Search Results

Search found 4690 results on 188 pages for 'multi tenant'.

Page 148/188 | < Previous Page | 144 145 146 147 148 149 150 151 152 153 154 155  | Next Page >

  • The Evolution Of C#

    - by Paulo Morgado
    The first release of C# (C# 1.0) was all about building a new language for managed code that appealed, mostly, to C++ and Java programmers. The second release (C# 2.0) was mostly about adding what wasn’t time to built into the 1.0 release. The main feature for this release was Generics. The third release (C# 3.0) was all about reducing the impedance mismatch between general purpose programming languages and databases. To achieve this goal, several functional programming features were added to the language and LINQ was born. Going forward, new trends are showing up in the industry and modern programming languages need to be more: Declarative With imperative languages, although having the eye on the what, programs need to focus on the how. This leads to over specification of the solution to the problem in hand, making next to impossible to the execution engine to be smart about the execution of the program and optimize it to run it more efficiently (given the hardware available, for example). Declarative languages, on the other hand, focus only on the what and leave the how to the execution engine. LINQ made C# more declarative by using higher level constructs like orderby and group by that give the execution engine a much better chance of optimizing the execution (by parallelizing it, for example). Concurrent Concurrency is hard and needs to be thought about and it’s very hard to shoehorn it into a programming language. Parallel.For (from the parallel extensions) looks like a parallel for because enough expressiveness has been built into C# 3.0 to allow this without having to commit to specific language syntax. Dynamic There was been lots of debate on which ones are the better programming languages: static or dynamic. The fact is that both have good qualities and users of both types of languages want to have it all. All these trends require a paradigm switch. C# is, in many ways, already a multi-paradigm language. It’s still very object oriented (class oriented as some might say) but it can be argued that C# 3.0 has become a functional programming language because it has all the cornerstones of what a functional programming language needs. Moving forward, will have even more. Besides the influence of these trends, there was a decision of co-evolution of the C# and Visual Basic programming languages. Since its inception, there was been some effort to position C# and Visual Basic against each other and to try to explain what should be done with each language or what kind of programmers use one or the other. Each language should be chosen based on the past experience and familiarity of the developer/team/project/company and not by particular features. In the past, every time a feature was added to one language, the users of the other wanted that feature too. Going forward, when a feature is added to one language, the other will work hard to add the same feature. This doesn’t mean that XML literals will be added to C# (because almost the same can be achieved with LINQ To XML), but Visual Basic will have auto-implemented properties. Most of these features require or are built on top of features of the .NET Framework and, the focus for C# 4.0 was on dynamic programming. Not just dynamic types but being able to talk with anything that isn’t a .NET class. Also introduced in C# 4.0 is co-variance and contra-variance for generic interfaces and delegates. Stay tuned for more on the new C# 4.0 features.

    Read the article

  • Introducing functional programming constructs in non-functional programming languages

    - by Giorgio
    This question has been going through my mind quite a lot lately and since I haven't found a convincing answer to it I would like to know if other users of this site have thought about it as well. In the recent years, even though OOP is still the most popular programming paradigm, functional programming is getting a lot of attention. I have only used OOP languages for my work (C++ and Java) but I am trying to learn some FP in my free time because I find it very interesting. So, I started learning Haskell three years ago and Scala last summer. I plan to learn some SML and Caml as well, and to brush up my (little) knowledge of Scheme. Well, a lot of plans (too ambitious?) but I hope I will find the time to learn at least the basics of FP during the next few years. What is important for me is how functional programming works and how / whether I can use it for some real projects. I have already developed small tools in Haskell. In spite of my strong interest for FP, I find it difficult to understand why functional programming constructs are being added to languages like C#, Java, C++, and so on. As a developer interested in FP, I find it more natural to use, say, Scala or Haskell, instead of waiting for the next FP feature to be added to my favourite non-FP language. In other words, why would I want to have only some FP in my originally non-FP language instead of looking for a language that has a better support for FP? For example, why should I be interested to have lambdas in Java if I can switch to Scala where I have much more FP concepts and access all the Java libraries anyway? Similarly: why do some FP in C# instead of using F# (to my knowledge, C# and F# can work together)? Java was designed to be OO. Fine. I can do OOP in Java (and I would like to keep using Java in that way). Scala was designed to support OOP + FP. Fine: I can use a mix of OOP and FP in Scala. Haskell was designed for FP: I can do FP in Haskell. If I need to tune the performance of a particular module, I can interface Haskell with some external routines in C. But why would I want to do OOP with just some basic FP in Java? So, my main point is: why are non-functional programming languages being extended with some functional concept? Shouldn't it be more comfortable (interesting, exciting, productive) to program in a language that has been designed from the very beginning to be functional or multi-paradigm? Don't different programming paradigms integrate better in a language that was designed for it than in a language in which one paradigm was only added later? The first explanation I could think of is that, since FP is a new concept (it isn't new at all, but it is new for many developers), it needs to be introduced gradually. However, I remember my switch from imperative to OOP: when I started to program in C++ (coming from Pascal and C) I really had to rethink the way in which I was coding, and to do it pretty fast. It was not gradual. So, this does not seem to be a good explanation to me. Or can it be that many non-FP programmers are not really interested in understanding and using functional programming, but they find it practically convenient to adopt certain FP-idioms in their non-FP language? IMPORTANT NOTE Just in case (because I have seen several language wars on this site): I mentioned the languages I know better, this question is in no way meant to start comparisons between different programming languages to decide which is better / worse. Also, I am not interested in a comparison of OOP versus FP (pros and cons). The point I am interested in is to understand why FP is being introduced one bit at a time into existing languages that were not designed for it even though there exist languages that were / are specifically designed to support FP.

    Read the article

  • The Hunger Games for Aspiring IT Professionals

    - by Dain C. Hansen
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif"; mso-bidi-font-family:"Times New Roman";} It seems that no one can escape the buzz around Hunger Games. And who could? Stephen King said it best in his review when he referred to the Collins’ novel as “a violent, jarring speed-rap of a novel that generates nearly constant suspense and may also generate a fair amount of controversy”. So what’s the tie in for IT? Let’s leave the dystopia of District 12 and come back to today’s reality. This is the world of radical IT paradigm shifts that haven’t been seen since Java was introduced in 1995. Everything you learned in school is probably outdated as of Friday. And everything you learned on Friday will probably change when you get to work on Monday. Nevertheless, we’re eager, we’re aspiring, we’re hungry to learn. While the challenges upon us may not rival the venomous bees (or ‘tracker jackers’) seen in this blockbuster, there are certainly obstacles to be found. In preparation, I leave you two pieces of advice - aside from avoiding werewolves… Learn the Cloud If you had asked me what to learn in 1995, I would have said, “Go learn Java”. But now my advice is “Go learn Java and then learn Cloud”. Cloud computing and Java go hand in hand. This is especially true for Oracle’s own Public Cloud which uses Java (via WebLogic 12c) as well as Oracle Database at its core foundation. Understanding the connotations of elasticity, scale, virtualization, and multi-tenancy, (to name just a few) requires a strong foundation in computer science and especially Java to get it right. Without Java, the Cloud is nothing more than a brittle application meagerly deployed on the internet. Get Social and Actively Participate And at all levels. Socializing your ideas internally is dreadfully important. And this means socializing and communicating your good ideas to lines of business, to architects, business analysts, developers, DBAs and Operations. But don’t forget to go external. Stay current by being on the lookout for blogs, tweets, webcasts, papers, podcasts and videos for your technology area. Be not just a subscriber but a participant in these channels as well. Attend industry and vendor sponsored events to learn from the experts – and seek out opportunities to stay connected with those that are smarter than you. You’ll gain more understanding if you participate actively. At the same time you’ll make friends (and allies) and you’ll be glad you did. Tell help you get social and actively participate [while learning the Cloud] here are a couple of pointers for you: See our website on Cloud and Fusion Middleware Subscribe to our regular Fusion Middleware Newsletter Follow us on Twitter and Facebook Find us at one of our key events Meanwhile, happy IT hunger games!

