would only like this button to display when data has actually changed. ie - I need to check for "dirty data". I have a fully MVVM example in which I have a Model called User: namespace Test.Model { class User { public string UserName { get; set; } public string Surname { get; set; } public string Firstname { get; set; } } } Then, the ViewModel looks like this: using System.Collections.ObjectModel; using System.Collections.Specialized; using System.Windows.Input; using Test.Model; namespace Test.ViewModel { class UserViewModel : ViewModelBase { //Private variables private ObservableCollection<User> _users; RelayCommand _userSave; //Properties public ObservableCollection<User> User { get { if (_users == null) { _users = new ObservableCollection<User>(); //I assume I need this Handler, but I am stuggling to implement it successfully //_users.CollectionChanged += HandleChange; //Populate with users _users.Add(new User {UserName = "Bob", Firstname="Bob", Surname="Smith"}); _users.Add(new User {UserName = "Smob", Firstname="John", Surname="Davy"}); } return _users; } } //Not sure what to do with this?!?! //private void HandleChange(object sender, NotifyCollectionChangedEventArgs e) //{ // if (e.Action == NotifyCollectionChangedAction.Remove) // { // foreach (TestViewModel item in e.NewItems) // { // //Removed items // } // } // else if (e.Action == NotifyCollectionChangedAction.Add) // { // foreach (TestViewModel item in e.NewItems) // { // //Added items // } // } //} //Commands public ICommand UserSave { get { if (_userSave == null) { _userSave = new RelayCommand(param => this.UserSaveExecute(), param => this.UserSaveCanExecute); } return _userSave; } } void UserSaveExecute() { //Here I will call my DataAccess to actually save the data } bool UserSaveCanExecute { get { //This is where I would like to know whether the currently selected item has been edited and is thus "dirty" return false; } } //constructor public UserViewModel() { } } } The "RelayCommand" is just a simple wrapper class, as is the "ViewModelBase". (I'll attach the latter though just for clarity) using System; using System.ComponentModel; namespace Test.ViewModel { public abstract class ViewModelBase : INotifyPropertyChanged, IDisposable { protected ViewModelBase() { } public event PropertyChangedEventHandler PropertyChanged; protected virtual void OnPropertyChanged(string propertyName) { PropertyChangedEventHandler handler = this.PropertyChanged; if (handler != null) { var e = new PropertyChangedEventArgs(propertyName); handler(this, e); } } public void Dispose() { this.OnDispose(); } protected virtual void OnDispose() { } } } Finally - the XAML <Window x:Class="Test.MainWindow" xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" xmlns:vm="clr-namespace:Test.ViewModel" Title="MainWindow" Height="350" Width="525"> <Window.DataContext> <vm:UserViewModel/> </Window.DataContext> <Grid> <ListBox Height="238" HorizontalAlignment="Left" Margin="12,12,0,0" Name="listBox1" VerticalAlignment="Top" Width="197" ItemsSource="{Binding Path=User}" IsSynchronizedWithCurrentItem="True"> <ListBox.ItemTemplate> <DataTemplate> <StackPanel> <TextBlock Text="{Binding Path=Firstname}"/> <TextBlock Text="{Binding Path=Surname}"/> </StackPanel> </DataTemplate> </ListBox.ItemTemplate> </ListBox> <Label Content="Username" Height="28" HorizontalAlignment="Left" Margin="232,16,0,0" Name="label1" VerticalAlignment="Top" /> <TextBox Height="23" HorizontalAlignment="Left" Margin="323,21,0,0" Name="textBox1" VerticalAlignment="Top" Width="120" Text="{Binding Path=User/UserName}" /> <Label Content="Surname" Height="28" HorizontalAlignment="Left" Margin="232,50,0,0" Name="label2" VerticalAlignment="Top" /> <TextBox Height="23" HorizontalAlignment="Left" Margin="323,52,0,0" Name="textBox2" VerticalAlignment="Top" Width="120" Text="{Binding Path=User/Surname}" /> <Label Content="Firstname" Height="28" HorizontalAlignment="Left" Margin="232,84,0,0" Name="label3" VerticalAlignment="Top" /> <TextBox Height="23" HorizontalAlignment="Left" Margin="323,86,0,0" Name="textBox3" VerticalAlignment="Top" Width="120" Text="{Binding Path=User/Firstname}" /> <Button Content="Button" Height="23" HorizontalAlignment="Left" Margin="368,159,0,0" Name="button1" VerticalAlignment="Top" Width="75" Command="{Binding Path=UserSave}" /> </Grid> </Window> So basically, when I edit a surname, the Save button should be enabled; and if I undo my edit - well then it should be Disabled again as nothing has changed. I have seen this in many examples, but have not yet found out how to do it. Any help would be much appreciated! Brendan

    Read the article

  • CascadingDropDown jQuery Plugin for ASP.NET MVC

    - by rajbk
    CascadingDropDown is a jQuery plugin that can be used by a select list to get automatic population using AJAX. A sample ASP.NET MVC project is attached at the bottom of this post.   Usage The code below shows two select lists : <select id="customerID" name="customerID"> <option value="ALFKI">Maria Anders</option> <option value="ANATR">Ana Trujillo</option> <option value="ANTON">Antonio Moreno</option> </select>   <select id="orderID" name="orderID"> </select> When a customer is selected in the first select list, the second list will auto populate itself with the following code: $("#orderID").CascadingDropDown("#customerID", '/Sales/AsyncOrders'); Internally, an AJAX post is made to ‘/Sales/AsyncOrders’ with the post body containing  customerID=[selectedCustomerID]. This executes the action AsyncOrders on the SalesController with signature AsyncOrders(string customerID).  The AsyncOrders method returns JSON which is then used to populate the select list. The JSON format expected is shown below : [{ "Text": "John", "Value": "10326" }, { "Text": "Jane", "Value": "10801" }] Details $(targetID).CascadingDropDown(sourceID, url, settings) targetID The ID of the select list that will auto populate.  sourceID The ID of the select list, which, on change, causes the targetID to auto populate. url The url to post to Options promptText Text for the first item in the select list Default : -- Select -- loadingText Optional text to display in the select list while it is being loaded. Default : Loading.. errorText Optional text to display if an error occurs while populating the list Default: Error loading data. postData Data you want posted to the url in place of the default Example : { postData : { customerID : $(‘#custID’), orderID : $(‘#orderID’) }} will cause customerID=ALFKI&orderID=2343 to be sent as the POST body. Default: A text string obtained by calling serialize on the sourceID onLoading (event) Raised before the list is populated. onLoaded (event) Raised after the list is populated, The code below shows how to “animate” the  select list after load. Example using custom options: $("#orderID").CascadingDropDown("#customerID", '/Sales/AsyncOrders', { promptText: '-- Pick an Order--', onLoading: function () { $(this).css("background-color", "#ff3"); }, onLoaded: function () { $(this).animate({ backgroundColor: '#ffffff' }, 300); } }); To return JSON from our action method, we use the Json ActionResult passing in an IEnumerable<SelectListItem>. public ActionResult AsyncOrders(string customerID) { var orders = repository.GetOrders(customerID).ToList().Select(a => new SelectListItem() { Text = a.OrderDate.HasValue ? a.OrderDate.Value.ToString("MM/dd/yyyy") : "[ No Date ]", Value = a.OrderID.ToString(), }); return Json(orders); } Sample Project using VS 2010 RTM NorthwindCascading.zip

