Search Results

Search found 12765 results on 511 pages for 'format()'.

Page 149/511 | < Previous Page | 145 146 147 148 149 150 151 152 153 154 155 156  | Next Page >

  • PHP DateTime accept multiple formats?

    - by John Smith
    I'm trying to construct a DateTime object with multiple accepted formats. According to the DateTime::createFromFormat docs, the first parameter (format) must be a string. I was wondering if there was a way to createFromFormats. In my case, I want the year for my format to be optional: DateTime::createFromFormat('Y-m-d', $date); DateTime::createFromFormat('m-d', $date); so that a user can input just 'm-d' and the year would be assumed 2013. If I wanted multiple accepted formats, would I have to call createFromFormat each time? Shortest thing for my scenario is: DateTime::createFromFormat('m-d', $date) ?: DateTime::createFromFormat('Y-m-d', $date);

    Read the article

  • Equivalent of %02d with std::stringstream?

    - by Andreas Brinck
    I wan't to output an integer to a std::stringstream with the equivalent format of printf's %02d. Is there an easier way to achieve this than: std::stringstream stream; stream.setfill('0'); stream.setw(2); stream << value; Is it possible to stream some sort of format flags to the stringstream, something like (pseudocode): stream << flags("%02d") << value;

    Read the article

  • Cannot read status the monit daemon, even with allowed group

    - by jefflunt
    I cannot seem to get monit status or other CLI commands to work. I've built monit v5.8 to run on a Raspberry Pi. I'm able to add services to be monitored, and the web interface can be accessed just fine, as I've set it up for public read-only access (it's a test server, not my final production setup, so not a big deal right now). Problem is, when I run monit status while logged in as root I get: # monit status monit: cannot read status from the monit daemon I also have monit started on boot via this /etc/inittab file entry: mo:2345:respawn:/usr/local/bin/monit -Ic /etc/monitrc I've verified that monit is running, and I'm getting email alerts anytime I either kill the monit process manually, or reboot my raspberry pi. So, next I check my monitrc file permissions to see which group is allowed access. # ls -al /etc/monitrc -rw------- 1 root root 2359 Aug 24 14:48 /etc/monitrc Here's my relevant allow section of the control file. set httpd port 80 allow [omitted] readonly allow @root allow localhost allow 0.0.0.0/0.0.0.0 Also tried setting permissions on this file to 640 to allow group read permissions, but no matter what I try I either get the same error as noted above, or when the permissions are set to 640 I get: # monit status monit: The control file '/etc/monitrc' must have permissions no more than -rwx------ (0700); right now permissions are -rw-r----- (0640). What am I missing here? I know that the httpd must be enabled, as that's the interface that the CLI uses to get information (or so I've read), so I've done that. And in terms of monit doing its monitoring job and sending email alerts, that's all working as well. Here's my entire monitrc file - again, this is version v5.8, and it was build with both PAM and SSL support. The process runs under the root user: # Global settings set daemon 300 with start delay 5 set logfile /var/log/monit.log set pidfile /var/run/monit.pid set idfile /var/run/.monit.id set statefile /var/run/.monit.state # Mail alerts ## Set the list of mail servers for alert delivery. Multiple servers may be ## specified using a comma separator. If the first mail server fails, Monit # will use the second mail server in the list and so on. By default Monit uses # port 25 - it is possible to override this with the PORT option. # set mailserver smtp.gmail.com port 587 username [omitted] password [omitted] using tlsv1 ## Send status and events to M/Monit (for more informations about M/Monit ## see http://mmonit.com/). By default Monit registers credentials with ## M/Monit so M/Monit can smoothly communicate back to Monit and you don't ## have to register Monit credentials manually in M/Monit. It is possible to ## disable credential registration using the commented out option below. ## Though, if safety is a concern we recommend instead using https when ## communicating with M/Monit and send credentials encrypted. # # set mmonit http://monit:[email protected]:8080/collector # # and register without credentials # Don't register credentials # # ## Monit by default uses the following format for alerts if the the mail-format ## statement is missing:: set mail-format { from: [email protected] subject: $SERVICE $DESCRIPTION message: $EVENT Service: $SERVICE Date: $DATE Action: $ACTION Host: $HOST Description: $DESCRIPTION Monit instance provided by chicagomeshnet.com } # Web status page set httpd port 80 allow [omitted] readonly allow @root allow localhost allow 0.0.0.0/0.0.0.0 ## You can set alert recipients whom will receive alerts if/when a ## service defined in this file has errors. Alerts may be restricted on ## events by using a filter as in the second example below.

    Read the article

  • synchronization of file locations between two machines

    - by intuited
    Although similar threads have been asked on this site and its siblings before, I've not managed to glean the answer to this persistent question. Any help is much appreciated. The situation: I've got two laptops; both contain a ton of music. Sometimes I move these music files to different locations, or change the metadata in them, or convert them to a different format. I might do any of these things on either machine. I rarely do all of them at once — ie it's unlikely that I'll convert a file's format and move it to a different location all in one go. I'd like to be able to synchronize these changes without having to sift through everything that was renamed or moved. I'm familiar with rsync but I find it inadequate, because although it can compute checksums, it doesn't have any way to store them. So if a file differs, it can't figure out which side it changed on. This also means that it can't attempt to match a missing file to a new one with the same checksum (ie a move) if the filesize and date are the same, it , so it takes an epoch to do a sync on a large repository. I would like to only check the checksum if the files even if you turn on checksumming, it still doesn't use it intelligently: ie it checksums files even if the sizes differ. IIRC. it's not able to use file metadata as a means of file comparison. this is sort of a wishlist item but it seems doable. I've also looked into rsnapshot, but its requirement to create a full backup is impractical in this situation. I don't need a backup, I just need a record of what file with each hash was where when. Unison seems like it might be able to do something vaguely along these lines, but I'm loathe to spend hours wading through its details only to discover that it's sadly lacking. Plus, it's fun asking questions on here. What I'd like is a tool that does something along these lines: keeps track of file checksums or of actual renames, possibly using inotify to greatly reduce resource consumption/latency stores a database containing this info, along with other pertinencies like the file format and metadata, the actual inode, the filename history, etc. uses this info to provide more-intelligent synchronization with a counterpart on the other side. So for example: if a file has been converted from flac to ogg, but kept the same base filename, or the same metadata, it should be able to send the new version over, and the other side should delete the original. Probably it should actually sequester it somewhere in case they or you screwed up, but that's a detail. And then when the transaction is done, the state is logged so that the next time the two interact they can work out their differences. Maybe all this metadata stuff is a fancy pipe dream. I would actually be pretty happy if there was something out there that could just use checksums in an intelligent way. This would be sort of like having the intelligence of something like git, minus the need to duplicate data in an index/backup/etc (and branching, and checkouts, and all the other great stuff that RCSs do. basically just fast forward commit pushes are all I want, with maybe the option to roll back.) So is there something out there that can do this? If not, can someone suggest a good way to start making it?

    Read the article

  • Two pass blur shader using libgdx tile map renderer

    - by Alexandre GUIDET
    I am trying to apply the following technique: blur effect using two pass shader to my libgdx game using the OrthogonalTiledMapRenderer. The idea is to blur the background wich is also a tilemap but rendered with another camera with a different zoom applied. Here is a screen capture without effect: Using the OrthogonalTiledMapRenderer sprite batch like this: backgroundMapRenderer.getSpriteBatch().setShader(shaderBlurX); backgroundMapRenderer.render(layerBackground); I get the following render: Wich is ok for X blur pass. I then try using frame buffer object like in this example. But the effect seems to be too much zoomed: I may be messing up with the camera and the zoom factor. Here is the code: private ShaderProgram shaderBlurX; private ShaderProgram shaderBlurY; private int FBO_SIZE = 800; private FrameBuffer targetA; private FrameBuffer targetB; targetA = new FrameBuffer(Pixmap.Format.RGBA8888, FBO_SIZE, FBO_SIZE, false); targetB = new FrameBuffer(Pixmap.Format.RGBA8888, FBO_SIZE, FBO_SIZE, false); targetA.begin(); Gdx.gl.glClearColor(1, 1, 1, 0); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); backgroundMapRenderer.render(layerBackground); targetA.end(); targetB.begin(); Gdx.gl.glClearColor(1, 1, 1, 0); Gdx.gl.glClear(GL10.GL_COLOR_BUFFER_BIT); backgroundMapRenderer.getSpriteBatch().setShader(shaderBlurX); backgroundMapRenderer.render(layerBackground); targetB.end(); TextureRegion back = new TextureRegion(targetB.getColorBufferTexture()); back.flip(false, true); backgroundMapRenderer.getSpriteBatch() .setProjectionMatrix(backgroundCamera.combined); backgroundMapRenderer.getSpriteBatch().setShader(shaderBlurY); backgroundMapRenderer.getSpriteBatch().begin(); backgroundMapRenderer.getSpriteBatch().draw(back, 0, 0); backgroundMapRenderer.getSpriteBatch().end(); I know I am making something the wrong way, but I can't find any resources about applying two passes shader using tile map renderer. Does someone know how to achieve this?

    Read the article

  • Using FiddlerCore to capture HTTP Requests with .NET

    - by Rick Strahl
    Over the last few weeks I’ve been working on my Web load testing utility West Wind WebSurge. One of the key components of a load testing tool is the ability to capture URLs effectively so that you can play them back later under load. One of the options in WebSurge for capturing URLs is to use its built-in capture tool which acts as an HTTP proxy to capture any HTTP and HTTPS traffic from most Windows HTTP clients, including Web Browsers as well as standalone Windows applications and services. To make this happen, I used Eric Lawrence’s awesome FiddlerCore library, which provides most of the functionality of his desktop Fiddler application, all rolled into an easy to use library that you can plug into your own applications. FiddlerCore makes it almost too easy to capture HTTP content! For WebSurge I needed to capture all HTTP traffic in order to capture the full HTTP request – URL, headers and any content posted by the client. The result of what I ended up creating is this semi-generic capture form: In this post I’m going to demonstrate how easy it is to use FiddlerCore to build this HTTP Capture Form.  If you want to jump right in here are the links to get Telerik’s Fiddler Core and the code for the demo provided here. FiddlerCore Download FiddlerCore on NuGet Show me the Code (WebSurge Integration code from GitHub) Download the WinForms Sample Form West Wind Web Surge (example implementation in live app) Note that FiddlerCore is bound by a license for commercial usage – see license.txt in the FiddlerCore distribution for details. Integrating FiddlerCore FiddlerCore is a library that simply plugs into your application. You can download it from the Telerik site and manually add the assemblies to your project, or you can simply install the NuGet package via:       PM> Install-Package FiddlerCore The library consists of the FiddlerCore.dll as well as a couple of support libraries (CertMaker.dll and BCMakeCert.dll) that are used for installing SSL certificates. I’ll have more on SSL captures and certificate installation later in this post. But first let’s see how easy it is to use FiddlerCore to capture HTTP content by looking at how to build the above capture form. Capturing HTTP Content Once the library is installed it’s super easy to hook up Fiddler functionality. Fiddler includes a number of static class methods on the FiddlerApplication object that can be called to hook up callback events as well as actual start monitoring HTTP URLs. In the following code directly lifted from WebSurge, I configure a few filter options on Form level object, from the user inputs shown on the form by assigning it to a capture options object. In the live application these settings are persisted configuration values, but in the demo they are one time values initialized and set on the form. Once these options are set, I hook up the AfterSessionComplete event to capture every URL that passes through the proxy after the request is completed and start up the Proxy service:void Start() { if (tbIgnoreResources.Checked) CaptureConfiguration.IgnoreResources = true; else CaptureConfiguration.IgnoreResources = false; string strProcId = txtProcessId.Text; if (strProcId.Contains('-')) strProcId = strProcId.Substring(strProcId.IndexOf('-') + 1).Trim(); strProcId = strProcId.Trim(); int procId = 0; if (!string.IsNullOrEmpty(strProcId)) { if (!int.TryParse(strProcId, out procId)) procId = 0; } CaptureConfiguration.ProcessId = procId; CaptureConfiguration.CaptureDomain = txtCaptureDomain.Text; FiddlerApplication.AfterSessionComplete += FiddlerApplication_AfterSessionComplete; FiddlerApplication.Startup(8888, true, true, true); } The key lines for FiddlerCore are just the last two lines of code that include the event hookup code as well as the Startup() method call. Here I only hook up to the AfterSessionComplete event but there are a number of other events that hook various stages of the HTTP request cycle you can also hook into. Other events include BeforeRequest, BeforeResponse, RequestHeadersAvailable, ResponseHeadersAvailable and so on. In my case I want to capture the request data and I actually have several options to capture this data. AfterSessionComplete is the last event that fires in the request sequence and it’s the most common choice to capture all request and response data. I could have used several other events, but AfterSessionComplete is one place where you can look both at the request and response data, so this will be the most common place to hook into if you’re capturing content. The implementation of AfterSessionComplete is responsible for capturing all HTTP request headers and it looks something like this:private void FiddlerApplication_AfterSessionComplete(Session sess) { // Ignore HTTPS connect requests if (sess.RequestMethod == "CONNECT") return; if (CaptureConfiguration.ProcessId > 0) { if (sess.LocalProcessID != 0 && sess.LocalProcessID != CaptureConfiguration.ProcessId) return; } if (!string.IsNullOrEmpty(CaptureConfiguration.CaptureDomain)) { if (sess.hostname.ToLower() != CaptureConfiguration.CaptureDomain.Trim().ToLower()) return; } if (CaptureConfiguration.IgnoreResources) { string url = sess.fullUrl.ToLower(); var extensions = CaptureConfiguration.ExtensionFilterExclusions; foreach (var ext in extensions) { if (url.Contains(ext)) return; } var filters = CaptureConfiguration.UrlFilterExclusions; foreach (var urlFilter in filters) { if (url.Contains(urlFilter)) return; } } if (sess == null || sess.oRequest == null || sess.oRequest.headers == null) return; string headers = sess.oRequest.headers.ToString(); var reqBody = sess.GetRequestBodyAsString(); // if you wanted to capture the response //string respHeaders = session.oResponse.headers.ToString(); //var respBody = session.GetResponseBodyAsString(); // replace the HTTP line to inject full URL string firstLine = sess.RequestMethod + " " + sess.fullUrl + " " + sess.oRequest.headers.HTTPVersion; int at = headers.IndexOf("\r\n"); if (at < 0) return; headers = firstLine + "\r\n" + headers.Substring(at + 1); string output = headers + "\r\n" + (!string.IsNullOrEmpty(reqBody) ? reqBody + "\r\n" : string.Empty) + Separator + "\r\n\r\n"; BeginInvoke(new Action<string>((text) => { txtCapture.AppendText(text); UpdateButtonStatus(); }), output); } The code starts by filtering out some requests based on the CaptureOptions I set before the capture is started. These options/filters are applied when requests actually come in. This is very useful to help narrow down the requests that are captured for playback based on options the user picked. I find it useful to limit requests to a certain domain for captures, as well as filtering out some request types like static resources – images, css, scripts etc. This is of course optional, but I think it’s a common scenario and WebSurge makes good use of this feature. AfterSessionComplete like other FiddlerCore events, provides a Session object parameter which contains all the request and response details. There are oRequest and oResponse objects to hold their respective data. In my case I’m interested in the raw request headers and body only, as you can see in the commented code you can also retrieve the response headers and body. Here the code captures the request headers and body and simply appends the output to the textbox on the screen. Note that the Fiddler events are asynchronous, so in order to display the content in the UI they have to be marshaled back the UI thread with BeginInvoke, which here simply takes the generated headers and appends it to the existing textbox test on the form. As each request is processed, the headers are captured and appended to the bottom of the textbox resulting in a Session HTTP capture in the format that Web Surge internally supports, which is basically raw request headers with a customized 1st HTTP Header line that includes the full URL rather than a server relative URL. When the capture is done the user can either copy the raw HTTP session to the clipboard, or directly save it to file. This raw capture format is the same format WebSurge and also Fiddler use to import/export request data. While this code is application specific, it demonstrates the kind of logic that you can easily apply to the request capture process, which is one of the reasonsof why FiddlerCore is so powerful. You get to choose what content you want to look up as part of your own application logic and you can then decide how to capture or use that data as part of your application. The actual captured data in this case is only a string. The user can edit the data by hand or in the the case of WebSurge, save it to disk and automatically open the captured session as a new load test. Stopping the FiddlerCore Proxy Finally to stop capturing requests you simply disconnect the event handler and call the FiddlerApplication.ShutDown() method:void Stop() { FiddlerApplication.AfterSessionComplete -= FiddlerApplication_AfterSessionComplete; if (FiddlerApplication.IsStarted()) FiddlerApplication.Shutdown(); } As you can see, adding HTTP capture functionality to an application is very straight forward. FiddlerCore offers tons of features I’m not even touching on here – I suspect basic captures are the most common scenario, but a lot of different things can be done with FiddlerCore’s simple API interface. Sky’s the limit! The source code for this sample capture form (WinForms) is provided as part of this article. Adding Fiddler Certificates with FiddlerCore One of the sticking points in West Wind WebSurge has been that if you wanted to capture HTTPS/SSL traffic, you needed to have the full version of Fiddler and have HTTPS decryption enabled. Essentially you had to use Fiddler to configure HTTPS decryption and the associated installation of the Fiddler local client certificate that is used for local decryption of incoming SSL traffic. While this works just fine, requiring to have Fiddler installed and then using a separate application to configure the SSL functionality isn’t ideal. Fortunately FiddlerCore actually includes the tools to register the Fiddler Certificate directly using FiddlerCore. Why does Fiddler need a Certificate in the first Place? Fiddler and FiddlerCore are essentially HTTP proxies which means they inject themselves into the HTTP conversation by re-routing HTTP traffic to a special HTTP port (8888 by default for Fiddler) and then forward the HTTP data to the original client. Fiddler injects itself as the system proxy in using the WinInet Windows settings  which are the same settings that Internet Explorer uses and that are configured in the Windows and Internet Explorer Internet Settings dialog. Most HTTP clients running on Windows pick up and apply these system level Proxy settings before establishing new HTTP connections and that’s why most clients automatically work once Fiddler – or FiddlerCore/WebSurge are running. For plain HTTP requests this just works – Fiddler intercepts the HTTP requests on the proxy port and then forwards them to the original port (80 for HTTP and 443 for SSL typically but it could be any port). For SSL however, this is not quite as simple – Fiddler can easily act as an HTTPS/SSL client to capture inbound requests from the server, but when it forwards the request to the client it has to also act as an SSL server and provide a certificate that the client trusts. This won’t be the original certificate from the remote site, but rather a custom local certificate that effectively simulates an SSL connection between the proxy and the client. If there is no custom certificate configured for Fiddler the SSL request fails with a certificate validation error. The key for this to work is that a custom certificate has to be installed that the HTTPS client trusts on the local machine. For a much more detailed description of the process you can check out Eric Lawrence’s blog post on Certificates. If you’re using the desktop version of Fiddler you can install a local certificate into the Windows certificate store. Fiddler proper does this from the Options menu: This operation does several things: It installs the Fiddler Root Certificate It sets trust to this Root Certificate A new client certificate is generated for each HTTPS site monitored Certificate Installation with FiddlerCore You can also provide this same functionality using FiddlerCore which includes a CertMaker class. Using CertMaker is straight forward to use and it provides an easy way to create some simple helpers that can install and uninstall a Fiddler Root certificate:public static bool InstallCertificate() { if (!CertMaker.rootCertExists()) { if (!CertMaker.createRootCert()) return false; if (!CertMaker.trustRootCert()) return false; } return true; } public static bool UninstallCertificate() { if (CertMaker.rootCertExists()) { if (!CertMaker.removeFiddlerGeneratedCerts(true)) return false; } return true; } InstallCertificate() works by first checking whether the root certificate is already installed and if it isn’t goes ahead and creates a new one. The process of creating the certificate is a two step process – first the actual certificate is created and then it’s moved into the certificate store to become trusted. I’m not sure why you’d ever split these operations up since a cert created without trust isn’t going to be of much value, but there are two distinct steps. When you trigger the trustRootCert() method, a message box will pop up on the desktop that lets you know that you’re about to trust a local private certificate. This is a security feature to ensure that you really want to trust the Fiddler root since you are essentially installing a man in the middle certificate. It’s quite safe to use this generated root certificate, because it’s been specifically generated for your machine and thus is not usable from external sources, the only way to use this certificate in a trusted way is from the local machine. IOW, unless somebody has physical access to your machine, there’s no useful way to hijack this certificate and use it for nefarious purposes (see Eric’s post for more details). Once the Root certificate has been installed, FiddlerCore/Fiddler create new certificates for each site that is connected to with HTTPS. You can end up with quite a few temporary certificates in your certificate store. To uninstall you can either use Fiddler and simply uncheck the Decrypt HTTPS traffic option followed by the remove Fiddler certificates button, or you can use FiddlerCore’s CertMaker.removeFiddlerGeneratedCerts() which removes the root cert and any of the intermediary certificates Fiddler created. Keep in mind that when you uninstall you uninstall the certificate for both FiddlerCore and Fiddler, so use UninstallCertificate() with care and realize that you might affect the Fiddler application’s operation by doing so as well. When to check for an installed Certificate Note that the check to see if the root certificate exists is pretty fast, while the actual process of installing the certificate is a relatively slow operation that even on a fast machine takes a few seconds. Further the trust operation pops up a message box so you probably don’t want to install the certificate repeatedly. Since the check for the root certificate is fast, you can easily put a call to InstallCertificate() in any capture startup code – in which case the certificate installation only triggers when a certificate is in fact not installed. Personally I like to make certificate installation explicit – just like Fiddler does, so in WebSurge I use a small drop down option on the menu to install or uninstall the SSL certificate:   This code calls the InstallCertificate and UnInstallCertificate functions respectively – the experience with this is similar to what you get in Fiddler with the extra dialog box popping up to prompt confirmation for installation of the root certificate. Once the cert is installed you can then capture SSL requests. There’s a gotcha however… Gotcha: FiddlerCore Certificates don’t stick by Default When I originally tried to use the Fiddler certificate installation I ran into an odd problem. I was able to install the certificate and immediately after installation was able to capture HTTPS requests. Then I would exit the application and come back in and try the same HTTPS capture again and it would fail due to a missing certificate. CertMaker.rootCertExists() would return false after every restart and if re-installed the certificate a new certificate would get added to the certificate store resulting in a bunch of duplicated root certificates with different keys. What the heck? CertMaker and BcMakeCert create non-sticky CertificatesI turns out that FiddlerCore by default uses different components from what the full version of Fiddler uses. Fiddler uses a Windows utility called MakeCert.exe to create the Fiddler Root certificate. FiddlerCore however installs the CertMaker.dll and BCMakeCert.dll assemblies, which use a different crypto library (Bouncy Castle) for certificate creation than MakeCert.exe which uses the Windows Crypto API. The assemblies provide support for non-windows operation for Fiddler under Mono, as well as support for some non-Windows certificate platforms like iOS and Android for decryption. The bottom line is that the FiddlerCore provided bouncy castle assemblies are not sticky by default as the certificates created with them are not cached as they are in Fiddler proper. To get certificates to ‘stick’ you have to explicitly cache the certificates in Fiddler’s internal preferences. A cache aware version of InstallCertificate looks something like this:public static bool InstallCertificate() { if (!CertMaker.rootCertExists()) { if (!CertMaker.createRootCert()) return false; if (!CertMaker.trustRootCert()) return false; App.Configuration.UrlCapture.Cert = FiddlerApplication.Prefs.GetStringPref("fiddler.certmaker.bc.cert", null); App.Configuration.UrlCapture.Key = FiddlerApplication.Prefs.GetStringPref("fiddler.certmaker.bc.key", null); } return true; } public static bool UninstallCertificate() { if (CertMaker.rootCertExists()) { if (!CertMaker.removeFiddlerGeneratedCerts(true)) return false; } App.Configuration.UrlCapture.Cert = null; App.Configuration.UrlCapture.Key = null; return true; } In this code I store the Fiddler cert and private key in an application configuration settings that’s stored with the application settings (App.Configuration.UrlCapture object). These settings automatically persist when WebSurge is shut down. The values are read out of Fiddler’s internal preferences store which is set after a new certificate has been created. Likewise I clear out the configuration settings when the certificate is uninstalled. In order for these setting to be used you have to also load the configuration settings into the Fiddler preferences *before* a call to rootCertExists() is made. I do this in the capture form’s constructor:public FiddlerCapture(StressTestForm form) { InitializeComponent(); CaptureConfiguration = App.Configuration.UrlCapture; MainForm = form; if (!string.IsNullOrEmpty(App.Configuration.UrlCapture.Cert)) { FiddlerApplication.Prefs.SetStringPref("fiddler.certmaker.bc.key", App.Configuration.UrlCapture.Key); FiddlerApplication.Prefs.SetStringPref("fiddler.certmaker.bc.cert", App.Configuration.UrlCapture.Cert); }} This is kind of a drag to do and not documented anywhere that I could find, so hopefully this will save you some grief if you want to work with the stock certificate logic that installs with FiddlerCore. MakeCert provides sticky Certificates and the same functionality as Fiddler But there’s actually an easier way. If you want to skip the above Fiddler preference configuration code in your application you can choose to distribute MakeCert.exe instead of certmaker.dll and bcmakecert.dll. When you use MakeCert.exe, the certificates settings are stored in Windows so they are available without any custom configuration inside of your application. It’s easier to integrate and as long as you run on Windows and you don’t need to support iOS or Android devices is simply easier to deal with. To integrate into your project, you can remove the reference to CertMaker.dll (and the BcMakeCert.dll assembly) from your project. Instead copy MakeCert.exe into your output folder. To make sure MakeCert.exe gets pushed out, include MakeCert.exe in your project and set the Build Action to None, and Copy to Output Directory to Copy if newer. Note that the CertMaker.dll reference in the project has been removed and on disk the files for Certmaker.dll, as well as the BCMakeCert.dll files on disk. Keep in mind that these DLLs are resources of the FiddlerCore NuGet package, so updating the package may end up pushing those files back into your project. Once MakeCert.exe is distributed FiddlerCore checks for it first before using the assemblies so as long as MakeCert.exe exists it’ll be used for certificate creation (at least on Windows). Summary FiddlerCore is a pretty sweet tool, and it’s absolutely awesome that we get to plug in most of the functionality of Fiddler right into our own applications. A few years back I tried to build this sort of functionality myself for an app and ended up giving up because it’s a big job to get HTTP right – especially if you need to support SSL. FiddlerCore now provides that functionality as a turnkey solution that can be plugged into your own apps easily. The only downside is FiddlerCore’s documentation for more advanced features like certificate installation which is pretty sketchy. While for the most part FiddlerCore’s feature set is easy to work with without any documentation, advanced features are often not intuitive to gleam by just using Intellisense or the FiddlerCore help file reference (which is not terribly useful). While Eric Lawrence is very responsive on his forum and on Twitter, there simply isn’t much useful documentation on Fiddler/FiddlerCore available online. If you run into trouble the forum is probably the first place to look and then ask a question if you can’t find the answer. The best documentation you can find is Eric’s Fiddler Book which covers a ton of functionality of Fiddler and FiddlerCore. The book is a great reference to Fiddler’s feature set as well as providing great insights into the HTTP protocol. The second half of the book that gets into the innards of HTTP is an excellent read for anybody who wants to know more about some of the more arcane aspects and special behaviors of HTTP – it’s well worth the read. While the book has tons of information in a very readable format, it’s unfortunately not a great reference as it’s hard to find things in the book and because it’s not available online you can’t electronically search for the great content in it. But it’s hard to complain about any of this given the obvious effort and love that’s gone into this awesome product for all of these years. A mighty big thanks to Eric Lawrence  for having created this useful tool that so many of us use all the time, and also to Telerik for picking up Fiddler/FiddlerCore and providing Eric the resources to support and improve this wonderful tool full time and keeping it free for all. Kudos! Resources FiddlerCore Download FiddlerCore NuGet Fiddler Capture Sample Form Fiddler Capture Form in West Wind WebSurge (GitHub) Eric Lawrence’s Fiddler Book© Rick Strahl, West Wind Technologies, 2005-2014Posted in .NET  HTTP   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • Hosting the Razor Engine for Templating in Non-Web Applications