    Read the article

  • MySQL is running VERY slow

    - by user1032531
    I have two servers: a VPS and a laptop. I recently re-built both of them, and MySQL is running about 20 times slower on the laptop. Both servers used to run CentOS 5.8 and I think MySQL 5.1, and the laptop used to do great so I do not think it is the hardware. For the VPS, my provider installed CentOS 6.4, and then I installed MySQL 5.1.69 using yum with the CentOS repo. For the laptop, I installed CentOS 6.4 basic server and then installed MySQL 5.1.69 using yum with the CentOS repo. my.cnf for both servers are identical, and I have shown below. For both servers, I've also included below the output from SHOW VARIABLES; as well as output from sysbench, file system information, and cpu information. I have tried adding skip-name-resolve, but it didn't help. The matrix below shows the SHOW VARIABLES output from both servers which is different. Again, MySQL was installed the same way, so I do not know why it is different, but it is and I think this might be why the laptop is executing MySQL so slowly. Why is the laptop running MySQL slowly, and how do I fix it? Differences between SHOW VARIABLES on both servers +---------------------------+-----------------------+-------------------------+ | Variable | Value-VPS | Value-Laptop | +---------------------------+-----------------------+-------------------------+ | hostname | vps.site1.com | laptop.site2.com | | max_binlog_cache_size | 4294963200 | 18446744073709500000 | | max_seeks_for_key | 4294967295 | 18446744073709500000 | | max_write_lock_count | 4294967295 | 18446744073709500000 | | myisam_max_sort_file_size | 2146435072 | 9223372036853720000 | | myisam_mmap_size | 4294967295 | 18446744073709500000 | | plugin_dir | /usr/lib/mysql/plugin | /usr/lib64/mysql/plugin | | pseudo_thread_id | 7568 | 2 | | system_time_zone | EST | PDT | | thread_stack | 196608 | 262144 | | timestamp | 1372252112 | 1372252046 | | version_compile_machine | i386 | x86_64 | +---------------------------+-----------------------+-------------------------+ my.cnf for both servers [root@server1 ~]# cat /etc/my.cnf [mysqld] datadir=/var/lib/mysql socket=/var/lib/mysql/mysql.sock user=mysql # Disabling symbolic-links is recommended to prevent assorted security risks symbolic-links=0 [mysqld_safe] log-error=/var/log/mysqld.log pid-file=/var/run/mysqld/mysqld.pid innodb_strict_mode=on sql_mode=TRADITIONAL # sql_mode=STRICT_TRANS_TABLES,NO_ZERO_DATE,NO_ZERO_IN_DATE character-set-server=utf8 collation-server=utf8_general_ci log=/var/log/mysqld_all.log [root@server1 ~]# VPS SHOW VARIABLES Info Same as Laptop shown below but changes per above matrix (removed to allow me to be under the 30000 characters as required by ServerFault) Laptop SHOW VARIABLES Info auto_increment_increment 1 auto_increment_offset 1 autocommit ON automatic_sp_privileges ON back_log 50 basedir /usr/ big_tables OFF binlog_cache_size 32768 binlog_direct_non_transactional_updates OFF binlog_format STATEMENT bulk_insert_buffer_size 8388608 character_set_client utf8 character_set_connection utf8 character_set_database latin1 character_set_filesystem binary character_set_results utf8 character_set_server latin1 character_set_system utf8 character_sets_dir /usr/share/mysql/charsets/ collation_connection utf8_general_ci collation_database latin1_swedish_ci collation_server latin1_swedish_ci completion_type 0 concurrent_insert 1 connect_timeout 10 datadir /var/lib/mysql/ date_format %Y-%m-%d datetime_format %Y-%m-%d %H:%i:%s default_week_format 0 delay_key_write ON delayed_insert_limit 100 delayed_insert_timeout 300 delayed_queue_size 1000 div_precision_increment 4 engine_condition_pushdown ON error_count 0 event_scheduler OFF expire_logs_days 0 flush OFF flush_time 0 foreign_key_checks ON ft_boolean_syntax + -><()~*:""&| ft_max_word_len 84 ft_min_word_len 4 ft_query_expansion_limit 20 ft_stopword_file (built-in) general_log OFF general_log_file /var/run/mysqld/mysqld.log group_concat_max_len 1024 have_community_features YES have_compress YES have_crypt YES have_csv YES have_dynamic_loading YES have_geometry YES have_innodb YES have_ndbcluster NO have_openssl DISABLED have_partitioning YES have_query_cache YES have_rtree_keys YES have_ssl DISABLED have_symlink DISABLED hostname server1.site2.com identity 0 ignore_builtin_innodb OFF init_connect init_file init_slave innodb_adaptive_hash_index ON innodb_additional_mem_pool_size 1048576 innodb_autoextend_increment 8 innodb_autoinc_lock_mode 1 innodb_buffer_pool_size 8388608 innodb_checksums ON innodb_commit_concurrency 0 innodb_concurrency_tickets 500 innodb_data_file_path ibdata1:10M:autoextend innodb_data_home_dir innodb_doublewrite ON innodb_fast_shutdown 1 innodb_file_io_threads 4 innodb_file_per_table OFF innodb_flush_log_at_trx_commit 1 innodb_flush_method innodb_force_recovery 0 innodb_lock_wait_timeout 50 innodb_locks_unsafe_for_binlog OFF innodb_log_buffer_size 1048576 innodb_log_file_size 5242880 innodb_log_files_in_group 2 innodb_log_group_home_dir ./ innodb_max_dirty_pages_pct 90 innodb_max_purge_lag 0 innodb_mirrored_log_groups 1 innodb_open_files 300 innodb_rollback_on_timeout OFF innodb_stats_method nulls_equal innodb_stats_on_metadata ON innodb_support_xa ON innodb_sync_spin_loops 20 innodb_table_locks ON innodb_thread_concurrency 8 innodb_thread_sleep_delay 10000 innodb_use_legacy_cardinality_algorithm ON insert_id 0 interactive_timeout 28800 join_buffer_size 131072 keep_files_on_create OFF key_buffer_size 8384512 key_cache_age_threshold 300 key_cache_block_size 1024 key_cache_division_limit 100 language /usr/share/mysql/english/ large_files_support ON large_page_size 0 large_pages OFF last_insert_id 0 lc_time_names en_US license GPL local_infile ON locked_in_memory OFF log OFF log_bin OFF log_bin_trust_function_creators OFF log_bin_trust_routine_creators OFF log_error /var/log/mysqld.log log_output FILE log_queries_not_using_indexes OFF log_slave_updates OFF log_slow_queries OFF log_warnings 1 long_query_time 10.000000 low_priority_updates OFF lower_case_file_system OFF lower_case_table_names 0 max_allowed_packet 1048576 max_binlog_cache_size 18446744073709547520 max_binlog_size 1073741824 max_connect_errors 10 max_connections 151 max_delayed_threads 20 max_error_count 64 max_heap_table_size 16777216 max_insert_delayed_threads 20 max_join_size 18446744073709551615 max_length_for_sort_data 1024 max_long_data_size 1048576 max_prepared_stmt_count 16382 max_relay_log_size 0 max_seeks_for_key 18446744073709551615 max_sort_length 1024 max_sp_recursion_depth 0 max_tmp_tables 32 max_user_connections 0 max_write_lock_count 18446744073709551615 min_examined_row_limit 0 multi_range_count 256 myisam_data_pointer_size 6 myisam_max_sort_file_size 9223372036853727232 myisam_mmap_size 18446744073709551615 myisam_recover_options OFF myisam_repair_threads 1 myisam_sort_buffer_size 8388608 myisam_stats_method nulls_unequal myisam_use_mmap OFF net_buffer_length 16384 net_read_timeout 30 net_retry_count 10 net_write_timeout 60 new OFF old OFF old_alter_table OFF old_passwords OFF open_files_limit 1024 optimizer_prune_level 1 optimizer_search_depth 62 optimizer_switch index_merge=on,index_merge_union=on,index_merge_sort_union=on,index_merge_intersection=on pid_file /var/run/mysqld/mysqld.pid plugin_dir /usr/lib64/mysql/plugin port 3306 preload_buffer_size 32768 profiling OFF profiling_history_size 15 protocol_version 10 pseudo_thread_id 3 query_alloc_block_size 8192 query_cache_limit 1048576 query_cache_min_res_unit 4096 query_cache_size 0 query_cache_type ON query_cache_wlock_invalidate OFF query_prealloc_size 8192 rand_seed1 rand_seed2 range_alloc_block_size 4096 read_buffer_size 131072 read_only OFF read_rnd_buffer_size 262144 relay_log relay_log_index relay_log_info_file relay-log.info relay_log_purge ON relay_log_space_limit 0 report_host report_password report_port 3306 report_user rpl_recovery_rank 0 secure_auth OFF secure_file_priv server_id 0 skip_external_locking ON skip_name_resolve OFF skip_networking OFF skip_show_database OFF slave_compressed_protocol OFF slave_exec_mode STRICT slave_load_tmpdir /tmp slave_max_allowed_packet 1073741824 slave_net_timeout 3600 slave_skip_errors OFF slave_transaction_retries 10 slow_launch_time 2 slow_query_log OFF slow_query_log_file /var/run/mysqld/mysqld-slow.log socket /var/lib/mysql/mysql.sock sort_buffer_size 2097144 sql_auto_is_null ON sql_big_selects ON sql_big_tables OFF sql_buffer_result OFF sql_log_bin ON sql_log_off OFF sql_log_update ON sql_low_priority_updates OFF sql_max_join_size 18446744073709551615 sql_mode sql_notes ON sql_quote_show_create ON sql_safe_updates OFF sql_select_limit 18446744073709551615 sql_slave_skip_counter sql_warnings OFF ssl_ca ssl_capath ssl_cert ssl_cipher ssl_key storage_engine MyISAM sync_binlog 0 sync_frm ON system_time_zone PDT table_definition_cache 256 table_lock_wait_timeout 50 table_open_cache 64 table_type MyISAM thread_cache_size 0 thread_handling one-thread-per-connection thread_stack 262144 time_format %H:%i:%s time_zone SYSTEM timed_mutexes OFF timestamp 1372254399 tmp_table_size 16777216 tmpdir /tmp transaction_alloc_block_size 8192 transaction_prealloc_size 4096 tx_isolation REPEATABLE-READ unique_checks ON updatable_views_with_limit YES version 5.1.69 version_comment Source distribution version_compile_machine x86_64 version_compile_os redhat-linux-gnu wait_timeout 28800 warning_count 0 VPS Sysbench Info [root@vps ~]# cat sysbench.txt sysbench 0.4.12: multi-threaded system evaluation benchmark Running the test with following options: Number of threads: 8 Doing OLTP test. Running mixed OLTP test Doing read-only test Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct cases) Using "BEGIN" for starting transactions Using auto_inc on the id column Threads started! Time limit exceeded, exiting... (last message repeated 7 times) Done. OLTP test statistics: queries performed: read: 1449966 write: 0 other: 207138 total: 1657104 transactions: 103569 (1726.01 per sec.) deadlocks: 0 (0.00 per sec.) read/write requests: 1449966 (24164.08 per sec.) other operations: 207138 (3452.01 per sec.) Test execution summary: total time: 60.0050s total number of events: 103569 total time taken by event execution: 479.1544 per-request statistics: min: 1.98ms avg: 4.63ms max: 330.73ms approx. 95 percentile: 8.26ms Threads fairness: events (avg/stddev): 12946.1250/381.09 execution time (avg/stddev): 59.8943/0.00 [root@vps ~]# Laptop Sysbench Info [root@server1 ~]# cat sysbench.txt sysbench 0.4.12: multi-threaded system evaluation benchmark Running the test with following options: Number of threads: 8 Doing OLTP test. Running mixed OLTP test Doing read-only test Using Special distribution (12 iterations, 1 pct of values are returned in 75 pct cases) Using "BEGIN" for starting transactions Using auto_inc on the id column Threads started! Time limit exceeded, exiting... (last message repeated 7 times) Done. OLTP test statistics: queries performed: read: 634718 write: 0 other: 90674 total: 725392 transactions: 45337 (755.56 per sec.) deadlocks: 0 (0.00 per sec.) read/write requests: 634718 (10577.78 per sec.) other operations: 90674 (1511.11 per sec.) Test execution summary: total time: 60.0048s total number of events: 45337 total time taken by event execution: 479.4912 per-request statistics: min: 2.04ms avg: 10.58ms max: 85.56ms approx. 95 percentile: 19.70ms Threads fairness: events (avg/stddev): 5667.1250/42.18 execution time (avg/stddev): 59.9364/0.00 [root@server1 ~]# VPS File Info [root@vps ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/simfs simfs 20971520 16187440 4784080 78% / none tmpfs 6224432 4 6224428 1% /dev none tmpfs 6224432 0 6224432 0% /dev/shm [root@vps ~]# Laptop File Info [root@server1 ~]# df -T Filesystem Type 1K-blocks Used Available Use% Mounted on /dev/mapper/vg_server1-lv_root ext4 72383800 4243964 64462860 7% / tmpfs tmpfs 956352 0 956352 0% /dev/shm /dev/sdb1 ext4 495844 60948 409296 13% /boot [root@server1 ~]# VPS CPU Info Removed to stay under the 30000 character limit required by ServerFault Laptop CPU Info [root@server1 ~]# cat /proc/cpuinfo processor : 0 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 0 cpu cores : 2 apicid : 0 initial apicid : 0 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: processor : 1 vendor_id : GenuineIntel cpu family : 6 model : 15 model name : Intel(R) Core(TM)2 Duo CPU T7100 @ 1.80GHz stepping : 13 cpu MHz : 800.000 cache size : 2048 KB physical id : 0 siblings : 2 core id : 1 cpu cores : 2 apicid : 1 initial apicid : 1 fpu : yes fpu_exception : yes cpuid level : 10 wp : yes flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx lm constant_tsc arch_perfmon pebs bts rep_good aperfmperf pni dtes64 monitor ds_cpl vmx est tm2 ssse3 cx16 xtpr pdcm lahf_lm ida dts tpr_shadow vnmi flexpriority bogomips : 3591.39 clflush size : 64 cache_alignment : 64 address sizes : 36 bits physical, 48 bits virtual power management: [root@server1 ~]# EDIT New Info requested by shakalandy [root@localhost ~]# cat /proc/meminfo MemTotal: 2044804 kB MemFree: 761464 kB Buffers: 68868 kB Cached: 369708 kB SwapCached: 0 kB Active: 881080 kB Inactive: 246016 kB Active(anon): 688312 kB Inactive(anon): 4416 kB Active(file): 192768 kB Inactive(file): 241600 kB Unevictable: 0 kB Mlocked: 0 kB SwapTotal: 4095992 kB SwapFree: 4095992 kB Dirty: 0 kB Writeback: 0 kB AnonPages: 688428 kB Mapped: 65156 kB Shmem: 4216 kB Slab: 92428 kB SReclaimable: 31260 kB SUnreclaim: 61168 kB KernelStack: 2392 kB PageTables: 28356 kB NFS_Unstable: 0 kB Bounce: 0 kB WritebackTmp: 0 kB CommitLimit: 5118392 kB Committed_AS: 1530212 kB VmallocTotal: 34359738367 kB VmallocUsed: 343604 kB VmallocChunk: 34359372920 kB HardwareCorrupted: 0 kB AnonHugePages: 520192 kB HugePages_Total: 0 HugePages_Free: 0 HugePages_Rsvd: 0 HugePages_Surp: 0 Hugepagesize: 2048 kB DirectMap4k: 8556 kB DirectMap2M: 2078720 kB [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501360 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3036 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14449 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# ps aux | grep mysql root 2227 0.0 0.0 108332 1504 ? S 07:36 0:00 /bin/sh /usr/bin/mysqld_safe --datadir=/var/lib/mysql --pid-file=/var/lib/mysql/localhost.badobe.com.pid mysql 2319 0.1 24.5 1470068 501356 ? Sl 07:36 0:57 /usr/sbin/mysqld --basedir=/usr --datadir=/var/lib/mysql --plugin-dir=/usr/lib64/mysql/plugin --user=mysql --log-error=/var/lib/mysql/localhost.badobe.com.err --pid-file=/var/lib/mysql/localhost.badobe.com.pid root 3579 0.0 0.1 201840 3028 pts/0 S+ 07:40 0:00 mysql -u root -p root 13887 0.0 0.1 201840 3048 pts/3 S+ 18:08 0:00 mysql -uroot -px xxxxxxxxxx root 14470 0.0 0.0 103248 840 pts/2 S+ 18:16 0:00 grep mysql [root@localhost ~]# vmstat 1 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 0 0 742172 76376 371064 0 0 6 6 78 202 2 1 97 1 0 0 0 0 742164 76380 371060 0 0 0 16 191 467 2 1 93 5 0 0 0 0 742164 76380 371064 0 0 0 0 148 388 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 418 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 145 380 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 166 429 2 1 97 0 0 1 0 0 742164 76380 371064 0 0 0 0 148 373 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 149 382 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 168 408 2 0 97 0 0 0 0 0 742164 76380 371064 0 0 0 0 165 394 2 1 98 0 0 0 0 0 742164 76380 371064 0 0 0 0 159 354 2 1 98 0 0 0 0 0 742164 76388 371060 0 0 0 16 180 447 2 0 91 6 0 0 0 0 742164 76388 371064 0 0 0 0 143 344 2 1 98 0 0 0 1 0 742784 76416 370044 0 0 28 580 360 678 3 1 74 23 0 1 0 0 744768 76496 367772 0 0 40 1036 437 865 3 1 53 43 0 0 1 0 747248 76596 365412 0 0 48 1224 561 923 3 2 53 43 0 0 1 0 749232 76696 363092 0 0 32 1132 512 883 3 2 52 44 0 0 1 0 751340 76772 361020 0 0 32 1008 472 872 2 1 52 45 0 0 1 0 753448 76840 358540 0 0 36 1088 512 860 2 1 51 46 0 0 1 0 755060 76936 357636 0 0 28 1012 481 922 2 2 52 45 0 0 1 0 755060 77064 357988 0 0 12 896 444 902 2 1 53 45 0 0 1 0 754688 77148 358448 0 0 16 1096 506 1007 1 1 56 42 0 0 2 0 754192 77268 358932 0 0 12 1060 481 957 1 2 53 44 0 0 1 0 753696 77380 359392 0 0 12 1052 512 1025 2 1 55 42 0 0 1 0 751028 77480 359828 0 0 8 984 423 909 2 2 52 45 0 0 1 0 750524 77620 360200 0 0 8 788 367 869 1 2 54 44 0 0 1 0 749904 77700 360664 0 0 8 928 439 924 2 2 55 43 0 0 1 0 749408 77796 361084 0 0 12 976 468 967 1 1 56 43 0 0 1 0 748788 77896 361464 0 0 12 992 453 944 1 2 54 43 0 1 1 0 748416 77992 361996 0 0 12 784 392 868 2 1 52 46 0 0 1 0 747920 78092 362336 0 0 4 896 382 874 1 1 52 46 0 0 1 0 745252 78172 362780 0 0 12 1040 444 923 1 1 56 42 0 0 1 0 744764 78288 363220 0 0 8 1024 448 934 2 1 55 43 0 0 1 0 744144 78408 363668 0 0 8 1000 461 982 2 1 53 44 0 0 1 0 743648 78488 364148 0 0 8 872 443 888 2 1 54 43 0 0 1 0 743152 78548 364468 0 0 16 1020 511 995 2 1 55 43 0 0 1 0 742656 78632 365024 0 0 12 928 431 913 1 2 53 44 0 0 1 0 742160 78728 365468 0 0 12 996 470 955 2 2 54 44 0 1 1 0 739492 78840 365896 0 0 8 988 447 939 1 2 52 46 0 0 1 0 738872 78996 366352 0 0 12 972 442 928 1 1 55 44 0 1 1 0 738244 79148 366812 0 0 8 948 549 1126 2 2 54 43 0 0 1 0 737624 79312 367188 0 0 12 996 456 953 2 2 54 43 0 0 1 0 736880 79456 367660 0 0 12 960 444 918 1 1 53 46 0 0 1 0 736260 79584 368124 0 0 8 884 414 921 1 1 54 44 0 0 1 0 735648 79716 368488 0 0 12 976 450 955 2 1 56 41 0 0 1 0 733104 79840 368988 0 0 12 932 453 918 1 2 55 43 0 0 1 0 732608 79996 369356 0 0 16 916 444 889 1 2 54 43 0 1 1 0 731476 80128 369800 0 0 16 852 514 978 2 2 54 43 0 0 1 0 731244 80252 370200 0 0 8 904 398 870 2 1 55 43 0 1 1 0 730624 80384 370612 0 0 12 1032 447 977 1 2 57 41 0 0 1 0 730004 80524 371096 0 0 12 984 469 941 2 2 52 45 0 0 1 0 729508 80636 371544 0 0 12 928 438 922 2 1 52 46 0 0 1 0 728888 80756 371948 0 0 16 972 439 943 2 1 55 43 0 0 1 0 726468 80900 372272 0 0 8 960 545 1024 2 1 54 43 0 1 1 0 726344 81024 372272 0 0 8 464 490 1057 1 2 53 44 0 0 1 0 726096 81148 372276 0 0 4 328 441 1063 2 1 53 45 0 1 1 0 726096 81256 372292 0 0 0 296 387 975 1 1 53 45 0 0 1 0 725848 81380 372284 0 0 4 332 425 1034 2 1 54 44 0 1 1 0 725848 81496 372300 0 0 4 308 386 992 2 1 54 43 0 0 1 0 725600 81616 372296 0 0 4 328 404 1060 1 1 54 44 0 procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- r b swpd free buff cache si so bi bo in cs us sy id wa st 0 1 0 725600 81732 372296 0 0 4 328 439 1011 1 1 53 44 0 0 1 0 725476 81848 372308 0 0 0 316 441 1023 2 2 52 46 0 1 1 0 725352 81972 372300 0 0 4 344 451 1021 1 1 55 43 0 2 1 0 725228 82088 372320 0 0 0 328 427 1058 1 1 54 44 0 1 1 0 724980 82220 372300 0 0 4 336 419 999 2 1 54 44 0 1 1 0 724980 82328 372320 0 0 4 320 430 1019 1 1 54 44 0 1 1 0 724732 82436 372328 0 0 0 388 363 942 2 1 54 44 0 1 1 0 724608 82560 372312 0 0 4 308 419 993 1 2 54 44 0 1 0 0 724360 82684 372320 0 0 0 304 421 1028 2 1 55 42 0 1 0 0 724360 82684 372388 0 0 0 0 158 416 2 1 98 0 0 1 1 0 724236 82720 372360 0 0 0 6464 243 855 3 2 84 12 0 1 0 0 724112 82748 372360 0 0 0 5356 266 895 3 1 84 12 0 2 1 0 724112 82764 372380 0 0 0 3052 221 511 2 2 93 4 0 1 0 0 724112 82796 372372 0 0 0 4548 325 1067 2 2 81 16 0 1 0 0 724112 82816 372368 0 0 0 3240 259 829 3 1 90 6 0 1 0 0 724112 82836 372380 0 0 0 3260 309 822 3 2 88 8 0 1 1 0 724112 82876 372364 0 0 0 4680 326 978 3 1 77 19 0 1 0 0 724112 82884 372380 0 0 0 512 207 508 2 1 95 2 0 1 0 0 724112 82884 372388 0 0 0 0 138 361 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 158 397 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 146 395 2 1 98 0 0 2 0 0 724112 82884 372388 0 0 0 0 160 395 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 163 382 1 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 176 422 2 1 98 0 0 1 0 0 724112 82884 372388 0 0 0 0 134 351 2 1 98 0 0 0 0 0 724112 82884 372388 0 0 0 0 190 429 2 1 97 0 0 0 0 0 724104 82884 372392 0 0 0 0 139 358 2 1 98 0 0 0 0 0 724848 82884 372392 0 0 0 4 211 432 2 1 97 0 0 1 0 0 724980 82884 372392 0 0 0 0 166 370 2 1 98 0 0 0 0 0 724980 82884 372392 0 0 0 0 164 397 2 1 98 0 0 ^C [root@localhost ~]#