    Read the article

  • apt-get update cannot find ubuntu servers

    - by Phrogz
    Running sudo apt-get update fails on my server (that has a 'net connection). Are the servers temporarily broken, or is my apt misconfigured and using old servers? In short, how do I fix this? Here's the output: ~$ uname -a Linux nematode 2.6.28-19-server #66-Ubuntu SMP Sat Oct 16 18:41:24 UTC 2010 i686 GNU/Linux ~$ sudo apt-get update Err http://us.archive.ubuntu.com jaunty Release.gpg Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty/main Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty/restricted Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty/universe Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty/multiverse Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates Release.gpg Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates/main Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates/restricted Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates/universe Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates/multiverse Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://security.ubuntu.com jaunty-security Release.gpg Could not resolve 'security.ubuntu.com' Err http://security.ubuntu.com jaunty-security/main Translation-en_US Could not resolve 'security.ubuntu.com' Err http://security.ubuntu.com jaunty-security/restricted Translation-en_US Could not resolve 'security.ubuntu.com' Err http://security.ubuntu.com jaunty-security/universe Translation-en_US Could not resolve 'security.ubuntu.com' Err http://security.ubuntu.com jaunty-security/multiverse Translation-en_US Could not resolve 'security.ubuntu.com' Reading package lists... Done W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/Release.gpg Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/main/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/restricted/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/universe/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/multiverse/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/Release.gpg Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/main/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/restricted/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/universe/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/multiverse/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/Release.gpg Could not resolve 'security.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/main/i18n/Translation-en_US.bz2 Could not resolve 'security.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/restricted/i18n/Translation-en_US.bz2 Could not resolve 'security.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/universe/i18n/Translation-en_US.bz2 Could not resolve 'security.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/multiverse/i18n/Translation-en_US.bz2 Could not resolve 'security.ubuntu.com' W: Some index files failed to download, they have been ignored, or old ones used instead. W: You may want to run apt-get update to correct these problems

    Read the article

  • Some VS 2010 RC Updates (including patches for Intellisense and Web Designer fixes)

    - by ScottGu
    [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] We are continuing to make progress on shipping Visual Studio 2010.  I’d like to say a big thank you to everyone who has downloaded and tried out the VS 2010 Release Candidate, and especially to those who have sent us feedback or reported issues with it. This data has been invaluable in helping us find and fix remaining bugs before we ship the final release. Last month I blogged about a patch we released for the VS 2010 RC that fixed a bad intellisense crash issue.  This past week we released two additional patches that you can download and apply to the VS 2010 RC to immediately fix two other common issues we’ve seen people run into: Patch that fixes crashes with Tooltip invocation and when hovering over identifiers The Visual Studio team recently released a second patch that fixes some crashes we’ve seen when tooltips are displayed – most commonly when hovering over an identifier to view a QuickInfo tooltip. You can learn more about this issue from this blog post, and download and apply the patch here. Patch that fixes issues with the Web Forms designer not correctly adding controls to the auto-generated designer files The Visual Web Developer team recently released a patch that fixes issues where web controls are not correctly added to the .designer.cs file associated with the .aspx file – which means they can’t be programmed against in the code-behind file.  This issue is most commonly described as “controls are not being recognized in the code-behind” or “editing existing .aspx files regenerates the .aspx.designer.(vb or cs) file and controls are now missing” or “I can’t embed controls within the Ajax Control Toolkit TabContainer or the <asp:createuserwizard> control”. You can learn more about the issue here, and download the patch that fixes it here. Common Cause of Intellisense and IDE sluggishness on Windows XP, Vista, Win Server 2003/2008 systems Over the last few months we’ve occasionally seen reports of people seeing tremendous slowness when typing and using intellisense within VS 2010 despite running on decent machines.  It took us awhile to track down the cause – but we have found that the common culprit seems to be that these machines don’t have the latest versions of the UIA (Windows Automation) component installed. UIA 3 ships with Windows 7, and is a recommended Windows Update patch on XP and Vista (which is why we didn’t see the problem in our tests – since our machines are patched with all recommended updates).  Many systems (especially on XP) don’t automatically install recommended updates, though, and are running with older versions of UIA. This can cause significant performance slow-downs within the VS 2010 editor when large lists are displayed (for example: with intellisense). If you are running on Windows XP, Vista, or Windows Server 2003 or 2008 and are seeing any performance issues with the editor or IDE, please install the free UIA 3 update that can be downloaded from this page.  If you scroll down the page you’ll find direct links to versions for each OS. Note that we are making improvements to the final release of VS 2010 so that we don’t have big perf issues when UIA 3 isn’t installed – and we are also adding a message within the IDE that will warn you if you don’t have UIA 3 installed and accessibility is activated. Improved Text Rendering with WPF 4 and VS 2010 We recently made some nice changes to WPF 4 which improve the text clarity and text crispness over what was in the VS 2010/.NET 4 Release Candidate.  In particular these changes improve scenarios where you have a dark background with light text. You can learn more about these improvements in this WPF Team blog post.  These changes will be in the final release of VS 2010 and .NET 4. Hope this helps, Scott