    - by Rick Strahl
    Microsoft’s new Razor HTML Rendering Engine that is currently shipping with ASP.NET MVC previews can be used outside of ASP.NET. Razor is an alternative view engine that can be used instead of the ASP.NET Page engine that currently works with ASP.NET WebForms and MVC. It provides a simpler and more readable markup syntax and is much more light weight in terms of functionality than the full blown WebForms Page engine, focusing only on features that are more along the lines of a pure view engine (or classic ASP!) with focus on expression and code rendering rather than a complex control/object model. Like the Page engine though, the parser understands .NET code syntax which can be embedded into templates, and behind the scenes the engine compiles markup and script code into an executing piece of .NET code in an assembly. Although it ships as part of the ASP.NET MVC and WebMatrix the Razor Engine itself is not directly dependent on ASP.NET or IIS or HTTP in any way. And although there are some markup and rendering features that are optimized for HTML based output generation, Razor is essentially a free standing template engine. And what’s really nice is that unlike the ASP.NET Runtime, Razor is fairly easy to host inside of your own non-Web applications to provide templating functionality. Templating in non-Web Applications? Yes please! So why might you host a template engine in your non-Web application? Template rendering is useful in many places and I have a number of applications that make heavy use of it. One of my applications – West Wind Html Help Builder - exclusively uses template based rendering to merge user supplied help text content into customizable and executable HTML markup templates that provide HTML output for CHM style HTML Help. This is an older product and it’s not actually using .NET at the moment – and this is one reason I’m looking at Razor for script hosting at the moment. For a few .NET applications though I’ve actually used the ASP.NET Runtime hosting to provide templating and mail merge style functionality and while that works reasonably well it’s a very heavy handed approach. It’s very resource intensive and has potential issues with versioning in various different versions of .NET. The generic implementation I created in the article above requires a lot of fix up to mimic an HTTP request in a non-HTTP environment and there are a lot of little things that have to happen to ensure that the ASP.NET runtime works properly most of it having nothing to do with the templating aspect but just satisfying ASP.NET’s requirements. The Razor Engine on the other hand is fairly light weight and completely decoupled from the ASP.NET runtime and the HTTP processing. Rather it’s a pure template engine whose sole purpose is to render text templates. Hosting this engine in your own applications can be accomplished with a reasonable amount of code (actually just a few lines with the tools I’m about to describe) and without having to fake HTTP requests. It’s also much lighter on resource usage and you can easily attach custom properties to your base template implementation to easily pass context from the parent application into templates all of which was rather complicated with ASP.NET runtime hosting. Installing the Razor Template Engine You can get Razor as part of the MVC 3 (RC and later) or Web Matrix. Both are available as downloadable components from the Web Platform Installer Version 3.0 (!important – V2 doesn’t show these components). If you already have that version of the WPI installed just fire it up. You can get the latest version of the Web Platform Installer from here: http://www.microsoft.com/web/gallery/install.aspx Once the platform Installer 3.0 is installed install either MVC 3 or ASP.NET Web Pages. Once installed you’ll find a System.Web.Razor assembly in C:\Program Files\Microsoft ASP.NET\ASP.NET Web Pages\v1.0\Assemblies\System.Web.Razor.dll which you can add as a reference to your project. Creating a Wrapper The basic Razor Hosting API is pretty simple and you can host Razor with a (large-ish) handful of lines of code. I’ll show the basics of it later in this article. However, if you want to customize the rendering and handle assembly and namespace includes for the markup as well as deal with text and file inputs as well as forcing Razor to run in a separate AppDomain so you can unload the code-generated assemblies and deal with assembly caching for re-used templates little more work is required to create something that is more easily reusable. For this reason I created a Razor Hosting wrapper project that combines a bunch of this functionality into an easy to use hosting class, a hosting factory that can load the engine in a separate AppDomain and a couple of hosting containers that provided folder based and string based caching for templates for an easily embeddable and reusable engine with easy to use syntax. If you just want the code and play with the samples and source go grab the latest code from the Subversion Repository at: http://www.west-wind.com:8080/svn/articles/trunk/RazorHosting/ or a snapshot from: http://www.west-wind.com/files/tools/RazorHosting.zip Getting Started Before I get into how hosting with Razor works, let’s take a look at how you can get up and running quickly with the wrapper classes provided. It only takes a few lines of code. The easiest way to use these Razor Hosting Wrappers is to use one of the two HostContainers provided. One is for hosting Razor scripts in a directory and rendering them as relative paths from these script files on disk. The other HostContainer serves razor scripts from string templates… Let’s start with a very simple template that displays some simple expressions, some code blocks and demonstrates rendering some data from contextual data that you pass to the template in the form of a ‘context’. Here’s a simple Razor template: @using System.Reflection Hello @Context.FirstName! Your entry was entered on: @Context.Entered @{ // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); } AppDomain Id: @AppDomain.CurrentDomain.FriendlyName Assembly: @Assembly.GetExecutingAssembly().FullName Code based output: @{ // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } Response.Write(output); } Pretty easy to see what’s going on here. The only unusual thing in this code is the Context object which is an arbitrary object I’m passing from the host to the template by way of the template base class. I’m also displaying the current AppDomain and the executing Assembly name so you can see how compiling and running a template actually loads up new assemblies. Also note that as part of my context I’m passing a reference to the current Windows Form down to the template and changing the title from within the script. It’s a silly example, but it demonstrates two-way communication between host and template and back which can be very powerful. The easiest way to quickly render this template is to use the RazorEngine<TTemplateBase> class. The generic parameter specifies a template base class type that is used by Razor internally to generate the class it generates from a template. The default implementation provided in my RazorHosting wrapper is RazorTemplateBase. Here’s a simple one that renders from a string and outputs a string: var engine = new RazorEngine<RazorTemplateBase>(); // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; string output = engine.RenderTemplate(this.txtSource.Text new string[] { "System.Windows.Forms.dll" }, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; Simple enough. This code renders a template from a string input and returns a result back as a string. It  creates a custom context and passes that to the template which can then access the Context’s properties. Note that anything passed as ‘context’ must be serializable (or MarshalByRefObject) – otherwise you get an exception when passing the reference over AppDomain boundaries (discussed later). Passing a context is optional, but is a key feature in being able to share data between the host application and the template. Note that we use the Context object to access FirstName, Entered and even the host Windows Form object which is used in the template to change the Window caption from within the script! In the code above all the work happens in the RenderTemplate method which provide a variety of overloads to read and write to and from strings, files and TextReaders/Writers. Here’s another example that renders from a file input using a TextReader: using (reader = new StreamReader("templates\\simple.csHtml", true)) { result = host.RenderTemplate(reader, new string[] { "System.Windows.Forms.dll" }, this.CustomContext); } RenderTemplate() is fairly high level and it handles loading of the runtime, compiling into an assembly and rendering of the template. If you want more control you can use the lower level methods to control each step of the way which is important for the HostContainers I’ll discuss later. Basically for those scenarios you want to separate out loading of the engine, compiling into an assembly and then rendering the template from the assembly. Why? So we can keep assemblies cached. In the code above a new assembly is created for each template rendered which is inefficient and uses up resources. Depending on the size of your templates and how often you fire them you can chew through memory very quickly. This slighter lower level approach is only a couple of extra steps: // we can pass any object as context - here create a custom context var context = new CustomContext() { WinForm = this, FirstName = "Rick", Entered = DateTime.Now.AddDays(-10) }; var engine = new RazorEngine<RazorTemplateBase>(); string assId = null; using (StringReader reader = new StringReader(this.txtSource.Text)) { assId = engine.ParseAndCompileTemplate(new string[] { "System.Windows.Forms.dll" }, reader); } string output = engine.RenderTemplateFromAssembly(assId, context); if (output == null) this.txtResult.Text = "*** ERROR:\r\n" + engine.ErrorMessage; else this.txtResult.Text = output; The difference here is that you can capture the assembly – or rather an Id to it – and potentially hold on to it to render again later assuming the template hasn’t changed. The HostContainers take advantage of this feature to cache the assemblies based on certain criteria like a filename and file time step or a string hash that if not change indicate that an assembly can be reused. Note that ParseAndCompileTemplate returns an assembly Id rather than the assembly itself. This is done so that that the assembly always stays in the host’s AppDomain and is not passed across AppDomain boundaries which would cause load failures. We’ll talk more about this in a minute but for now just realize that assemblies references are stored in a list and are accessible by this ID to allow locating and re-executing of the assembly based on that id. Reuse of the assembly avoids recompilation overhead and creation of yet another assembly that loads into the current AppDomain. You can play around with several different versions of the above code in the main sample form:   Using Hosting Containers for more Control and Caching The above examples simply render templates into assemblies each and every time they are executed. While this works and is even reasonably fast, it’s not terribly efficient. If you render templates more than once it would be nice if you could cache the generated assemblies for example to avoid re-compiling and creating of a new assembly each time. Additionally it would be nice to load template assemblies into a separate AppDomain optionally to be able to be able to unload assembli es and also to protect your host application from scripting attacks with malicious template code. Hosting containers provide also provide a wrapper around the RazorEngine<T> instance, a factory (which allows creation in separate AppDomains) and an easy way to start and stop the container ‘runtime’. The Razor Hosting samples provide two hosting containers: RazorFolderHostContainer and StringHostContainer. The folder host provides a simple runtime environment for a folder structure similar in the way that the ASP.NET runtime handles a virtual directory as it’s ‘application' root. Templates are loaded from disk in relative paths and the resulting assemblies are cached unless the template on disk is changed. The string host also caches templates based on string hashes – if the same string is passed a second time a cached version of the assembly is used. Here’s how HostContainers work. I’ll use the FolderHostContainer because it’s likely the most common way you’d use templates – from disk based templates that can be easily edited and maintained on disk. The first step is to create an instance of it and keep it around somewhere (in the example it’s attached as a property to the Form): RazorFolderHostContainer Host = new RazorFolderHostContainer(); public RazorFolderHostForm() { InitializeComponent(); // The base path for templates - templates are rendered with relative paths // based on this path. Host.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Add any assemblies you want reference in your templates Host.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container Host.Start(); } Next anytime you want to render a template you can use simple code like this: private void RenderTemplate(string fileName) { // Pass the template path via the Context var relativePath = Utilities.GetRelativePath(fileName, Host.TemplatePath); if (!Host.RenderTemplate(relativePath, this.Context, Host.RenderingOutputFile)) { MessageBox.Show("Error: " + Host.ErrorMessage); return; } this.webBrowser1.Navigate("file://" + Host.RenderingOutputFile); } You can also render the output to a string instead of to a file: string result = Host.RenderTemplateToString(relativePath,context); Finally if you want to release the engine and shut down the hosting AppDomain you can simply do: Host.Stop(); Stopping the AppDomain and restarting it (ie. calling Stop(); followed by Start()) is also a nice way to release all resources in the AppDomain. The FolderBased domain also supports partial Rendering based on root path based relative paths with the same caching characteristics as the main templates. From within a template you can call out to a partial like this: @RenderPartial(@"partials\PartialRendering.cshtml", Context) where partials\PartialRendering.cshtml is a relative to the template root folder. The folder host example lets you load up templates from disk and display the result in a Web Browser control which demonstrates using Razor HTML output from templates that contain HTML syntax which happens to me my target scenario for Html Help Builder.   The Razor Engine Wrapper Project The project I created to wrap Razor hosting has a fair bit of code and a number of classes associated with it. Most of the components are internally used and as you can see using the final RazorEngine<T> and HostContainer classes is pretty easy. The classes are extensible and I suspect developers will want to build more customized host containers for their applications. Host containers are the key to wrapping up all functionality – Engine, BaseTemplate, AppDomain Hosting, Caching etc in a logical piece that is ready to be plugged into an application. When looking at the code there are a couple of core features provided: Core Razor Engine Hosting This is the core Razor hosting which provides the basics of loading a template, compiling it into an assembly and executing it. This is fairly straightforward, but without a host container that can cache assemblies based on some criteria templates are recompiled and re-created each time which is inefficient (although pretty fast). The base engine wrapper implementation also supports hosting the Razor runtime in a separate AppDomain for security and the ability to unload it on demand. Host Containers The engine hosting itself doesn’t provide any sort of ‘runtime’ service like picking up files from disk, caching assemblies and so forth. So my implementation provides two HostContainers: RazorFolderHostContainer and RazorStringHostContainer. The FolderHost works off a base directory and loads templates based on relative paths (sort of like the ASP.NET runtime does off a virtual). The HostContainers also deal with caching of template assemblies – for the folder host the file date is tracked and checked for updates and unless the template is changed a cached assembly is reused. The StringHostContainer similiarily checks string hashes to figure out whether a particular string template was previously compiled and executed. The HostContainers also act as a simple startup environment and a single reference to easily store and reuse in an application. TemplateBase Classes The template base classes are the base classes that from which the Razor engine generates .NET code. A template is parsed into a class with an Execute() method and the class is based on this template type you can specify. RazorEngine<TBaseTemplate> can receive this type and the HostContainers default to specific templates in their base implementations. Template classes are customizable to allow you to create templates that provide application specific features and interaction from the template to your host application. How does the RazorEngine wrapper work? You can browse the source code in the links above or in the repository or download the source, but I’ll highlight some key features here. Here’s part of the RazorEngine implementation that can be used to host the runtime and that demonstrates the key code required to host the Razor runtime. The RazorEngine class is implemented as a generic class to reflect the Template base class type: public class RazorEngine<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase The generic type is used to internally provide easier access to the template type and assignments on it as part of the template processing. The class also inherits MarshalByRefObject to allow execution over AppDomain boundaries – something that all the classes discussed here need to do since there is much interaction between the host and the template. The first two key methods deal with creating a template assembly: /// <summary> /// Creates an instance of the RazorHost with various options applied. /// Applies basic namespace imports and the name of the class to generate /// </summary> /// <param name="generatedNamespace"></param> /// <param name="generatedClass"></param> /// <returns></returns> protected RazorTemplateEngine CreateHost(string generatedNamespace, string generatedClass) { Type baseClassType = typeof(TBaseTemplateType); RazorEngineHost host = new RazorEngineHost(new CSharpRazorCodeLanguage()); host.DefaultBaseClass = baseClassType.FullName; host.DefaultClassName = generatedClass; host.DefaultNamespace = generatedNamespace; host.NamespaceImports.Add("System"); host.NamespaceImports.Add("System.Text"); host.NamespaceImports.Add("System.Collections.Generic"); host.NamespaceImports.Add("System.Linq"); host.NamespaceImports.Add("System.IO"); return new RazorTemplateEngine(host); } /// <summary> /// Parses and compiles a markup template into an assembly and returns /// an assembly name. The name is an ID that can be passed to /// ExecuteTemplateByAssembly which picks up a cached instance of the /// loaded assembly. /// /// </summary> /// <param name="namespaceOfGeneratedClass">The namespace of the class to generate from the template</param> /// <param name="generatedClassName">The name of the class to generate from the template</param> /// <param name="ReferencedAssemblies">Any referenced assemblies by dll name only. Assemblies must be in execution path of host or in GAC.</param> /// <param name="templateSourceReader">Textreader that loads the template</param> /// <remarks> /// The actual assembly isn't returned here to allow for cross-AppDomain /// operation. If the assembly was returned it would fail for cross-AppDomain /// calls. /// </remarks> /// <returns>An assembly Id. The Assembly is cached in memory and can be used with RenderFromAssembly.</returns> public string ParseAndCompileTemplate( string namespaceOfGeneratedClass, string generatedClassName, string[] ReferencedAssemblies, TextReader templateSourceReader) { RazorTemplateEngine engine = CreateHost(namespaceOfGeneratedClass, generatedClassName); // Generate the template class as CodeDom GeneratorResults razorResults = engine.GenerateCode(templateSourceReader); // Create code from the codeDom and compile CSharpCodeProvider codeProvider = new CSharpCodeProvider(); CodeGeneratorOptions options = new CodeGeneratorOptions(); // Capture Code Generated as a string for error info // and debugging LastGeneratedCode = null; using (StringWriter writer = new StringWriter()) { codeProvider.GenerateCodeFromCompileUnit(razorResults.GeneratedCode, writer, options); LastGeneratedCode = writer.ToString(); } CompilerParameters compilerParameters = new CompilerParameters(ReferencedAssemblies); // Standard Assembly References compilerParameters.ReferencedAssemblies.Add("System.dll"); compilerParameters.ReferencedAssemblies.Add("System.Core.dll"); compilerParameters.ReferencedAssemblies.Add("Microsoft.CSharp.dll"); // dynamic support! // Also add the current assembly so RazorTemplateBase is available compilerParameters.ReferencedAssemblies.Add(Assembly.GetExecutingAssembly().CodeBase.Substring(8)); compilerParameters.GenerateInMemory = Configuration.CompileToMemory; if (!Configuration.CompileToMemory) compilerParameters.OutputAssembly = Path.Combine(Configuration.TempAssemblyPath, "_" + Guid.NewGuid().ToString("n") + ".dll"); CompilerResults compilerResults = codeProvider.CompileAssemblyFromDom(compilerParameters, razorResults.GeneratedCode); if (compilerResults.Errors.Count > 0) { var compileErrors = new StringBuilder(); foreach (System.CodeDom.Compiler.CompilerError compileError in compilerResults.Errors) compileErrors.Append(String.Format(Resources.LineX0TColX1TErrorX2RN, compileError.Line, compileError.Column, compileError.ErrorText)); this.SetError(compileErrors.ToString() + "\r\n" + LastGeneratedCode); return null; } AssemblyCache.Add(compilerResults.CompiledAssembly.FullName, compilerResults.CompiledAssembly); return compilerResults.CompiledAssembly.FullName; } Think of the internal CreateHost() method as setting up the assembly generated from each template. Each template compiles into a separate assembly. It sets up namespaces, and assembly references, the base class used and the name and namespace for the generated class. ParseAndCompileTemplate() then calls the CreateHost() method to receive the template engine generator which effectively generates a CodeDom from the template – the template is turned into .NET code. The code generated from our earlier example looks something like this: //------------------------------------------------------------------------------ // <auto-generated> // This code was generated by a tool. // Runtime Version:4.0.30319.1 // // Changes to this file may cause incorrect behavior and will be lost if // the code is regenerated. // </auto-generated> //------------------------------------------------------------------------------ namespace RazorTest { using System; using System.Text; using System.Collections.Generic; using System.Linq; using System.IO; using System.Reflection; public class RazorTemplate : RazorHosting.RazorTemplateBase { #line hidden public RazorTemplate() { } public override void Execute() { WriteLiteral("Hello "); Write(Context.FirstName); WriteLiteral("! Your entry was entered on: "); Write(Context.Entered); WriteLiteral("\r\n\r\n"); // Code block: Update the host Windows Form passed in through the context Context.WinForm.Text = "Hello World from Razor at " + DateTime.Now.ToString(); WriteLiteral("\r\nAppDomain Id:\r\n "); Write(AppDomain.CurrentDomain.FriendlyName); WriteLiteral("\r\n \r\nAssembly:\r\n "); Write(Assembly.GetExecutingAssembly().FullName); WriteLiteral("\r\n\r\nCode based output: \r\n"); // Write output with Response object from code string output = string.Empty; for (int i = 0; i < 10; i++) { output += i.ToString() + " "; } } } } Basically the template’s body is turned into code in an Execute method that is called. Internally the template’s Write method is fired to actually generate the output. Note that the class inherits from RazorTemplateBase which is the generic parameter I used to specify the base class when creating an instance in my RazorEngine host: var engine = new RazorEngine<RazorTemplateBase>(); This template class must be provided and it must implement an Execute() and Write() method. Beyond that you can create any class you chose and attach your own properties. My RazorTemplateBase class implementation is very simple: public class RazorTemplateBase : MarshalByRefObject, IDisposable { /// <summary> /// You can pass in a generic context object /// to use in your template code /// </summary> public dynamic Context { get; set; } /// <summary> /// Class that generates output. Currently ultra simple /// with only Response.Write() implementation. /// </summary> public RazorResponse Response { get; set; } public object HostContainer {get; set; } public object Engine { get; set; } public RazorTemplateBase() { Response = new RazorResponse(); } public virtual void Write(object value) { Response.Write(value); } public virtual void WriteLiteral(object value) { Response.Write(value); } /// <summary> /// Razor Parser implements this method /// </summary> public virtual void Execute() {} public virtual void Dispose() { if (Response != null) { Response.Dispose(); Response = null; } } } Razor fills in the Execute method when it generates its subclass and uses the Write() method to output content. As you can see I use a RazorResponse() class here to generate output. This isn’t necessary really, as you could use a StringBuilder or StringWriter() directly, but I prefer using Response object so I can extend the Response behavior as needed. The RazorResponse class is also very simple and merely acts as a wrapper around a TextWriter: public class RazorResponse : IDisposable { /// <summary> /// Internal text writer - default to StringWriter() /// </summary> public TextWriter Writer = new StringWriter(); public virtual void Write(object value) { Writer.Write(value); } public virtual void WriteLine(object value) { Write(value); Write("\r\n"); } public virtual void WriteFormat(string format, params object[] args) { Write(string.Format(format, args)); } public override string ToString() { return Writer.ToString(); } public virtual void Dispose() { Writer.Close(); } public virtual void SetTextWriter(TextWriter writer) { // Close original writer if (Writer != null) Writer.Close(); Writer = writer; } } The Rendering Methods of RazorEngine At this point I’ve talked about the assembly generation logic and the template implementation itself. What’s left is that once you’ve generated the assembly is to execute it. The code to do this is handled in the various RenderXXX methods of the RazorEngine class. Let’s look at the lowest level one of these which is RenderTemplateFromAssembly() and a couple of internal support methods that handle instantiating and invoking of the generated template method: public string RenderTemplateFromAssembly( string assemblyId, string generatedNamespace, string generatedClass, object context, TextWriter outputWriter) { this.SetError(); Assembly generatedAssembly = AssemblyCache[assemblyId]; if (generatedAssembly == null) { this.SetError(Resources.PreviouslyCompiledAssemblyNotFound); return null; } string className = generatedNamespace + "." + generatedClass; Type type; try { type = generatedAssembly.GetType(className); } catch (Exception ex) { this.SetError(Resources.UnableToCreateType + className + ": " + ex.Message); return null; } // Start with empty non-error response (if we use a writer) string result = string.Empty; using(TBaseTemplateType instance = InstantiateTemplateClass(type)) { if (instance == null) return null; if (outputWriter != null) instance.Response.SetTextWriter(outputWriter); if (!InvokeTemplateInstance(instance, context)) return null; // Capture string output if implemented and return // otherwise null is returned if (outputWriter == null) result = instance.Response.ToString(); } return result; } protected virtual TBaseTemplateType InstantiateTemplateClass(Type type) { TBaseTemplateType instance = Activator.CreateInstance(type) as TBaseTemplateType; if (instance == null) { SetError(Resources.CouldnTActivateTypeInstance + type.FullName); return null; } instance.Engine = this; // If a HostContainer was set pass that to the template too instance.HostContainer = this.HostContainer; return instance; } /// <summary> /// Internally executes an instance of the template, /// captures errors on execution and returns true or false /// </summary> /// <param name="instance">An instance of the generated template</param> /// <returns>true or false - check ErrorMessage for errors</returns> protected virtual bool InvokeTemplateInstance(TBaseTemplateType instance, object context) { try { instance.Context = context; instance.Execute(); } catch (Exception ex) { this.SetError(Resources.TemplateExecutionError + ex.Message); return false; } finally { // Must make sure Response is closed instance.Response.Dispose(); } return true; } The RenderTemplateFromAssembly method basically requires the namespace and class to instantate and creates an instance of the class using InstantiateTemplateClass(). It then invokes the method with InvokeTemplateInstance(). These two methods are broken out because they are re-used by various other rendering methods and also to allow subclassing and providing additional configuration tasks to set properties and pass values to templates at execution time. In the default mode instantiation sets the Engine and HostContainer (discussed later) so the template can call back into the template engine, and the context is set when the template method is invoked. The various RenderXXX methods use similar code although they create the assemblies first. If you’re after potentially cashing assemblies the method is the one to call and that’s exactly what the two HostContainer classes do. More on that in a minute, but before we get into HostContainers let’s talk about AppDomain hosting and the like. Running Templates in their own AppDomain With the RazorEngine class above, when a template is parsed into an assembly and executed the assembly is created (in memory or on disk – you can configure that) and cached in the current AppDomain. In .NET once an assembly has been loaded it can never be unloaded so if you’re loading lots of templates and at some time you want to release them there’s no way to do so. If however you load the assemblies in a separate AppDomain that new AppDomain can be unloaded and the assemblies loaded in it with it. In order to host the templates in a separate AppDomain the easiest thing to do is to run the entire RazorEngine in a separate AppDomain. Then all interaction occurs in the other AppDomain and no further changes have to be made. To facilitate this there is a RazorEngineFactory which has methods that can instantiate the RazorHost in a separate AppDomain as well as in the local AppDomain. The host creates the remote instance and then hangs on to it to keep it alive as well as providing methods to shut down the AppDomain and reload the engine. Sounds complicated but cross-AppDomain invocation is actually fairly easy to implement. Here’s some of the relevant code from the RazorEngineFactory class. Like the RazorEngine this class is generic and requires a template base type in the generic class name: public class RazorEngineFactory<TBaseTemplateType> where TBaseTemplateType : RazorTemplateBase Here are the key methods of interest: /// <summary> /// Creates an instance of the RazorHost in a new AppDomain. This /// version creates a static singleton that that is cached and you /// can call UnloadRazorHostInAppDomain to unload it. /// </summary> /// <returns></returns> public static RazorEngine<TBaseTemplateType> CreateRazorHostInAppDomain() { if (Current == null) Current = new RazorEngineFactory<TBaseTemplateType>(); return Current.GetRazorHostInAppDomain(); } public static void UnloadRazorHostInAppDomain() { if (Current != null) Current.UnloadHost(); Current = null; } /// <summary> /// Instance method that creates a RazorHost in a new AppDomain. /// This method requires that you keep the Factory around in /// order to keep the AppDomain alive and be able to unload it. /// </summary> /// <returns></returns> public RazorEngine<TBaseTemplateType> GetRazorHostInAppDomain() { LocalAppDomain = CreateAppDomain(null); if (LocalAppDomain == null) return null; /// Create the instance inside of the new AppDomain /// Note: remote domain uses local EXE's AppBasePath!!! RazorEngine<TBaseTemplateType> host = null; try { Assembly ass = Assembly.GetExecutingAssembly(); string AssemblyPath = ass.Location; host = (RazorEngine<TBaseTemplateType>) LocalAppDomain.CreateInstanceFrom(AssemblyPath, typeof(RazorEngine<TBaseTemplateType>).FullName).Unwrap(); } catch (Exception ex) { ErrorMessage = ex.Message; return null; } return host; } /// <summary> /// Internally creates a new AppDomain in which Razor templates can /// be run. /// </summary> /// <param name="appDomainName"></param> /// <returns></returns> private AppDomain CreateAppDomain(string appDomainName) { if (appDomainName == null) appDomainName = "RazorHost_" + Guid.NewGuid().ToString("n"); AppDomainSetup setup = new AppDomainSetup(); // *** Point at current directory setup.ApplicationBase = AppDomain.CurrentDomain.BaseDirectory; AppDomain localDomain = AppDomain.CreateDomain(appDomainName, null, setup); return localDomain; } /// <summary> /// Allow unloading of the created AppDomain to release resources /// All internal resources in the AppDomain are released including /// in memory compiled Razor assemblies. /// </summary> public void UnloadHost() { if (this.LocalAppDomain != null) { AppDomain.Unload(this.LocalAppDomain); this.LocalAppDomain = null; } } The static CreateRazorHostInAppDomain() is the key method that startup code usually calls. It uses a Current singleton instance to an instance of itself that is created cross AppDomain and is kept alive because it’s static. GetRazorHostInAppDomain actually creates a cross-AppDomain instance which first creates a new AppDomain and then loads the RazorEngine into it. The remote Proxy instance is returned as a result to the method and can be used the same as a local instance. The code to run with a remote AppDomain is simple: private RazorEngine<RazorTemplateBase> CreateHost() { if (this.Host != null) return this.Host; // Use Static Methods - no error message if host doesn't load this.Host = RazorEngineFactory<RazorTemplateBase>.CreateRazorHostInAppDomain(); if (this.Host == null) { MessageBox.Show("Unable to load Razor Template Host", "Razor Hosting", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); } return this.Host; } This code relies on a local reference of the Host which is kept around for the duration of the app (in this case a form reference). To use this you’d simply do: this.Host = CreateHost(); if (host == null) return; string result = host.RenderTemplate( this.txtSource.Text, new string[] { "System.Windows.Forms.dll", "Westwind.Utilities.dll" }, this.CustomContext); if (result == null) { MessageBox.Show(host.ErrorMessage, "Template Execution Error", MessageBoxButtons.OK, MessageBoxIcon.Exclamation); return; } this.txtResult.Text = result; Now all templates run in a remote AppDomain and can be unloaded with simple code like this: RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Host = null; One Step further – Providing a caching ‘Runtime’ Once we can load templates in a remote AppDomain we can add some additional functionality like assembly caching based on application specific features. One of my typical scenarios is to render templates out of a scripts folder. So all templates live in a folder and they change infrequently. So a Folder based host that can compile these templates once and then only recompile them if something changes would be ideal. Enter host containers which are basically wrappers around the RazorEngine<t> and RazorEngineFactory<t>. They provide additional logic for things like file caching based on changes on disk or string hashes for string based template inputs. The folder host also provides for partial rendering logic through a custom template base implementation. There’s a base implementation in RazorBaseHostContainer, which provides the basics for hosting a RazorEngine, which includes the ability to start and stop the engine, cache assemblies and add references: public abstract class RazorBaseHostContainer<TBaseTemplateType> : MarshalByRefObject where TBaseTemplateType : RazorTemplateBase, new() { public RazorBaseHostContainer() { UseAppDomain = true; GeneratedNamespace = "__RazorHost"; } /// <summary> /// Determines whether the Container hosts Razor /// in a separate AppDomain. Seperate AppDomain /// hosting allows unloading and releasing of /// resources. /// </summary> public bool UseAppDomain { get; set; } /// <summary> /// Base folder location where the AppDomain /// is hosted. By default uses the same folder /// as the host application. /// /// Determines where binary dependencies are /// found for assembly references. /// </summary> public string BaseBinaryFolder { get; set; } /// <summary> /// List of referenced assemblies as string values. /// Must be in GAC or in the current folder of the host app/ /// base BinaryFolder /// </summary> public List<string> ReferencedAssemblies = new List<string>(); /// <summary> /// Name of the generated namespace for template classes /// </summary> public string GeneratedNamespace {get; set; } /// <summary> /// Any error messages /// </summary> public string ErrorMessage { get; set; } /// <summary> /// Cached instance of the Host. Required to keep the /// reference to the host alive for multiple uses. /// </summary> public RazorEngine<TBaseTemplateType> Engine; /// <summary> /// Cached instance of the Host Factory - so we can unload /// the host and its associated AppDomain. /// </summary> protected RazorEngineFactory<TBaseTemplateType> EngineFactory; /// <summary> /// Keep track of each compiled assembly /// and when it was compiled. /// /// Use a hash of the string to identify string /// changes. /// </summary> protected Dictionary<int, CompiledAssemblyItem> LoadedAssemblies = new Dictionary<int, CompiledAssemblyItem>(); /// <summary> /// Call to start the Host running. Follow by a calls to RenderTemplate to /// render individual templates. Call Stop when done. /// </summary> /// <returns>true or false - check ErrorMessage on false </returns> public virtual bool Start() { if (Engine == null) { if (UseAppDomain) Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHostInAppDomain(); else Engine = RazorEngineFactory<TBaseTemplateType>.CreateRazorHost(); Engine.Configuration.CompileToMemory = true; Engine.HostContainer = this; if (Engine == null) { this.ErrorMessage = EngineFactory.ErrorMessage; return false; } } return true; } /// <summary> /// Stops the Host and releases the host AppDomain and cached /// assemblies. /// </summary> /// <returns>true or false</returns> public bool Stop() { this.LoadedAssemblies.Clear(); RazorEngineFactory<RazorTemplateBase>.UnloadRazorHostInAppDomain(); this.Engine = null; return true; } … } This base class provides most of the mechanics to host the runtime, but no application specific implementation for rendering. There are rendering functions but they just call the engine directly and provide no caching – there’s no context to decide how to cache and reuse templates. The key methods are Start and Stop and their main purpose is to start a new AppDomain (optionally) and shut it down when requested. The RazorFolderHostContainer – Folder Based Runtime Hosting Let’s look at the more application specific RazorFolderHostContainer implementation which is defined like this: public class RazorFolderHostContainer : RazorBaseHostContainer<RazorTemplateFolderHost> Note that a customized RazorTemplateFolderHost class template is used for this implementation that supports partial rendering in form of a RenderPartial() method that’s available to templates. The folder host’s features are: Render templates based on a Template Base Path (a ‘virtual’ if you will) Cache compiled assemblies based on the relative path and file time stamp File changes on templates cause templates to be recompiled into new assemblies Support for partial rendering using base folder relative pathing As shown in the startup examples earlier host containers require some startup code with a HostContainer tied to a persistent property (like a Form property): // The base path for templates - templates are rendered with relative paths // based on this path. HostContainer.TemplatePath = Path.Combine(Environment.CurrentDirectory, TemplateBaseFolder); // Default output rendering disk location HostContainer.RenderingOutputFile = Path.Combine(HostContainer.TemplatePath, "__Preview.htm"); // Add any assemblies you want reference in your templates HostContainer.ReferencedAssemblies.Add("System.Windows.Forms.dll"); // Start up the host container HostContainer.Start(); Once that’s done, you can render templates with the host container: // Pass the template path for full filename seleted with OpenFile Dialog // relativepath is: subdir\file.cshtml or file.cshtml or ..\file.cshtml var relativePath = Utilities.GetRelativePath(fileName, HostContainer.TemplatePath); if (!HostContainer.RenderTemplate(relativePath, Context, HostContainer.RenderingOutputFile)) { MessageBox.Show("Error: " + HostContainer.ErrorMessage); return; } webBrowser1.Navigate("file://" + HostContainer.RenderingOutputFile); The most critical task of the RazorFolderHostContainer implementation is to retrieve a template from disk, compile and cache it and then deal with deciding whether subsequent requests need to re-compile the template or simply use a cached version. Internally the GetAssemblyFromFileAndCache() handles this task: /// <summary> /// Internally checks if a cached assembly exists and if it does uses it /// else creates and compiles one. Returns an assembly Id to be /// used with the LoadedAssembly list. /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> protected virtual CompiledAssemblyItem GetAssemblyFromFileAndCache(string relativePath) { string fileName = Path.Combine(TemplatePath, relativePath).ToLower(); int fileNameHash = fileName.GetHashCode(); if (!File.Exists(fileName)) { this.SetError(Resources.TemplateFileDoesnTExist + fileName); return null; } CompiledAssemblyItem item = null; this.LoadedAssemblies.TryGetValue(fileNameHash, out item); string assemblyId = null; // Check for cached instance if (item != null) { var fileTime = File.GetLastWriteTimeUtc(fileName); if (fileTime <= item.CompileTimeUtc) assemblyId = item.AssemblyId; } else item = new CompiledAssemblyItem(); // No cached instance - create assembly and cache if (assemblyId == null) { string safeClassName = GetSafeClassName(fileName); StreamReader reader = null; try { reader = new StreamReader(fileName, true); } catch (Exception ex) { this.SetError(Resources.ErrorReadingTemplateFile + fileName); return null; } assemblyId = Engine.ParseAndCompileTemplate(this.ReferencedAssemblies.ToArray(), reader); // need to ensure reader is closed if (reader != null) reader.Close(); if (assemblyId == null) { this.SetError(Engine.ErrorMessage); return null; } item.AssemblyId = assemblyId; item.CompileTimeUtc = DateTime.UtcNow; item.FileName = fileName; item.SafeClassName = safeClassName; this.LoadedAssemblies[fileNameHash] = item; } return item; } This code uses a LoadedAssembly dictionary which is comprised of a structure that holds a reference to a compiled assembly, a full filename and file timestamp and an assembly id. LoadedAssemblies (defined on the base class shown earlier) is essentially a cache for compiled assemblies and they are identified by a hash id. In the case of files the hash is a GetHashCode() from the full filename of the template. The template is checked for in the cache and if not found the file stamp is checked. If that’s newer than the cache’s compilation date the template is recompiled otherwise the version in the cache is used. All the core work defers to a RazorEngine<T> instance to ParseAndCompileTemplate(). The three rendering specific methods then are rather simple implementations with just a few lines of code dealing with parameter and return value parsing: /// <summary> /// Renders a template to a TextWriter. Useful to write output into a stream or /// the Response object. Used for partial rendering. /// </summary> /// <param name="relativePath">Relative path to the file in the folder structure</param> /// <param name="context">Optional context object or null</param> /// <param name="writer">The textwriter to write output into</param> /// <returns></returns> public bool RenderTemplate(string relativePath, object context, TextWriter writer) { // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; CompiledAssemblyItem item = GetAssemblyFromFileAndCache(relativePath); if (item == null) { writer.Close(); return false; } try { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error string result = Engine.RenderTemplateFromAssembly(item.AssemblyId, context, writer); if (result == null) { this.SetError(Engine.ErrorMessage); return false; } } catch (Exception ex) { this.SetError(ex.Message); return false; } finally { writer.Close(); } return true; } /// <summary> /// Render a template from a source file on disk to a specified outputfile. /// </summary> /// <param name="relativePath">Relative path off the template root folder. Format: path/filename.cshtml</param> /// <param name="context">Any object that will be available in the template as a dynamic of this.Context</param> /// <param name="outputFile">Optional - output file where output is written to. If not specified the /// RenderingOutputFile property is used instead /// </param> /// <returns>true if rendering succeeds, false on failure - check ErrorMessage</returns> public bool RenderTemplate(string relativePath, object context, string outputFile) { if (outputFile == null) outputFile = RenderingOutputFile; try { using (StreamWriter writer = new StreamWriter(outputFile, false, Engine.Configuration.OutputEncoding, Engine.Configuration.StreamBufferSize)) { return RenderTemplate(relativePath, context, writer); } } catch (Exception ex) { this.SetError(ex.Message); return false; } return true; } /// <summary> /// Renders a template to string. Useful for RenderTemplate /// </summary> /// <param name="relativePath"></param> /// <param name="context"></param> /// <returns></returns> public string RenderTemplateToString(string relativePath, object context) { string result = string.Empty; try { using (StringWriter writer = new StringWriter()) { // String result will be empty as output will be rendered into the // Response object's stream output. However a null result denotes // an error if (!RenderTemplate(relativePath, context, writer)) { this.SetError(Engine.ErrorMessage); return null; } result = writer.ToString(); } } catch (Exception ex) { this.SetError(ex.Message); return null; } return result; } The idea is that you can create custom host container implementations that do exactly what you want fairly easily. Take a look at both the RazorFolderHostContainer and RazorStringHostContainer classes for the basic concepts you can use to create custom implementations. Notice also that you can set the engine’s PerRequestConfigurationData() from the host container: // Set configuration data that is to be passed to the template (any object) Engine.TemplatePerRequestConfigurationData = new RazorFolderHostTemplateConfiguration() { TemplatePath = Path.Combine(this.TemplatePath, relativePath), TemplateRelativePath = relativePath, }; which when set to a non-null value is passed to the Template’s InitializeTemplate() method. This method receives an object parameter which you can cast as needed: public override void InitializeTemplate(object configurationData) { // Pick up configuration data and stuff into Request object RazorFolderHostTemplateConfiguration config = configurationData as RazorFolderHostTemplateConfiguration; this.Request.TemplatePath = config.TemplatePath; this.Request.TemplateRelativePath = config.TemplateRelativePath; } With this data you can then configure any custom properties or objects on your main template class. It’s an easy way to pass data from the HostContainer all the way down into the template. The type you use is of type object so you have to cast it yourself, and it must be serializable since it will likely run in a separate AppDomain. This might seem like an ugly way to pass data around – normally I’d use an event delegate to call back from the engine to the host, but since this is running over AppDomain boundaries events get really tricky and passing a template instance back up into the host over AppDomain boundaries doesn’t work due to serialization issues. So it’s easier to pass the data from the host down into the template using this rather clumsy approach of set and forward. It’s ugly, but it’s something that can be hidden in the host container implementation as I’ve done here. It’s also not something you have to do in every implementation so this is kind of an edge case, but I know I’ll need to pass a bunch of data in some of my applications and this will be the easiest way to do so. Summing Up Hosting the Razor runtime is something I got jazzed up about quite a bit because I have an immediate need for this type of templating/merging/scripting capability in an application I’m working on. I’ve also been using templating in many apps and it’s always been a pain to deal with. The Razor engine makes this whole experience a lot cleaner and more light weight and with these wrappers I can now plug .NET based templating into my code literally with a few lines of code. That’s something to cheer about… I hope some of you will find this useful as well… Resources The examples and code require that you download the Razor runtimes. Projects are for Visual Studio 2010 running on .NET 4.0 Platform Installer 3.0 (install WebMatrix or MVC 3 for Razor Runtimes) Latest Code in Subversion Repository Download Snapshot of the Code Documentation (CHM Help File) © Rick Strahl, West Wind Technologies, 2005-2010Posted in ASP.NET  .NET  