    Read the article

  • A temporary disagreement

    - by Tony Davis
    Last month, Phil Factor caused a furore amongst some MVPs with an article that attempted to offer simple advice to developers regarding the use of table variables, versus local and global temporary tables, in their code. Phil makes clear that the table variables do come with some fairly major limitations.no distribution statistics, no parallel query plans for queries that modify table variables.but goes on to suggest that for reasonably small-scale strategic uses, and with a bit of due care and testing, table variables are a "good thing". Not everyone shares his opinion; in fact, I imagine he was rather aghast to learn that there were those felt his article was akin to pulling the pin out of a grenade and tossing it into the database; table variables should be avoided in almost all cases, according to their advice, in favour of temp tables. In other words, a fairly major feature of SQL Server should be more-or-less 'off limits' to developers. The problem with temp tables is that, because they are scoped either in the procedure or the connection, it is easy to allow them to hang around for too long, eating up precious memory and bulking up the shared tempdb database. Unless they are explicitly dropped, global temporary tables, and local temporary tables created within a connection rather than within a stored procedure, will persist until the connection is closed or, with connection pooling, until the connection is reused. It's also quite common with ASP.NET applications to have connection leaks, as Bill Vaughn explains in his chapter in the "SQL Server Deep Dives" book, meaning that the web page exits without closing the connection object, maybe due to an error condition. This will then hang around in the heap for what might be hours before picked up by the garbage collector. Table variables are much safer in this regard, since they are batch-scoped and so are cleaned up automatically once the batch is complete, which also means that they are intuitive to use for the developer because they conform to scoping rules that are closer to those in procedural code. On the surface then, an ideal way to deal with issues related to tempdb memory hogging. So why did Phil qualify his recommendation to use Table Variables? This is another of those cases where, like scalar UDFs and table-valued multi-statement UDFs, developers can sometimes get into trouble with a relatively benign-looking feature, due to way it's been implemented in SQL Server. Once again the biggest problem is how they are handled internally, by the SQL Server query optimizer, which can make very poor choices for JOIN orders and so on, in the absence of statistics, especially when joining to tables with highly-skewed data. The resulting execution plans can be horrible, as will be the resulting performance. If the JOIN is to a large table, that will hurt. Ideally, Microsoft would simply fix this issue so that developers can't get burned in this way; they've been around since SQL Server 2000, so Microsoft has had a bit of time to get it right. As I commented in regard to UDFs, when developers discover issues like with such standard features, the database becomes an alien planet to them, where death lurks around each corner, and they continue to avoid these "killer" features years after the problems have been eventually resolved. In the meantime, what is the right approach? Is it to say "hammers can kill, don't ever use hammers", or is it to try to explain, as Phil's article and follow-up blog post have tried to do, what the feature was intended for, why care must be applied in its use, and so enable developers to make properly-informed decisions, without requiring them to delve deep into the inner workings of SQL Server? Cheers, Tony.

    Read the article

  • OOW 2013 Summary for Fusion Middleware Architects & Administrators by Simon Haslam

    - by JuergenKress
    OOW 2013 Summary for Fusion Middleware Architects & Administrators by Simon Haslam This September during Oracle OpenWorld 2013 the weather in San Francisco, as you see can from the photo, was exceptionally sunny. The dramatic final few days of the Americas Cup sailing competition, being held every day in the bay, coincided with the conference and meant that there was almost a holiday feel to the whole event. Here's my annual round-up of what I think was most interesting at OpenWorld 2013 for Fusion Middleware architects and administrators; I hope you find it useful and if you think I've missed something please add a comment! WebLogic and Cloud Application Foundation (CAF) The big WebLogic release of the year has already happened a few months ago with 12.1.2 so I won't duplicate that here. Will Lyons discussed the WebLogic and Coherence roadmap which essentially is that 12.1.3 will probably be released to coincide with SOA 12c next year and that 12.1.4, the next feature-rich WebLogic release, is more likely to be in 2015. This latter release will probably include full Java EE 7 support, have enhancements for multi-tenancy and further auto-scaling features to support increased density (i.e. more WebLogic usage for the same amount of hardware). There's a new Oracle Virtual Assembly Builder (OVAB) out already and an Oracle Traffic Director (OTD) 12c release round the corner too. Also of relevance to administrators is that Oracle has increased the support lifetime for Fusion Middleware 11g (e.g. WebLogic 10.3.6) so that Premier Support will now run to the end of 2018 and Extended Support until 2021 - this should remove any Oracle-driven pressure to upgrade at least. Java Mission Control Java Mission Control (JMC) is the HotSpot Java 7 version of JRockit 6 Mission Control, a very nice performance monitoring tool from Oracle's BEA acquisition. Flight Recorder is a feature built into the JVM which records diagnostic events into, typically, a circular buffer which can then be used for historical analysis, particularly in the case of a JVM crash or hang. It's been available separately for WebLogic only for perhaps a year now but, more significantly, it now includes JVM events and was bundled in with JDK7 Update 40 a few weeks ago. I attended a couple of interesting Java One sessions on JMC/Flight Recorder and have to say it's looking really good - it has all the previous JRMC features except for memory leak detector, plus some enhancements around operative sets and ECID filtering I think. Marcus also showed how you could add your own events into flight recorder by building your own event class - they are then available for graphing alongside all the other events in JMC. This uses a currently an unsupported/undocumented API, but it's also the same one that WebLogic uses for WLDF events so I imagine it is stable. I'm not sure quite whether this would be useful to custom applications, as opposed to infrastructure services or ISV packaged applications, but it was a very nice demonstration. I've been testing JMC / FR enabling on several environments recently and my confidence is growing - it feels robust and I think could very soon be part of my standard builds. Read the full article here. WebLogic Partner Community For regular information become a member in the WebLogic Partner Community please visit: http://www.oracle.com/partners/goto/wls-emea ( OPN account required). If you need support with your account please contact the Oracle Partner Business Center. Blog Twitter LinkedIn Mix Forum Wiki Technorati Tags: OOW,Simon Haslam,Oracle OpenWorld,WebLogic,WebLogic Community,Oracle,OPN,Jürgen Kress

    Read the article

  • Functional programming constructs in non-functional programming languages

    - by Giorgio
    This question has been going through my mind quite a lot lately and since I haven't found a convincing answer to it I would like to know if other users of this site have thought about it as well. In the recent years, even though OOP is still the most popular programming paradigm, functional programming is getting a lot of attention. I have only used OOP languages for my work (C++ and Java) but I am trying to learn some FP in my free time because I find it very interesting. So, I started learning Haskell three years ago and Scala last summer. I plan to learn some SML and Caml as well, and to brush up my (little) knowledge of Scheme. Well, a lot of plans (too ambitious?) but I hope I will find the time to learn at least the basics of FP during the next few years. What is important for me is how functional programming works and how / whether I can use it for some real projects. I have already developed small tools in Haskell. In spite of my strong interest for FP, I find it difficult to understand why functional programming constructs are being added to languages like C#, Java, C++, and so on. As a developer interested in FP, I find it more natural to use, say, Scala or Haskell, instead of waiting for the next FP feature to be added to my favourite non-FP language. In other words, why would I want to have only some FP in my originally non-FP language instead of looking for a language that has a better support for FP? For example, why should I be interested to have lambdas in Java if I can switch to Scala where I have much more FP concepts and access all the Java libraries anyway? Similarly: why do some FP in C# instead of using F# (to my knowledge, C# and F# can work together)? Java was designed to be OO. Fine. I can do OOP in Java (and I would like to keep using Java in that way). Scala was designed to support OOP + FP. Fine: I can use a mix of OOP and FP in Scala. Haskell was designed for FP: I can do FP in Haskell. If I need to tune the performance of a particular module, I can interface Haskell with some external routines in C. But why would I want to do OOP with just some basic FP in Java? So, my main point is: why are non-functional programming languages being extended with some functional concept? Shouldn't it be more comfortable (interesting, exciting, productive) to program in a language that has been designed from the very beginning to be functional or multi-paradigm? Don't different programming paradigms integrate better in a language that was designed for it than in a language in which one paradigm was only added later? The first explanation I could think of is that, since FP is a new concept (it isn't new at all, but it is new for many developers), it needs to be introduced gradually. However, I remember my switch from imperative to OOP: when I started to program in C++ (coming from Pascal and C) I really had to rethink the way in which I was coding, and to do it pretty fast. It was not gradual. So, this does not seem to be a good explanation to me. Also, I asked myself if my impression is just plainly wrong due to lack of knowledge. E.g., do C# and C++11 support FP as extensively as, say, Scala or Caml do? In this case, my question would be simply non-existent. Or can it be that many non-FP programmers are not really interested in using functional programming, but they find it practically convenient to adopt certain FP-idioms in their non-FP language? IMPORTANT NOTE Just in case (because I have seen several language wars on this site): I mentioned the languages I know better, this question is in no way meant to start comparisons between different programming languages to decide which is better / worse. Also, I am not interested in a comparison of OOP versus FP (pros and cons). The point I am interested in is to understand why FP is being introduced one bit at a time into existing languages that were not designed for it even though there exist languages that were / are specifically designed to support FP.

    Read the article

  • Failure Sucks, But Does It Have To?

    - by steve.diamond
    Hey Folks--It's "elephant in the room" time. Imagine a representative from a CRM VENDOR discussing CRM FAILURES. Well. I recently saw this blog post from Michael Krigsman on "six ways CRM projects go wrong." Now, I know this may come off defensive, but my comments apply to ALL CRM vendors, not just Oracle. As I perused the list, I couldn't find any failures related to technology. They all seemed related to people or process. Now, this isn't about finger pointing, or impugning customers. I love customers! And when they fail, WE fail. Although I sit in the cheap seats, i.e., I haven't funded any multi-million dollar CRM initiatives lately, I kept wondering how to convert the perception of failure as something that ends and is never to be mentioned again (see Michael's reason #4), to something that one learns from and builds upon. So to continue my tradition of speaking in platitudes, let me propose the following three tenets: 1) Try and get ahead of your failures while they're very very small. 2) Immediately assess what you can learn from those failures. 3) With more than 15 years of CRM deployments, seek out those vendors that have a track record both in learning from "misses" and in supporting MANY THOUSANDS of CRM successes at companies of all types and sizes. Now let me digress briefly with an unpleasant (for me, anyway) analogy. I really don't like flying. Call it 'fear of dying' or 'fear of no control.' Whatever! I've spoken with quite a few commercial pilots over the years, and they reassure me that there are multiple failures on most every flight. We as passengers just don't know about them. Most of them are too miniscule to make a difference, and most of them are "caught" before they become LARGER failures. It's typically the mid-sized to colossal failures we hear about, and a significant percentage of those are due to human error. What's the point? I'd propose that organizations consider the topic of FAILURE in five grades. On one end, FAILURE Grade 1 is a minor/miniscule failure. On the other end, FAILURE Grade 5 is a colossal failure A Grade 1 CRM FAILURE could be that a particular interim milestone was missed. Why? What can we learn from that? How can we prevent that from happening as we proceed through the project? Individual organizations will need to define their own Grade 2 and Grade 3 failures. The opportunity is to keep those Grade 3 failures from escalating any further. Because honestly, a GRADE 5 failure may not be recoverable. It could result in a project being pulled, countless amounts of hours and dollars lost, and jobs lost. We don't want to go there. In closing, I want to thank Michael for opening my eyes up to the world of "color," versus thinking of failure as both "black and white" and a dead end road that organizations can't learn from and avoid discussing like the plague.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Willy Rotstein on Supply Chain Planning