    Read the article

  • Tulsa SharePoint Interest Group - How SharePoint 2010 Business Connectivity Services could change yo

    - by dmccollough
    Bio: Corey Roth is a consultant at Stonebridge specializing in SharePoint solutions in the Oil & Gas Industry. He has ten plus years of experience delivering solutions in the energy, travel, advertising and consumer electronics verticals. Corey has always focused on rapid adoption of new Microsoft technologies including Visual Studio 2010, SharePoint 2010, .NET Framework 4.0, LINQ, and SilverLight. He also contributed greatly to the beta phases of Visual Studio 2005. For his contributions, he was awarded the Microsoft Award for Customer Excellence (ACE). Corey is a graduate of Oklahoma State University. Corey is a member of the .NET Mafia (www.dotnetmafia.com) where he blogs about the latest technology and SharePoint. Abstract: How SharePoint 2010 Business Connectivity Services could change your life - The New BDC How many hours have your wasted building simple ASP.NET applications to do nothing more than simple CRUD operations against a database.  Many tools have made this easier, but now it's so easy, you'll be up and running in minutes.  This session will show you hot easy it is to get started integrating external data from your line of business systems in SharePoint 2010.  You will learn how to register an external content type using SharePoint Designer based upon a database table or web service and then build an external list.  With external lists, you will see how you can perform CRUD operations on your line of business directly from SharePoint without ever having to do manual configuration in XML files.  Finally, we will walk through how to create custom edit forms for your list using InfoPath 2010. Agenda: 6pm - 6:30 Pizza and Mingle - Sponsored by TekSystems 6:30 - 6:45 Announcements 6:45 - 7:45 Presentation! 7:45 - 8:00 Drawings and Door Prizes Location: TCC (Tulsa Community College) Northeast Campus 3727 East Apache Tulsa, OK 74115 918-594-8000 Campus Map | Live | Yahoo | Google | MapQuest Door Prizes: We will be giving away one of each of these: XBox 360 - Halo 3 ODST Telerik Premium Collection ($1300.00 value) ReSharper ($199.00 value) SQLSets ($149.00 value) 64 bit Windows 7 Introducing Windows 7 for Developers Developing Service-Oriented AJAX Applications on the Microsoft Platform Sponsors: Thanks to our sponsors: TekSystems - Thanks for purchasing the Pizza for our meetings. ISOCentric - Thanks for providing us hosting for the groups web site. Tulsa Community College - Thanks for providing us a place to have our meetings. NEVRON - Thanks for providing us prizes to give away. INETA.org - For allowing us to be a Charter Member and providing awesome Speakers! PERPETUUM Software - Thanks for providing us prizes to give away. Telerik - Thanks for providing us prizes to give away. GrapeCity - Thanks for providing us prizes to give away. SQLSets - Thanks for providing us prizes to give away. K2 - Thanks for providing us prizes to give away. Microsoft - For providing us with a lot of support and product giveaways! Orielly books - For providing us with books and discounts. Wrox books - For providing us with books and discounts. Have any special requests? Let us know at this link: http://tinyurl.com/lg5o38. RSVP for this month's meeting by responding to this thread: http://tinyurl.com/yafkzel . (Must be logged in to the site) Be SURE to RSVP no later than Noon on April 12th and you will get an extra entry for the prize drawings! So, do it now, before you forget and miss out! Show up for the first time or bring a new buddy and you both get TWO extra entries!

    Read the article

  • NDepend tool – Why every developer working with Visual Studio.NET must try it!

    - by hajan
    In the past two months, I have had a chance to test the capabilities and features of the amazing NDepend tool designed to help you make your .NET code better, more beautiful and achieve high code quality. In other words, this tool will definitely help you harmonize your code. I mean, you’ve probably heard about Chaos Theory. Experienced developers and architects are already advocates of the programming chaos that happens when working with complex project architecture, the matrix of relationships between objects which simply even if you are the one who have written all that code, you know how hard is to visualize everything what does the code do. When the application get more and more complex, you will start missing a lot of details in your code… NDepend will help you visualize all the details on a clever way that will help you make smart moves to make your code better. The NDepend tool supports many features, such as: Code Query Language – which will help you write custom rules and query your own code! Imagine, you want to find all your methods which have more than 100 lines of code :)! That’s something simple! However, I will dig much deeper in one of my next blogs which I’m going to dedicate to the NDepend’s CQL (Code Query Language) Architecture Visualization – You are an architect and want to visualize your application’s architecture? I’m thinking how many architects will be really surprised from their architectures since NDepend shows your whole architecture showing each piece of it. NDepend will show you how your code is structured. It shows the architecture in graphs, but if you have very complex architecture, you can see it in Dependency Matrix which is more suited to display large architecture Code Metrics – Using NDepend’s panel, you can see the code base according to Code Metrics. You can do some additional filtering, like selecting the top code elements ordered by their current code metric value. You can use the CQL language for this purpose too. Smart Search – NDepend has great searching ability, which is again based on the CQL (Code Query Language). However, you have some options to search using dropdown lists and text boxes and it will generate the appropriate CQL code on fly. Moreover, you can modify the CQL code if you want it to fit some more advanced searching tasks. Compare Builds and Code Difference – NDepend will also help you compare previous versions of your code with the current one at one of the most clever ways I’ve seen till now. Create Custom Rules – using CQL you can create custom rules and let NDepend warn you on each build if you break a rule Reporting – NDepend can automatically generate reports with detailed stats, graph representation, dependency matrixes and some additional advanced reporting features that will simply explain you everything related to your application’s code, architecture and what you’ve done. And that’s not all. As I’ve seen, there are many other features that NDepend supports. I will dig more in the upcoming days and will blog more about it. The team who built the NDepend have also created good documentation, which you can find on the NDepend website. On their website, you can also find some good videos that will help you get started quite fast. It’s easy to install and what is very important it is fully integrated with Visual Studio. To get you started, you can watch the following Getting Started Online Demo and Tutorial with explanations and screenshots. If you are interested to know more about how to use the features of this tool, either visit their website or wait for my next blogs where I will show some real examples of using the tool and how it helps make your code better. And the last thing for this blog, I would like to copy one sentence from the NDepend’s home page which says: ‘Hence the software design becomes concrete, code reviews are effective, large refactoring are easy and evolution is mastered.’ Website: www.ndepend.com Getting Started: http://www.ndepend.com/GettingStarted.aspx Features: http://www.ndepend.com/Features.aspx Download: http://www.ndepend.com/NDependDownload.aspx Hope you like it! Please do let me know your feedback by providing comments to my blog post. Kind Regards, Hajan