    Read the article

  • WCF WS-Security and WSE Nonce Authentication

    - by Rick Strahl
    WCF makes it fairly easy to access WS-* Web Services, except when you run into a service format that it doesn't support. Even then WCF provides a huge amount of flexibility to make the service clients work, however finding the proper interfaces to make that happen is not easy to discover and for the most part undocumented unless you're lucky enough to run into a blog, forum or StackOverflow post on the matter. This is definitely true for the Password Nonce as part of the WS-Security/WSE protocol, which is not natively supported in WCF. Specifically I had a need to create a WCF message on the client that includes a WS-Security header that looks like this from their spec document:<soapenv:Header> <wsse:Security soapenv:mustUnderstand="1" xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <wsse:UsernameToken wsu:Id="UsernameToken-8" xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <wsse:Username>TeStUsErNaMe1</wsse:Username> <wsse:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText" >TeStPaSsWoRd1</wsse:Password> <wsse:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary" >f8nUe3YupTU5ISdCy3X9Gg==</wsse:Nonce> <wsu:Created>2011-05-04T19:01:40.981Z</wsu:Created> </wsse:UsernameToken> </wsse:Security> </soapenv:Header> Specifically, the Nonce and Created keys are what WCF doesn't create or have a built in formatting for. Why is there a nonce? My first thought here was WTF? The username and password are there in clear text, what does the Nonce accomplish? The Nonce and created keys are are part of WSE Security specification and are meant to allow the server to detect and prevent replay attacks. The hashed nonce should be unique per request which the server can store and check for before running another request thus ensuring that a request is not replayed with exactly the same values. Basic ServiceUtl Import - not much Luck The first thing I did when I imported this service with a service reference was to simply import it as a Service Reference. The Add Service Reference import automatically detects that WS-Security is required and appropariately adds the WS-Security to the basicHttpBinding in the config file:<?xml version="1.0" encoding="utf-8" ?> <configuration> <system.serviceModel> <bindings> <basicHttpBinding> <binding name="RealTimeOnlineSoapBinding"> <security mode="Transport" /> </binding> <binding name="RealTimeOnlineSoapBinding1" /> </basicHttpBinding> </bindings> <client> <endpoint address="https://notarealurl.com:443/services/RealTimeOnline" binding="basicHttpBinding" bindingConfiguration="RealTimeOnlineSoapBinding" contract="RealTimeOnline.RealTimeOnline" name="RealTimeOnline" /> </client> </system.serviceModel> </configuration> If if I run this as is using code like this:var client = new RealTimeOnlineClient(); client.ClientCredentials.UserName.UserName = "TheUsername"; client.ClientCredentials.UserName.Password = "ThePassword"; … I get nothing in terms of WS-Security headers. The request is sent, but the the binding expects transport level security to be applied, rather than message level security. To fix this so that a WS-Security message header is sent the security mode can be changed to: <security mode="TransportWithMessageCredential" /> Now if I re-run I at least get a WS-Security header which looks like this:<s:Envelope xmlns:s="http://schemas.xmlsoap.org/soap/envelope/" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <s:Header> <o:Security s:mustUnderstand="1" xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <u:Timestamp u:Id="_0"> <u:Created>2012-11-24T02:55:18.011Z</u:Created> <u:Expires>2012-11-24T03:00:18.011Z</u:Expires> </u:Timestamp> <o:UsernameToken u:Id="uuid-18c215d4-1106-40a5-8dd1-c81fdddf19d3-1"> <o:Username>TheUserName</o:Username> <o:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText" >ThePassword</o:Password> </o:UsernameToken> </o:Security> </s:Header> Closer! Now the WS-Security header is there along with a timestamp field (which might not be accepted by some WS-Security expecting services), but there's no Nonce or created timestamp as required by my original service. Using a CustomBinding instead My next try was to go with a CustomBinding instead of basicHttpBinding as it allows a bit more control over the protocol and transport configurations for the binding. Specifically I can explicitly specify the message protocol(s) used. Using configuration file settings here's what the config file looks like:<?xml version="1.0"?> <configuration> <system.serviceModel> <bindings> <customBinding> <binding name="CustomSoapBinding"> <security includeTimestamp="false" authenticationMode="UserNameOverTransport" defaultAlgorithmSuite="Basic256" requireDerivedKeys="false" messageSecurityVersion="WSSecurity10WSTrustFebruary2005WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurityProfile10"> </security> <textMessageEncoding messageVersion="Soap11"></textMessageEncoding> <httpsTransport maxReceivedMessageSize="2000000000"/> </binding> </customBinding> </bindings> <client> <endpoint address="https://notrealurl.com:443/services/RealTimeOnline" binding="customBinding" bindingConfiguration="CustomSoapBinding" contract="RealTimeOnline.RealTimeOnline" name="RealTimeOnline" /> </client> </system.serviceModel> <startup> <supportedRuntime version="v4.0" sku=".NETFramework,Version=v4.0"/> </startup> </configuration> This ends up creating a cleaner header that's missing the timestamp field which can cause some services problems. The WS-Security header output generated with the above looks like this:<s:Header> <o:Security s:mustUnderstand="1" xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <o:UsernameToken u:Id="uuid-291622ca-4c11-460f-9886-ac1c78813b24-1"> <o:Username>TheUsername</o:Username> <o:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText" >ThePassword</o:Password> </o:UsernameToken> </o:Security> </s:Header> This is closer as it includes only the username and password. The key here is the protocol for WS-Security:messageSecurityVersion="WSSecurity10WSTrustFebruary2005WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurityProfile10" which explicitly specifies the protocol version. There are several variants of this specification but none of them seem to support the nonce unfortunately. This protocol does allow for optional omission of the Nonce and created timestamp provided (which effectively makes those keys optional). With some services I tried that requested a Nonce just using this protocol actually worked where the default basicHttpBinding failed to connect, so this is a possible solution for access to some services. Unfortunately for my target service that was not an option. The nonce has to be there. Creating Custom ClientCredentials As it turns out WCF doesn't have support for the Digest Nonce as part of WS-Security, and so as far as I can tell there's no way to do it just with configuration settings. I did a bunch of research on this trying to find workarounds for this, and I did find a couple of entries on StackOverflow as well as on the MSDN forums. However, none of these are particularily clear and I ended up using bits and pieces of several of them to arrive at a working solution in the end. http://stackoverflow.com/questions/896901/wcf-adding-nonce-to-usernametoken http://social.msdn.microsoft.com/Forums/en-US/wcf/thread/4df3354f-0627-42d9-b5fb-6e880b60f8ee The latter forum message is the more useful of the two (the last message on the thread in particular) and it has most of the information required to make this work. But it took some experimentation for me to get this right so I'll recount the process here maybe a bit more comprehensively. In order for this to work a number of classes have to be overridden: ClientCredentials ClientCredentialsSecurityTokenManager WSSecurityTokenizer The idea is that we need to create a custom ClientCredential class to hold the custom properties so they can be set from the UI or via configuration settings. The TokenManager and Tokenizer are mainly required to allow the custom credentials class to flow through the WCF pipeline and eventually provide custom serialization. Here are the three classes required and their full implementations:public class CustomCredentials : ClientCredentials { public CustomCredentials() { } protected CustomCredentials(CustomCredentials cc) : base(cc) { } public override System.IdentityModel.Selectors.SecurityTokenManager CreateSecurityTokenManager() { return new CustomSecurityTokenManager(this); } protected override ClientCredentials CloneCore() { return new CustomCredentials(this); } } public class CustomSecurityTokenManager : ClientCredentialsSecurityTokenManager { public CustomSecurityTokenManager(CustomCredentials cred) : base(cred) { } public override System.IdentityModel.Selectors.SecurityTokenSerializer CreateSecurityTokenSerializer(System.IdentityModel.Selectors.SecurityTokenVersion version) { return new CustomTokenSerializer(System.ServiceModel.Security.SecurityVersion.WSSecurity11); } } public class CustomTokenSerializer : WSSecurityTokenSerializer { public CustomTokenSerializer(SecurityVersion sv) : base(sv) { } protected override void WriteTokenCore(System.Xml.XmlWriter writer, System.IdentityModel.Tokens.SecurityToken token) { UserNameSecurityToken userToken = token as UserNameSecurityToken; string tokennamespace = "o"; DateTime created = DateTime.Now; string createdStr = created.ToString("yyyy-MM-ddThh:mm:ss.fffZ"); // unique Nonce value - encode with SHA-1 for 'randomness' // in theory the nonce could just be the GUID by itself string phrase = Guid.NewGuid().ToString(); var nonce = GetSHA1String(phrase); // in this case password is plain text // for digest mode password needs to be encoded as: // PasswordAsDigest = Base64(SHA-1(Nonce + Created + Password)) // and profile needs to change to //string password = GetSHA1String(nonce + createdStr + userToken.Password); string password = userToken.Password; writer.WriteRaw(string.Format( "<{0}:UsernameToken u:Id=\"" + token.Id + "\" xmlns:u=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd\">" + "<{0}:Username>" + userToken.UserName + "</{0}:Username>" + "<{0}:Password Type=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText\">" + password + "</{0}:Password>" + "<{0}:Nonce EncodingType=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary\">" + nonce + "</{0}:Nonce>" + "<u:Created>" + createdStr + "</u:Created></{0}:UsernameToken>", tokennamespace)); } protected string GetSHA1String(string phrase) { SHA1CryptoServiceProvider sha1Hasher = new SHA1CryptoServiceProvider(); byte[] hashedDataBytes = sha1Hasher.ComputeHash(Encoding.UTF8.GetBytes(phrase)); return Convert.ToBase64String(hashedDataBytes); } } Realistically only the CustomTokenSerializer has any significant code in. The code there deals with actually serializing the custom credentials using low level XML semantics by writing output into an XML writer. I can't take credit for this code - most of the code comes from the MSDN forum post mentioned earlier - I made a few adjustments to simplify the nonce generation and also added some notes to allow for PasswordDigest generation. Per spec the nonce is nothing more than a unique value that's supposed to be 'random'. I'm thinking that this value can be any string that's unique and a GUID on its own probably would have sufficed. Comments on other posts that GUIDs can be potentially guessed are highly exaggerated to say the least IMHO. To satisfy even that aspect though I added the SHA1 encryption and binary decoding to give a more random value that would be impossible to 'guess'. The original example from the forum post used another level of encoding and decoding to string in between - but that really didn't accomplish anything but extra overhead. The header output generated from this looks like this:<s:Header> <o:Security s:mustUnderstand="1" xmlns:o="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"> <o:UsernameToken u:Id="uuid-f43d8b0d-0ebb-482e-998d-f544401a3c91-1" xmlns:u="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"> <o:Username>TheUsername</o:Username> <o:Password Type="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#PasswordText">ThePassword</o:Password> <o:Nonce EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary" >PjVE24TC6HtdAnsf3U9c5WMsECY=</o:Nonce> <u:Created>2012-11-23T07:10:04.670Z</u:Created> </o:UsernameToken> </o:Security> </s:Header> which is exactly as it should be. Password Digest? In my case the password is passed in plain text over an SSL connection, so there's no digest required so I was done with the code above. Since I don't have a service handy that requires a password digest,  I had no way of testing the code for the digest implementation, but here is how this is likely to work. If you need to pass a digest encoded password things are a little bit trickier. The password type namespace needs to change to: http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#Digest and then the password value needs to be encoded. The format for password digest encoding is this: Base64(SHA-1(Nonce + Created + Password)) and it can be handled in the code above with this code (that's commented in the snippet above): string password = GetSHA1String(nonce + createdStr + userToken.Password); The entire WriteTokenCore method for digest code looks like this:protected override void WriteTokenCore(System.Xml.XmlWriter writer, System.IdentityModel.Tokens.SecurityToken token) { UserNameSecurityToken userToken = token as UserNameSecurityToken; string tokennamespace = "o"; DateTime created = DateTime.Now; string createdStr = created.ToString("yyyy-MM-ddThh:mm:ss.fffZ"); // unique Nonce value - encode with SHA-1 for 'randomness' // in theory the nonce could just be the GUID by itself string phrase = Guid.NewGuid().ToString(); var nonce = GetSHA1String(phrase); string password = GetSHA1String(nonce + createdStr + userToken.Password); writer.WriteRaw(string.Format( "<{0}:UsernameToken u:Id=\"" + token.Id + "\" xmlns:u=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd\">" + "<{0}:Username>" + userToken.UserName + "</{0}:Username>" + "<{0}:Password Type=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0#Digest\">" + password + "</{0}:Password>" + "<{0}:Nonce EncodingType=\"http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary\">" + nonce + "</{0}:Nonce>" + "<u:Created>" + createdStr + "</u:Created></{0}:UsernameToken>", tokennamespace)); } I had no service to connect to to try out Digest auth - if you end up needing it and get it to work please drop a comment… How to use the custom Credentials The easiest way to use the custom credentials is to create the client in code. Here's a factory method I use to create an instance of my service client:  public static RealTimeOnlineClient CreateRealTimeOnlineProxy(string url, string username, string password) { if (string.IsNullOrEmpty(url)) url = "https://notrealurl.com:443/cows/services/RealTimeOnline"; CustomBinding binding = new CustomBinding(); var security = TransportSecurityBindingElement.CreateUserNameOverTransportBindingElement(); security.IncludeTimestamp = false; security.DefaultAlgorithmSuite = SecurityAlgorithmSuite.Basic256; security.MessageSecurityVersion = MessageSecurityVersion.WSSecurity10WSTrustFebruary2005WSSecureConversationFebruary2005WSSecurityPolicy11BasicSecurityProfile10; var encoding = new TextMessageEncodingBindingElement(); encoding.MessageVersion = MessageVersion.Soap11; var transport = new HttpsTransportBindingElement(); transport.MaxReceivedMessageSize = 20000000; // 20 megs binding.Elements.Add(security); binding.Elements.Add(encoding); binding.Elements.Add(transport); RealTimeOnlineClient client = new RealTimeOnlineClient(binding, new EndpointAddress(url)); // to use full client credential with Nonce uncomment this code: // it looks like this might not be required - the service seems to work without it client.ChannelFactory.Endpoint.Behaviors.Remove<System.ServiceModel.Description.ClientCredentials>(); client.ChannelFactory.Endpoint.Behaviors.Add(new CustomCredentials()); client.ClientCredentials.UserName.UserName = username; client.ClientCredentials.UserName.Password = password; return client; } This returns a service client that's ready to call other service methods. The key item in this code is the ChannelFactory endpoint behavior modification that that first removes the original ClientCredentials and then adds the new one. The ClientCredentials property on the client is read only and this is the way it has to be added.   Summary It's a bummer that WCF doesn't suport WSE Security authentication with nonce values out of the box. From reading the comments in posts/articles while I was trying to find a solution, I found that this feature was omitted by design as this protocol is considered unsecure. While I agree that plain text passwords are rarely a good idea even if they go over secured SSL connection as WSE Security does, there are unfortunately quite a few services (mosly Java services I suspect) that use this protocol. I've run into this twice now and trying to find a solution online I can see that this is not an isolated problem - many others seem to have struggled with this. It seems there are about a dozen questions about this on StackOverflow all with varying incomplete answers. Hopefully this post provides a little more coherent content in one place. Again I marvel at WCF and its breadth of support for protocol features it has in a single tool. And even when it can't handle something there are ways to get it working via extensibility. But at the same time I marvel at how freaking difficult it is to arrive at these solutions. I mean there's no way I could have ever figured this out on my own. It takes somebody working on the WCF team or at least being very, very intricately involved in the innards of WCF to figure out the interconnection of the various objects to do this from scratch. Luckily this is an older problem that has been discussed extensively online and I was able to cobble together a solution from the online content. I'm glad it worked out that way, but it feels dirty and incomplete in that there's a whole learning path that was omitted to get here… Man am I glad I'm not dealing with SOAP services much anymore. REST service security - even when using some sort of federation is a piece of cake by comparison :-) I'm sure once standards bodies gets involved we'll be right back in security standard hell…© Rick Strahl, West Wind Technologies, 2005-2012Posted in WCF  Web Services   Tweet !function(d,s,id){var js,fjs=d.getElementsByTagName(s)[0];if(!d.getElementById(id)){js=d.createElement(s);js.id=id;js.src="//platform.twitter.com/widgets.js";fjs.parentNode.insertBefore(js,fjs);}}(document,"script","twitter-wjs"); (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • ASP.NET Web API Exception Handling

    - by Fredrik N
    When I talk about exceptions in my product team I often talk about two kind of exceptions, business and critical exceptions. Business exceptions are exceptions thrown based on “business rules”, for example if you aren’t allowed to do a purchase. Business exceptions in most case aren’t important to log into a log file, they can directly be shown to the user. An example of a business exception could be "DeniedToPurchaseException”, or some validation exceptions such as “FirstNameIsMissingException” etc. Critical Exceptions are all other kind of exceptions such as the SQL server is down etc. Those kind of exception message need to be logged and should not reach the user, because they can contain information that can be harmful if it reach out to wrong kind of users. I often distinguish business exceptions from critical exceptions by creating a base class called BusinessException, then in my error handling code I catch on the type BusinessException and all other exceptions will be handled as critical exceptions. This blog post will be about different ways to handle exceptions and how Business and Critical Exceptions could be handled. Web API and Exceptions the basics When an exception is thrown in a ApiController a response message will be returned with a status code set to 500 and a response formatted by the formatters based on the “Accept” or “Content-Type” HTTP header, for example JSON or XML. Here is an example:   public IEnumerable<string> Get() { throw new ApplicationException("Error!!!!!"); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response message will be: HTTP/1.1 500 Internal Server Error Content-Length: 860 Content-Type: application/json; charset=utf-8 { "ExceptionType":"System.ApplicationException","Message":"Error!!!!!","StackTrace":" at ..."} .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The stack trace will be returned to the client, this is because of making it easier to debug. Be careful so you don’t leak out some sensitive information to the client. So as long as you are developing your API, this is not harmful. In a production environment it can be better to log exceptions and return a user friendly exception instead of the original exception. There is a specific exception shipped with ASP.NET Web API that will not use the formatters based on the “Accept” or “Content-Type” HTTP header, it is the exception is the HttpResponseException class. Here is an example where the HttpReponseExcetpion is used: // GET api/values [ExceptionHandling] public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError)); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The response will not contain any content, only header information and the status code based on the HttpStatusCode passed as an argument to the HttpResponseMessage. Because the HttpResponsException takes a HttpResponseMessage as an argument, we can give the response a content: public IEnumerable<string> Get() { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("My Error Message"), ReasonPhrase = "Critical Exception" }); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The code above will have the following response:   HTTP/1.1 500 Critical Exception Content-Length: 5 Content-Type: text/plain; charset=utf-8 My Error Message .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The Content property of the HttpResponseMessage doesn’t need to be just plain text, it can also be other formats, for example JSON, XML etc. By using the HttpResponseException we can for example catch an exception and throw a user friendly exception instead: public IEnumerable<string> Get() { try { DoSomething(); return new string[] { "value1", "value2" }; } catch (Exception e) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Adding a try catch to every ApiController methods will only end in duplication of code, by using a custom ExceptionFilterAttribute or our own custom ApiController base class we can reduce code duplicationof code and also have a more general exception handler for our ApiControllers . By creating a custom ApiController’s and override the ExecuteAsync method, we can add a try catch around the base.ExecuteAsync method, but I prefer to skip the creation of a own custom ApiController, better to use a solution that require few files to be modified. The ExceptionFilterAttribute has a OnException method that we can override and add our exception handling. Here is an example: using System; using System.Diagnostics; using System.Net; using System.Net.Http; using System.Web.Http; using System.Web.Http.Filters; public class ExceptionHandlingAttribute : ExceptionFilterAttribute { public override void OnException(HttpActionExecutedContext context) { if (context.Exception is BusinessException) { throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(context.Exception.Message), ReasonPhrase = "Exception" }); } //Log Critical errors Debug.WriteLine(context.Exception); throw new HttpResponseException(new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent("An error occurred, please try again or contact the administrator."), ReasonPhrase = "Critical Exception" }); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: Something to have in mind is that the ExceptionFilterAttribute will be ignored if the ApiController action method throws a HttpResponseException. The code above will always make sure a HttpResponseExceptions will be returned, it will also make sure the critical exceptions will show a more user friendly message. The OnException method can also be used to log exceptions. By using a ExceptionFilterAttribute the Get() method in the previous example can now look like this: public IEnumerable<string> Get() { DoSomething(); return new string[] { "value1", "value2" }; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To use the an ExceptionFilterAttribute, we can for example add the ExceptionFilterAttribute to our ApiControllers methods or to the ApiController class definition, or register it globally for all ApiControllers. You can read more about is here. Note: If something goes wrong in the ExceptionFilterAttribute and an exception is thrown that is not of type HttpResponseException, a formatted exception will be thrown with stack trace etc to the client. How about using a custom IHttpActionInvoker? We can create our own IHTTPActionInvoker and add Exception handling to the invoker. The IHttpActionInvoker will be used to invoke the ApiController’s ExecuteAsync method. Here is an example where the default IHttpActionInvoker, ApiControllerActionInvoker, is used to add exception handling: public class MyApiControllerActionInvoker : ApiControllerActionInvoker { public override Task<HttpResponseMessage> InvokeActionAsync(HttpActionContext actionContext, System.Threading.CancellationToken cancellationToken) { var result = base.InvokeActionAsync(actionContext, cancellationToken); if (result.Exception != null && result.Exception.GetBaseException() != null) { var baseException = result.Exception.GetBaseException(); if (baseException is BusinessException) { return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Error" }); } else { //Log critical error Debug.WriteLine(baseException); return Task.Run<HttpResponseMessage>(() => new HttpResponseMessage(HttpStatusCode.InternalServerError) { Content = new StringContent(baseException.Message), ReasonPhrase = "Critical Error" }); } } return result; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } You can register the IHttpActionInvoker with your own IoC to resolve the MyApiContollerActionInvoker, or add it in the Global.asax: GlobalConfiguration.Configuration.Services.Remove(typeof(IHttpActionInvoker), GlobalConfiguration.Configuration.Services.GetActionInvoker()); GlobalConfiguration.Configuration.Services.Add(typeof(IHttpActionInvoker), new MyApiControllerActionInvoker()); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   How about using a Message Handler for Exception Handling? By creating a custom Message Handler, we can handle error after the ApiController and the ExceptionFilterAttribute is invoked and in that way create a global exception handler, BUT, the only thing we can take a look at is the HttpResponseMessage, we can’t add a try catch around the Message Handler’s SendAsync method. The last Message Handler that will be used in the Wep API pipe-line is the HttpControllerDispatcher and this Message Handler is added to the HttpServer in an early stage. The HttpControllerDispatcher will use the IHttpActionInvoker to invoke the ApiController method. The HttpControllerDipatcher has a try catch that will turn ALL exceptions into a HttpResponseMessage, so that is the reason why a try catch around the SendAsync in a custom Message Handler want help us. If we create our own Host for the Wep API we could create our own custom HttpControllerDispatcher and add or exception handler to that class, but that would be little tricky but is possible. We can in a Message Handler take a look at the HttpResponseMessage’s IsSuccessStatusCode property to see if the request has failed and if we throw the HttpResponseException in our ApiControllers, we could use the HttpResponseException and give it a Reason Phrase and use that to identify business exceptions or critical exceptions. I wouldn’t add an exception handler into a Message Handler, instead I should use the ExceptionFilterAttribute and register it globally for all ApiControllers. BUT, now to another interesting issue. What will happen if we have a Message Handler that throws an exception?  Those exceptions will not be catch and handled by the ExceptionFilterAttribute. I found a  bug in my previews blog post about “Log message Request and Response in ASP.NET WebAPI” in the MessageHandler I use to log incoming and outgoing messages. Here is the code from my blog before I fixed the bug:   public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); var responseMessage = await response.Content.ReadAsByteArrayAsync(); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   If a ApiController throws a HttpResponseException, the Content property of the HttpResponseMessage from the SendAsync will be NULL. So a null reference exception is thrown within the MessageHandler. The yellow screen of death will be returned to the client, and the content is HTML and the Http status code is 500. The bug in the MessageHandler was solved by adding a check against the HttpResponseMessage’s IsSuccessStatusCode property: public abstract class MessageHandler : DelegatingHandler { protected override async Task<HttpResponseMessage> SendAsync(HttpRequestMessage request, CancellationToken cancellationToken) { var corrId = string.Format("{0}{1}", DateTime.Now.Ticks, Thread.CurrentThread.ManagedThreadId); var requestInfo = string.Format("{0} {1}", request.Method, request.RequestUri); var requestMessage = await request.Content.ReadAsByteArrayAsync(); await IncommingMessageAsync(corrId, requestInfo, requestMessage); var response = await base.SendAsync(request, cancellationToken); byte[] responseMessage; if (response.IsSuccessStatusCode) responseMessage = await response.Content.ReadAsByteArrayAsync(); else responseMessage = Encoding.UTF8.GetBytes(response.ReasonPhrase); await OutgoingMessageAsync(corrId, requestInfo, responseMessage); return response; } protected abstract Task IncommingMessageAsync(string correlationId, string requestInfo, byte[] message); protected abstract Task OutgoingMessageAsync(string correlationId, string requestInfo, byte[] message); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } If we don’t handle the exceptions that can occur in a custom Message Handler, we can have a hard time to find the problem causing the exception. The savior in this case is the Global.asax’s Application_Error: protected void Application_Error() { var exception = Server.GetLastError(); Debug.WriteLine(exception); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } I would recommend you to add the Application_Error to the Global.asax and log all exceptions to make sure all kind of exception is handled. Summary There are different ways we could add Exception Handling to the Wep API, we can use a custom ApiController, ExceptionFilterAttribute, IHttpActionInvoker or Message Handler. The ExceptionFilterAttribute would be a good place to add a global exception handling, require very few modification, just register it globally for all ApiControllers, even the IHttpActionInvoker can be used to minimize the modifications of files. Adding the Application_Error to the global.asax is a good way to catch all unhandled exception that can occur, for example exception thrown in a Message Handler.   If you want to know when I have posted a blog post, you can follow me on twitter @fredrikn

    Read the article

  • Can't remove GPT data from MBR

    - by user2373121
    I am having difficulty getting the Ubuntu installer (and gparted) to recognize the partitions on my MBR type disk. Other operating systems and disk tools read the disk structure and the files on it fine. I have used fixparts to write a new MBR but the issue persists. I assume the issue stems from the Protective MBR data still present on the disk but I am at a loss as to how to remove it while preserving my NTFS data partition. Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved. c:\Users\mike\Desktop\fixpartsfixparts 3: FixParts 0.8.8 Loading MBR data from 3: Warning: 0xEE partition doesn't start on sector 1. This can cause problems in some OSes. MBR command (? for help): Running gdisk shows Microsoft Windows [Version 6.1.7601] Copyright (c) 2009 Microsoft Corporation. All rights reserved. c:\Users\mike\Desktop\fixparts>gdisk 3: GPT fdisk (gdisk) version 0.8.7 Partition table scan: MBR: MBR only BSD: not present APM: not present GPT: not present *************************************************************** Found invalid GPT and valid MBR; converting MBR to GPT format in memory. THIS OPERATION IS POTENTIALLY DESTRUCTIVE! Exit by typing 'q' if you don't want to convert your MBR partitions to GPT format! *************************************************************** ************************************************************************ Most versions of Windows cannot boot from a GPT disk, and most varieties prior to Vista cannot read GPT disks. Therefore, you should exit now unless you understand the implications of converting MBR to GPT or creating a new GPT disk layout! ************************************************************************ Are you SURE you want to continue? (Y/N): y Command (? for help): p Disk 3:: 2930277168 sectors, 1.4 TiB Logical sector size: 512 bytes Disk identifier (GUID): BFE92CE8-F93D-4141-82B8-816AD06FB36E Partition table holds up to 128 entries First usable sector is 34, last usable sector is 2930277134 Partitions will be aligned on 2048-sector boundaries Total free space is 163846893 sectors (78.1 GiB) Number Start (sector) End (sector) Size Code Name 1 163842048 2930272255 1.3 TiB 0700 Microsoft basic data Command (? for help): r Recovery/transformation command (? for help): o Disk size is 2930277168 sectors (1.4 TiB) MBR disk identifier: 0x00000000 MBR partitions: Number Boot Start Sector End Sector Status Code 1 1 2930277167 primary 0xEE Recovery/transformation command (? for help): q

    Read the article

  • Is there a Telecommunications Reference Architecture?