    - by sarah.taylor(at)oracle.com
    Each time a merchandiser, buyer or planner in Retail makes a business decision around assortment, inventory, pricing and promotions there is an opportunity to improve both Profitability and Customer Service. Improving decision making, however, has always been a tricky business for retailers.  I have worked in this space for more than 15 years. I began my career as an academic, at Imperial College London, and then broadened this interest with Retailers, aiming to optimize their merchandising and supply chain decisions. Planning the business and optimizing profit is a complex process. The complexity arises from the variety of people involved, the large number of decisions to take across all business processes, the uncertainty intrinsic to the retail environment as well as the volume of data available for analysis.  Things are not getting any easier either. The advent of multi-channel, social media and mobile is taking these complexities to a new level and presenting additional opportunities for those willing to exploit them. I guess it is due to the complexities of the decision making process that, over the last couple of years working with Oracle Retail, I have witnessed a clear trend around the deployment of planning systems. Retailers are aiming to simplify their decision making processes. They want to use one joined up planning platform across the business and enhance it with "actionable" data mining and optimization techniques. At Oracle Retail, we have a vibrant community of international retailers who regularly come together to discuss the big issues in retail planning. It is a combination of fashion, grocery and speciality retailers, all sharing their best practice vision for planning and optimizing merchandise decisions. As part of the Retail Exchange program, at the recent National Retail Federation event in New York, I jointly hosted a Planning dinner with Peter Fitzgerald from Google UK, Retail Division. Those retailers from our international planning community who were in New York for the annual NRF event were able to attend. The group comprised some of Europe's great International Retail brands.  All sectors were represented by organisations like Mango, LVMH, Ahold, Morrisons, Shop Direct and River Island. They confirmed the current importance of engaging with Planning and Optimization issues. In particular the impact of the internet was a key topic. We had a great debate about new retail initiatives.  Peter highlighted how mobility is changing retail - in particular with the new "local availability search" initiative. We also had an exciting discussion around the opportunities to improve merchandising using the new data that is becoming available from search, social media and ecommerce sites. It will be our focus to continue to help retailers translate this data into better results while keeping their business operations simple. New developments in "actionable" analytics and computing capacity make this a very exciting area today. Watch this space for my contributions on these topics which will be made available through this blog. Oracle Retail has a strong Planning community. if you are a category manager, a planner, a buyer, a merchandiser, a retail supplier or any retail executive with a keen interest in planning then you would be very welcome to join Oracle Retail's Planning Community. As part of our community you will be able to join our in-person and virtual events, download topical white papers and best practice information specifically tailored to your area of interest.  If anyone would like to register their interest in joining our community of retailers discussing planning then please contact me at [email protected]   Willy Rotstein, Oracle Retail

    Read the article

  • career in Mobile sw/Application Development [closed]

    - by pramod
    i m planning to do a course on Wireless & mobile computing.The syllabus are given below.Please check & let me know whether its worth to do.How is the job prospects after that.I m a fresher & from electronic Engg.The modules are- *Wireless and Mobile Computing (WiMC) – Modules* C, C++ Programming and Data Structures 100 Hours C Revision C, C++ programming tools on linux(Vi editor, gdb etc.) OOP concepts Programming constructs Functions Access Specifiers Classes and Objects Overloading Inheritance Polymorphism Templates Data Structures in C++ Arrays, stacks, Queues, Linked Lists( Singly, Doubly, Circular) Trees, Threaded trees, AVL Trees Graphs, Sorting (bubble, Quick, Heap , Merge) System Development Methodology 18 Hours Software life cycle and various life cycle models Project Management Software: A Process Various Phases in s/w Development Risk Analysis and Management Software Quality Assurance Introduction to Coding Standards Software Project Management Testing Strategies and Tactics Project Management and Introduction to Risk Management Java Programming 110 Hours Data Types, Operators and Language Constructs Classes and Objects, Inner Classes and Inheritance Inheritance Interface and Package Exceptions Threads Java.lang Java.util Java.awt Java.io Java.applet Java.swing XML, XSL, DTD Java n/w programming Introduction to servlet Mobile and Wireless Technologies 30 Hours Basics of Wireless Technologies Cellular Communication: Single cell systems, multi-cell systems, frequency reuse, analog cellular systems, digital cellular systems GSM standard: Mobile Station, BTS, BSC, MSC, SMS sever, call processing and protocols CDMA standard: spread spectrum technologies, 2.5G and 3G Systems: HSCSD, GPRS, W-CDMA/UMTS,3GPP and international roaming, Multimedia services CDMA based cellular mobile communication systems Wireless Personal Area Networks: Bluetooth, IEEE 802.11a/b/g standards Mobile Handset Device Interfacing: Data Cables, IrDA, Bluetooth, Touch- Screen Interfacing Wireless Security, Telemetry Java Wireless Programming and Applications Development(J2ME) 100 Hours J2ME Architecture The CLDC and the KVM Tools and Development Process Classification of CLDC Target Devices CLDC Collections API CLDC Streams Model MIDlets MIDlet Lifecycle MIDP Programming MIDP Event Architecture High-Level Event Handling Low-Level Event Handling The CLDC Streams Model The CLDC Networking Package The MIDP Implementation Introduction to WAP, WML Script and XHTML Introduction to Multimedia Messaging Services (MMS) Symbian Programming 60 Hours Symbian OS basics Symbian OS services Symbian OS organization GUI approaches ROM building Debugging Hardware abstraction Base porting Symbian OS reference design porting File systems Overview of Symbian OS Development – DevKits, CustKits and SDKs CodeWarrior Tool Application & UI Development Client Server Framework ECOM STDLIB in Symbian iPhone Programming 80 Hours Introducing iPhone core specifications Understanding iPhone input and output Designing web pages for the iPhone Capturing iPhone events Introducing the webkit CSS transforms transitions and animations Using iUI for web apps Using Canvas for web apps Building web apps with Dashcode Writing Dashcode programs Debugging iPhone web pages SDK programming for web developers An introduction to object-oriented programming Introducing the iPhone OS Using Xcode and Interface builder Programming with the SDK Toolkit OS Concepts & Linux Programming 60 Hours Operating System Concepts What is an OS? Processes Scheduling & Synchronization Memory management Virtual Memory and Paging Linux Architecture Programming in Linux Linux Shell Programming Writing Device Drivers Configuring and Building GNU Cross-tool chain Configuring and Compiling Linux Virtual File System Porting Linux on Target Hardware WinCE.NET and Database Technology 80 Hours Execution Process in .NET Environment Language Interoperability Assemblies Need of C# Operators Namespaces & Assemblies Arrays Preprocessors Delegates and Events Boxing and Unboxing Regular Expression Collections Multithreading Programming Memory Management Exceptions Handling Win Forms Working with database ASP .NET Server Controls and client-side scripts ASP .NET Web Server Controls Validation Controls Principles of database management Need of RDBMS etc Client/Server Computing RDBMS Technologies Codd’s Rules Data Models Normalization Techniques ER Diagrams Data Flow Diagrams Database recovery & backup SQL Android Application 80 Hours Introduction of android Why develop for android Android SDK features Creating android activities Fundamental android UI design Intents, adapters, dialogs Android Technique for saving data Data base in Androids Maps, Geocoding, Location based services Toast, using alarms, Instant messaging Using blue tooth Using Telephony Introducing sensor manager Managing network and wi-fi connection Advanced androids development Linux kernel security Implement AIDL Interface. Project 120 Hours

    Read the article

  • BizTalk 2009 - Architecture Decisions

    - by StuartBrierley
    In the first step towards implementing a BizTalk 2009 environment, from development through to live, I put forward a proposal that detailed the options available, as well as the costs and benefits associated with these options, to allow an informed discusion to take place with the business drivers and budget holders of the project.  This ultimately lead to a decision being made to implement an initial BizTalk Server 2009 environment using the Standard Edition of the product. It is my hope that in the long term, as projects require it and allow, we will be looking to implement my ideal recommendation of a multi-server enterprise level environment, but given the differences in cost and the likely initial work load for the environment this was not something that I could fully recommend at this time.  However, it must be noted that this decision was made in full awareness of the limits of the standard edition, and the business drivers of this project were made fully aware of the risks associated with running without the failover capabilities of the enterprise edition. When considering the creation of this new BizTalk Server 2009 environment, I have also recommended the creation of the following pre-production environments:   Usage Environment Development Development of solutions; Unit testing against technical specifications; Initial load testing; Testing of deployment packages;  Visual Studio; BizTalk; SQL; Client PCs/Laptops; Server environment similar to Live implementation; Test Testing of Solutions against business and technical requirements;  BizTalk; SQL; Server environment similar to Live implementation; Pseudo-Live As Live environment to allow testing against Live implementation; Acts as back-up hardware in case of failure of Live environment; BizTalk; SQL; Server environment identical to Live implementation; The creation of these differing environments allows for the separation of the various stages of the development cycle.  The development environment is for use when actively developing a solution, it is a potentially volatile environment whose state at any given time can not be guaranteed.  It allows developers to carry out initial tests in an environment that is similar to the live environment and also provides an area for the testing of deployment packages prior to any release to the test environment. The test environment is intended to be a semi-volatile environment that is similar to the live environment.  It will change periodically through the development of a solution (or solutions) but should be otherwise stable.  It allows for the continued testing of a solution against requirements without the worry that the environment is being actively changed by any ongoing development.  This separation of development and test is crucial in ensuring the quality and control of the tested solution. The pseudo-live environment should be considered to be an almost static environment.  It should mimic the live environment and can act as back up hardware in the case of live failure.  This environment acts as an area to allow for “as live” testing, where the performance and behaviour of the live solutions can be replicated.  There should be relatively few changes to this environment, with software releases limited to “release candidate” level releases prior to going live. Whereas the pseudo-live environment should always mimic the live environment, to save on costs the development and test servers could be implemented on lower specification hardware.  Consideration can also be given to the use of a virtual server environment to further reduce hardware costs in the development and test environments, indeed this virtual approach can also be extended to pseudo-live and live assuming the underlying technology is in place. Although there is no requirement for the development and test server environments to be identical to live, the overriding architecture implemented should be the same as in live and an understanding must be gained of the performance differences to be expected across the different environments.

    Read the article

  • SQL SERVER – Another lesser known feature of SQL Server Management Studio 2012 – Guest Post by Balmukund Lakhani

    - by Pinal Dave
    This is a fantastic blog post from my dear friend Balmukund ( blog | twitter | facebook ). He had presented a fantastic session in our last UG and there were lots of requests from attendees that he blogs about it. Well, here is the blog post about the same very popular UG session. Let us read the entire blog post in the voice of the Balmukund himself. In one of my previous guest blog on SQL Authority, I wrote about “Additional Connection Parameter” tab of login screen in SQL Server Management Studio (a.k.a. SSMS). On the similar lines, this blog is going to show little less known new feature of login main screen (“Connect to Server”) of SSMS 2012. You might have seen below screen countless times and you might wonder what is there is blog about in this simple screen. Well, continue reading and you would get the answer. Many times, DBA have to login to production server from non-regular machine, may be a developer’s workstation. Once you login to SQL, do your work and close the management studio. Do you know that your server name is saved in management studio? Of course, very useful feature because you may not like to type server name/IP address every time. Whatever servers you have connected, it would be stored by management studio. But sometime, it’s annoying! What you would do if you want SQL Server Management Studio to forget “all” the servers listed in drop down of Server name? To do that, you need to know how and where it’s stored. You can use one of my favorite tool from sysinternals called Process Monitor (also known as ProcMon) and easily figure out that this is stored in a file under your windows user profile. Below is the file in SQL 2008 R2 Management Studio. %appdata%\Microsoft\Microsoft SQL Server\100\Tools\Shell\SqlStudio.bin For SQL Server 2012, here is what we can see in ProcMon So, the path is %appdata%\Microsoft\Microsoft SQL Server\110\Tools\Shell\SqlStudio.bin So far, you might wonder, where is the new feature? I have been asked by many users to delete entries from SSMS “Connect to Server” server name list. Well, unofficially, you can delete the file directly which we found via ProcMon. Note that delete file to get rid of server list is not officially supported by Microsoft. Better way to achieve this is provided in SSMS 2012. To delete the servers from the list, highlight the name we want to delete (via keyboard or mouse) and then press delete key via keyboard. We can’t be multi-select and has to be done one by one. We can delete as many entries we want. I have delete few from first screenshot taken and here is the modified version. This is not available in SQL 2008 R2 and its previous version. This came from feedback given to SQL Server Product group. Hope you have learned something new today! Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Server Management Studio, SQL Tips and Tricks, T SQL, Technology