    Read the article

  • Ubuntu 13.10 problems in apt-get update

    - by user205814
    I recently install Ubuntu 13.10, but I had several difficulties on installing several programs from 'Ubuntu Software Center'. I tried to update the repositories but I get the follow result (the * are mine since I cant put more than 2 links): Ign http*://security.ubuntu.com saucy-security InRelease Ign http*://extras.ubuntu.com saucy InRelease Hit http*://security.ubuntu.com saucy-security Release.gpg Hit http*://extras.ubuntu.com saucy Release.gpg Hit http*://security.ubuntu.com saucy-security Release Hit http*://extras.ubuntu.com saucy Release Hit http*://security.ubuntu.com saucy-security/main Sources Hit http*://extras.ubuntu.com saucy/main Sources Hit http*://security.ubuntu.com saucy-security/restricted Sources Hit http*://extras.ubuntu.com saucy/main amd64 Packages Hit http*://security.ubuntu.com saucy-security/universe Sources Hit http*://extras.ubuntu.com saucy/main i386 Packages Hit http*://security.ubuntu.com saucy-security/multiverse Sources Hit http*://security.ubuntu.com saucy-security/main amd64 Packages Hit http*://security.ubuntu.com saucy-security/restricted amd64 Packages Hit http*://security.ubuntu.com saucy-security/universe amd64 Packages Hit http*://security.ubuntu.com saucy-security/multiverse amd64 Packages Hit http*://security.ubuntu.com saucy-security/main i386 Packages Hit http*://security.ubuntu.com saucy-security/restricted i386 Packages Hit http*://security.ubuntu.com saucy-security/universe i386 Packages Hit http*://security.ubuntu.com saucy-security/multiverse i386 Packages Ign http*://extras.ubuntu.com saucy/main Translation-en_US Ign http*://extras.ubuntu.com saucy/main Translation-en Hit http*://security.ubuntu.com saucy-security/main Translation-en Hit http*://security.ubuntu.com saucy-security/multiverse Translation-en Hit http*://security.ubuntu.com saucy-security/restricted Translation-en Hit http*://security.ubuntu.com saucy-security/universe Translation-en Ign http*://security.ubuntu.com saucy-security/main Translation-en_US Ign http*://security.ubuntu.com saucy-security/multiverse Translation-en_US Ign http*://security.ubuntu.com saucy-security/restricted Translation-en_US Ign http*://security.ubuntu.com saucy-security/universe Translation-en_US Err http*://us.archive.ubuntu.com saucy InRelease Err http*://us.archive.ubuntu.com saucy-updates InRelease Err http*://us.archive.ubuntu.com saucy-backports InRelease Err http*://us.archive.ubuntu.com saucy Release.gpg Cannot initiate the connection to us.archive.ubuntu.com:80 (2001:67c:1562::14). - connect (101: Network is unreachable) [IP: 2001:67c:1562::14 80] Err http*://us.archive.ubuntu.com saucy-updates Release.gpg Cannot initiate the connection to us.archive.ubuntu.com:80 (2001:67c:1562::14). - connect (101: Network is unreachable) [IP: 2001:67c:1562::14 80] Err http*://us.archive.ubuntu.com saucy-backports Release.gpg Cannot initiate the connection to us.archive.ubuntu.com:80 (2001:67c:1562::14). - connect (101: Network is unreachable) [IP: 2001:67c:1562::14 80] Reading package lists... Done W: Failed to fetch http*://us.archive.ubuntu.com/ubuntu/dists/saucy/InRelease W: Failed to fetch http*://us.archive.ubuntu.com/ubuntu/dists/saucy-updates/InRelease W: Failed to fetch http*://us.archive.ubuntu.com/ubuntu/dists/saucy-backports/InRelease W: Failed to fetch http*://us.archive.ubuntu.com/ubuntu/dists/saucy/Release.gpg Cannot initiate the connection to us.archive.ubuntu.com:80 (2001:67c:1562::14). - connect (101: Network is unreachable) [IP: 2001:67c:1562::14 80] W: Failed to fetch http*://us.archive.ubuntu.com/ubuntu/dists/saucy-updates/Release.gpg Cannot initiate the connection to us.archive.ubuntu.com:80 (2001:67c:1562::14). - connect (101: Network is unreachable) [IP: 2001:67c:1562::14 80] W: Failed to fetch http*://us.archive.ubuntu.com/ubuntu/dists/saucy-backports/Release.gpg Cannot initiate the connection to us.archive.ubuntu.com:80 (2001:67c:1562::14). - connect (101: Network is unreachable) [IP: 2001:67c:1562::14 80] W: Some index files failed to download. They have been ignored, or old ones used instead. I want to install Seaview, Dropbox, Terminator and the IDLE of python 2.7, but I can't since I get 'There isn’t a software package called “” in your current software sources' or 'Available from the "multiverse" source. However, for this last one, when I do click over "Use this Source" nothing happens. I need help. Tx to all.