    - by raul.goycoolea
    @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Abstract   Reference architecture provides needed architectural information that can be provided in advance to an enterprise to enable consistent architectural best practices. Enterprise Reference Architecture helps business owners to actualize their strategies, vision, objectives, and principles. It evaluates the IT systems, based on Reference Architecture goals, principles, and standards. It helps to reduce IT costs by increasing functionality, availability, scalability, etc. Telecom Reference Architecture provides customers with the flexibility to view bundled service bills online with the provision of multiple services. It provides real-time, flexible billing and charging systems, to handle complex promotions, discounts, and settlements with multiple parties. This paper attempts to describe the Reference Architecture for the Telecom Enterprises. It lays the foundation for a Telecom Reference Architecture by articulating the requirements, drivers, and pitfalls for telecom service providers. It describes generic reference architecture for telecom enterprises and moves on to explain how to achieve Enterprise Reference Architecture by using SOA.   Introduction   A Reference Architecture provides a methodology, set of practices, template, and standards based on a set of successful solutions implemented earlier. These solutions have been generalized and structured for the depiction of both a logical and a physical architecture, based on the harvesting of a set of patterns that describe observations in a number of successful implementations. It helps as a reference for the various architectures that an enterprise can implement to solve various problems. It can be used as the starting point or the point of comparisons for various departments/business entities of a company, or for the various companies for an enterprise. It provides multiple views for multiple stakeholders.   Major artifacts of the Enterprise Reference Architecture are methodologies, standards, metadata, documents, design patterns, etc.   Purpose of Reference Architecture   In most cases, architects spend a lot of time researching, investigating, defining, and re-arguing architectural decisions. It is like reinventing the wheel as their peers in other organizations or even the same organization have already spent a lot of time and effort defining their own architectural practices. This prevents an organization from learning from its own experiences and applying that knowledge for increased effectiveness.   Reference architecture provides missing architectural information that can be provided in advance to project team members to enable consistent architectural best practices.   Enterprise Reference Architecture helps an enterprise to achieve the following at the abstract level:   ·       Reference architecture is more of a communication channel to an enterprise ·       Helps the business owners to accommodate to their strategies, vision, objectives, and principles. ·       Evaluates the IT systems based on Reference Architecture Principles ·       Reduces IT spending through increasing functionality, availability, scalability, etc ·       A Real-time Integration Model helps to reduce the latency of the data updates Is used to define a single source of Information ·       Provides a clear view on how to manage information and security ·       Defines the policy around the data ownership, product boundaries, etc. ·       Helps with cost optimization across project and solution portfolios by eliminating unused or duplicate investments and assets ·       Has a shorter implementation time and cost   Once the reference architecture is in place, the set of architectural principles, standards, reference models, and best practices ensure that the aligned investments have the greatest possible likelihood of success in both the near term and the long term (TCO).     Common pitfalls for Telecom Service Providers   Telecom Reference Architecture serves as the first step towards maturity for a telecom service provider. During the course of our assignments/experiences with telecom players, we have come across the following observations – Some of these indicate a lack of maturity of the telecom service provider:   ·       In markets that are growing and not so mature, it has been observed that telcos have a significant amount of in-house or home-grown applications. In some of these markets, the growth has been so rapid that IT has been unable to cope with business demands. Telcos have shown a tendency to come up with workarounds in their IT applications so as to meet business needs. ·       Even for core functions like provisioning or mediation, some telcos have tried to manage with home-grown applications. ·       Most of the applications do not have the required scalability or maintainability to sustain growth in volumes or functionality. ·       Applications face interoperability issues with other applications in the operator's landscape. Integrating a new application or network element requires considerable effort on the part of the other applications. ·       Application boundaries are not clear, and functionality that is not in the initial scope of that application gets pushed onto it. This results in the development of the multiple, small applications without proper boundaries. ·       Usage of Legacy OSS/BSS systems, poor Integration across Multiple COTS Products and Internal Systems. Most of the Integrations are developed on ad-hoc basis and Point-to-Point Integration. ·       Redundancy of the business functions in different applications • Fragmented data across the different applications and no integrated view of the strategic data • Lot of performance Issues due to the usage of the complex integration across OSS and BSS systems   However, this is where the maturity of the telecom industry as a whole can be of help. The collaborative efforts of telcos to overcome some of these problems have resulted in bodies like the TM Forum. They have come up with frameworks for business processes, data, applications, and technology for telecom service providers. These could be a good starting point for telcos to clean up their enterprise landscape.   Industry Trends in Telecom Reference Architecture   Telecom reference architectures are evolving rapidly because telcos are facing business and IT challenges.   “The reality is that there probably is no killer application, no silver bullet that the telcos can latch onto to carry them into a 21st Century.... Instead, there are probably hundreds – perhaps thousands – of niche applications.... And the only way to find which of these works for you is to try out lots of them, ramp up the ones that work, and discontinue the ones that fail.” – Martin Creaner President & CTO TM Forum.   The following trends have been observed in telecom reference architecture:   ·       Transformation of business structures to align with customer requirements ·       Adoption of more Internet-like technical architectures. The Web 2.0 concept is increasingly being used. ·       Virtualization of the traditional operations support system (OSS) ·       Adoption of SOA to support development of IP-based services ·       Adoption of frameworks like Service Delivery Platforms (SDPs) and IP Multimedia Subsystem ·       (IMS) to enable seamless deployment of various services over fixed and mobile networks ·       Replacement of in-house, customized, and stove-piped OSS/BSS with standards-based COTS products ·       Compliance with industry standards and frameworks like eTOM, SID, and TAM to enable seamless integration with other standards-based products   Drivers of Reference Architecture   The drivers of the Reference Architecture are Reference Architecture Goals, Principles, and Enterprise Vision and Telecom Transformation. The details are depicted below diagram. @font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }div.Section1 { page: Section1; } Figure 1. Drivers for Reference Architecture @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Today’s telecom reference architectures should seamlessly integrate traditional legacy-based applications and transition to next-generation network technologies (e.g., IP multimedia subsystems). This has resulted in new requirements for flexible, real-time billing and OSS/BSS systems and implications on the service provider’s organizational requirements and structure.   Telecom reference architectures are today expected to:   ·       Integrate voice, messaging, email and other VAS over fixed and mobile networks, back end systems ·       Be able to provision multiple services and service bundles • Deliver converged voice, video and data services ·       Leverage the existing Network Infrastructure ·       Provide real-time, flexible billing and charging systems to handle complex promotions, discounts, and settlements with multiple parties. ·       Support charging of advanced data services such as VoIP, On-Demand, Services (e.g.  Video), IMS/SIP Services, Mobile Money, Content Services and IPTV. ·       Help in faster deployment of new services • Serve as an effective platform for collaboration between network IT and business organizations ·       Harness the potential of converging technology, networks, devices and content to develop multimedia services and solutions of ever-increasing sophistication on a single Internet Protocol (IP) ·       Ensure better service delivery and zero revenue leakage through real-time balance and credit management ·       Lower operating costs to drive profitability   Enterprise Reference Architecture   The Enterprise Reference Architecture (RA) fills the gap between the concepts and vocabulary defined by the reference model and the implementation. Reference architecture provides detailed architectural information in a common format such that solutions can be repeatedly designed and deployed in a consistent, high-quality, supportable fashion. This paper attempts to describe the Reference Architecture for the Telecom Application Usage and how to achieve the Enterprise Level Reference Architecture using SOA.   • Telecom Reference Architecture • Enterprise SOA based Reference Architecture   Telecom Reference Architecture   Tele Management Forum’s New Generation Operations Systems and Software (NGOSS) is an architectural framework for organizing, integrating, and implementing telecom systems. NGOSS is a component-based framework consisting of the following elements:   ·       The enhanced Telecom Operations Map (eTOM) is a business process framework. ·       The Shared Information Data (SID) model provides a comprehensive information framework that may be specialized for the needs of a particular organization. ·       The Telecom Application Map (TAM) is an application framework to depict the functional footprint of applications, relative to the horizontal processes within eTOM. ·       The Technology Neutral Architecture (TNA) is an integrated framework. TNA is an architecture that is sustainable through technology changes.   NGOSS Architecture Standards are:   ·       Centralized data ·       Loosely coupled distributed systems ·       Application components/re-use  ·       A technology-neutral system framework with technology specific implementations ·       Interoperability to service provider data/processes ·       Allows more re-use of business components across multiple business scenarios ·       Workflow automation   The traditional operator systems architecture consists of four layers,   ·       Business Support System (BSS) layer, with focus toward customers and business partners. Manages order, subscriber, pricing, rating, and billing information. ·       Operations Support System (OSS) layer, built around product, service, and resource inventories. ·       Networks layer – consists of Network elements and 3rd Party Systems. ·       Integration Layer – to maximize application communication and overall solution flexibility.   Reference architecture for telecom enterprises is depicted below. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 2. Telecom Reference Architecture   The major building blocks of any Telecom Service Provider architecture are as follows:   1. Customer Relationship Management   CRM encompasses the end-to-end lifecycle of the customer: customer initiation/acquisition, sales, ordering, and service activation, customer care and support, proactive campaigns, cross sell/up sell, and retention/loyalty.   CRM also includes the collection of customer information and its application to personalize, customize, and integrate delivery of service to a customer, as well as to identify opportunities for increasing the value of the customer to the enterprise.   The key functionalities related to Customer Relationship Management are   ·       Manage the end-to-end lifecycle of a customer request for products. ·       Create and manage customer profiles. ·       Manage all interactions with customers – inquiries, requests, and responses. ·       Provide updates to Billing and other south bound systems on customer/account related updates such as customer/ account creation, deletion, modification, request bills, final bill, duplicate bills, credit limits through Middleware. ·       Work with Order Management System, Product, and Service Management components within CRM. ·       Manage customer preferences – Involve all the touch points and channels to the customer, including contact center, retail stores, dealers, self service, and field service, as well as via any media (phone, face to face, web, mobile device, chat, email, SMS, mail, the customer's bill, etc.). ·       Support single interface for customer contact details, preferences, account details, offers, customer premise equipment, bill details, bill cycle details, and customer interactions.   CRM applications interact with customers through customer touch points like portals, point-of-sale terminals, interactive voice response systems, etc. The requests by customers are sent via fulfillment/provisioning to billing system for ordering processing.   2. Billing and Revenue Management   Billing and Revenue Management handles the collection of appropriate usage records and production of timely and accurate bills – for providing pre-bill usage information and billing to customers; for processing their payments; and for performing payment collections. In addition, it handles customer inquiries about bills, provides billing inquiry status, and is responsible for resolving billing problems to the customer's satisfaction in a timely manner. This process grouping also supports prepayment for services.   The key functionalities provided by these applications are   ·       To ensure that enterprise revenue is billed and invoices delivered appropriately to customers. ·       To manage customers’ billing accounts, process their payments, perform payment collections, and monitor the status of the account balance. ·       To ensure the timely and effective fulfillment of all customer bill inquiries and complaints. ·       Collect the usage records from mediation and ensure appropriate rating and discounting of all usage and pricing. ·       Support revenue sharing; split charging where usage is guided to an account different from the service consumer. ·       Support prepaid and post-paid rating. ·       Send notification on approach / exceeding the usage thresholds as enforced by the subscribed offer, and / or as setup by the customer. ·       Support prepaid, post paid, and hybrid (where some services are prepaid and the rest of the services post paid) customers and conversion from post paid to prepaid, and vice versa. ·       Support different billing function requirements like charge prorating, promotion, discount, adjustment, waiver, write-off, account receivable, GL Interface, late payment fee, credit control, dunning, account or service suspension, re-activation, expiry, termination, contract violation penalty, etc. ·       Initiate direct debit to collect payment against an invoice outstanding. ·       Send notification to Middleware on different events; for example, payment receipt, pre-suspension, threshold exceed, etc.   Billing systems typically get usage data from mediation systems for rating and billing. They get provisioning requests from order management systems and inquiries from CRM systems. Convergent and real-time billing systems can directly get usage details from network elements.   3. Mediation   Mediation systems transform/translate the Raw or Native Usage Data Records into a general format that is acceptable to billing for their rating purposes.   The following lists the high-level roles and responsibilities executed by the Mediation system in the end-to-end solution.   ·       Collect Usage Data Records from different data sources – like network elements, routers, servers – via different protocol and interfaces. ·       Process Usage Data Records – Mediation will process Usage Data Records as per the source format. ·       Validate Usage Data Records from each source. ·       Segregates Usage Data Records coming from each source to multiple, based on the segregation requirement of end Application. ·       Aggregates Usage Data Records based on the aggregation rule if any from different sources. ·       Consolidates multiple Usage Data Records from each source. ·       Delivers formatted Usage Data Records to different end application like Billing, Interconnect, Fraud Management, etc. ·       Generates audit trail for incoming Usage Data Records and keeps track of all the Usage Data Records at various stages of mediation process. ·       Checks duplicate Usage Data Records across files for a given time window.   4. Fulfillment   This area is responsible for providing customers with their requested products in a timely and correct manner. It translates the customer's business or personal need into a solution that can be delivered using the specific products in the enterprise's portfolio. This process informs the customers of the status of their purchase order, and ensures completion on time, as well as ensuring a delighted customer. These processes are responsible for accepting and issuing orders. They deal with pre-order feasibility determination, credit authorization, order issuance, order status and tracking, customer update on customer order activities, and customer notification on order completion. Order management and provisioning applications fall into this category.   The key functionalities provided by these applications are   ·       Issuing new customer orders, modifying open customer orders, or canceling open customer orders; ·       Verifying whether specific non-standard offerings sought by customers are feasible and supportable; ·       Checking the credit worthiness of customers as part of the customer order process; ·       Testing the completed offering to ensure it is working correctly; ·       Updating of the Customer Inventory Database to reflect that the specific product offering has been allocated, modified, or cancelled; ·       Assigning and tracking customer provisioning activities; ·       Managing customer provisioning jeopardy conditions; and ·       Reporting progress on customer orders and other processes to customer.   These applications typically get orders from CRM systems. They interact with network elements and billing systems for fulfillment of orders.   5. Enterprise Management   This process area includes those processes that manage enterprise-wide activities and needs, or have application within the enterprise as a whole. They encompass all business management processes that   ·       Are necessary to support the whole of the enterprise, including processes for financial management, legal management, regulatory management, process, cost, and quality management, etc.;   ·       Are responsible for setting corporate policies, strategies, and directions, and for providing guidelines and targets for the whole of the business, including strategy development and planning for areas, such as Enterprise Architecture, that are integral to the direction and development of the business;   ·       Occur throughout the enterprise, including processes for project management, performance assessments, cost assessments, etc.     (i) Enterprise Risk Management:   Enterprise Risk Management focuses on assuring that risks and threats to the enterprise value and/or reputation are identified, and appropriate controls are in place to minimize or eliminate the identified risks. The identified risks may be physical or logical/virtual. Successful risk management ensures that the enterprise can support its mission critical operations, processes, applications, and communications in the face of serious incidents such as security threats/violations and fraud attempts. Two key areas covered in Risk Management by telecom operators are:   ·       Revenue Assurance: Revenue assurance system will be responsible for identifying revenue loss scenarios across components/systems, and will help in rectifying the problems. The following lists the high-level roles and responsibilities executed by the Revenue Assurance system in the end-to-end solution. o   Identify all usage information dropped when networks are being upgraded. o   Interconnect bill verification. o   Identify where services are routinely provisioned but never billed. o   Identify poor sales policies that are intensifying collections problems. o   Find leakage where usage is sent to error bucket and never billed for. o   Find leakage where field service, CRM, and network build-out are not optimized.   ·       Fraud Management: Involves collecting data from different systems to identify abnormalities in traffic patterns, usage patterns, and subscription patterns to report suspicious activity that might suggest fraudulent usage of resources, resulting in revenue losses to the operator.   The key roles and responsibilities of the system component are as follows:   o   Fraud management system will capture and monitor high usage (over a certain threshold) in terms of duration, value, and number of calls for each subscriber. The threshold for each subscriber is decided by the system and fixed automatically. o   Fraud management will be able to detect the unauthorized access to services for certain subscribers. These subscribers may have been provided unauthorized services by employees. The component will raise the alert to the operator the very first time of such illegal calls or calls which are not billed. o   The solution will be to have an alarm management system that will deliver alarms to the operator/provider whenever it detects a fraud, thus minimizing fraud by catching it the first time it occurs. o   The Fraud Management system will be capable of interfacing with switches, mediation systems, and billing systems   (ii) Knowledge Management   This process focuses on knowledge management, technology research within the enterprise, and the evaluation of potential technology acquisitions.   Key responsibilities of knowledge base management are to   ·       Maintain knowledge base – Creation and updating of knowledge base on ongoing basis. ·       Search knowledge base – Search of knowledge base on keywords or category browse ·       Maintain metadata – Management of metadata on knowledge base to ensure effective management and search. ·       Run report generator. ·       Provide content – Add content to the knowledge base, e.g., user guides, operational manual, etc.   (iii) Document Management   It focuses on maintaining a repository of all electronic documents or images of paper documents relevant to the enterprise using a system.   (iv) Data Management   It manages data as a valuable resource for any enterprise. For telecom enterprises, the typical areas covered are Master Data Management, Data Warehousing, and Business Intelligence. It is also responsible for data governance, security, quality, and database management.   Key responsibilities of Data Management are   ·       Using ETL, extract the data from CRM, Billing, web content, ERP, campaign management, financial, network operations, asset management info, customer contact data, customer measures, benchmarks, process data, e.g., process inputs, outputs, and measures, into Enterprise Data Warehouse. ·       Management of data traceability with source, data related business rules/decisions, data quality, data cleansing data reconciliation, competitors data – storage for all the enterprise data (customer profiles, products, offers, revenues, etc.) ·       Get online update through night time replication or physical backup process at regular frequency. ·       Provide the data access to business intelligence and other systems for their analysis, report generation, and use.   (v) Business Intelligence   It uses the Enterprise Data to provide the various analysis and reports that contain prospects and analytics for customer retention, acquisition of new customers due to the offers, and SLAs. It will generate right and optimized plans – bolt-ons for the customers.   The following lists the high-level roles and responsibilities executed by the Business Intelligence system at the Enterprise Level:   ·       It will do Pattern analysis and reports problem. ·       It will do Data Analysis – Statistical analysis, data profiling, affinity analysis of data, customer segment wise usage patterns on offers, products, service and revenue generation against services and customer segments. ·       It will do Performance (business, system, and forecast) analysis, churn propensity, response time, and SLAs analysis. ·       It will support for online and offline analysis, and report drill down capability. ·       It will collect, store, and report various SLA data. ·       It will provide the necessary intelligence for marketing and working on campaigns, etc., with cost benefit analysis and predictions.   It will advise on customer promotions with additional services based on loyalty and credit history of customer   ·       It will Interface with Enterprise Data Management system for data to run reports and analysis tasks. It will interface with the campaign schedules, based on historical success evidence.   (vi) Stakeholder and External Relations Management   It manages the enterprise's relationship with stakeholders and outside entities. Stakeholders include shareholders, employee organizations, etc. Outside entities include regulators, local community, and unions. Some of the processes within this grouping are Shareholder Relations, External Affairs, Labor Relations, and Public Relations.   (vii) Enterprise Resource Planning   It is used to manage internal and external resources, including tangible assets, financial resources, materials, and human resources. Its purpose is to facilitate the flow of information between all business functions inside the boundaries of the enterprise and manage the connections to outside stakeholders. ERP systems consolidate all business operations into a uniform and enterprise wide system environment.   The key roles and responsibilities for Enterprise System are given below:   ·        It will handle responsibilities such as core accounting, financial, and management reporting. ·       It will interface with CRM for capturing customer account and details. ·       It will interface with billing to capture the billing revenue and other financial data. ·       It will be responsible for executing the dunning process. Billing will send the required feed to ERP for execution of dunning. ·       It will interface with the CRM and Billing through batch interfaces. Enterprise management systems are like horizontals in the enterprise and typically interact with all major telecom systems. E.g., an ERP system interacts with CRM, Fulfillment, and Billing systems for different kinds of data exchanges.   6. External Interfaces/Touch Points   The typical external parties are customers, suppliers/partners, employees, shareholders, and other stakeholders. External interactions from/to a Service Provider to other parties can be achieved by a variety of mechanisms, including:   ·       Exchange of emails or faxes ·       Call Centers ·       Web Portals ·       Business-to-Business (B2B) automated transactions   These applications provide an Internet technology driven interface to external parties to undertake a variety of business functions directly for themselves. These can provide fully or partially automated service to external parties through various touch points.   Typical characteristics of these touch points are   ·       Pre-integrated self-service system, including stand-alone web framework or integration front end with a portal engine ·       Self services layer exposing atomic web services/APIs for reuse by multiple systems across the architectural environment ·       Portlets driven connectivity exposing data and services interoperability through a portal engine or web application   These touch points mostly interact with the CRM systems for requests, inquiries, and responses.   7. Middleware   The component will be primarily responsible for integrating the different systems components under a common platform. It should provide a Standards-Based Platform for building Service Oriented Architecture and Composite Applications. The following lists the high-level roles and responsibilities executed by the Middleware component in the end-to-end solution.   ·       As an integration framework, covering to and fro interfaces ·       Provide a web service framework with service registry. ·       Support SOA framework with SOA service registry. ·       Each of the interfaces from / to Middleware to other components would handle data transformation, translation, and mapping of data points. ·       Receive data from the caller / activate and/or forward the data to the recipient system in XML format. ·       Use standard XML for data exchange. ·       Provide the response back to the service/call initiator. ·       Provide a tracking until the response completion. ·       Keep a store transitional data against each call/transaction. ·       Interface through Middleware to get any information that is possible and allowed from the existing systems to enterprise systems; e.g., customer profile and customer history, etc. ·       Provide the data in a common unified format to the SOA calls across systems, and follow the Enterprise Architecture directive. ·       Provide an audit trail for all transactions being handled by the component.   8. Network Elements   The term Network Element means a facility or equipment used in the provision of a telecommunications service. Such terms also includes features, functions, and capabilities that are provided by means of such facility or equipment, including subscriber numbers, databases, signaling systems, and information sufficient for billing and collection or used in the transmission, routing, or other provision of a telecommunications service.   Typical network elements in a GSM network are Home Location Register (HLR), Intelligent Network (IN), Mobile Switching Center (MSC), SMS Center (SMSC), and network elements for other value added services like Push-to-talk (PTT), Ring Back Tone (RBT), etc.   Network elements are invoked when subscribers use their telecom devices for any kind of usage. These elements generate usage data and pass it on to downstream systems like mediation and billing system for rating and billing. They also integrate with provisioning systems for order/service fulfillment.   9. 3rd Party Applications   3rd Party systems are applications like content providers, payment gateways, point of sale terminals, and databases/applications maintained by the Government.   Depending on applicability and the type of functionality provided by 3rd party applications, the integration with different telecom systems like CRM, provisioning, and billing will be done.   10. Service Delivery Platform   A service delivery platform (SDP) provides the architecture for the rapid deployment, provisioning, execution, management, and billing of value added telecom services. SDPs are based on the concept of SOA and layered architecture. They support the delivery of voice, data services, and content in network and device-independent fashion. They allow application developers to aggregate network capabilities, services, and sources of content. SDPs typically contain layers for web services exposure, service application development, and network abstraction.   SOA Reference Architecture   SOA concept is based on the principle of developing reusable business service and building applications by composing those services, instead of building monolithic applications in silos. It’s about bridging the gap between business and IT through a set of business-aligned IT services, using a set of design principles, patterns, and techniques.   In an SOA, resources are made available to participants in a value net, enterprise, line of business (typically spanning multiple applications within an enterprise or across multiple enterprises). It consists of a set of business-aligned IT services that collectively fulfill an organization’s business processes and goals. We can choreograph these services into composite applications and invoke them through standard protocols. SOA, apart from agility and reusability, enables:   ·       The business to specify processes as orchestrations of reusable services ·       Technology agnostic business design, with technology hidden behind service interface ·       A contractual-like interaction between business and IT, based on service SLAs ·       Accountability and governance, better aligned to business services ·       Applications interconnections untangling by allowing access only through service interfaces, reducing the daunting side effects of change ·       Reduced pressure to replace legacy and extended lifetime for legacy applications, through encapsulation in services   ·       A Cloud Computing paradigm, using web services technologies, that makes possible service outsourcing on an on-demand, utility-like, pay-per-usage basis   The following section represents the Reference Architecture of logical view for the Telecom Solution. The new custom built application needs to align with this logical architecture in the long run to achieve EA benefits.   Packaged implementation applications, such as ERP billing applications, need to expose their functions as service providers (as other applications consume) and interact with other applications as service consumers.   COT applications need to expose services through wrappers such as adapters to utilize existing resources and at the same time achieve Enterprise Architecture goal and objectives.   The following are the various layers for Enterprise level deployment of SOA. This diagram captures the abstract view of Enterprise SOA layers and important components of each layer. Layered architecture means decomposition of services such that most interactions occur between adjacent layers. However, there is no strict rule that top layers should not directly communicate with bottom layers.   The diagram below represents the important logical pieces that would result from overall SOA transformation. @font-face { font-family: "Arial"; }@font-face { font-family: "Courier New"; }@font-face { font-family: "Wingdings"; }@font-face { font-family: "Cambria"; }p.MsoNormal, li.MsoNormal, div.MsoNormal { margin: 0cm 0cm 0.0001pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoCaption, li.MsoCaption, div.MsoCaption { margin: 0cm 0cm 10pt; font-size: 9pt; font-family: "Times New Roman"; color: rgb(79, 129, 189); font-weight: bold; }p.MsoListParagraph, li.MsoListParagraph, div.MsoListParagraph { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpFirst, li.MsoListParagraphCxSpFirst, div.MsoListParagraphCxSpFirst { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpMiddle, li.MsoListParagraphCxSpMiddle, div.MsoListParagraphCxSpMiddle { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }p.MsoListParagraphCxSpLast, li.MsoListParagraphCxSpLast, div.MsoListParagraphCxSpLast { margin: 0cm 0cm 0.0001pt 36pt; font-size: 12pt; font-family: "Times New Roman"; }div.Section1 { page: Section1; }ol { margin-bottom: 0cm; }ul { margin-bottom: 0cm; } Figure 3. Enterprise SOA Reference Architecture 1.          Operational System Layer: This layer consists of all packaged applications like CRM, ERP, custom built applications, COTS based applications like Billing, Revenue Management, Fulfilment, and the Enterprise databases that are essential and contribute directly or indirectly to the Enterprise OSS/BSS Transformation.   ERP holds the data of Asset Lifecycle Management, Supply Chain, and Advanced Procurement and Human Capital Management, etc.   CRM holds the data related to Order, Sales, and Marketing, Customer Care, Partner Relationship Management, Loyalty, etc.   Content Management handles Enterprise Search and Query. Billing application consists of the following components:   ·       Collections Management, Customer Billing Management, Invoices, Real-Time Rating, Discounting, and Applying of Charges ·       Enterprise databases will hold both the application and service data, whether structured or unstructured.   MDM - Master data majorly consists of Customer, Order, Product, and Service Data.     2.          Enterprise Component Layer:   This layer consists of the Application Services and Common Services that are responsible for realizing the functionality and maintaining the QoS of the exposed services. This layer uses container-based technologies such as application servers to implement the components, workload management, high availability, and load balancing.   Application Services: This Service Layer enables application, technology, and database abstraction so that the complex accessing logic is hidden from the other service layers. This is a basic service layer, which exposes application functionalities and data as reusable services. The three types of the Application access services are:   ·       Application Access Service: This Service Layer exposes application level functionalities as a reusable service between BSS to BSS and BSS to OSS integration. This layer is enabled using disparate technology such as Web Service, Integration Servers, and Adaptors, etc.   ·       Data Access Service: This Service Layer exposes application data services as a reusable reference data service. This is done via direct interaction with application data. and provides the federated query.   ·       Network Access Service: This Service Layer exposes provisioning layer as a reusable service from OSS to OSS integration. This integration service emphasizes the need for high performance, stateless process flows, and distributed design.   Common Services encompasses management of structured, semi-structured, and unstructured data such as information services, portal services, interaction services, infrastructure services, and security services, etc.   3.          Integration Layer:   This consists of service infrastructure components like service bus, service gateway for partner integration, service registry, service repository, and BPEL processor. Service bus will carry the service invocation payloads/messages between consumers and providers. The other important functions expected from it are itinerary based routing, distributed caching of routing information, transformations, and all qualities of service for messaging-like reliability, scalability, and availability, etc. Service registry will hold all contracts (wsdl) of services, and it helps developers to locate or discover service during design time or runtime.   • BPEL processor would be useful in orchestrating the services to compose a complex business scenario or process. • Workflow and business rules management are also required to support manual triggering of certain activities within business process. based on the rules setup and also the state machine information. Application, data, and service mediation layer typically forms the overall composite application development framework or SOA Framework.   4.          Business Process Layer: These are typically the intermediate services layer and represent Shared Business Process Services. At Enterprise Level, these services are from Customer Management, Order Management, Billing, Finance, and Asset Management application domains.   5.          Access Layer: This layer consists of portals for Enterprise and provides a single view of Enterprise information management and dashboard services.   6.          Channel Layer: This consists of various devices; applications that form part of extended enterprise; browsers through which users access the applications.   7.          Client Layer: This designates the different types of users accessing the enterprise applications. The type of user typically would be an important factor in determining the level of access to applications.   8.          Vertical pieces like management, monitoring, security, and development cut across all horizontal layers Management and monitoring involves all aspects of SOA-like services, SLAs, and other QoS lifecycle processes for both applications and services surrounding SOA governance.     9.          EA Governance, Reference Architecture, Roadmap, Principles, and Best Practices:   EA Governance is important in terms of providing the overall direction to SOA implementation within the enterprise. This involves board-level involvement, in addition to business and IT executives. At a high level, this involves managing the SOA projects implementation, managing SOA infrastructure, and controlling the entire effort through all fine-tuned IT processes in accordance with COBIT (Control Objectives for Information Technology).   Devising tools and techniques to promote reuse culture, and the SOA way of doing things needs competency centers to be established in addition to training the workforce to take up new roles that are suited to SOA journey.   Conclusions   Reference Architectures can serve as the basis for disparate architecture efforts throughout the organization, even if they use different tools and technologies. Reference architectures provide best practices and approaches in the independent way a vendor deals with technology and standards. Reference Architectures model the abstract architectural elements for an enterprise independent of the technologies, protocols, and products that are used to implement an SOA. Telecom enterprises today are facing significant business and technology challenges due to growing competition, a multitude of services, and convergence. Adopting architectural best practices could go a long way in meeting these challenges. The use of SOA-based architecture for communication to each of the external systems like Billing, CRM, etc., in OSS/BSS system has made the architecture very loosely coupled, with greater flexibility. Any change in the external systems would be absorbed at the Integration Layer without affecting the rest of the ecosystem. The use of a Business Process Management (BPM) tool makes the management and maintenance of the business processes easy, with better performance in terms of lead time, quality, and cost. Since the Architecture is based on standards, it will lower the cost of deploying and managing OSS/BSS applications over their lifecycles.