    Read the article

  • DirectX works for 64-bit but not 32-bit

    - by dtbarne
    I'm trying to play a game (Civilization 5) which was previously working but no longer. I believe I've narrowed it down to a DirectX issue because I get an error running dxdiag.exe in 32 bit mode. My goal (at least I believe) is to get Direct3D Acceleration "Enabled" in dxdiag (as it is in 64 bit dxdiag). A very similar issue is here: http://answers.microsoft.com/en-us/windows/forum/windows_7-gaming/direct3d-acceleration-is-not-available-in-windows/4c345e6e-dc68-e011-8dfc-68b599b31bf5?page=1 The proposed answer, which looks very promising, doesn't seem to work for me. Like other users in that thread, HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\Microsoft\Direct3D\Drivers does not have a SoftwareOnly key to change. I even tried manually adding it as a string and dword, to no avail. I have a NVIDIA GeForce GT 525M, and before you ask, yes I've tried updating (also uninstalling, reinstalling) my drivers. I've also tried doing the same with DirectX (and Civilization 5 for that matter). Been debugging for some 4+ hours now after a full day of work and I've run out of ideas. I'm hoping somebody knows the solution here! :) Here's what I see when I open dxdiag: DxDiag has detected that there mgiht have been a problem accessing Direct3D the last time this program was used. Would you like to bypass Direct3D this time? No - Crash Yes - Works, but in Display tab: DirectDraw Acceleration: Disabled Direct3D Acceleration: Not Available AGP Texture Acceleration: Not Available If I click "Run 64-bit DxDiag", all three are "Enabled". I should also note that I've tried the following steps as Microsoft suggests, but I'm not able to do so as the "Change Settings" button is disabled. Some programs run very slowly—or not at all—unless Microsoft DirectDraw or Direct3D hardware acceleration is turned on. To determine this, click the Display tab, and then under DirectX Features, check to see whether DirectDraw, Direct3D, and AGP Texture Acceleration appear as Enabled. If not, try turning on hardware acceleration. Click to open Screen Resolution. Click Advanced settings. Click the Troubleshoot tab, and then click Change settings. If you're prompted for an administrator password or confirmation, type the password or provide confirmation. Move the Hardware Acceleration slider to Full. Full dxdiag dump: ------------------ System Information ------------------ Time of this report: 11/8/2012, 23:13:24 Machine name: DTBARNE Operating System: Windows 7 Professional 64-bit (6.1, Build 7601) Service Pack 1 (7601.win7sp1_gdr.120830-0333) Language: English (Regional Setting: English) System Manufacturer: Dell Inc. System Model: Dell System XPS L502X BIOS: Default System BIOS Processor: Intel(R) Core(TM) i5-2450M CPU @ 2.50GHz (4 CPUs), ~2.5GHz Memory: 8192MB RAM Available OS Memory: 8086MB RAM Page File: 2466MB used, 13704MB available Windows Dir: C:\Windows DirectX Version: DirectX 11 DX Setup Parameters: Not found User DPI Setting: Using System DPI System DPI Setting: 96 DPI (100 percent) DWM DPI Scaling: Disabled DxDiag Version: 6.01.7601.17514 32bit Unicode DxDiag Previously: Crashed in Direct3D (stage 2). Re-running DxDiag with "dontskip" command line parameter or choosing not to bypass information gathering when prompted might result in DxDiag successfully obtaining this information ------------ DxDiag Notes ------------ Display Tab 1: No problems found. Sound Tab 1: No problems found. Sound Tab 2: No problems found. Input Tab: No problems found. -------------------- DirectX Debug Levels -------------------- Direct3D: 0/4 (retail) DirectDraw: 0/4 (retail) DirectInput: 0/5 (retail) DirectMusic: 0/5 (retail) DirectPlay: 0/9 (retail) DirectSound: 0/5 (retail) DirectShow: 0/6 (retail) --------------- Display Devices --------------- Card name: Intel(R) HD Graphics 3000 Manufacturer: Chip type: DAC type: Device Key: Enum\PCI\VEN_8086&DEV_0126&SUBSYS_04B61028&REV_09 Display Memory: Dedicated Memory: n/a Shared Memory: n/a Current Mode: 1920 x 1080 (32 bit) (60Hz) Monitor Name: Generic PnP Monitor Monitor Model: Monitor Id: Native Mode: Output Type: Driver Name: Driver File Version: () Driver Version: DDI Version: Driver Model: WDDM 1.1 Driver Attributes: Final Retail Driver Date/Size: , 0 bytes WHQL Logo'd: n/a WHQL Date Stamp: n/a Device Identifier: Vendor ID: Device ID: SubSys ID: Revision ID: Driver Strong Name: oem11.inf:IntelGfx.NTamd64.6.0:iSNBM0:8.15.10.2696:pci\ven_8086&dev_0126&subsys_04b61028 Rank Of Driver: 00E60001 Video Accel: Deinterlace Caps: n/a D3D9 Overlay: DXVA-HD: DDraw Status: Disabled D3D Status: Not Available AGP Status: Not Available ------------- Sound Devices ------------- Description: Speakers (High Definition Audio Device) Default Sound Playback: Yes Default Voice Playback: Yes Hardware ID: HDAUDIO\FUNC_01&VEN_10EC&DEV_0665&SUBSYS_102804B6&REV_1000 Manufacturer ID: 1 Product ID: 65535 Type: WDM Driver Name: HdAudio.sys Driver Version: 6.01.7601.17514 (English) Driver Attributes: Final Retail WHQL Logo'd: Yes Date and Size: 11/20/2010 22:23:47, 350208 bytes Other Files: Driver Provider: Microsoft HW Accel Level: Basic Cap Flags: 0xF1F Min/Max Sample Rate: 100, 200000 Static/Strm HW Mix Bufs: 1, 0 Static/Strm HW 3D Bufs: 0, 0 HW Memory: 0 Voice Management: No EAX(tm) 2.0 Listen/Src: No, No I3DL2(tm) Listen/Src: No, No Sensaura(tm) ZoomFX(tm): No Description: Digital Audio (S/PDIF) (High Definition Audio Device) Default Sound Playback: No Default Voice Playback: No Hardware ID: HDAUDIO\FUNC_01&VEN_10EC&DEV_0665&SUBSYS_102804B6&REV_1000 Manufacturer ID: 1 Product ID: 65535 Type: WDM Driver Name: HdAudio.sys Driver Version: 6.01.7601.17514 (English) Driver Attributes: Final Retail WHQL Logo'd: Yes Date and Size: 11/20/2010 22:23:47, 350208 bytes Other Files: Driver Provider: Microsoft HW Accel Level: Basic Cap Flags: 0xF1F Min/Max Sample Rate: 100, 200000 Static/Strm HW Mix Bufs: 1, 0 Static/Strm HW 3D Bufs: 0, 0 HW Memory: 0 Voice Management: No EAX(tm) 2.0 Listen/Src: No, No I3DL2(tm) Listen/Src: No, No Sensaura(tm) ZoomFX(tm): No --------------------- Sound Capture Devices --------------------- Description: Microphone (High Definition Audio Device) Default Sound Capture: Yes Default Voice Capture: Yes Driver Name: HdAudio.sys Driver Version: 6.01.7601.17514 (English) Driver Attributes: Final Retail Date and Size: 11/20/2010 22:23:47, 350208 bytes Cap Flags: 0x1 Format Flags: 0xFFFFF ------------------- DirectInput Devices ------------------- Device Name: Mouse Attached: 1 Controller ID: n/a Vendor/Product ID: n/a FF Driver: n/a Device Name: Keyboard Attached: 1 Controller ID: n/a Vendor/Product ID: n/a FF Driver: n/a Poll w/ Interrupt: No ----------- USB Devices ----------- + USB Root Hub | Vendor/Product ID: 0x8086, 0x1C26 | Matching Device ID: usb\root_hub20 | Service: usbhub | +-+ Generic USB Hub | | Vendor/Product ID: 0x8087, 0x0024 | | Location: Port_#0001.Hub_#0002 | | Matching Device ID: usb\class_09 | | Service: usbhub ---------------- Gameport Devices ---------------- ------------ PS/2 Devices ------------ + Standard PS/2 Keyboard | Matching Device ID: *pnp0303 | Service: i8042prt | + Terminal Server Keyboard Driver | Matching Device ID: root\rdp_kbd | Upper Filters: kbdclass | Service: TermDD | + Synaptics PS/2 Port TouchPad | Matching Device ID: *dll04b6 | Upper Filters: SynTP | Service: i8042prt | + Terminal Server Mouse Driver | Matching Device ID: root\rdp_mou | Upper Filters: mouclass | Service: TermDD ------------------------ Disk & DVD/CD-ROM Drives ------------------------ Drive: C: Free Space: 26.2 GB Total Space: 122.0 GB File System: NTFS Model: M4-CT128M4SSD2 ATA Device Drive: D: Model: Optiarc DVDRWBD BC-5540H ATA Device Driver: c:\windows\system32\drivers\cdrom.sys, 6.01.7601.17514 (English), , 0 bytes -------------- System Devices -------------- Name: High Definition Audio Controller Device ID: PCI\VEN_8086&DEV_1C20&SUBSYS_04B61028&REV_05\3&11583659&0&D8 Driver: n/a Name: PCI standard host CPU bridge Device ID: PCI\VEN_8086&DEV_0104&SUBSYS_04B61028&REV_09\3&11583659&0&00 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C1A&SUBSYS_04B61028&REV_B5\3&11583659&0&E5 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_0101&SUBSYS_20108086&REV_09\3&11583659&0&08 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C18&SUBSYS_04B61028&REV_B5\3&11583659&0&E4 Driver: n/a Name: Intel(R) Centrino(R) Advanced-N 6230 Device ID: PCI\VEN_8086&DEV_0091&SUBSYS_52218086&REV_34\4&2634DE8D&0&00E1 Driver: n/a Name: PCI standard ISA bridge Device ID: PCI\VEN_8086&DEV_1C4B&SUBSYS_04B61028&REV_05\3&11583659&0&F8 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C16&SUBSYS_04B61028&REV_B5\3&11583659&0&E3 Driver: n/a Name: Realtek PCIe GBE Family Controller Device ID: PCI\VEN_10EC&DEV_8168&SUBSYS_04B61028&REV_06\4&109EAB2F&0&00E5 Driver: n/a Name: Intel(R) Management Engine Interface Device ID: PCI\VEN_8086&DEV_1C3A&SUBSYS_04B61028&REV_04\3&11583659&0&B0 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C12&SUBSYS_04B61028&REV_B5\3&11583659&0&E1 Driver: n/a Name: NVIDIA GeForce GT 525M Device ID: PCI\VEN_10DE&DEV_0DF5&SUBSYS_04B61028&REV_A1\4&4DCA75F&0&0008 Driver: n/a Name: Standard Enhanced PCI to USB Host Controller Device ID: PCI\VEN_8086&DEV_1C2D&SUBSYS_04B61028&REV_05\3&11583659&0&D0 Driver: n/a Name: PCI standard PCI-to-PCI bridge Device ID: PCI\VEN_8086&DEV_1C10&SUBSYS_04B61028&REV_B5\3&11583659&0&E0 Driver: n/a Name: Standard Enhanced PCI to USB Host Controller Device ID: PCI\VEN_8086&DEV_1C26&SUBSYS_04B61028&REV_05\3&11583659&0&E8 Driver: n/a Name: Standard AHCI 1.0 Serial ATA Controller Device ID: PCI\VEN_8086&DEV_1C03&SUBSYS_04B61028&REV_05\3&11583659&0&FA Driver: n/a Name: SM Bus Controller Device ID: PCI\VEN_8086&DEV_1C22&SUBSYS_04B61028&REV_05\3&11583659&0&FB Driver: n/a Name: Intel(R) HD Graphics 3000 Device ID: PCI\VEN_8086&DEV_0126&SUBSYS_04B61028&REV_09\3&11583659&0&10 Driver: n/a Name: Renesas Electronics USB 3.0 Host Controller Device ID: PCI\VEN_1033&DEV_0194&SUBSYS_04B61028&REV_04\4&3494AC3A&0&00E3 Driver: n/a ------------------ DirectShow Filters ------------------ DirectShow Filters: WMAudio Decoder DMO,0x00800800,1,1,WMADMOD.DLL,6.01.7601.17514 WMAPro over S/PDIF DMO,0x00600800,1,1,WMADMOD.DLL,6.01.7601.17514 WMSpeech Decoder DMO,0x00600800,1,1,WMSPDMOD.DLL,6.01.7601.17514 MP3 Decoder DMO,0x00600800,1,1,mp3dmod.dll,6.01.7600.16385 Mpeg4s Decoder DMO,0x00800001,1,1,mp4sdecd.dll,6.01.7600.16385 WMV Screen decoder DMO,0x00600800,1,1,wmvsdecd.dll,6.01.7601.17514 WMVideo Decoder DMO,0x00800001,1,1,wmvdecod.dll,6.01.7601.17514 Mpeg43 Decoder DMO,0x00800001,1,1,mp43decd.dll,6.01.7600.16385 Mpeg4 Decoder DMO,0x00800001,1,1,mpg4decd.dll,6.01.7600.16385 DV Muxer,0x00400000,0,0,qdv.dll,6.06.7601.17514 Color Space Converter,0x00400001,1,1,quartz.dll,6.06.7601.17713 WM ASF Reader,0x00400000,0,0,qasf.dll,12.00.7601.17514 Screen Capture filter,0x00200000,0,1,wmpsrcwp.dll,12.00.7601.17514 AVI Splitter,0x00600000,1,1,quartz.dll,6.06.7601.17713 VGA 16 Color Ditherer,0x00400000,1,1,quartz.dll,6.06.7601.17713 SBE2MediaTypeProfile,0x00200000,0,0,sbe.dll,6.06.7601.17528 Microsoft DTV-DVD Video Decoder,0x005fffff,2,4,msmpeg2vdec.dll,6.01.7140.0000 AC3 Parser Filter,0x00600000,1,1,mpg2splt.ax,6.06.7601.17528 StreamBufferSink,0x00200000,0,0,sbe.dll,6.06.7601.17528 MJPEG Decompressor,0x00600000,1,1,quartz.dll,6.06.7601.17713 MPEG-I Stream Splitter,0x00600000,1,2,quartz.dll,6.06.7601.17713 SAMI (CC) Parser,0x00400000,1,1,quartz.dll,6.06.7601.17713 VBI Codec,0x00600000,1,4,VBICodec.ax,6.06.7601.17514 MPEG-2 Splitter,0x005fffff,1,0,mpg2splt.ax,6.06.7601.17528 Closed Captions Analysis Filter,0x00200000,2,5,cca.dll,6.06.7601.17514 SBE2FileScan,0x00200000,0,0,sbe.dll,6.06.7601.17528 Microsoft MPEG-2 Video Encoder,0x00200000,1,1,msmpeg2enc.dll,6.01.7601.17514 Internal Script Command Renderer,0x00800001,1,0,quartz.dll,6.06.7601.17713 MPEG Audio Decoder,0x03680001,1,1,quartz.dll,6.06.7601.17713 DV Splitter,0x00600000,1,2,qdv.dll,6.06.7601.17514 Video Mixing Renderer 9,0x00200000,1,0,quartz.dll,6.06.7601.17713 Microsoft MPEG-2 Encoder,0x00200000,2,1,msmpeg2enc.dll,6.01.7601.17514 ACM Wrapper,0x00600000,1,1,quartz.dll,6.06.7601.17713 Video Renderer,0x00800001,1,0,quartz.dll,6.06.7601.17713 MPEG-2 Video Stream Analyzer,0x00200000,0,0,sbe.dll,6.06.7601.17528 Line 21 Decoder,0x00600000,1,1,qdvd.dll,6.06.7601.17835 Video Port Manager,0x00600000,2,1,quartz.dll,6.06.7601.17713 Video Renderer,0x00400000,1,0,quartz.dll,6.06.7601.17713 VPS Decoder,0x00200000,0,0,WSTPager.ax,6.06.7601.17514 WM ASF Writer,0x00400000,0,0,qasf.dll,12.00.7601.17514 VBI Surface Allocator,0x00600000,1,1,vbisurf.ax,6.01.7601.17514 File writer,0x00200000,1,0,qcap.dll,6.06.7601.17514 iTV Data Sink,0x00600000,1,0,itvdata.dll,6.06.7601.17514 iTV Data Capture filter,0x00600000,1,1,itvdata.dll,6.06.7601.17514 DVD Navigator,0x00200000,0,3,qdvd.dll,6.06.7601.17835 Overlay Mixer2,0x00200000,1,1,qdvd.dll,6.06.7601.17835 AVI Draw,0x00600064,9,1,quartz.dll,6.06.7601.17713 RDP DShow Redirection Filter,0xffffffff,1,0,DShowRdpFilter.dll, Microsoft MPEG-2 Audio Encoder,0x00200000,1,1,msmpeg2enc.dll,6.01.7601.17514 WST Pager,0x00200000,1,1,WSTPager.ax,6.06.7601.17514 MPEG-2 Demultiplexer,0x00600000,1,1,mpg2splt.ax,6.06.7601.17528 DV Video Decoder,0x00800000,1,1,qdv.dll,6.06.7601.17514 SampleGrabber,0x00200000,1,1,qedit.dll,6.06.7601.17514 Null Renderer,0x00200000,1,0,qedit.dll,6.06.7601.17514 MPEG-2 Sections and Tables,0x005fffff,1,0,Mpeg2Data.ax,6.06.7601.17514 Microsoft AC3 Encoder,0x00200000,1,1,msac3enc.dll,6.01.7601.17514 StreamBufferSource,0x00200000,0,0,sbe.dll,6.06.7601.17528 Smart Tee,0x00200000,1,2,qcap.dll,6.06.7601.17514 Overlay Mixer,0x00200000,0,0,qdvd.dll,6.06.7601.17835 AVI Decompressor,0x00600000,1,1,quartz.dll,6.06.7601.17713 AVI/WAV File Source,0x00400000,0,2,quartz.dll,6.06.7601.17713 Wave Parser,0x00400000,1,1,quartz.dll,6.06.7601.17713 MIDI Parser,0x00400000,1,1,quartz.dll,6.06.7601.17713 Multi-file Parser,0x00400000,1,1,quartz.dll,6.06.7601.17713 File stream renderer,0x00400000,1,1,quartz.dll,6.06.7601.17713 Microsoft DTV-DVD Audio Decoder,0x005fffff,1,1,msmpeg2adec.dll,6.01.7140.0000 StreamBufferSink2,0x00200000,0,0,sbe.dll,6.06.7601.17528 AVI Mux,0x00200000,1,0,qcap.dll,6.06.7601.17514 Line 21 Decoder 2,0x00600002,1,1,quartz.dll,6.06.7601.17713 File Source (Async.),0x00400000,0,1,quartz.dll,6.06.7601.17713 File Source (URL),0x00400000,0,1,quartz.dll,6.06.7601.17713 Infinite Pin Tee Filter,0x00200000,1,1,qcap.dll,6.06.7601.17514 Enhanced Video Renderer,0x00200000,1,0,evr.dll,6.01.7601.17514 BDA MPEG2 Transport Information Filter,0x00200000,2,0,psisrndr.ax,6.06.7601.17669 MPEG Video Decoder,0x40000001,1,1,quartz.dll,6.06.7601.17713 WDM Streaming Tee/Splitter Devices: Tee/Sink-to-Sink Converter,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 Video Compressors: WMVideo8 Encoder DMO,0x00600800,1,1,wmvxencd.dll,6.01.7600.16385 WMVideo9 Encoder DMO,0x00600800,1,1,wmvencod.dll,6.01.7600.16385 MSScreen 9 encoder DMO,0x00600800,1,1,wmvsencd.dll,6.01.7600.16385 DV Video Encoder,0x00200000,0,0,qdv.dll,6.06.7601.17514 MJPEG Compressor,0x00200000,0,0,quartz.dll,6.06.7601.17713 Cinepak Codec by Radius,0x00200000,1,1,qcap.dll,6.06.7601.17514 Intel IYUV codec,0x00200000,1,1,qcap.dll,6.06.7601.17514 Intel IYUV codec,0x00200000,1,1,qcap.dll,6.06.7601.17514 Microsoft RLE,0x00200000,1,1,qcap.dll,6.06.7601.17514 Microsoft Video 1,0x00200000,1,1,qcap.dll,6.06.7601.17514 Audio Compressors: WM Speech Encoder DMO,0x00600800,1,1,WMSPDMOE.DLL,6.01.7600.16385 WMAudio Encoder DMO,0x00600800,1,1,WMADMOE.DLL,6.01.7600.16385 IMA ADPCM,0x00200000,1,1,quartz.dll,6.06.7601.17713 PCM,0x00200000,1,1,quartz.dll,6.06.7601.17713 Microsoft ADPCM,0x00200000,1,1,quartz.dll,6.06.7601.17713 GSM 6.10,0x00200000,1,1,quartz.dll,6.06.7601.17713 CCITT A-Law,0x00200000,1,1,quartz.dll,6.06.7601.17713 CCITT u-Law,0x00200000,1,1,quartz.dll,6.06.7601.17713 MPEG Layer-3,0x00200000,1,1,quartz.dll,6.06.7601.17713 Audio Capture Sources: Microphone (High Definition Aud,0x00200000,0,0,qcap.dll,6.06.7601.17514 PBDA CP Filters: PBDA DTFilter,0x00600000,1,1,CPFilters.dll,6.06.7601.17528 PBDA ETFilter,0x00200000,0,0,CPFilters.dll,6.06.7601.17528 PBDA PTFilter,0x00200000,0,0,CPFilters.dll,6.06.7601.17528 Midi Renderers: Default MidiOut Device,0x00800000,1,0,quartz.dll,6.06.7601.17713 Microsoft GS Wavetable Synth,0x00200000,1,0,quartz.dll,6.06.7601.17713 WDM Streaming Capture Devices: HD Audio Microphone 2,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 Integrated Webcam,0x00200000,1,2,ksproxy.ax,6.01.7601.17514 WDM Streaming Rendering Devices: HD Audio Headphone/Speakers,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 HD Audio SPDIF out,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 BDA Network Providers: Microsoft ATSC Network Provider,0x00200000,0,1,MSDvbNP.ax,6.06.7601.17514 Microsoft DVBC Network Provider,0x00200000,0,1,MSDvbNP.ax,6.06.7601.17514 Microsoft DVBS Network Provider,0x00200000,0,1,MSDvbNP.ax,6.06.7601.17514 Microsoft DVBT Network Provider,0x00200000,0,1,MSDvbNP.ax,6.06.7601.17514 Microsoft Network Provider,0x00200000,0,1,MSNP.ax,6.06.7601.17514 Video Capture Sources: Integrated Webcam,0x00200000,1,2,ksproxy.ax,6.01.7601.17514 Multi-Instance Capable VBI Codecs: VBI Codec,0x00600000,1,4,VBICodec.ax,6.06.7601.17514 BDA Transport Information Renderers: BDA MPEG2 Transport Information Filter,0x00600000,2,0,psisrndr.ax,6.06.7601.17669 MPEG-2 Sections and Tables,0x00600000,1,0,Mpeg2Data.ax,6.06.7601.17514 BDA CP/CA Filters: Decrypt/Tag,0x00600000,1,1,EncDec.dll,6.06.7601.17708 Encrypt/Tag,0x00200000,0,0,EncDec.dll,6.06.7601.17708 PTFilter,0x00200000,0,0,EncDec.dll,6.06.7601.17708 XDS Codec,0x00200000,0,0,EncDec.dll,6.06.7601.17708 WDM Streaming Communication Transforms: Tee/Sink-to-Sink Converter,0x00200000,1,1,ksproxy.ax,6.01.7601.17514 Audio Renderers: Speakers (High Definition Audio,0x00200000,1,0,quartz.dll,6.06.7601.17713 Default DirectSound Device,0x00800000,1,0,quartz.dll,6.06.7601.17713 Default WaveOut Device,0x00200000,1,0,quartz.dll,6.06.7601.17713 Digital Audio (S/PDIF) (High De,0x00200000,1,0,quartz.dll,6.06.7601.17713 DirectSound: Digital Audio (S/PDIF) (High Definition Audio Device),0x00200000,1,0,quartz.dll,6.06.7601.17713 DirectSound: Speakers (High Definition Audio Device),0x00200000,1,0,quartz.dll,6.06.7601.17713 --------------- EVR Power Information --------------- Current Setting: {651288E5-A7ED-4076-A96B-6CC62D848FE1} (Balanced) Quality Flags: 2576 Enabled: Force throttling Allow half deinterlace Allow scaling Decode Power Usage: 100 Balanced Flags: 1424 Enabled: Force throttling Allow batching Force half deinterlace Force scaling Decode Power Usage: 50 PowerFlags: 1424 Enabled: Force throttling Allow batching Force half deinterlace Force scaling Decode Power Usage: 0