    Read the article

  • apt-get update cannot find ubuntu servers

    - by Phrogz
    Running sudo apt-get update fails on my server (that has a 'net connection). Are the servers temporarily broken, or is my apt misconfigured and using old servers? In short, how do I fix this? Here's the output: ~$ uname -a Linux nematode 2.6.28-19-server #66-Ubuntu SMP Sat Oct 16 18:41:24 UTC 2010 i686 GNU/Linux ~$ sudo apt-get update Err http://us.archive.ubuntu.com jaunty Release.gpg Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty/main Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty/restricted Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty/universe Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty/multiverse Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates Release.gpg Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates/main Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates/restricted Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates/universe Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://us.archive.ubuntu.com jaunty-updates/multiverse Translation-en_US Could not resolve 'us.archive.ubuntu.com' Err http://security.ubuntu.com jaunty-security Release.gpg Could not resolve 'security.ubuntu.com' Err http://security.ubuntu.com jaunty-security/main Translation-en_US Could not resolve 'security.ubuntu.com' Err http://security.ubuntu.com jaunty-security/restricted Translation-en_US Could not resolve 'security.ubuntu.com' Err http://security.ubuntu.com jaunty-security/universe Translation-en_US Could not resolve 'security.ubuntu.com' Err http://security.ubuntu.com jaunty-security/multiverse Translation-en_US Could not resolve 'security.ubuntu.com' Reading package lists... Done W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/Release.gpg Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/main/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/restricted/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/universe/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty/multiverse/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/Release.gpg Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/main/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/restricted/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/universe/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://us.archive.ubuntu.com/ubuntu/dists/jaunty-updates/multiverse/i18n/Translation-en_US.bz2 Could not resolve 'us.archive.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/Release.gpg Could not resolve 'security.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/main/i18n/Translation-en_US.bz2 Could not resolve 'security.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/restricted/i18n/Translation-en_US.bz2 Could not resolve 'security.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/universe/i18n/Translation-en_US.bz2 Could not resolve 'security.ubuntu.com' W: Failed to fetch http://security.ubuntu.com/ubuntu/dists/jaunty-security/multiverse/i18n/Translation-en_US.bz2 Could not resolve 'security.ubuntu.com' W: Some index files failed to download, they have been ignored, or old ones used instead. W: You may want to run apt-get update to correct these problems

    Read the article

  • The Incremental Architect&rsquo;s Napkin - #5 - Design functions for extensibility and readability