    Read the article

  • Enterprise Library Logging / Exception handling and Postsharp

    - by subodhnpushpak
    One of my colleagues came-up with a unique situation where it was required to create log files based on the input file which is uploaded. For example if A.xml is uploaded, the corresponding log file should be A_log.txt. I am a strong believer that Logging / EH / caching are cross-cutting architecture aspects and should be least invasive to the business-logic written in enterprise application. I have been using Enterprise Library for logging / EH (i use to work with Avanade, so i have affection towards the library!! :D ). I have been also using excellent library called PostSharp for cross cutting aspect. Here i present a solution with and without PostSharp all in a unit test. Please see full source code at end of the this blog post. But first, we need to tweak the enterprise library so that the log files are created at runtime based on input given. Below is Custom trace listner which writes log into a given file extracted out of Logentry extendedProperties property. using Microsoft.Practices.EnterpriseLibrary.Common.Configuration; using Microsoft.Practices.EnterpriseLibrary.Logging.Configuration; using Microsoft.Practices.EnterpriseLibrary.Logging.TraceListeners; using Microsoft.Practices.EnterpriseLibrary.Logging; using System.IO; using System.Text; using System; using System.Diagnostics;   namespace Subodh.Framework.Logging { [ConfigurationElementType(typeof(CustomTraceListenerData))] public class LogToFileTraceListener : CustomTraceListener {   private static object syncRoot = new object();   public override void TraceData(TraceEventCache eventCache, string source, TraceEventType eventType, int id, object data) {   if ((data is LogEntry) & this.Formatter != null) { WriteOutToLog(this.Formatter.Format((LogEntry)data), (LogEntry)data); } else { WriteOutToLog(data.ToString(), (LogEntry)data); } }   public override void Write(string message) { Debug.Print(message.ToString()); }   public override void WriteLine(string message) { Debug.Print(message.ToString()); }   private void WriteOutToLog(string BodyText, LogEntry logentry) { try { //Get the filelocation from the extended properties if (logentry.ExtendedProperties.ContainsKey("filelocation")) { string fullPath = Path.GetFullPath(logentry.ExtendedProperties["filelocation"].ToString());   //Create the directory where the log file is written to if it does not exist. DirectoryInfo directoryInfo = new DirectoryInfo(Path.GetDirectoryName(fullPath));   if (directoryInfo.Exists == false) { directoryInfo.Create(); }   //Lock the file to prevent another process from using this file //as data is being written to it.   lock (syncRoot) { using (FileStream fs = new FileStream(fullPath, FileMode.Append, FileAccess.Write, FileShare.Write, 4096, true)) { using (StreamWriter sw = new StreamWriter(fs, Encoding.UTF8)) { Log(BodyText, sw); sw.Close(); } fs.Close(); } } } } catch (Exception ex) { throw new LoggingException(ex.Message, ex); } }   /// <summary> /// Write message to named file /// </summary> public static void Log(string logMessage, TextWriter w) { w.WriteLine("{0}", logMessage); } } }   The above can be “plugged into” the code using below configuration <loggingConfiguration name="Logging Application Block" tracingEnabled="true" defaultCategory="Trace" logWarningsWhenNoCategoriesMatch="true"> <listeners> <add listenerDataType="Microsoft.Practices.EnterpriseLibrary.Logging.Configuration.CustomTraceListenerData, Microsoft.Practices.EnterpriseLibrary.Logging, Version=4.1.0.0, Culture=neutral, PublicKeyToken=31bf3856ad364e35" traceOutputOptions="None" filter="All" type="Subodh.Framework.Logging.LogToFileTraceListener, Subodh.Framework.Logging, Version=1.0.0.0, Culture=neutral, PublicKeyToken=null" name="Subodh Custom Trace Listener" initializeData="" formatter="Text Formatter" /> </listeners> Similarly we can use PostSharp to expose the above as cross cutting aspects as below using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Reflection; using PostSharp.Laos; using System.Diagnostics; using GC.FrameworkServices.ExceptionHandler; using Subodh.Framework.Logging;   namespace Subodh.Framework.ExceptionHandling { [Serializable] public sealed class LogExceptionAttribute : OnExceptionAspect { private string prefix; private MethodFormatStrings formatStrings;   // This field is not serialized. It is used only at compile time. [NonSerialized] private readonly Type exceptionType; private string fileName;   /// <summary> /// Declares a <see cref="XTraceExceptionAttribute"/> custom attribute /// that logs every exception flowing out of the methods to which /// the custom attribute is applied. /// </summary> public LogExceptionAttribute() { }   /// <summary> /// Declares a <see cref="XTraceExceptionAttribute"/> custom attribute /// that logs every exception derived from a given <see cref="Type"/> /// flowing out of the methods to which /// the custom attribute is applied. /// </summary> /// <param name="exceptionType"></param> public LogExceptionAttribute( Type exceptionType ) { this.exceptionType = exceptionType; }   public LogExceptionAttribute(Type exceptionType, string fileName) { this.exceptionType = exceptionType; this.fileName = fileName; }   /// <summary> /// Gets or sets the prefix string, printed before every trace message. /// </summary> /// <value> /// For instance <c>[Exception]</c>. /// </value> public string Prefix { get { return this.prefix; } set { this.prefix = value; } }   /// <summary> /// Initializes the current object. Called at compile time by PostSharp. /// </summary> /// <param name="method">Method to which the current instance is /// associated.</param> public override void CompileTimeInitialize( MethodBase method ) { // We just initialize our fields. They will be serialized at compile-time // and deserialized at runtime. this.formatStrings = Formatter.GetMethodFormatStrings( method ); this.prefix = Formatter.NormalizePrefix( this.prefix ); }   public override Type GetExceptionType( MethodBase method ) { return this.exceptionType; }   /// <summary> /// Method executed when an exception occurs in the methods to which the current /// custom attribute has been applied. We just write a record to the tracing /// subsystem. /// </summary> /// <param name="context">Event arguments specifying which method /// is being called and with which parameters.</param> public override void OnException( MethodExecutionEventArgs context ) { string message = String.Format("{0}Exception {1} {{{2}}} in {{{3}}}. \r\n\r\nStack Trace {4}", this.prefix, context.Exception.GetType().Name, context.Exception.Message, this.formatStrings.Format(context.Instance, context.Method, context.GetReadOnlyArgumentArray()), context.Exception.StackTrace); if(!string.IsNullOrEmpty(fileName)) { ApplicationLogger.LogException(message, fileName); } else { ApplicationLogger.LogException(message, Source.UtilityService); } } } } To use the above below is the unit test [TestMethod] [ExpectedException(typeof(NotImplementedException))] public void TestMethod1() { MethodThrowingExceptionForLog(); try { MethodThrowingExceptionForLogWithPostSharp(); } catch (NotImplementedException ex) { throw ex; } }   private void MethodThrowingExceptionForLog() { try { throw new NotImplementedException(); } catch (NotImplementedException ex) { // create file and then write log ApplicationLogger.TraceMessage("this is a trace message which will be logged in Test1MyFile", @"D:\EL\Test1Myfile.txt"); ApplicationLogger.TraceMessage("this is a trace message which will be logged in YetAnotherTest1Myfile", @"D:\EL\YetAnotherTest1Myfile.txt"); } }   // Automatically log details using attributes // Log exception using attributes .... A La WCF [FaultContract(typeof(FaultMessage))] style] [Log(@"D:\EL\Test1MyfileLogPostsharp.txt")] [LogException(typeof(NotImplementedException), @"D:\EL\Test1MyfileExceptionPostsharp.txt")] private void MethodThrowingExceptionForLogWithPostSharp() { throw new NotImplementedException(); } The good thing about the approach is that all the logging and EH is done at centralized location controlled by PostSharp. Of Course, if some other library has to be used instead of EL, it can easily be plugged in. Also, the coder ARE ONLY involved in writing business code in methods, which makes code cleaner. Here is the full source code. The third party assemblies provided are from EL and PostSharp and i presume you will find these useful. Do let me know your thoughts / ideas on the same. Technorati Tags: PostSharp,Enterprize library,C#,Logging,Exception handling

    Read the article

  • Save Web Articles to Read Later with Instapaper

    - by Mysticgeek
    Have you ever come across a bunch of great articles that you want to read online, but just don’t have the time? Today we take a look at an online service that allows you to read your articles later, either online, or on an iPhone, or eReader. Instapaper Instapaper is an awesome tool that allows you to save web pages so you can read them at a later time. Not only does it save an online article to read later, but also gives you several choices for where you want to read it. Sign up for a free account, and drag the “Read Later” bookmarklet to the bookmarks bar in your browser. To save a page you’ll need to be logged into your account. When you’re at a page that you can’t read right away, just click on the Read Later button in the bookmarks bar. After clicking the Read Later button, a small message is displayed indicating that the page has been saved to the Instapaper site. Save as many pages as you want, and when you’re ready to read them, go to the Instapaper site and you’ll see a list of the articles you saved. You can click on the link to go directly to the saved oage, read it as text (leaving out a bunch of images), or archive the article for later. One of the really appealing beta features is you can save the article in .mobi format for a Kindle, or ePub format for other eReaders such a the Sony Reader. Another neat feature is the “Instapaper Text” bookmarklet that lets you view an article on a graphics heavy page with only text, but doesn’t save it to your account. Before After There are also other cool features such as iPhone Apps, Kindle automatic wireless delivery, send items to Google Reader, and more. If you wish you could collect all of the neat articles you run across each day for reading later via multiple formats, Instapaper is a great tool for the job. Check Out Instapaper Similar Articles Productive Geek Tips Save Pages for Later With Reading List Extension for FirefoxGreat Geek SitesAbout the GeekHow-To Geek Changes in ProgressMake Outlook 2007 Mark Items as Read When Viewed in Reading Pane TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips DVDFab 6 Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 Classic Cinema Online offers 100’s of OnDemand Movies OutSync will Sync Photos of your Friends on Facebook and Outlook Windows 7 Easter Theme YoWindoW, a real time weather screensaver Optimize your computer the Microsoft way Stormpulse provides slick, real time weather data