    Read the article

  • Get to Know a Candidate (16 of 25): Stewart Alexander&ndash;Socialist Party USA

    - by Brian Lanham
    DISCLAIMER: This is not a post about “Romney” or “Obama”. This is not a post for whom I am voting. Information sourced for Wikipedia. Alexander is an American democratic socialist politician and a resident of California. Alexander was the Peace and Freedom Party candidate for Lieutenant Governor in 2006. He received 43,319 votes, 0.5% of the total. In August 2010, Alexander declared his candidacy for the President of the United States with the Socialist Party and Green Party. In January 2011, Alexander also declared his candidacy for the presidential nomination of the Peace and Freedom Party. Stewart Alexis Alexander was born to Stewart Alexander, a brick mason and minister, and Ann E. McClenney, a nurse and housewife.  While in the Air Force Reserve, Alexander worked as a full-time retail clerk at Safeway Stores and then began attending college at California State University, Dominguez Hills. Stewart began working overtime as a stocking clerk with Safeway to support himself through school. During this period he married to Freda Alexander, his first wife. They had one son. He was honorably discharged in October 1976 and married for the second time. He left Safeway in 1978 and for a brief period worked as a licensed general contractor. In 1980, he went to work for Lockheed Aircraft but quit the following year.  Returning to Los Angeles, he became involved in several civic organizations, including most notably the NAACP (he became the Labor and Industry Chairman for the Inglewood South Bay Branch of the NAACP). In 1986 he moved back to Los Angeles and hosted a weekly talk show on KTYM Radio until 1989. The show dealt with social issues affecting Los Angeles such as gangs, drugs, and redevelopment, interviewing government officials from all levels of government and community leaders throughout California. He also worked with Delores Daniels of the NAACP on the radio and in the street. The Socialist Party USA (SPUSA) is a multi-tendency democratic-socialist party in the United States. The party states that it is the rightful continuation and successor to the tradition of the Socialist Party of America, which had lasted from 1901 to 1972. The party is officially committed to left-wing democratic socialism. The Socialist Party USA, along with its predecessors, has received varying degrees of support, when its candidates have competed against those from the Republican and Democratic parties. Some attribute this to the party having to compete with the financial dominance of the two major parties, as well as the limitations of the United States' legislatively and judicially entrenched two-party system. The Party supports third-party candidates, particularly socialists, and opposes the candidates of the two major parties. Opposing both capitalism and "authoritarian Communism", the Party advocates bringing big business under public ownership and democratic workers' self-management. The party opposes unaccountable bureaucratic control of Soviet communism. Alexander has Ballot Access in: CO, FL, NY, OH (write-in access in: IN, TX) Learn more about Stewart Alexander and Socialist Party USA on Wikipedia.

    Read the article

  • Oracle Announces Oracle Insurance Policy Administration for Life and Annuity 9.4

    - by helen.pitts(at)oracle.com
    Normal 0 false false false EN-US X-NONE X-NONE /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin-top:0in; mso-para-margin-right:0in; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0in; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} Today's global insurers require the ability to provide higher levels of service and quickly bring to market life insurance and annuity products that not only help them stand out from the competition, but also stay current with local legislation. To succeed, they require agile and flexible core systems that enable them to meet the unique localization requirements of the markets in which they operate, whether in North America, Asia Pacific or the Pan-European Region. The release of Oracle Insurance Policy Administration for Life and Annuity 9.4, announced today, helps insurers meet this need with expanded international market capabilities that enable them to reduce risk and profitably compete wherever their business takes them. It offers expanded multi-language along with unit-linked product and fund processing capabilities that enable regional and global insurers to rapidly configure and deliver localized products – along with providing better service for end users through a single policy admin solution. Key enhancements include: Kanji/Kana language support, pre-defined content, and imperial date processing for the Japanese market New localization flexibility for configuring and managing international mailing addresses along with regional variations for client information Enhanced capability to calculate unit-linked pricing and valuation, in addition to market-based processing and pre-configured unit linked content Expanded role-based security and masking capability to further protect sensitive customer data Enhanced capability to restrict processing specified activities based on time of day and user role, reducing exposure to market timing risks Further capability to eliminate duplicate client records, helping to reduce underwriting risks and enhance servicing through a single view of the client "The ability to leverage a single, rules-driven policy administration system for multiple global operation centers can help insurers realize significant improvements in speed to market, customer service, compliance with regional regulations, and consolidation efforts,” noted Celent's Craig Weber, senior vice president, Insurance. “We believe such initiatives are necessary to help the industry address service and distribution imperatives." Helping our customers meet these mission-critical business imperatives is a key objective for Oracle Insurance. Active, ongoing dialogue with our customers is an important part of the process to help understand how our solutions are and can continue to help them achieve success in the marketplace. I had the opportunity to meet with several of our insurance customers at the Oracle Insurance Policy Administration Client Advisory Board meeting last week in Philadelphia, Penn. (View photos on the Oracle Insurance Facebook page.)   It was a great forum for Oracle Insurance and our clients. Discussion centered on the latest business and IT trends, with opportunities to learn more about the latest release of Oracle Insurance Policy Administration for Life and Annuity and other Oracle Insurance solutions such as data warehousing / business intelligence, while exchanging best practices for product innovation and servicing customers and sales channels. Helen Pitts is senior product marketing manager for Oracle Insurance's life and annuities solutions.