    - by Ralf Westphal
    Originally posted on: http://geekswithblogs.net/theArchitectsNapkin/archive/2014/08/24/the-incremental-architectrsquos-napkin---5---design-functions-for.aspx The functionality of programs is entered via Entry Points. So what we´re talking about when designing software is a bunch of functions handling the requests represented by and flowing in through those Entry Points. Designing software thus consists of at least three phases: Analyzing the requirements to find the Entry Points and their signatures Designing the functionality to be executed when those Entry Points get triggered Implementing the functionality according to the design aka coding I presume, you´re familiar with phase 1 in some way. And I guess you´re proficient in implementing functionality in some programming language. But in my experience developers in general are not experienced in going through an explicit phase 2. “Designing functionality? What´s that supposed to mean?” you might already have thought. Here´s my definition: To design functionality (or functional design for short) means thinking about… well, functions. You find a solution for what´s supposed to happen when an Entry Point gets triggered in terms of functions. A conceptual solution that is, because those functions only exist in your head (or on paper) during this phase. But you may have guess that, because it´s “design” not “coding”. And here is, what functional design is not: It´s not about logic. Logic is expressions (e.g. +, -, && etc.) and control statements (e.g. if, switch, for, while etc.). Also I consider calling external APIs as logic. It´s equally basic. It´s what code needs to do in order to deliver some functionality or quality. Logic is what´s doing that needs to be done by software. Transformations are either done through expressions or API-calls. And then there is alternative control flow depending on the result of some expression. Basically it´s just jumps in Assembler, sometimes to go forward (if, switch), sometimes to go backward (for, while, do). But calling your own function is not logic. It´s not necessary to produce any outcome. Functionality is not enhanced by adding functions (subroutine calls) to your code. Nor is quality increased by adding functions. No performance gain, no higher scalability etc. through functions. Functions are not relevant to functionality. Strange, isn´t it. What they are important for is security of investment. By introducing functions into our code we can become more productive (re-use) and can increase evolvability (higher unterstandability, easier to keep code consistent). That´s no small feat, however. Evolvable code can hardly be overestimated. That´s why to me functional design is so important. It´s at the core of software development. To sum this up: Functional design is on a level of abstraction above (!) logical design or algorithmic design. Functional design is only done until you get to a point where each function is so simple you are very confident you can easily code it. Functional design an logical design (which mostly is coding, but can also be done using pseudo code or flow charts) are complementary. Software needs both. If you start coding right away you end up in a tangled mess very quickly. Then you need back out through refactoring. Functional design on the other hand is bloodless without actual code. It´s just a theory with no experiments to prove it. But how to do functional design? An example of functional design Let´s assume a program to de-duplicate strings. The user enters a number of strings separated by commas, e.g. a, b, a, c, d, b, e, c, a. And the program is supposed to clear this list of all doubles, e.g. a, b, c, d, e. There is only one Entry Point to this program: the user triggers the de-duplication by starting the program with the string list on the command line C:\>deduplicate "a, b, a, c, d, b, e, c, a" a, b, c, d, e …or by clicking on a GUI button. This leads to the Entry Point function to get called. It´s the program´s main function in case of the batch version or a button click event handler in the GUI version. That´s the physical Entry Point so to speak. It´s inevitable. What then happens is a three step process: Transform the input data from the user into a request. Call the request handler. Transform the output of the request handler into a tangible result for the user. Or to phrase it a bit more generally: Accept input. Transform input into output. Present output. This does not mean any of these steps requires a lot of effort. Maybe it´s just one line of code to accomplish it. Nevertheless it´s a distinct step in doing the processing behind an Entry Point. Call it an aspect or a responsibility - and you will realize it most likely deserves a function of its own to satisfy the Single Responsibility Principle (SRP). Interestingly the above list of steps is already functional design. There is no logic, but nevertheless the solution is described - albeit on a higher level of abstraction than you might have done yourself. But it´s still on a meta-level. The application to the domain at hand is easy, though: Accept string list from command line De-duplicate Present de-duplicated strings on standard output And this concrete list of processing steps can easily be transformed into code:static void Main(string[] args) { var input = Accept_string_list(args); var output = Deduplicate(input); Present_deduplicated_string_list(output); } Instead of a big problem there are three much smaller problems now. If you think each of those is trivial to implement, then go for it. You can stop the functional design at this point. But maybe, just maybe, you´re not so sure how to go about with the de-duplication for example. Then just implement what´s easy right now, e.g.private static string Accept_string_list(string[] args) { return args[0]; } private static void Present_deduplicated_string_list( string[] output) { var line = string.Join(", ", output); Console.WriteLine(line); } Accept_string_list() contains logic in the form of an API-call. Present_deduplicated_string_list() contains logic in the form of an expression and an API-call. And then repeat the functional design for the remaining processing step. What´s left is the domain logic: de-duplicating a list of strings. How should that be done? Without any logic at our disposal during functional design you´re left with just functions. So which functions could make up the de-duplication? Here´s a suggestion: De-duplicate Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Processing step 2 obviously was the core of the solution. That´s where real creativity was needed. That´s the core of the domain. But now after this refinement the implementation of each step is easy again:private static string[] Parse_string_list(string input) { return input.Split(',') .Select(s => s.Trim()) .ToArray(); } private static Dictionary<string,object> Compile_unique_strings(string[] strings) { return strings.Aggregate( new Dictionary<string, object>(), (agg, s) => { agg[s] = null; return agg; }); } private static string[] Serialize_unique_strings( Dictionary<string,object> dict) { return dict.Keys.ToArray(); } With these three additional functions Main() now looks like this:static void Main(string[] args) { var input = Accept_string_list(args); var strings = Parse_string_list(input); var dict = Compile_unique_strings(strings); var output = Serialize_unique_strings(dict); Present_deduplicated_string_list(output); } I think that´s very understandable code: just read it from top to bottom and you know how the solution to the problem works. It´s a mirror image of the initial design: Accept string list from command line Parse the input string into a true list of strings. Register each string in a dictionary/map/set. That way duplicates get cast away. Transform the data structure into a list of unique strings. Present de-duplicated strings on standard output You can even re-generate the design by just looking at the code. Code and functional design thus are always in sync - if you follow some simple rules. But about that later. And as a bonus: all the functions making up the process are small - which means easy to understand, too. So much for an initial concrete example. Now it´s time for some theory. Because there is method to this madness ;-) The above has only scratched the surface. Introducing Flow Design Functional design starts with a given function, the Entry Point. Its goal is to describe the behavior of the program when the Entry Point is triggered using a process, not an algorithm. An algorithm consists of logic, a process on the other hand consists just of steps or stages. Each processing step transforms input into output or a side effect. Also it might access resources, e.g. a printer, a database, or just memory. Processing steps thus can rely on state of some sort. This is different from Functional Programming, where functions are supposed to not be stateful and not cause side effects.