    Read the article

  • Toorcon14

    - by danx
    Toorcon 2012 Information Security Conference San Diego, CA, http://www.toorcon.org/ Dan Anderson, October 2012 It's almost Halloween, and we all know what that means—yes, of course, it's time for another Toorcon Conference! Toorcon is an annual conference for people interested in computer security. This includes the whole range of hackers, computer hobbyists, professionals, security consultants, press, law enforcement, prosecutors, FBI, etc. We're at Toorcon 14—see earlier blogs for some of the previous Toorcon's I've attended (back to 2003). This year's "con" was held at the Westin on Broadway in downtown San Diego, California. The following are not necessarily my views—I'm just the messenger—although I could have misquoted or misparaphrased the speakers. Also, I only reviewed some of the talks, below, which I attended and interested me. MalAndroid—the Crux of Android Infections, Aditya K. Sood Programming Weird Machines with ELF Metadata, Rebecca "bx" Shapiro Privacy at the Handset: New FCC Rules?, Valkyrie Hacking Measured Boot and UEFI, Dan Griffin You Can't Buy Security: Building the Open Source InfoSec Program, Boris Sverdlik What Journalists Want: The Investigative Reporters' Perspective on Hacking, Dave Maas & Jason Leopold Accessibility and Security, Anna Shubina Stop Patching, for Stronger PCI Compliance, Adam Brand McAfee Secure & Trustmarks — a Hacker's Best Friend, Jay James & Shane MacDougall MalAndroid—the Crux of Android Infections Aditya K. Sood, IOActive, Michigan State PhD candidate Aditya talked about Android smartphone malware. There's a lot of old Android software out there—over 50% Gingerbread (2.3.x)—and most have unpatched vulnerabilities. Of 9 Android vulnerabilities, 8 have known exploits (such as the old Gingerbread Global Object Table exploit). Android protection includes sandboxing, security scanner, app permissions, and screened Android app market. The Android permission checker has fine-grain resource control, policy enforcement. Android static analysis also includes a static analysis app checker (bouncer), and a vulnerablity checker. What security problems does Android have? User-centric security, which depends on the user to grant permission and make smart decisions. But users don't care or think about malware (the're not aware, not paranoid). All they want is functionality, extensibility, mobility Android had no "proper" encryption before Android 3.0 No built-in protection against social engineering and web tricks Alternative Android app markets are unsafe. Simply visiting some markets can infect Android Aditya classified Android Malware types as: Type A—Apps. These interact with the Android app framework. For example, a fake Netflix app. Or Android Gold Dream (game), which uploads user files stealthy manner to a remote location. Type K—Kernel. Exploits underlying Linux libraries or kernel Type H—Hybrid. These use multiple layers (app framework, libraries, kernel). These are most commonly used by Android botnets, which are popular with Chinese botnet authors What are the threats from Android malware? These incude leak info (contacts), banking fraud, corporate network attacks, malware advertising, malware "Hackivism" (the promotion of social causes. For example, promiting specific leaders of the Tunisian or Iranian revolutions. Android malware is frequently "masquerated". That is, repackaged inside a legit app with malware. To avoid detection, the hidden malware is not unwrapped until runtime. The malware payload can be hidden in, for example, PNG files. Less common are Android bootkits—there's not many around. What they do is hijack the Android init framework—alteering system programs and daemons, then deletes itself. For example, the DKF Bootkit (China). Android App Problems: no code signing! all self-signed native code execution permission sandbox — all or none alternate market places no robust Android malware detection at network level delayed patch process Programming Weird Machines with ELF Metadata Rebecca "bx" Shapiro, Dartmouth College, NH https://github.com/bx/elf-bf-tools @bxsays on twitter Definitions. "ELF" is an executable file format used in linking and loading executables (on UNIX/Linux-class machines). "Weird machine" uses undocumented computation sources (I think of them as unintended virtual machines). Some examples of "weird machines" are those that: return to weird location, does SQL injection, corrupts the heap. Bx then talked about using ELF metadata as (an uintended) "weird machine". Some ELF background: A compiler takes source code and generates a ELF object file (hello.o). A static linker makes an ELF executable from the object file. A runtime linker and loader takes ELF executable and loads and relocates it in memory. The ELF file has symbols to relocate functions and variables. ELF has two relocation tables—one at link time and another one at loading time: .rela.dyn (link time) and .dynsym (dynamic table). GOT: Global Offset Table of addresses for dynamically-linked functions. PLT: Procedure Linkage Tables—works with GOT. The memory layout of a process (not the ELF file) is, in order: program (+ heap), dynamic libraries, libc, ld.so, stack (which includes the dynamic table loaded into memory) For ELF, the "weird machine" is found and exploited in the loader. ELF can be crafted for executing viruses, by tricking runtime into executing interpreted "code" in the ELF symbol table. One can inject parasitic "code" without modifying the actual ELF code portions. Think of the ELF symbol table as an "assembly language" interpreter. It has these elements: instructions: Add, move, jump if not 0 (jnz) Think of symbol table entries as "registers" symbol table value is "contents" immediate values are constants direct values are addresses (e.g., 0xdeadbeef) move instruction: is a relocation table entry add instruction: relocation table "addend" entry jnz instruction: takes multiple relocation table entries The ELF weird machine exploits the loader by relocating relocation table entries. The loader will go on forever until told to stop. It stores state on stack at "end" and uses IFUNC table entries (containing function pointer address). The ELF weird machine, called "Brainfu*k" (BF) has: 8 instructions: pointer inc, dec, inc indirect, dec indirect, jump forward, jump backward, print. Three registers - 3 registers Bx showed example BF source code that implemented a Turing machine printing "hello, world". More interesting was the next demo, where bx modified ping. Ping runs suid as root, but quickly drops privilege. BF modified the loader to disable the library function call dropping privilege, so it remained as root. Then BF modified the ping -t argument to execute the -t filename as root. It's best to show what this modified ping does with an example: $ whoami bx $ ping localhost -t backdoor.sh # executes backdoor $ whoami root $ The modified code increased from 285948 bytes to 290209 bytes. A BF tool compiles "executable" by modifying the symbol table in an existing ELF executable. The tool modifies .dynsym and .rela.dyn table, but not code or data. Privacy at the Handset: New FCC Rules? "Valkyrie" (Christie Dudley, Santa Clara Law JD candidate) Valkyrie talked about mobile handset privacy. Some background: Senator Franken (also a comedian) became alarmed about CarrierIQ, where the carriers track their customers. Franken asked the FCC to find out what obligations carriers think they have to protect privacy. The carriers' response was that they are doing just fine with self-regulation—no worries! Carriers need to collect data, such as missed calls, to maintain network quality. But carriers also sell data for marketing. Verizon sells customer data and enables this with a narrow privacy policy (only 1 month to opt out, with difficulties). The data sold is not individually identifiable and is aggregated. But Verizon recommends, as an aggregation workaround to "recollate" data to other databases to identify customers indirectly. The FCC has regulated telephone privacy since 1934 and mobile network privacy since 2007. Also, the carriers say mobile phone privacy is a FTC responsibility (not FCC). FTC is trying to improve mobile app privacy, but FTC has no authority over carrier / customer relationships. As a side note, Apple iPhones are unique as carriers have extra control over iPhones they don't have with other smartphones. As a result iPhones may be more regulated. Who are the consumer advocates? Everyone knows EFF, but EPIC (Electrnic Privacy Info Center), although more obsecure, is more relevant. What to do? Carriers must be accountable. Opt-in and opt-out at any time. Carriers need incentive to grant users control for those who want it, by holding them liable and responsible for breeches on their clock. Location information should be added current CPNI privacy protection, and require "Pen/trap" judicial order to obtain (and would still be a lower standard than 4th Amendment). Politics are on a pro-privacy swing now, with many senators and the Whitehouse. There will probably be new regulation soon, and enforcement will be a problem, but consumers will still have some benefit. Hacking Measured Boot and UEFI Dan Griffin, JWSecure, Inc., Seattle, @JWSdan Dan talked about hacking measured UEFI boot. First some terms: UEFI is a boot technology that is replacing BIOS (has whitelisting and blacklisting). UEFI protects devices against rootkits. TPM - hardware security device to store hashs and hardware-protected keys "secure boot" can control at firmware level what boot images can boot "measured boot" OS feature that tracks hashes (from BIOS, boot loader, krnel, early drivers). "remote attestation" allows remote validation and control based on policy on a remote attestation server. Microsoft pushing TPM (Windows 8 required), but Google is not. Intel TianoCore is the only open source for UEFI. Dan has Measured Boot Tool at http://mbt.codeplex.com/ with a demo where you can also view TPM data. TPM support already on enterprise-class machines. UEFI Weaknesses. UEFI toolkits are evolving rapidly, but UEFI has weaknesses: assume user is an ally trust TPM implicitly, and attached to computer hibernate file is unprotected (disk encryption protects against this) protection migrating from hardware to firmware delays in patching and whitelist updates will UEFI really be adopted by the mainstream (smartphone hardware support, bank support, apathetic consumer support) You Can't Buy Security: Building the Open Source InfoSec Program Boris Sverdlik, ISDPodcast.com co-host Boris talked about problems typical with current security audits. "IT Security" is an oxymoron—IT exists to enable buiness, uptime, utilization, reporting, but don't care about security—IT has conflict of interest. There's no Magic Bullet ("blinky box"), no one-size-fits-all solution (e.g., Intrusion Detection Systems (IDSs)). Regulations don't make you secure. The cloud is not secure (because of shared data and admin access). Defense and pen testing is not sexy. Auditors are not solution (security not a checklist)—what's needed is experience and adaptability—need soft skills. Step 1: First thing is to Google and learn the company end-to-end before you start. Get to know the management team (not IT team), meet as many people as you can. Don't use arbitrary values such as CISSP scores. Quantitive risk assessment is a myth (e.g. AV*EF-SLE). Learn different Business Units, legal/regulatory obligations, learn the business and where the money is made, verify company is protected from script kiddies (easy), learn sensitive information (IP, internal use only), and start with low-hanging fruit (customer service reps and social engineering). Step 2: Policies. Keep policies short and relevant. Generic SANS "security" boilerplate policies don't make sense and are not followed. Focus on acceptable use, data usage, communications, physical security. Step 3: Implementation: keep it simple stupid. Open source, although useful, is not free (implementation cost). Access controls with authentication & authorization for local and remote access. MS Windows has it, otherwise use OpenLDAP, OpenIAM, etc. Application security Everyone tries to reinvent the wheel—use existing static analysis tools. Review high-risk apps and major revisions. Don't run different risk level apps on same system. Assume host/client compromised and use app-level security control. Network security VLAN != segregated because there's too many workarounds. Use explicit firwall rules, active and passive network monitoring (snort is free), disallow end user access to production environment, have a proxy instead of direct Internet access. Also, SSL certificates are not good two-factor auth and SSL does not mean "safe." Operational Controls Have change, patch, asset, & vulnerability management (OSSI is free). For change management, always review code before pushing to production For logging, have centralized security logging for business-critical systems, separate security logging from administrative/IT logging, and lock down log (as it has everything). Monitor with OSSIM (open source). Use intrusion detection, but not just to fulfill a checkbox: build rules from a whitelist perspective (snort). OSSEC has 95% of what you need. Vulnerability management is a QA function when done right: OpenVas and Seccubus are free. Security awareness The reality is users will always click everything. Build real awareness, not compliance driven checkbox, and have it integrated into the culture. Pen test by crowd sourcing—test with logging COSSP http://www.cossp.org/ - Comprehensive Open Source Security Project What Journalists Want: The Investigative Reporters' Perspective on Hacking Dave Maas, San Diego CityBeat Jason Leopold, Truthout.org The difference between hackers and investigative journalists: For hackers, the motivation varies, but method is same, technological specialties. For investigative journalists, it's about one thing—The Story, and they need broad info-gathering skills. J-School in 60 Seconds: Generic formula: Person or issue of pubic interest, new info, or angle. Generic criteria: proximity, prominence, timeliness, human interest, oddity, or consequence. Media awareness of hackers and trends: journalists becoming extremely aware of hackers with congressional debates (privacy, data breaches), demand for data-mining Journalists, use of coding and web development for Journalists, and Journalists busted for hacking (Murdock). Info gathering by investigative journalists include Public records laws. Federal Freedom of Information Act (FOIA) is good, but slow. California Public Records Act is a lot stronger. FOIA takes forever because of foot-dragging—it helps to be specific. Often need to sue (especially FBI). CPRA is faster, and requests can be vague. Dumps and leaks (a la Wikileaks) Journalists want: leads, protecting ourselves, our sources, and adapting tools for news gathering (Google hacking). Anonomity is important to whistleblowers. They want no digital footprint left behind (e.g., email, web log). They don't trust encryption, want to feel safe and secure. Whistleblower laws are very weak—there's no upside for whistleblowers—they have to be very passionate to do it. Accessibility and Security or: How I Learned to Stop Worrying and Love the Halting Problem Anna Shubina, Dartmouth College Anna talked about how accessibility and security are related. Accessibility of digital content (not real world accessibility). mostly refers to blind users and screenreaders, for our purpose. Accessibility is about parsing documents, as are many security issues. "Rich" executable content causes accessibility to fail, and often causes security to fail. For example MS Word has executable format—it's not a document exchange format—more dangerous than PDF or HTML. Accessibility is often the first and maybe only sanity check with parsing. They have no choice because someone may want to read what you write. Google, for example, is very particular about web browser you use and are bad at supporting other browsers. Uses JavaScript instead of links, often requiring mouseover to display content. PDF is a security nightmare. Executible format, embedded flash, JavaScript, etc. 15 million lines of code. Google Chrome doesn't handle PDF correctly, causing several security bugs. PDF has an accessibility checker and PDF tagging, to help with accessibility. But no PDF checker checks for incorrect tags, untagged content, or validates lists or tables. None check executable content at all. The "Halting Problem" is: can one decide whether a program will ever stop? The answer, in general, is no (Rice's theorem). The same holds true for accessibility checkers. Language-theoretic Security says complicated data formats are hard to parse and cannot be solved due to the Halting Problem. W3C Web Accessibility Guidelines: "Perceivable, Operable, Understandable, Robust" Not much help though, except for "Robust", but here's some gems: * all information should be parsable (paraphrasing) * if not parsable, cannot be converted to alternate formats * maximize compatibility in new document formats Executible webpages are bad for security and accessibility. They say it's for a better web experience. But is it necessary to stuff web pages with JavaScript for a better experience? A good example is The Drudge Report—it has hand-written HTML with no JavaScript, yet drives a lot of web traffic due to good content. A bad example is Google News—hidden scrollbars, guessing user input. Solutions: Accessibility and security problems come from same source Expose "better user experience" myth Keep your corner of Internet parsable Remember "Halting Problem"—recognize false solutions (checking and verifying tools) Stop Patching, for Stronger PCI Compliance Adam Brand, protiviti @adamrbrand, http://www.picfun.com/ Adam talked about PCI compliance for retail sales. Take an example: for PCI compliance, 50% of Brian's time (a IT guy), 960 hours/year was spent patching POSs in 850 restaurants. Often applying some patches make no sense (like fixing a browser vulnerability on a server). "Scanner worship" is overuse of vulnerability scanners—it gives a warm and fuzzy and it's simple (red or green results—fix reds). Scanners give a false sense of security. In reality, breeches from missing patches are uncommon—more common problems are: default passwords, cleartext authentication, misconfiguration (firewall ports open). Patching Myths: Myth 1: install within 30 days of patch release (but PCI §6.1 allows a "risk-based approach" instead). Myth 2: vendor decides what's critical (also PCI §6.1). But §6.2 requires user ranking of vulnerabilities instead. Myth 3: scan and rescan until it passes. But PCI §11.2.1b says this applies only to high-risk vulnerabilities. Adam says good recommendations come from NIST 800-40. Instead use sane patching and focus on what's really important. From NIST 800-40: Proactive: Use a proactive vulnerability management process: use change control, configuration management, monitor file integrity. Monitor: start with NVD and other vulnerability alerts, not scanner results. Evaluate: public-facing system? workstation? internal server? (risk rank) Decide:on action and timeline Test: pre-test patches (stability, functionality, rollback) for change control Install: notify, change control, tickets McAfee Secure & Trustmarks — a Hacker's Best Friend Jay James, Shane MacDougall, Tactical Intelligence Inc., Canada "McAfee Secure Trustmark" is a website seal marketed by McAfee. A website gets this badge if they pass their remote scanning. The problem is a removal of trustmarks act as flags that you're vulnerable. Easy to view status change by viewing McAfee list on website or on Google. "Secure TrustGuard" is similar to McAfee. Jay and Shane wrote Perl scripts to gather sites from McAfee and search engines. If their certification image changes to a 1x1 pixel image, then they are longer certified. Their scripts take deltas of scans to see what changed daily. The bottom line is change in TrustGuard status is a flag for hackers to attack your site. Entire idea of seals is silly—you're raising a flag saying if you're vulnerable.

    Read the article

  • C++ AMP Video Overview

    - by Daniel Moth
    I hope to be recording some C++ AMP screencasts for channel9 soon (you'll find them through my regular screencasts link on the left), and in all of them I will assume you have watched this short interview overview of C++ AMP.   Note: I think there were some technical problems with streaming so best to download the "High Quality WMV" or switch to progressive format. Comments about this post by Daniel Moth welcome at the original blog.

    Read the article

  • How to create item in SharePoint2010 document library using SharePoint Web service

    - by ybbest
    Today, I’d like to show you how to create item in SharePoint2010 document library using SharePoint Web service. Originally, I thought I could use the WebSvcLists(list.asmx) that provides methods for working with lists and list data. However, after a bit Googling , I realize that I need to use the WebSvcCopy (copy.asmx).Here are the code used private const string siteUrl = "http://ybbest"; private static void Main(string[] args) { using (CopyWSProxyWrapper copyWSProxyWrapper = new CopyWSProxyWrapper(siteUrl)) { copyWSProxyWrapper.UploadFile("TestDoc2.pdf", new[] {string.Format("{0}/Shared Documents/TestDoc2.pdf", siteUrl)}, Resource.TestDoc, GetFieldInfos().ToArray()); } } private static List<FieldInformation> GetFieldInfos() { var fieldInfos = new List<FieldInformation>(); //The InternalName , DisplayName and FieldType are both required to make it work fieldInfos.Add(new FieldInformation { InternalName = "Title", Value = "TestDoc2.pdf", DisplayName = "Title", Type = FieldType.Text }); return fieldInfos; } Here is the code for the proxy wrapper. public class CopyWSProxyWrapper : IDisposable { private readonly string siteUrl; public CopyWSProxyWrapper(string siteUrl) { this.siteUrl = siteUrl; } private readonly CopySoapClient proxy = new CopySoapClient(); public void UploadFile(string testdoc2Pdf, string[] destinationUrls, byte[] testDoc, FieldInformation[] fieldInformations) { using (CopySoapClient proxy = new CopySoapClient()) { proxy.Endpoint.Address = new EndpointAddress(String.Format("{0}/_vti_bin/copy.asmx", siteUrl)); proxy.ClientCredentials.Windows.ClientCredential = CredentialCache.DefaultNetworkCredentials; proxy.ClientCredentials.Windows.AllowedImpersonationLevel = TokenImpersonationLevel.Impersonation; CopyResult[] copyResults = null; try { proxy.CopyIntoItems(testdoc2Pdf, destinationUrls, fieldInformations, testDoc, out copyResults); } catch (Exception e) { System.Console.WriteLine(e); } if (copyResults != null) System.Console.WriteLine(copyResults[0].ErrorMessage); System.Console.ReadLine(); } } public void Dispose() { proxy.Close(); } } You can download the source code here . ******Update********** It seems to be a bug that , you can not set the contentType when create a document item using Copy.asmx. In sp2007 the field type was Choice, however, in sp2010 it is actually Computed. I have tried using the Computed field type with no luck. I have also tried sending the ContentTypeId and this does not work.You might have to write your own web services to handle this.You can check my previous blog on how to get started with you own custom WCF in SP2010 here. References: SharePoint 2010 Web Services SharePoint2007 Web Services SharePoint MSDN Forum

    Read the article

  • Toorcon 15 (2013)

    - by danx
    The Toorcon gang (senior staff): h1kari (founder), nfiltr8, and Geo Introduction to Toorcon 15 (2013) A Tale of One Software Bypass of MS Windows 8 Secure Boot Breaching SSL, One Byte at a Time Running at 99%: Surviving an Application DoS Security Response in the Age of Mass Customized Attacks x86 Rewriting: Defeating RoP and other Shinanighans Clowntown Express: interesting bugs and running a bug bounty program Active Fingerprinting of Encrypted VPNs Making Attacks Go Backwards Mask Your Checksums—The Gorry Details Adventures with weird machines thirty years after "Reflections on Trusting Trust" Introduction to Toorcon 15 (2013) Toorcon 15 is the 15th annual security conference held in San Diego. I've attended about a third of them and blogged about previous conferences I attended here starting in 2003. As always, I've only summarized the talks I attended and interested me enough to write about them. Be aware that I may have misrepresented the speaker's remarks and that they are not my remarks or opinion, or those of my employer, so don't quote me or them. Those seeking further details may contact the speakers directly or use The Google. For some talks, I have a URL for further information. A Tale of One Software Bypass of MS Windows 8 Secure Boot Andrew Furtak and Oleksandr Bazhaniuk Yuri Bulygin, Oleksandr ("Alex") Bazhaniuk, and (not present) Andrew Furtak Yuri and Alex talked about UEFI and Bootkits and bypassing MS Windows 8 Secure Boot, with vendor recommendations. They previously gave this talk at the BlackHat 2013 conference. MS Windows 8 Secure Boot Overview UEFI (Unified Extensible Firmware Interface) is interface between hardware and OS. UEFI is processor and architecture independent. Malware can replace bootloader (bootx64.efi, bootmgfw.efi). Once replaced can modify kernel. Trivial to replace bootloader. Today many legacy bootkits—UEFI replaces them most of them. MS Windows 8 Secure Boot verifies everything you load, either through signatures or hashes. UEFI firmware relies on secure update (with signed update). You would think Secure Boot would rely on ROM (such as used for phones0, but you can't do that for PCs—PCs use writable memory with signatures DXE core verifies the UEFI boat loader(s) OS Loader (winload.efi, winresume.efi) verifies the OS kernel A chain of trust is established with a root key (Platform Key, PK), which is a cert belonging to the platform vendor. Key Exchange Keys (KEKs) verify an "authorized" database (db), and "forbidden" database (dbx). X.509 certs with SHA-1/SHA-256 hashes. Keys are stored in non-volatile (NV) flash-based NVRAM. Boot Services (BS) allow adding/deleting keys (can't be accessed once OS starts—which uses Run-Time (RT)). Root cert uses RSA-2048 public keys and PKCS#7 format signatures. SecureBoot — enable disable image signature checks SetupMode — update keys, self-signed keys, and secure boot variables CustomMode — allows updating keys Secure Boot policy settings are: always execute, never execute, allow execute on security violation, defer execute on security violation, deny execute on security violation, query user on security violation Attacking MS Windows 8 Secure Boot Secure Boot does NOT protect from physical access. Can disable from console. Each BIOS vendor implements Secure Boot differently. There are several platform and BIOS vendors. It becomes a "zoo" of implementations—which can be taken advantage of. Secure Boot is secure only when all vendors implement it correctly. Allow only UEFI firmware signed updates protect UEFI firmware from direct modification in flash memory protect FW update components program SPI controller securely protect secure boot policy settings in nvram protect runtime api disable compatibility support module which allows unsigned legacy Can corrupt the Platform Key (PK) EFI root certificate variable in SPI flash. If PK is not found, FW enters setup mode wich secure boot turned off. Can also exploit TPM in a similar manner. One is not supposed to be able to directly modify the PK in SPI flash from the OS though. But they found a bug that they can exploit from User Mode (undisclosed) and demoed the exploit. It loaded and ran their own bootkit. The exploit requires a reboot. Multiple vendors are vulnerable. They will disclose this exploit to vendors in the future. Recommendations: allow only signed updates protect UEFI fw in ROM protect EFI variable store in ROM Breaching SSL, One Byte at a Time Yoel Gluck and Angelo Prado Angelo Prado and Yoel Gluck, Salesforce.com CRIME is software that performs a "compression oracle attack." This is possible because the SSL protocol doesn't hide length, and because SSL compresses the header. CRIME requests with every possible character and measures the ciphertext length. Look for the plaintext which compresses the most and looks for the cookie one byte-at-a-time. SSL Compression uses LZ77 to reduce redundancy. Huffman coding replaces common byte sequences with shorter codes. US CERT thinks the SSL compression problem is fixed, but it isn't. They convinced CERT that it wasn't fixed and they issued a CVE. BREACH, breachattrack.com BREACH exploits the SSL response body (Accept-Encoding response, Content-Encoding). It takes advantage of the fact that the response is not compressed. BREACH uses gzip and needs fairly "stable" pages that are static for ~30 seconds. It needs attacker-supplied content (say from a web form or added to a URL parameter). BREACH listens to a session's requests and responses, then inserts extra requests and responses. Eventually, BREACH guesses a session's secret key. Can use compression to guess contents one byte at-a-time. For example, "Supersecret SupersecreX" (a wrong guess) compresses 10 bytes, and "Supersecret Supersecret" (a correct guess) compresses 11 bytes, so it can find each character by guessing every character. To start the guess, BREACH needs at least three known initial characters in the response sequence. Compression length then "leaks" information. Some roadblocks include no winners (all guesses wrong) or too many winners (multiple possibilities that compress the same). The solutions include: lookahead (guess 2 or 3 characters at-a-time instead of 1 character). Expensive rollback to last known conflict check compression ratio can brute-force first 3 "bootstrap" characters, if needed (expensive) block ciphers hide exact plain text length. Solution is to align response in advance to block size Mitigations length: use variable padding secrets: dynamic CSRF tokens per request secret: change over time separate secret to input-less servlets Future work eiter understand DEFLATE/GZIP HTTPS extensions Running at 99%: Surviving an Application DoS Ryan Huber Ryan Huber, Risk I/O Ryan first discussed various ways to do a denial of service (DoS) attack against web services. One usual method is to find a slow web page and do several wgets. Or download large files. Apache is not well suited at handling a large number of connections, but one can put something in front of it Can use Apache alternatives, such as nginx How to identify malicious hosts short, sudden web requests user-agent is obvious (curl, python) same url requested repeatedly no web page referer (not normal) hidden links. hide a link and see if a bot gets it restricted access if not your geo IP (unless the website is global) missing common headers in request regular timing first seen IP at beginning of attack count requests per hosts (usually a very large number) Use of captcha can mitigate attacks, but you'll lose a lot of genuine users. Bouncer, goo.gl/c2vyEc and www.github.com/rawdigits/Bouncer Bouncer is software written by Ryan in netflow. Bouncer has a small, unobtrusive footprint and detects DoS attempts. It closes blacklisted sockets immediately (not nice about it, no proper close connection). Aggregator collects requests and controls your web proxies. Need NTP on the front end web servers for clean data for use by bouncer. Bouncer is also useful for a popularity storm ("Slashdotting") and scraper storms. Future features: gzip collection data, documentation, consumer library, multitask, logging destroyed connections. Takeaways: DoS mitigation is easier with a complete picture Bouncer designed to make it easier to detect and defend DoS—not a complete cure Security Response in the Age of Mass Customized Attacks Peleus Uhley and Karthik Raman Peleus Uhley and Karthik Raman, Adobe ASSET, blogs.adobe.com/asset/ Peleus and Karthik talked about response to mass-customized exploits. Attackers behave much like a business. "Mass customization" refers to concept discussed in the book Future Perfect by Stan Davis of Harvard Business School. Mass customization is differentiating a product for an individual customer, but at a mass production price. For example, the same individual with a debit card receives basically the same customized ATM experience around the world. Or designing your own PC from commodity parts. Exploit kits are another example of mass customization. The kits support multiple browsers and plugins, allows new modules. Exploit kits are cheap and customizable. Organized gangs use exploit kits. A group at Berkeley looked at 77,000 malicious websites (Grier et al., "Manufacturing Compromise: The Emergence of Exploit-as-a-Service", 2012). They found 10,000 distinct binaries among them, but derived from only a dozen or so exploit kits. Characteristics of Mass Malware: potent, resilient, relatively low cost Technical characteristics: multiple OS, multipe payloads, multiple scenarios, multiple languages, obfuscation Response time for 0-day exploits has gone down from ~40 days 5 years ago to about ~10 days now. So the drive with malware is towards mass customized exploits, to avoid detection There's plenty of evicence that exploit development has Project Manager bureaucracy. They infer from the malware edicts to: support all versions of reader support all versions of windows support all versions of flash support all browsers write large complex, difficult to main code (8750 lines of JavaScript for example Exploits have "loose coupling" of multipe versions of software (adobe), OS, and browser. This allows specific attacks against specific versions of multiple pieces of software. Also allows exploits of more obscure software/OS/browsers and obscure versions. Gave examples of exploits that exploited 2, 3, 6, or 14 separate bugs. However, these complete exploits are more likely to be buggy or fragile in themselves and easier to defeat. Future research includes normalizing malware and Javascript. Conclusion: The coming trend is that mass-malware with mass zero-day attacks will result in mass customization of attacks. x86 Rewriting: Defeating RoP and other Shinanighans Richard Wartell Richard Wartell The attack vector we are addressing here is: First some malware causes a buffer overflow. The malware has no program access, but input access and buffer overflow code onto stack Later the stack became non-executable. The workaround malware used was to write a bogus return address to the stack jumping to malware Later came ASLR (Address Space Layout Randomization) to randomize memory layout and make addresses non-deterministic. The workaround malware used was to jump t existing code segments in the program that can be used in bad ways "RoP" is Return-oriented Programming attacks. RoP attacks use your own code and write return address on stack to (existing) expoitable code found in program ("gadgets"). Pinkie Pie was paid $60K last year for a RoP attack. One solution is using anti-RoP compilers that compile source code with NO return instructions. ASLR does not randomize address space, just "gadgets". IPR/ILR ("Instruction Location Randomization") randomizes each instruction with a virtual machine. Richard's goal was to randomize a binary with no source code access. He created "STIR" (Self-Transofrming Instruction Relocation). STIR disassembles binary and operates on "basic blocks" of code. The STIR disassembler is conservative in what to disassemble. Each basic block is moved to a random location in memory. Next, STIR writes new code sections with copies of "basic blocks" of code in randomized locations. The old code is copied and rewritten with jumps to new code. the original code sections in the file is marked non-executible. STIR has better entropy than ASLR in location of code. Makes brute force attacks much harder. STIR runs on MS Windows (PEM) and Linux (ELF). It eliminated 99.96% or more "gadgets" (i.e., moved the address). Overhead usually 5-10% on MS Windows, about 1.5-4% on Linux (but some code actually runs faster!). The unique thing about STIR is it requires no source access and the modified binary fully works! Current work is to rewrite code to enforce security policies. For example, don't create a *.{exe,msi,bat} file. Or don't connect to the network after reading from the disk. Clowntown Express: interesting bugs and running a bug bounty program Collin Greene Collin Greene, Facebook Collin talked about Facebook's bug bounty program. Background at FB: FB has good security frameworks, such as security teams, external audits, and cc'ing on diffs. But there's lots of "deep, dark, forgotten" parts of legacy FB code. Collin gave several examples of bountied bugs. Some bounty submissions were on software purchased from a third-party (but bounty claimers don't know and don't care). We use security questions, as does everyone else, but they are basically insecure (often easily discoverable). Collin didn't expect many bugs from the bounty program, but they ended getting 20+ good bugs in first 24 hours and good submissions continue to come in. Bug bounties bring people in with different perspectives, and are paid only for success. Bug bounty is a better use of a fixed amount of time and money versus just code review or static code analysis. The Bounty program started July 2011 and paid out $1.5 million to date. 14% of the submissions have been high priority problems that needed to be fixed immediately. The best bugs come from a small % of submitters (as with everything else)—the top paid submitters are paid 6 figures a year. Spammers like to backstab competitors. The youngest sumitter was 13. Some submitters have been hired. Bug bounties also allows to see bugs that were missed by tools or reviews, allowing improvement in the process. Bug bounties might not work for traditional software companies where the product has release cycle or is not on Internet. Active Fingerprinting of Encrypted VPNs Anna Shubina Anna Shubina, Dartmouth Institute for Security, Technology, and Society (I missed the start of her talk because another track went overtime. But I have the DVD of the talk, so I'll expand later) IPsec leaves fingerprints. Using netcat, one can easily visually distinguish various crypto chaining modes just from packet timing on a chart (example, DES-CBC versus AES-CBC) One can tell a lot about VPNs just from ping roundtrips (such as what router is used) Delayed packets are not informative about a network, especially if far away from the network More needed to explore about how TCP works in real life with respect to timing Making Attacks Go Backwards Fuzzynop FuzzyNop, Mandiant This talk is not about threat attribution (finding who), product solutions, politics, or sales pitches. But who are making these malware threats? It's not a single person or group—they have diverse skill levels. There's a lot of fat-fingered fumblers out there. Always look for low-hanging fruit first: "hiding" malware in the temp, recycle, or root directories creation of unnamed scheduled tasks obvious names of files and syscalls ("ClearEventLog") uncleared event logs. Clearing event log in itself, and time of clearing, is a red flag and good first clue to look for on a suspect system Reverse engineering is hard. Disassembler use takes practice and skill. A popular tool is IDA Pro, but it takes multiple interactive iterations to get a clean disassembly. Key loggers are used a lot in targeted attacks. They are typically custom code or built in a backdoor. A big tip-off is that non-printable characters need to be printed out (such as "[Ctrl]" "[RightShift]") or time stamp printf strings. Look for these in files. Presence is not proof they are used. Absence is not proof they are not used. Java exploits. Can parse jar file with idxparser.py and decomile Java file. Java typially used to target tech companies. Backdoors are the main persistence mechanism (provided externally) for malware. Also malware typically needs command and control. Application of Artificial Intelligence in Ad-Hoc Static Code Analysis John Ashaman John Ashaman, Security Innovation Initially John tried to analyze open source files with open source static analysis tools, but these showed thousands of false positives. Also tried using grep, but tis fails to find anything even mildly complex. So next John decided to write his own tool. His approach was to first generate a call graph then analyze the graph. However, the problem is that making a call graph is really hard. For example, one problem is "evil" coding techniques, such as passing function pointer. First the tool generated an Abstract Syntax Tree (AST) with the nodes created from method declarations and edges created from method use. Then the tool generated a control flow graph with the goal to find a path through the AST (a maze) from source to sink. The algorithm is to look at adjacent nodes to see if any are "scary" (a vulnerability), using heuristics for search order. The tool, called "Scat" (Static Code Analysis Tool), currently looks for C# vulnerabilities and some simple PHP. Later, he plans to add more PHP, then JSP and Java. For more information see his posts in Security Innovation blog and NRefactory on GitHub. Mask Your Checksums—The Gorry Details Eric (XlogicX) Davisson Eric (XlogicX) Davisson Sometimes in emailing or posting TCP/IP packets to analyze problems, you may want to mask the IP address. But to do this correctly, you need to mask the checksum too, or you'll leak information about the IP. Problem reports found in stackoverflow.com, sans.org, and pastebin.org are usually not masked, but a few companies do care. If only the IP is masked, the IP may be guessed from checksum (that is, it leaks data). Other parts of packet may leak more data about the IP. TCP and IP checksums both refer to the same data, so can get more bits of information out of using both checksums than just using one checksum. Also, one can usually determine the OS from the TTL field and ports in a packet header. If we get hundreds of possible results (16x each masked nibble that is unknown), one can do other things to narrow the results, such as look at packet contents for domain or geo information. With hundreds of results, can import as CSV format into a spreadsheet. Can corelate with geo data and see where each possibility is located. Eric then demoed a real email report with a masked IP packet attached. Was able to find the exact IP address, given the geo and university of the sender. Point is if you're going to mask a packet, do it right. Eric wouldn't usually bother, but do it correctly if at all, to not create a false impression of security. Adventures with weird machines thirty years after "Reflections on Trusting Trust" Sergey Bratus Sergey Bratus, Dartmouth College (and Julian Bangert and Rebecca Shapiro, not present) "Reflections on Trusting Trust" refers to Ken Thompson's classic 1984 paper. "You can't trust code that you did not totally create yourself." There's invisible links in the chain-of-trust, such as "well-installed microcode bugs" or in the compiler, and other planted bugs. Thompson showed how a compiler can introduce and propagate bugs in unmodified source. But suppose if there's no bugs and you trust the author, can you trust the code? Hell No! There's too many factors—it's Babylonian in nature. Why not? Well, Input is not well-defined/recognized (code's assumptions about "checked" input will be violated (bug/vunerabiliy). For example, HTML is recursive, but Regex checking is not recursive. Input well-formed but so complex there's no telling what it does For example, ELF file parsing is complex and has multiple ways of parsing. Input is seen differently by different pieces of program or toolchain Any Input is a program input executes on input handlers (drives state changes & transitions) only a well-defined execution model can be trusted (regex/DFA, PDA, CFG) Input handler either is a "recognizer" for the inputs as a well-defined language (see langsec.org) or it's a "virtual machine" for inputs to drive into pwn-age ELF ABI (UNIX/Linux executible file format) case study. Problems can arise from these steps (without planting bugs): compiler linker loader ld.so/rtld relocator DWARF (debugger info) exceptions The problem is you can't really automatically analyze code (it's the "halting problem" and undecidable). Only solution is to freeze code and sign it. But you can't freeze everything! Can't freeze ASLR or loading—must have tables and metadata. Any sufficiently complex input data is the same as VM byte code Example, ELF relocation entries + dynamic symbols == a Turing Complete Machine (TM). @bxsays created a Turing machine in Linux from relocation data (not code) in an ELF file. For more information, see Rebecca "bx" Shapiro's presentation from last year's Toorcon, "Programming Weird Machines with ELF Metadata" @bxsays did same thing with Mach-O bytecode Or a DWARF exception handling data .eh_frame + glibc == Turning Machine X86 MMU (IDT, GDT, TSS): used address translation to create a Turning Machine. Page handler reads and writes (on page fault) memory. Uses a page table, which can be used as Turning Machine byte code. Example on Github using this TM that will fly a glider across the screen Next Sergey talked about "Parser Differentials". That having one input format, but two parsers, will create confusion and opportunity for exploitation. For example, CSRs are parsed during creation by cert requestor and again by another parser at the CA. Another example is ELF—several parsers in OS tool chain, which are all different. Can have two different Program Headers (PHDRs) because ld.so parses multiple PHDRs. The second PHDR can completely transform the executable. This is described in paper in the first issue of International Journal of PoC. Conclusions trusting computers not only about bugs! Bugs are part of a problem, but no by far all of it complex data formats means bugs no "chain of trust" in Babylon! (that is, with parser differentials) we need to squeeze complexity out of data until data stops being "code equivalent" Further information See and langsec.org. USENIX WOOT 2013 (Workshop on Offensive Technologies) for "weird machines" papers and videos.