    Read the article

  • SQL SERVER – Speed Up! – Parallel Processes and Unparalleled Performance – TechEd 2012 India

    - by pinaldave
    TechEd India 2012 is just around the corner and I will be presenting there on two different session. SQL Server Performance Tuning is a very challenging subject that requires expertise in Database Administration and Database Development. I always have enjoyed talking about SQL Server Performance tuning subject. Just like doctors I like to call my every attempt to improve the performance of SQL Server queries and database server as a practice too. I have been working with SQL Server for more than 8 years and I believe that many of the performance tuning concept I have mastered. However, performance tuning is not a simple subject. However there are occasions when I feel stumped, there are occasional when I am not sure what should be the next step. When I face situation where I cannot figure things out easily, it makes me most happy because I clearly see this as a learning opportunity. I have been presenting in TechEd India for last three years. This is my fourth time opportunity to present a technical session on SQL Server. Just like every other year, I decided to present something different, something which I have spend years of learning. This time, I am going to present about parallel processes. It is widely believed that more the CPU will improve performance of the server. It is true in many cases. However, there are cases when limiting the CPU usages have improved overall health of the server. I will be presenting on the subject of Parallel Processes and its effects. I have spent more than a year working on this subject only. After working on various queries on multi-CPU systems I have personally learned few things. In coming TechEd session, I am going to share my experience with parallel processes and performance tuning. Session Details Title: Speed Up! – Parallel Processes and Unparalleled Performance (Add to Calendar) Abstract: “More CPU More Performance” – A  very common understanding is that usage of multiple CPUs can improve the performance of the query. To get maximum performance out of any query – one has to master various aspects of the parallel processes. In this deep dive session, we will explore this complex subject with a very simple interactive demo. An attendee will walk away with proper understanding of CX_PACKET wait types, MAXDOP, parallelism threshold and various other concepts. Date and Time: March 23, 2012, 12:15 to 13:15 Location: Hotel Lalit Ashok - Kumara Krupa High Grounds, Bengaluru – 560001, Karnataka, India. Add to Calendar Please submit your questions in the comments area and I will be for sure discussing them during my session. If I pick your question to discuss during my session, here is your gift I commit right now – SQL Server Interview Questions and Answers Book. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: PostADay, SQL, SQL Authority, SQL Performance, SQL Query, SQL Server, SQL Tips and Tricks, SQL Wait Stats, SQL Wait Types, T SQL, Technology Tagged: TechEd, TechEdIn

    Read the article

  • Vitality of Product Information Management Showcased at OpenWorld 2012

    - by Mala Narasimharajan
     By Sachin Patel Can you hear the countdown clock ticking!! OpenWorld 2012 is almost here and as I write this Oracle is buzzing with fresh new ideas and solutions that will be showcased this year. What an exciting time for all of us to be in midst of a digital revolution. Whether it is Apple fans clamoring to find every new feature that has been added to the iPhone 5 or a startup launching a new digital thermostat (has anyone looked at the new one from Nest ), product information is a vital for companies to grow and compete in this cut-throat market. Customer today struggle to aggregate and enrich this product data from the myriad of systems they have in place to run their businesses and operations. Having a product information strategy is paramount to align your sales channels and operations with the most accurate and upto date product data. We have a number of sessions this year at OpenWorld where you can gain more insight into how Oracle’s next generation of Fusion Applications, in this case Fusion Product Hub can provide you with a solution to streamline and get control of your Product Master Data. Enabling Trusted Enterprise Product Data with Oracle Fusion Product HubTuesday, October 2nd 11:45 am, Moscone West 2022 Join me Sachin Patel, Director of Product Strategy and Milan Bhatia, VP of Development as we discuss how you can enable trusted product master data in your enterprise. In this session we plan to cover the challenges companies face today in mastering product data. The discussion will also include how Fusion Product Hub brings new and innovative features to empower your product data owners to create a holistic and rich product definition that can be leveraged across your enterprise. We will also be joined by Pawel Fidelus from Fideltronik an Early Adopter for Fusion Product Hub who will showcase their plans to implement Fusion Product Hub and the value it will bring to Fideltronik Multichannel Fulfillment Excellence in Direct-to-Consumer Market Thursday, October 4th, 12:45 am, Moscone West 2024 Do you have multiple order capture systems? Do you have difficulty in fulfilling orders for your customers across various channels and suppliers? Mark Carson, Director, Fusion DOO and Brad Kerr, Director, AGSS will be showcasing the Fusion Distributed Order Orchestration solution and how companies can orchestrate orders from multiple order capture systems and route them to the appropriate fulfillment system. Sachin Patel, Director Product Strategy for Product MDM will highlight the business pain points in consolidating and commercializing data from a Multi Channel Commerce point of view and how Fusion Product Hub helps in allowing you to provide a single source of truth to drive a singular and rich customer experience. Oracle Fusion Supply Chain Management: Customer Adoption and Experiences                                                Wednesday, October 3rd 10:15 am, Moscone West 2003 This is a great session to attend to learn about how Fusion Supply Chain Management and Fusion Product Hub Early Adopters, including Boeing and Fideltronik are leveraging Fusion Applications to improve their Supply Chain operations. Have a great OpenWorld and see you soon!!

    Read the article

  • It was worth the wait… Welcome Oracle GoldenGate 11g Release 2

    - by Irem Radzik
    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VML);} .shape {behavior:url(#default#VML);} Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} It certainly was worth the wait to meet Oracle GoldenGate 11gR2, because it is full of new features on multiple fronts. In fact, this release has the longest and strongest list of new features in Oracle GoldenGate’s history. The new release brings GoldenGate closer to the Oracle Database while expanding the support for global implementations and heterogeneous systems. It is more secure, more flexible, and faster. We announced the availability of Oracle GoldenGate 11gR2 via a press release. If you haven’t seen it yet, please check it out. As covered in this announcement, there are a variety of improvements in the product: Integrated Capture for Oracle Database: brings Oracle GoldenGate’s Capture process closer to the Oracle Database engine and enables support for Advanced Compression among other benefits. Enhanced Conflict Detection & Resolution, speeds and simplifies the conflict detection and resolution process for Active-Active deployments. Globalization, meaning Oracle GoldenGate can be deployed for databases that use multi-byte/Unicode character sets. Security and Performance Improvements, includes support Federal Information Protection Standard (FIPS). Increased Extensibility by kicking off actions based on an event record in the transaction log or in the Trail file. Integration with Oracle Enterprise Manager 12c , in addition to the Oracle GoldenGate Monitor product. Expanded Heterogeneity, including capture from IBM DB2 for i on iSeries (AS/400) and delivery to Postgres We will explain these new features in more detail at our upcoming launch webcast: Harness the Power of the New Release of Oracle GoldenGate 11g- (Sept 12 8am/10am PT) In addition to learning more about these new features, the webcast will allow you to ask your questions to product management via live Q&A section. So, I hope you will not miss this opportunity to explore the new release of Oracle GoldenGate 11g and see how it can deliver enterprise-class real-time data integration solutions.. I look forward to a great webcast to unveil GoldenGate’s new capabilities.

    Read the article

  • E-Business Suite Plug-in 12.1.0.1 for Enterprise Manager 12c Now Available

    - by Steven Chan (Oracle Development)
    Oracle E-Business Suite Plug-in 12.1.0.1.0 is now available for use with Oracle Enterprise Manager 12c.  Oracle E-Business Suite Plug-in 12.1.0.1 is an integral part of Oracle Enterprise Manager 12 Application Management Suite for Oracle E-Business Suite. This latest plug-in extends EM 12c Cloud Control with E-Business Suite specific system management capabilities and features enhanced change management support. The Oracle Enterprise Manager 12c Application Management Suite for Oracle E-Business Suite includes: Oracle E-Business Suite Plug-in 12.1.0.1 combines functionality that was available in the previously-standalone Application Management Pack for Oracle E-Business Suite and Application Change Management Pack for Oracle E-Business Suite with Oracle Real User Experience Insight Oracle Configuration & Compliance capabilities  Features that were previously available in the standalone management packs are now packaged in the Oracle E-Business Suite Plug-in, which is certified with Oracle Enterprise Manager 12c Cloud Control:  Functionality previously available for Application Management Pack (AMP) is now classified as “System Management for Oracle E-Business Suite” within the plug-in. Functionality previously available for Application Change Management Pack (ACMP) is now classified as “Change Management for Oracle E-Business Suite” within the plug-in. The Application Configuration Console and the Configuration Change Console are now native components of Oracle Enterprise Manager 12c. System Management Enhancements General Oracle Enterprise Manager 12c Base Platform uptake: All components of the management suite are certified with Oracle Enterprise Manager 12c Cloud Control. Security Privilege Delegation: The Oracle E-Business Suite Plug-in now extends Enterprise Manager’s privilege delegation through Sudo and PowerBroker to Oracle E-Business Suite Plug-in host targets. Privileges and Roles for Managing Oracle E-Business Suite: This release includes new ready-to-use target and resource privileges to monitor, manage, and perform Change Management functionality. Cloning Named Credentials Uptake in Cloning: The Clone module transactions now let users leverage the Named Credential feature introduced in Enterprise Manager 12c, thereby passing all the benefits of Named Credentials features in Enterprise Manager to the Oracle E-Business Suite Plug-in users. Smart Clone improvements: In addition to the existing 11i support that was available on previous releases, the new Oracle E-Business Suite Plug-in widens the coverage supporting Oracle E-Business Suite releases 12.0.x and 12.1.x. The new and improved Smart Clone UI supports the adding of "pre and post" custom steps to a copy of the ready-to-use cloning deployment procedure. Now a user can pass parameters to the custom steps through the interview screen of the UI as well as pass ready-to-use parameters to the custom steps. Additional configuration enhancements are included for configuring RAC targets databases, such as the ability to customize listener names and the option to configure with Virtual IP or Scan IP. Change Management Enhancements Customization Manager Support for longer file names: Customization Manager now handles file names up to thirty characters in length. Patch Manager Queuing of Patch Manager Runs: This feature allows patch runs to queue up if Patch Manager detects a specific target is in a blackout state. Multi-node system patching: The patch run interview has been enhanced to allow Enterprise Manager Administrator to choose which nodes adpatch will run on. New AD Administration Options: The patch run interview has been extended to include AD Administration Options "Relink Application Programs", "Generate Product Jars Files", "Generate Report Files", and "Generate Form Files". Downloads Fresh install For new customers or existing customers wishing to perform a fresh install Enterprise Manager Store (within Enterprise Manager 12c) Oracle Software Delivery Cloud Upgrades For existing customers wishing to upgrade their AMP 4.0 or AMP 3.1 installations Oracle Technology Network Getting Started with Oracle E-Business Suite Plug-In, Release 12.1.0.1 (Note 1434392.1) Prerequisites Enterprise Manager Cloud Control 12cOne or more of the following Oracle E-Business Suite Releases Release 11.5.10 CU2 with 11i.ATG_PF.H.RUP6 or higher Release 12.0.4 with R12.ATG_PF.A.delta.6 Release 12.1 with R12.ATG_PF.B.delta.3 Platforms and OS Release certification information is available from My Oracle Support via the Certification page. Search for "Oracle Application Management Pack for Oracle E-Business Suite and release 12.1.0.1.0." Related Articles Oracle E-Business Suite Plug-in 4.0 Released for OEM 11g (11.1.0.1)

    Read the article

  • News you can use, PeopleTools gems at OpenWorld 2012

    - by PeopleTools Strategy
    Here are some of the sessions which may not have caught your eyes during your scheduling of events you would like to attend at this year's Open World! CON9183 PeopleSoft Technology Roadmap Jeff Robbins Mon, Oct 1 4:45 PM Moscone West, Room 3002/4 Jeff's session is always very well attended. Come to hear, and see, what's going to be delivered in the new release and get some thoughts on where PeopleTools and the industry is heading. CON9186 Delivering a Ground-Breaking User Interface with PeopleTools Matt Haavisto Steve Elcock Wed, Oct 3 3:30 PM Moscone West, Room 3009 This session will be wonderfully engaging for participants.  As part of our demonstration, audience members will be able to interact live and real-time with our demo using their smart phones and tablets as if you are users of the system. CON9188 A Great User Experience via PeopleSoft Applications Portal Matt Haavisto Jim Marion Pramod Agrawal Mon, Oct 1 12:15 PM Moscone West, Room 3009 This session covers not only the PeopleSoft Portal, but new features like Workcenters and Dashboards, and how they all work together to form the PeopleSoft ecosystem. CON9192 Implementing a PeopleSoft Maintenance Strategy with My Update Manager Mike Thompson Mike Krajicek Tue, Oct 2 1:15 PM Moscone West, Room 3009 The LCM development team will show Oracle's My Update Manager for PeopleSoft and how it drastically simplifies deciding what updates are required for your specific environment. CON9193 Understanding PeopleSoft Maintenance Tools & How They Fit Together Mike Krajicek Wed, Oct 3 10:15 AM Moscone West, Room 3002/4 Learn about the portfolio of maintenance tools including some of the latest enhancements such as Oracle's My Update Manager for PeopleSoft, Application Data Sets, and the PeopleSoft Test Framework, and see what they can do for you. CON9200 PeopleTools Product Team Panel Discussion Jeff Robbins Willie Suh Virad Gupta Ravi Shankar Mike Krajicek Wed, Oct 3 5:00 PM Moscone West, Room 3009 Attend this session to engage in an open discussion with key members of Oracle's PeopleTools senior management team. You will be able to ask questions, hear their thoughts, and gain their insight into the PeopleTools product direction. CON9205 Securing Your PeopleSoft Integration Infrastructure Greg Kelly Keith Collins Tue, Oct 2 10:15 AM Moscone West, Room 3011 This session, with the senior integration developer, will outline Oracle's best practices for securing your integration infrastructure so that you know your web services and REST services are as secure as the rest of your PeopleSoft environment. CON9210 Performance Tuning for the PeopleSoft Administrator Tim Bower David Kurtz Mon, Oct 1 10:45 AM Moscone West, Room 3009 Meet long time technical consultants with deep knowledge of system tuning, Tim Bower of the Center of Excellence and David Kurtz, author of "PeopleSoft for the Oracle DBA". System administrators new to tuning a PeopleSoft environment as well as seasoned experts will come away with new techniques that will help them improve the performance of their PeopleSoft system. CON9055 Advanced Management of Oracle PeopleSoft with Oracle Enterprise Manager Greg Kelly Milten Garia Greg Bouras Thurs Oct 4 12:45 PM Moscone West, Room 3009 This promises to be a really interesting session as Milten Garia from CSU discusses lessons learned during the implementation of Oracle's Enterprise Manager with the PeopleSoft plug-in across a multi campus environment. There are some surprising things about Solaris 10 and the Bourne shell. Some creative work by the Unix administrators so the well tried scripts and system replication processes were largely unaffected. CON8932 New Functional PeopleTools Capabilities for the Line of Business User Jeff Robbins Tues, Oct 2 5:00 PM Moscone West, Room 3007 Using PeopleTools 8.5x capabilities like: related content, embedded help, pivot grids, hover-over, and more, Jeff will discuss how these can deliver business value and innovation which will positively impact your business without the high costs associated with upgrading your PeopleSoft applications. Check out a more detailed list here. We look forward to meeting you all there!