[1] In its simplest form a process can be written as a bullet point list of steps, e.g. Get data from user Output result to user Transform data Parse data Map result for output Such a compilation of steps - possibly on different levels of abstraction - often is the first artifact of functional design. It can be generated by a team in an initial design brainstorming. Next comes ordering the steps. What should happen first, what next etc.? Get data from user Parse data Transform data Map result for output Output result to user That´s great for a start into functional design. It´s better than starting to code right away on a given function using TDD. Please get me right: TDD is a valuable practice. But it can be unnecessarily hard if the scope of a functionn is too large. But how do you know beforehand without investing some thinking? And how to do this thinking in a systematic fashion? My recommendation: For any given function you´re supposed to implement first do a functional design. Then, once you´re confident you know the processing steps - which are pretty small - refine and code them using TDD. You´ll see that´s much, much easier - and leads to cleaner code right away. For more information on this approach I call “Informed TDD” read my book of the same title. Thinking before coding is smart. And writing down the solution as a bunch of functions possibly is the simplest thing you can do, I´d say. It´s more according to the KISS (Keep It Simple, Stupid) principle than returning constants or other trivial stuff TDD development often is started with. So far so good. A simple ordered list of processing steps will do to start with functional design. As shown in the above example such steps can easily be translated into functions. Moving from design to coding thus is simple. However, such a list does not scale. Processing is not always that simple to be captured in a list. And then the list is just text. Again. Like code. That means the design is lacking visuality. Textual representations need more parsing by your brain than visual representations. Plus they are limited in their “dimensionality”: text just has one dimension, it´s sequential. Alternatives and parallelism are hard to encode in text. In addition the functional design using numbered lists lacks data. It´s not visible what´s the input, output, and state of the processing steps. That´s why functional design should be done using a lightweight visual notation. No tool is necessary to draw such designs. Use pen and paper; a flipchart, a whiteboard, or even a napkin is sufficient. Visualizing processes The building block of the functional design notation is a functional unit. I mostly draw it like this: Something is done, it´s clear what goes in, it´s clear what comes out, and it´s clear what the processing step requires in terms of state or hardware. Whenever input flows into a functional unit it gets processed and output is produced and/or a side effect occurs. Flowing data is the driver of something happening. That´s why I call this approach to functional design Flow Design. It´s about data flow instead of control flow. Control flow like in algorithms is of no concern to functional design. Thinking about control flow simply is too low level. Once you start with control flow you easily get bogged down by tons of details. That´s what you want to avoid during design. Design is supposed to be quick, broad brush, abstract. It should give overview. But what about all the details? As Robert C. Martin rightly said: “Programming is abot detail”. Detail is a matter of code. Once you start coding the processing steps you designed you can worry about all the detail you want. Functional design does not eliminate all the nitty gritty. It just postpones tackling them. To me that´s also an example of the SRP. Function design has the responsibility to come up with a solution to a problem posed by a single function (Entry Point). And later coding has the responsibility to implement the solution down to the last detail (i.e. statement, API-call). TDD unfortunately mixes both responsibilities. It´s just coding - and thereby trying to find detailed implementations (green phase) plus getting the design right (refactoring). To me that´s one reason why TDD has failed to deliver on its promise for many developers. Using functional units as building blocks of functional design processes can be depicted very easily. Here´s the initial process for the example problem: For each processing step draw a functional unit and label it. Choose a verb or an “action phrase” as a label, not a noun. Functional design is about activities, not state or structure. Then make the output of an upstream step the input of a downstream step. Finally think about the data that should flow between the functional units. Write the data above the arrows connecting the functional units in the direction of the data flow. Enclose the data description in brackets. That way you can clearly see if all flows have already been specified. Empty brackets mean “no data is flowing”, but nevertheless a signal is sent. A name like “list” or “strings” in brackets describes the data content. Use lower case labels for that purpose. A name starting with an upper case letter like “String” or “Customer” on the other hand signifies a data type. If you like, you also can combine descriptions with data types by separating them with a colon, e.g. (list:string) or (strings:string[]). But these are just suggestions from my practice with Flow Design. You can do it differently, if you like. Just be sure to be consistent. Flows wired-up in this manner I call one-dimensional (1D). Each functional unit just has one input and/or one output. A functional unit without an output is possible. It´s like a black hole sucking up input without producing any output. Instead it produces side effects. A functional unit without an input, though, does make much sense. When should it start to work? What´s the trigger? That´s why in the above process even the first processing step has an input. If you like, view such 1D-flows as pipelines. Data is flowing through them from left to right. But as you can see, it´s not always the same data. It get´s transformed along its passage: (args) becomes a (list) which is turned into (strings). The Principle of Mutual Oblivion A very characteristic trait of flows put together from function units is: no functional units knows another one. They are all completely independent of each other. Functional units don´t know where their input is coming from (or even when it´s gonna arrive). They just specify a range of values they can process. And they promise a certain behavior upon input arriving. Also they don´t know where their output is going. They just produce it in their own time independent of other functional units. That means at least conceptually all functional units work in parallel. Functional units don´t know their “deployment context”. They now nothing about the overall flow they are place in. They are just consuming input from some upstream, and producing output for some downstream. That makes functional units very easy to test. At least as long as they don´t depend on state or resources. I call this the Principle of Mutual Oblivion (PoMO). Functional units are oblivious of others as well as an overall context/purpose. They are just parts of a whole focused on a single responsibility. How the whole is built, how a larger goal is achieved, is of no concern to the single functional units. By building software in such a manner, functional design interestingly follows nature. Nature´s building blocks for organisms also follow the PoMO. The cells forming your body do not know each other. Take a nerve cell “controlling” a muscle cell for example:[2] The nerve cell does not know anything about muscle cells, let alone the specific muscel cell it is “attached to”. Likewise the muscle cell does not know anything about nerve cells, let a lone a specific nerve cell “attached to” it. Saying “the nerve cell is controlling the muscle cell” thus only makes sense when viewing both from the outside. “Control” is a concept of the whole, not of its parts. Control is created by wiring-up parts in a certain way. Both cells are mutually oblivious. Both just follow a contract. One produces Acetylcholine (ACh) as output, the other consumes ACh as input. Where the ACh is going, where it´s coming from neither cell cares about. Million years of evolution have led to this kind of division of labor. And million years of evolution have produced organism designs (DNA) which lead to the production of these different cell types (and many others) and also to their co-location. The result: the overall behavior of an organism. How and why this happened in nature is a mystery. For our software, though, it´s clear: functional and quality requirements needs to be fulfilled. So we as developers have to become “intelligent designers” of “software cells” which we put together to form a “software organism” which responds in satisfying ways to triggers from it´s environment. My bet is: If nature gets complex organisms working by following the PoMO, who are we to not apply this recipe for success to our much simpler “machines”? So my rule is: Wherever there is functionality to be delivered, because there is a clear Entry Point into software, design the functionality like nature would do it. Build it from mutually oblivious functional units. That´s what Flow Design is about. In that way it´s even universal, I´d say. Its notation can also be applied to biology: Never mind labeling the functional units with nouns. That´s ok in Flow Design. You´ll do that occassionally for functional units on a higher level of abstraction or when their purpose is close to hardware. Getting a cockroach to roam your bedroom takes 1,000,000 nerve cells (neurons). Getting the de-duplication program to do its job just takes 5 “software cells” (functional units). Both, though, follow the same basic principle. Translating functional units into code Moving from functional design to code is no rocket science. In fact it´s straightforward. There are two simple rules: Translate an input port to a function. Translate an output port either to a return statement in that function or to a function pointer visible to that function. The simplest translation of a functional unit is a function. That´s what you saw in the above example. Functions are mutually oblivious. That why Functional Programming likes them so much. It makes them composable. Which is the reason, nature works according to the PoMO. Let´s be clear about one thing: There is no dependency injection in nature. For all of an organism´s complexity no DI container is used. Behavior is the result of smooth cooperation between mutually oblivious building blocks. Functions will often be the adequate translation for the functional units in your designs. But not always. Take for example the case, where a processing step should not always produce an output. Maybe the purpose is to filter input. Here the functional unit consumes words and produces words. But it does not pass along every word flowing in. Some words are swallowed. Think of a spell checker. It probably should not check acronyms for correctness. There are too many of them. Or words with no more than two letters. Such words are called “stop words”. In the above picture the optionality of the output is signified by the astrisk outside the brackets. It means: Any number of (word) data items can flow from the