    Read the article

  • Surface V2.0

    - by Dennis Vroegop
    It’s been quiet around here. And the reason for that is that it’s been quiet around Surface for a while. Now, a lot of people assume that when a product team isn’t making too much noise that must mean they stopped working on their product. Remember the PDC keynote in 2010? Just because they didn’t mention WPF there a lot of people had the idea that WPF was dead and abandoned for Silverlight. Of course, this couldn’t be farther from the truth. The same applies to Surface. While we didn’t hear much from the team in Redmond they were busy putting together the next version of the platform. And at the CES in January the world saw what they have been up to all along: Surface V2.0 as it’s commonly known. Of course, the product is still in development. It’s not here yet, we can’t buy one yet. However, more and more information comes available and I think this is a good time to share with you what it’s all about! The biggest change from an organizational point of view is that Microsoft decided to stop producing the hardware themselves. Instead, they have formed a partnership with Samsung who will manufacture the devices. This means that you as a buyer get the benefits of a large, worldwide supplier with all the services they can offer. Not that Microsoft didn’t do that before but since Surface wasn’t a ‘big’ product it was sometimes hard to get to the right people. The new device is officially called the “Samsung SUR 40 for Microsoft Surface” which is quite a mouthful. The software that runs the device is of course still coming from Microsoft. Let’s dive into the technical specs (note: all of this is preliminary, it’s still in the Alpha phase!): Audio out HDMI / StereoRCA / SPDIF / 2 times 3.5mm audio out jack Brightness 300 CD/m2 Communications 1GB Ethernet/802.11/Bluetooth Contrast Ratio 1:1000 CPU AMD Athlon X2 245e 2.9Ghz Dual Core Display Resolution Full HD 1080p 1920x1080 / 16:9 aspect ratio GPU AMD Radeon HD 6750 1GB GDDRS HDD 320 GB / 7200 RPM HDMI In / HDMI out Yes I/O Ports 4 USB, SD Card reader Operation System Embedded Windows 7 Professional 64 bits Panel Size 40” diagonal Protection Glass Gorilla Glass RAM 4 GB DD3 Weight / with standard legs 70.0 Kg / 154 lbs Weight / standalone 39.5 Kg / 87 lbs Height (without legs) 4 inch Contact points recognized > 50 Cool Factor Extremely   Ok, the last point is not official, but I do think it needs to be there. Let’s talk software. As noted, it runs Windows 7 Professional 64 bit, which means you can run Visual Studio 2010 on it. The software is going to be developed in WPF4.0 with the additional Surface SDK 2.0. It will contain all the things you’ve seen before plus some extra’s. They have taken some steps to align it more with the Surface Toolkit which you can download today, so if you do things right your software should be portable between a WPF4.0 Windows 7 Multi-touch app and the Surface v2 environment. It still uses infrared to detect contacts, so in that respect nothing much has changed conceptually. We still can differentiate between a finger, a tag or a blob. Of course, since the new platform has a much higher resolution (compared to the 1024x768 of the first version) you might need to look at your code again. I’ve seen a lot of applications on Surface that assume the old resolution and moving that to V2 is going to be some work. To be honest: as I am under NDA I cannot disclose much about the new software besides what I have told you here, but trust me: it’s going to blow people away. Now, the biggest question for me is: when can I get one? Until we can, have a look here: Tags van Technorati: surface,samsung,WPF

    Read the article

  • Measuring Code Quality

    - by DotNetBlues
    Several months back, I was tasked with measuring the quality of code in my organization. Foolishly, I said, "No problem." I figured that Visual Studio has a built-in code metrics tool (Analyze -> Calculate Code Metrics) and that would be a fine place to start with. I was right, but also very wrong. The Visual Studio calculates five primary metrics: Maintainability Index, Cyclomatic Complexity, Depth of Inheritance, Class Coupling, and Lines of Code. The first two are figured at the method level, the second at (primarily) the class level, and the last is a simple count. The first question any reasonable person should ask is "Which one do I look at first?" The first question any manager is going to ask is, "What one number tells me about the whole application?" My answer to both, in a way, was "Maintainability Index." Why? Because each of the other numbers represent one element of quality while MI is a composite number that includes Cyclomatic Complexity. I'd be lying if I said no consideration was given to the fact that it was abstract enough that it's harder for some surly developer (I've been known to resemble that remark) to start arguing why a high coupling or inheritance is no big deal or how complex requirements are to blame for complex code. I should also note that I don't think there is one magic bullet metric that will tell you objectively how good a code base is. There are a ton of different metrics out there, and each one was created for a specific purpose in mind and has a pet theory behind it. When you've got a group of developers who aren't accustomed to measuring code quality, picking a 0-100 scale, non-controversial metric that can be easily generated by tools you already own really isn't a bad place to start. That sort of answers the question a developer would ask, but what about the management question; how do you dashboard this stuff when Visual Studio doesn't roll up the numbers to the solution level? Since VS does roll up the MI to the project level, I thought I could just figure out what sort of weighting Microsoft used to roll method scores up to the class level and then to the namespace and project levels. I was a bit surprised by the answer: there is no weighting. That means that a class with one 1300 line method (which will score a 0 MI) and one empty constructor (which will score a 100 MI) will have an overall MI of a respectable 50. Throw in a couple of DTOs that are nothing more than getters and setters (which tend to score 95 or better) and the project ends up looking really, really healthy. The next poor bastard who has to work on the application is probably not going to be singing the praises of its maintainability, though. For the record, that 1300 line method isn't a hypothetical, either. So, what does one do with that? Well, I decided to weight the average by the Lines of Code per method. For our above example, the formula for the class's MI becomes ((1300 * 0) + (1 * 100))/1301 = .077, rounded to 0. Sounds about right. Continue the pattern for namespace, project, solution, and even multi-solution application MI scores. This can be done relatively easily by using the "export to Excel" button and running a quick formula against the data. On the short list of follow-up questions would be, "How do I improve my application's score?" That's an answer for another time, though.

    Read the article

  • Silverlight Cream for December 07, 2010 -- #1004

    - by Dave Campbell
    In this Issue: András Velvárt, Kunal Chowdhury(-2-), AvraShow, Gill Cleeren, Ian T. Lackey, Richard Waddell, Joe McBride, Michael Crump, Xpert360, keyboardP, and Pete Vickers(-2-). Above the Fold: Silverlight: "Grouping Records in Silverlight DataGrid using PagedCollectionView" Kunal Chowdhury WP7: "Phone 7 Back Button and the ListPicker control" Ian T. Lackey Shoutouts: Colin Eberhardt has some Silverlight 5 Adoption Predictions you may want to check out. Michael Crump has a post up showing lots of the goodness of Silverlight 5 from the Firestarter... screenshots, code snippets, etc: Silverlight 5 – What’s New? (Including Screenshots & Code Snippets) Kunal Chowdhury has a pretty complete Silverlight 5 feature set from the Firestarter and an embedded copy of Scott Guthrie's kenote running on the page: New Features Announced for Silverlight 5 Beta From SilverlightCream.com: Just how productive is WP7 development compared to iOS, Android and mobile Web? András Velvárt blogged about a contest he took part in to build a WP7 app in 1-1/2 hours without any prior knowledge of it's funtion. He and his team-mate were pitted against other teams on Android, IOS, and mobile Web... guess who got (almost) their entire app running? ... just too cool Andras! ... Grouping Records in Silverlight DataGrid using PagedCollectionView Kunal Chowdhury has a couple good posts up, this first one is on using the PagedCollectionView to group the records in a DataGrid... code included. Filtering Records in Silverlight DataGrid using PagedCollectionView Kunal Chowdhury then continues with another post on the PagedCollectionView only this time is showing how to do some filtering. DeepZoom Tips and Techniques AvraShow has a post up discussing using DeepZoom to explore, in his case, a Printed Circuit Board, with information about how he proceeded in doing that, and some tips and techniques along the way. The validation story in Silverlight (Part 2) Gill Cleeren has Part 2 of his Silverlight Validation series up at SilverlightShow. This post gets into IDataErrorInfo and INotifyDataErrorInfo. Lots of code and the example is available for download. Phone 7 Back Button and the ListPicker control Ian T. Lackey has a post up about the WP7 backbutton and what can get a failure from the Marketplace in that area, and how that applies to the ListPicker as well. Very Simple Example of ICommand CanExecute Method and CanExecuteChanged Event Richard Waddell has a nice detailed tutorial on ICommand and dealing with CanExecute... lots of Blend love in this post. Providing an Alternating Background Color for an ItemsControl Joe McBride has a post up discussing putting an alternating background color on an ItemsControl... you know, how you do on a grid... interesting idea, and all the code... Pimp my Silverlight Firestarter Michael Crump has a great Firestarter post up ... where and how to get the videos, the labs... a good Firestarter resource for sure. Adventures with PivotViewer Part 7: Slider control Xpert360 has part 7 of the PivotViewer series they're doing up. This time they're demonstrating taking programmatic control of the Zoom slider. Creating Transparent Lockscreen Wallpapers for WP7 I don't know keyboardP's name, but he's got a cool post up about getting an image up for the WP7 lock screen that has transparent regions on it... pretty cool actually. Windows Phone 7 Linq to XML 'strangeness' Pete Vickers has a post up describing a problem he found with Linq to XML on WP7. He even has a demo app that has the problem, and the fix... and it's all downloadable. Windows Phone 7 multi-line radio buttons Pete Vickers has another quick post up on radio buttons with so much text that it needs wrapping ... this is for WP7, but applies to Silverlight in general. Stay in the 'Light! Twitter SilverlightNews | Twitter WynApse | WynApse.com | Tagged Posts | SilverlightCream Join me @ SilverlightCream | Phoenix Silverlight User Group Technorati Tags: Silverlight    Silverlight 3    Silverlight 4    Windows Phone MIX10

    Read the article

  • SPARC T4-2 Produces World Record Oracle Essbase Aggregate Storage Benchmark Result

    - by Brian
    Significance of Results Oracle's SPARC T4-2 server configured with a Sun Storage F5100 Flash Array and running Oracle Solaris 10 with Oracle Database 11g has achieved exceptional performance for the Oracle Essbase Aggregate Storage Option benchmark. The benchmark has upwards of 1 billion records, 15 dimensions and millions of members. Oracle Essbase is a multi-dimensional online analytical processing (OLAP) server and is well-suited to work well with SPARC T4 servers. The SPARC T4-2 server (2 cpus) running Oracle Essbase 11.1.2.2.100 outperformed the previous published results on Oracle's SPARC Enterprise M5000 server (4 cpus) with Oracle Essbase 11.1.1.3 on Oracle Solaris 10 by 80%, 32% and 2x performance improvement on Data Loading, Default Aggregation and Usage Based Aggregation, respectively. The SPARC T4-2 server with Sun Storage F5100 Flash Array and Oracle Essbase running on Oracle Solaris 10 achieves sub-second query response times for 20,000 users in a 15 dimension database. The SPARC T4-2 server configured with Oracle Essbase was able to aggregate and store values in the database for a 15 dimension cube in 398 minutes with 16 threads and in 484 minutes with 8 threads. The Sun Storage F5100 Flash Array provides more than a 20% improvement out-of-the-box compared to a mid-size fiber channel disk array for default aggregation and user-based aggregation. The Sun Storage F5100 Flash Array with Oracle Essbase provides the best combination for large Oracle Essbase databases leveraging Oracle Solaris ZFS and taking advantage of high bandwidth for faster load and aggregation. Oracle Fusion Middleware provides a family of complete, integrated, hot pluggable and best-of-breed products known for enabling enterprise customers to create and run agile and intelligent business applications. Oracle Essbase's performance demonstrates why so many customers rely on Oracle Fusion Middleware as their foundation for innovation. Performance Landscape System Data Size(millions of items) Database Load(minutes) Default Aggregation(minutes) Usage Based Aggregation(minutes) SPARC T4-2, 2 x SPARC T4 2.85 GHz 1000 149 398* 55 Sun M5000, 4 x SPARC64 VII 2.53 GHz 1000 269 526 115 Sun M5000, 4 x SPARC64 VII 2.4 GHz 400 120 448 18 * – 398 mins with CALCPARALLEL set to 16; 484 mins with CALCPARALLEL threads set to 8 Configuration Summary Hardware Configuration: 1 x SPARC T4-2 2 x 2.85 GHz SPARC T4 processors 128 GB memory 2 x 300 GB 10000 RPM SAS internal disks Storage Configuration: 1 x Sun Storage F5100 Flash Array 40 x 24 GB flash modules SAS HBA with 2 SAS channels Data Storage Scheme Striped - RAID 0 Oracle Solaris ZFS Software Configuration: Oracle Solaris 10 8/11 Installer V 11.1.2.2.100 Oracle Essbase Client v 11.1.2.2.100 Oracle Essbase v 11.1.2.2.100 Oracle Essbase Administration services 64-bit Oracle Database 11g Release 2 (11.2.0.3) HP's Mercury Interactive QuickTest Professional 9.5.0 Benchmark Description The objective of the Oracle Essbase Aggregate Storage Option benchmark is to showcase the ability of Oracle Essbase to scale in terms of user population and data volume for large enterprise deployments. Typical administrative and end-user operations for OLAP applications were simulated to produce benchmark results. The benchmark test results include: Database Load: Time elapsed to build a database including outline and data load. Default Aggregation: Time elapsed to build aggregation. User Based Aggregation: Time elapsed of the aggregate views proposed as a result of tracked retrieval queries. Summary of the data used for this benchmark: 40 flat files, each of size 1.2 GB, 49.4 GB in total 10 million rows per file, 1 billion rows total 28 columns of data per row Database outline has 15 dimensions (five of them are attribute dimensions) Customer dimension has 13.3 million members 3 rule files Key Points and Best Practices The Sun Storage F5100 Flash Array has been used to accelerate the application performance. Setting data load threads (DLTHREADSPREPARE) to 64 and Load Buffer to 6 improved dataloading by about 9%. Factors influencing aggregation materialization performance are "Aggregate Storage Cache" and "Number of Threads" (CALCPARALLEL) for parallel view materialization. The optimal values for this workload on the SPARC T4-2 server were: Aggregate Storage Cache: 32 GB CALCPARALLEL: 16   See Also Oracle Essbase Aggregate Storage Option Benchmark on Oracle's SPARC T4-2 Server oracle.com Oracle Essbase oracle.com OTN SPARC T4-2 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 28 August 2012.

    Read the article

< Previous Page | 144 145 146 147 148 149 150 151 152 153 154 155  | Next Page >