functional unit for each input data item. It might be none or one or even more. This I call a stream of data. Such behavior cannot be translated into a function where output is generated with return. Because a function always needs to return a value. So the output port is translated into a function pointer or continuation which gets passed to the subroutine when called:[3]void filter_stop_words( string word, Action<string> onNoStopWord) { if (...check if not a stop word...) onNoStopWord(word); } If you want to be nitpicky you might call such a function pointer parameter an injection. And technically you´re right. Conceptually, though, it´s not an injection. Because the subroutine is not functionally dependent on the continuation. Firstly continuations are procedures, i.e. subroutines without a return type. Remember: Flow Design is about unidirectional data flow. Secondly the name of the formal parameter is chosen in a way as to not assume anything about downstream processing steps. onNoStopWord describes a situation (or event) within the functional unit only. Translating output ports into function pointers helps keeping functional units mutually oblivious in cases where output is optional or produced asynchronically. Either pass the function pointer to the function upon call. Or make it global by putting it on the encompassing class. Then it´s called an event. In C# that´s even an explicit feature.class Filter { public void filter_stop_words( string word) { if (...check if not a stop word...) onNoStopWord(word); } public event Action<string> onNoStopWord; } When to use a continuation and when to use an event dependens on how a functional unit is used in flows and how it´s packed together with others into classes. You´ll see examples further down the Flow Design road. Another example of 1D functional design Let´s see Flow Design once more in action using the visual notation. How about the famous word wrap kata? Robert C. Martin has posted a much cited solution including an extensive reasoning behind his TDD approach. So maybe you want to compare it to Flow Design. The function signature given is:string WordWrap(string text, int maxLineLength) {...} That´s not an Entry Point since we don´t see an application with an environment and users. Nevertheless it´s a function which is supposed to provide a certain functionality. The text passed in has to be reformatted. The input is a single line of arbitrary length consisting of words separated by spaces. The output should consist of one or more lines of a maximum length specified. If a word is longer than a the maximum line length it can be split in multiple parts each fitting in a line. Flow Design Let´s start by brainstorming the process to accomplish the feat of reformatting the text. What´s needed? Words need to be assembled into lines Words need to be extracted from the input text The resulting lines need to be assembled into the output text Words too long to fit in a line need to be split Does sound about right? I guess so. And it shows a kind of priority. Long words are a special case. So maybe there is a hint for an incremental design here. First let´s tackle “average words” (words not longer than a line). Here´s the Flow Design for this increment: The the first three bullet points turned into functional units with explicit data added. As the signature requires a text is transformed into another text. See the input of the first functional unit and the output of the last functional unit. In between no text flows, but words and lines. That´s good to see because thereby the domain is clearly represented in the design. The requirements are talking about words and lines and here they are. But note the asterisk! It´s not outside the brackets but inside. That means it´s not a stream of words or lines, but lists or sequences. For each text a sequence of words is output. For each sequence of words a sequence of lines is produced. The asterisk is used to abstract from the concrete implementation. Like with streams. Whether the list of words gets implemented as an array or an IEnumerable is not important during design. It´s an implementation detail. Does any processing step require further refinement? I don´t think so. They all look pretty “atomic” to me. And if not… I can always backtrack and refine a process step using functional design later once I´ve gained more insight into a sub-problem. Implementation The implementation is straightforward as you can imagine. The processing steps can all be translated into functions. Each can be tested easily and separately. Each has a focused responsibility. And the process flow becomes just a sequence of function calls: Easy to understand. It clearly states how word wrapping works - on a high level of abstraction. And it´s easy to evolve as you´ll see. Flow Design - Increment 2 So far only texts consisting of “average words” are wrapped correctly. Words not fitting in a line will result in lines too long. Wrapping long words is a feature of the requested functionality. Whether it´s there or not makes a difference to the user. To quickly get feedback I decided to first implement a solution without this feature. But now it´s time to add it to deliver the full scope. Fortunately Flow Design automatically leads to code following the Open Closed Principle (OCP). It´s easy to extend it - instead of changing well tested code. How´s that possible? Flow Design allows for extension of functionality by inserting functional units into the flow. That way existing functional units need not be changed. The data flow arrow between functional units is a natural extension point. No need to resort to the Strategy Pattern. No need to think ahead where extions might need to be made in the future. I just “phase in” the remaining processing step: Since neither Extract words nor Reformat know of their environment neither needs to be touched due to the “detour”. The new processing step accepts the output of the existing upstream step and produces data compatible with the existing downstream step. Implementation - Increment 2 A trivial implementation checking the assumption if this works does not do anything to split long words. The input is just passed on: Note how clean WordWrap() stays. The solution is easy to understand. A developer looking at this code sometime in the future, when a new feature needs to be build in, quickly sees how long words are dealt with. Compare this to Robert C. Martin´s solution:[4] How does this solution handle long words? Long words are not even part of the domain language present in the code. At least I need considerable time to understand the approach. Admittedly the Flow Design solution with the full implementation of long word splitting is longer than Robert C. Martin´s. At least it seems. Because his solution does not cover all the “word wrap situations” the Flow Design solution handles. Some lines would need to be added to be on par, I guess. But even then… Is a difference in LOC that important as long as it´s in the same ball park? I value understandability and openness for extension higher than saving on the last line of code. Simplicity is not just less code, it´s also clarity in design. But don´t take my word for it. Try Flow Design on larger problems and compare for yourself. What´s the easier, more straightforward way to clean code? And keep in mind: You ain´t seen all yet ;-) There´s more to Flow Design than described in this chapter. In closing I hope I was able to give you a impression of functional design that makes you hungry for more. To me it´s an inevitable step in software development. Jumping from requirements to code does not scale. And it leads to dirty code all to quickly. Some thought should be invested first. Where there is a clear Entry Point visible, it´s functionality should be designed using data flows. Because with data flows abstraction is possible. For more background on why that´s necessary read my blog article here. For now let me point out to you - if you haven´t already noticed - that Flow Design is a general purpose declarative language. It´s “programming by intention” (Shalloway et al.). Just write down how you think the solution should work on a high level of abstraction. This breaks down a large problem in smaller problems. And by following the PoMO the solutions to those smaller problems are independent of each other. So they are easy to test. Or you could even think about getting them implemented in parallel by different team members. Flow Design not only increases evolvability, but also helps becoming more productive. All team members can participate in functional design. This goes beyon collective code ownership. We´re talking collective design/architecture ownership. Because with Flow Design there is a common visual language to talk about functional design - which is the foundation for all other design activities.   PS: If you like what you read, consider getting my ebook “The Incremental Architekt´s Napkin”. It´s where I compile all the articles in this series for easier reading. I like the strictness of Function Programming - but I also find it quite hard to live by. And it certainly is not what millions of programmers are used to. Also to me it seems, the real world is full of state and side effects. So why give them such a bad image? That´s why functional design takes a more pragmatic approach. State and side effects are ok for processing steps - but be sure to follow the SRP. Don´t put too much of it into a single processing step. ? Image taken from www.physioweb.org ? My code samples are written in C#. C# sports typed function pointers called delegates. Action is such a function pointer type matching functions with signature void someName(T t). Other languages provide similar ways to work with functions as first class citizens - even Java now in version 8. I trust you find a way to map this detail of my translation to your favorite programming language. I know it works for Java, C++, Ruby, JavaScript, Python, Go. And if you´re using a Functional Programming language it´s of course a no brainer. ? Taken from his blog post “The Craftsman 62, The Dark Path”. ?

    Read the article

< Previous Page | 141 142 143 144 145 146 147 148 149 150 151 152  | Next Page >