    Read the article

  • Deployment Options for AutoVue 20.0 Users

    - by celine.beck
    AutoVue release 20.0 boasts a brand new architecture. As part of this product rearchitecture, AutoVue can now be deployed either as a desktop deployment to serve the needs of individual users in their personal productivity; or in a Client / Server deployment for those that require connections to enterprise applications / back-end systems. The most common question that we hear from our customers about this new architecture is the following: "Is AutoVue Desktop Version still part of release 20.0 and if so, what is the difference between AutoVue Desktop Version and the Desktop deployment of AutoVue release 20.0?" A detailed answer to these questions is provided in a very complete article entitled Understanding Deployment Options for AutoVue 19.3 Desktop Version users upgrading to AutoVue 20.0 (note 1058254.1) which was posted on My Oracle Support. Is AutoVue Desktop Version still part of AutoVue 20.0? Yes, AutoVue Desktop Version 20.0 is still available to customers and partners, as a maintenance release of AutoVue 19.3. As such, it will not contain any of the new capabilities featured in AutoVue release 20.0. All format enhancements and new format support have been added to release 20.0 Desktop Version though. What is the different between AutoVue Desktop Version 20.0 and the Desktop Deployment of AutoVue release 20.0? AutoVue 20.0 Desktop deployment works like the AutoVue Desktop version. It is installed as a standalone product on each user's machine and runs a local instance of AutoVue. The AutoVue 20.0 Desktop deployment includes all new features, formats and performance enhancements included in release 20.0 (walkthrough capability, improved compare, ...) What deployment options are available to AutoVue 19.3 Desktop Version customers? AutoVue Desktop Version users can evolve at their own pace to the new AutoVue platform. With release 20.0, customers can opt to: Option 1: Stay on AutoVue Desktop Version 20.0 Option 2: Migrate to AutoVue and select the desktop deployment method Option 3: Migrate to AutoVue and select the Client/Server deployment method What is the Client / Server deployment of AutoVue 20.0? The Client/Server deployment has AutoVue installed on a server, to which local client machines connect to access and view documents. AutoVue 20.0 Client Server Deployment allows users to leverage the new online/offline capabilities in release 20.0 and easily switch between online and offline modes of operation. With the Client/Server deployment, customers also get a complete, open and standards-based set of integration tools that allows them to tie AutoVue to any enterprise applications to provide users with a consistent view of data and business objects and expand workflow automation to document-based processes. Related articles: AutoVue Release 20.0 Now Available, New Walkthrough Capability in AutoVue 20.0, Watch the AutoVue 20.0 Release Webcast, April 27 at 12pm EST

    Read the article

  • WebSocket and Java EE 7 - Getting Ready for JSR 356 (TOTD #181)

    - by arungupta
    WebSocket is developed as part of HTML 5 specification and provides a bi-directional, full-duplex communication channel over a single TCP socket. It provides dramatic improvement over the traditional approaches of Polling, Long-Polling, and Streaming for two-way communication. There is no latency from establishing new TCP connections for each HTTP message. There is a WebSocket API and the WebSocket Protocol. The Protocol defines "handshake" and "framing". The handshake defines how a normal HTTP connection can be upgraded to a WebSocket connection. The framing defines wire format of the message. The design philosophy is to keep the framing minimum to avoid the overhead. Both text and binary data can be sent using the API. WebSocket may look like a competing technology to Server-Sent Events (SSE), but they are not. Here are the key differences: WebSocket can send and receive data from a client. A typical example of WebSocket is a two-player game or a chat application. Server-Sent Events can only push data data to the client. A typical example of SSE is stock ticker or news feed. With SSE, XMLHttpRequest can be used to send data to the server. For server-only updates, WebSockets has an extra overhead and programming can be unecessarily complex. SSE provides a simple and easy-to-use model that is much better suited. SSEs are sent over traditional HTTP and so no modification is required on the server-side. WebSocket require servers that understand the protocol. SSE have several features that are missing from WebSocket such as automatic reconnection, event IDs, and the ability to send arbitrary events. The client automatically tries to reconnect if the connection is closed. The default wait before trying to reconnect is 3 seconds and can be configured by including "retry: XXXX\n" header where XXXX is the milliseconds to wait before trying to reconnect. Event stream can include a unique event identifier. This allows the server to determine which events need to be fired to each client in case the connection is dropped in between. The data can span multiple lines and can be of any text format as long as EventSource message handler can process it. WebSockets provide true real-time updates, SSE can be configured to provide close to real-time by setting appropriate timeouts. OK, so all excited about WebSocket ? Want to convert your POJOs into WebSockets endpoint ? websocket-sdk and GlassFish 4.0 is here to help! The complete source code shown in this project can be downloaded here. On the server-side, the WebSocket SDK converts a POJO into a WebSocket endpoint using simple annotations. Here is how a WebSocket endpoint will look like: @WebSocket(path="/echo")public class EchoBean { @WebSocketMessage public String echo(String message) { return message + " (from your server)"; }} In this code "@WebSocket" is a class-level annotation that declares a POJO to accept WebSocket messages. The path at which the messages are accepted is specified in this annotation. "@WebSocketMessage" indicates the Java method that is invoked when the endpoint receives a message. This method implementation echoes the received message concatenated with an additional string. The client-side HTML page looks like <div style="text-align: center;"> <form action=""> <input onclick="send_echo()" value="Press me" type="button"> <input id="textID" name="message" value="Hello WebSocket!" type="text"><br> </form></div><div id="output"></div> WebSocket allows a full-duplex communication. So the client, a browser in this case, can send a message to a server, a WebSocket endpoint in this case. And the server can send a message to the client at the same time. This is unlike HTTP which follows a "request" followed by a "response". In this code, the "send_echo" method in the JavaScript is invoked on the button click. There is also a <div> placeholder to display the response from the WebSocket endpoint. The JavaScript looks like: <script language="javascript" type="text/javascript"> var wsUri = "ws://localhost:8080/websockets/echo"; var websocket = new WebSocket(wsUri); websocket.onopen = function(evt) { onOpen(evt) }; websocket.onmessage = function(evt) { onMessage(evt) }; websocket.onerror = function(evt) { onError(evt) }; function init() { output = document.getElementById("output"); } function send_echo() { websocket.send(textID.value); writeToScreen("SENT: " + textID.value); } function onOpen(evt) { writeToScreen("CONNECTED"); } function onMessage(evt) { writeToScreen("RECEIVED: " + evt.data); } function onError(evt) { writeToScreen('<span style="color: red;">ERROR:</span> ' + evt.data); } function writeToScreen(message) { var pre = document.createElement("p"); pre.style.wordWrap = "break-word"; pre.innerHTML = message; output.appendChild(pre); } window.addEventListener("load", init, false);</script> In this code The URI to connect to on the server side is of the format ws://<HOST>:<PORT>/websockets/<PATH> "ws" is a new URI scheme introduced by the WebSocket protocol. <PATH> is the path on the endpoint where the WebSocket messages are accepted. In our case, it is ws://localhost:8080/websockets/echo WEBSOCKET_SDK-1 will ensure that context root is included in the URI as well. WebSocket is created as a global object so that the connection is created only once. This object establishes a connection with the given host, port and the path at which the endpoint is listening. The WebSocket API defines several callbacks that can be registered on specific events. The "onopen", "onmessage", and "onerror" callbacks are registered in this case. The callbacks print a message on the browser indicating which one is called and additionally also prints the data sent/received. On the button click, the WebSocket object is used to transmit text data to the endpoint. Binary data can be sent as one blob or using buffering. The HTTP request headers sent for the WebSocket call are: GET ws://localhost:8080/websockets/echo HTTP/1.1Origin: http://localhost:8080Connection: UpgradeSec-WebSocket-Extensions: x-webkit-deflate-frameHost: localhost:8080Sec-WebSocket-Key: mDbnYkAUi0b5Rnal9/cMvQ==Upgrade: websocketSec-WebSocket-Version: 13 And the response headers received are Connection:UpgradeSec-WebSocket-Accept:q4nmgFl/lEtU2ocyKZ64dtQvx10=Upgrade:websocket(Challenge Response):00:00:00:00:00:00:00:00:00:00:00:00:00:00:00:00 The headers are shown in Chrome as shown below: The complete source code shown in this project can be downloaded here. The builds from websocket-sdk are integrated in GlassFish 4.0 builds. Would you like to live on the bleeding edge ? Then follow the instructions below to check out the workspace and install the latest SDK: Check out the source code svn checkout https://svn.java.net/svn/websocket-sdk~source-code-repository Build and install the trunk in your local repository as: mvn install Copy "./bundles/websocket-osgi/target/websocket-osgi-0.3-SNAPSHOT.jar" to "glassfish3/glassfish/modules/websocket-osgi.jar" in your GlassFish 4 latest promoted build. Notice, you need to overwrite the JAR file. Anybody interested in building a cool application using WebSocket and get it running on GlassFish ? :-) This work will also feed into JSR 356 - Java API for WebSocket. On a lighter side, there seems to be less agreement on the name. Here are some of the options that are prevalent: WebSocket (W3C API, the URL is www.w3.org/TR/websockets though) Web Socket (HTML5 Demos - html5demos.com/web-socket) Websocket (Jenkins Plugin - wiki.jenkins-ci.org/display/JENKINS/Websocket%2BPlugin) WebSockets (Used by Mozilla - developer.mozilla.org/en/WebSockets, but use WebSocket as well) Web sockets (HTML5 Working Group - www.whatwg.org/specs/web-apps/current-work/multipage/network.html) Web Sockets (Chrome Blog - blog.chromium.org/2009/12/web-sockets-now-available-in-google.html) I prefer "WebSocket" as that seems to be most common usage and used by the W3C API as well. What do you use ?

    Read the article

  • SharePoint 2010 Replaceable Parameter, some observations…

    - by svdoever
    SharePoint Tools for Visual Studio 2010 provides a rudimentary mechanism for replaceable parameters that you can use in files that are not compiled, like ascx files and your project property settings. The basics on this can be found in the documentation at http://msdn.microsoft.com/en-us/library/ee231545.aspx. There are some quirks however. For example: My Package name is MacawMastSP2010Templates, as defined in my Package properties: I want to use the $SharePoint.Package.Name$ replaceable parameter in my feature properties. But this parameter does not work in the “Deployment Path” property, while other parameters work there, while it works in the “Image Url” property. It just does not get expanded. So I had to resort to explicitly naming the first path of the deployment path: : You also see a special property for the “Receiver Class” in the format $SharePoint.Type.<GUID>.FullName$. The documentation gives the following description:The full name of the type matching the GUID in the token. The format of the GUID is lowercase and corresponds to the Guid.ToString(“D”) format (that is, xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx). Not very clear. After some searching it happened to be the guid as declared in my feature receiver code: In other properties you see a different set of replaceable parameters: We use a similar mechanism for replaceable parameter for years in our Macaw Solutions Factory for SharePoint 2007 development, where each replaceable parameter is a PowerShell function. This provides so much more power. For example in a feature declaration we can say: Code Snippet <?xml version="1.0" encoding="utf-8" ?> <!-- Template expansion      [[ProductDependency]] -> Wss3 or Moss2007      [[FeatureReceiverAssemblySignature]] -> for example: Macaw.Mast.Wss3.Templates.SharePoint.Features, Version=1.0.0.0, Culture=neutral, PublicKeyToken=6e9d15db2e2a0be5      [[FeatureReceiverClass]] -> for example: Macaw.Mast.Wss3.Templates.SharePoint.Features.SampleFeature.FeatureReceiver.SampleFeatureFeatureReceiver --> <Feature Id="[[$Feature.SampleFeature.ID]]"   Title="MAST [[$MastSolutionName]] Sample Feature"   Description="The MAST [[$MastSolutionName]] Sample Feature, where all possible elements in a feature are showcased"   Version="1.0.0.0"   Scope="Site"   Hidden="FALSE"   ImageUrl="[[FeatureImage]]"   ReceiverAssembly="[[FeatureReceiverAssemblySignature]]"   ReceiverClass="[[FeatureReceiverClass]]"   xmlns="http://schemas.microsoft.com/sharepoint/">     <ElementManifests>         <ElementManifest Location="ExampleCustomActions.xml" />         <ElementManifest Location="ExampleSiteColumns.xml" />         <ElementManifest Location="ExampleContentTypes.xml" />         <ElementManifest Location="ExampleDocLib.xml" />         <ElementManifest Location="ExampleMasterPages.xml" />           <!-- Element files -->         [[GenerateXmlNodesForFiles -path 'ExampleDocLib\*.*' -node 'ElementFile' -attributes @{Location = { RelativePathToExpansionSourceFile -path $_ }}]]         [[GenerateXmlNodesForFiles -path 'ExampleMasterPages\*.*' -node 'ElementFile' -attributes @{Location = { RelativePathToExpansionSourceFile -path $_ }}]]         [[GenerateXmlNodesForFiles -path 'Resources\*.resx' -node 'ElementFile' -attributes @{Location = { RelativePathToExpansionSourceFile -path $_ }}]]     </ElementManifests> </Feature> We have a solution level PowerShell script file named TemplateExpansionConfiguration.ps1 where we declare our variables (starting with a $) and include helper functions: Code Snippet # ============================================================================================== # NAME: product:\src\Wss3\Templates\TemplateExpansionConfiguration.ps1 # # AUTHOR: Serge van den Oever, Macaw # DATE  : May 24, 2007 # # COMMENT: # Nota bene: define variable and function definitions global to be visible during template expansion. # # ============================================================================================== Set-PSDebug -strict -trace 0 #variables must have value before usage $global:ErrorActionPreference = 'Stop' # Stop on errors $global:VerbosePreference = 'Continue' # set to SilentlyContinue to get no verbose output   # Load template expansion utility functions . product:\tools\Wss3\MastDeploy\TemplateExpansionUtil.ps1   # If exists add solution expansion utility functions $solutionTemplateExpansionUtilFile = $MastSolutionDir + "\TemplateExpansionUtil.ps1" if ((Test-Path -Path $solutionTemplateExpansionUtilFile)) {     . $solutionTemplateExpansionUtilFile } # ==============================================================================================   # Expected: $Solution.ID; Unique GUID value identifying the solution (DON'T INCLUDE BRACKETS). # function: guid:UpperCaseWithoutCurlies -guid '{...}' ensures correct syntax $global:Solution = @{     ID = GuidUpperCaseWithoutCurlies -guid '{d366ced4-0b98-4fa8-b256-c5a35bcbc98b}'; }   #  DON'T INCLUDE BRACKETS for feature id's!!! # function: GuidUpperCaseWithoutCurlies -guid '{...}' ensures correct syntax $global:Feature = @{     SampleFeature = @{         ID = GuidUpperCaseWithoutCurlies -guid '{35de59f4-0c8e-405e-b760-15234fe6885c}';     } }   $global:SiteDefinition = @{     TemplateBlankSite = @{         ID = '12346';     } }   # To inherit from this content type add the delimiter (00) and then your own guid # ID: <base>00<newguid> $global:ContentType = @{     ExampleContentType = @{         ID = '0x01008e5e167ba2db4bfeb3810c4a7ff72913';     } }   #  INCLUDE BRACKETS for column id's and make them LOWER CASE!!! # function: GuidLowerCaseWithCurlies -guid '{...}' ensures correct syntax $global:SiteColumn = @{     ExampleChoiceField = @{         ID = GuidLowerCaseWithCurlies -guid '{69d38ce4-2771-43b4-a861-f14247885fe9}';     };     ExampleBooleanField = @{         ID = GuidLowerCaseWithCurlies -guid '{76f794e6-f7bd-490e-a53e-07efdf967169}';     };     ExampleDateTimeField = @{         ID = GuidLowerCaseWithCurlies -guid '{6f176e6e-22d2-453a-8dad-8ab17ac12387}';     };     ExampleNumberField = @{         ID = GuidLowerCaseWithCurlies -guid '{6026947f-f102-436b-abfd-fece49495788}';     };     ExampleTextField = @{         ID = GuidLowerCaseWithCurlies -guid '{23ca1c29-5ef0-4b3d-93cd-0d1d2b6ddbde}';     };     ExampleUserField = @{         ID = GuidLowerCaseWithCurlies -guid '{ee55b9f1-7b7c-4a7e-9892-3e35729bb1a5}';     };     ExampleNoteField = @{         ID = GuidLowerCaseWithCurlies -guid '{f9aa8da3-1f30-48a6-a0af-aa0a643d9ed4}';     }; } This gives so much more possibilities, like for example the elements file expansion where a PowerShell function iterates through a folder and generates the required XML nodes. I think I will bring back this mechanism, so it can work together with the built-in replaceable parameters, there are hooks to define you custom replacements as described by Waldek in this blog post.

    Read the article

  • What’s new in Silverlight 4 RC?

    - by pluginbaby
    I am here in Las Vegas for MIX10 where Scott Guthrie announced today the release of Silverlight 4 RC and the Visual Studio 2010 tools. You can now install VS2010 RC!!! As always, downloads links are here: www.silverlight.net He also said that the final version of Silverlight 4 will come next month (so april)! 4 months ago, I wrote a blog post on the new features of Silverlight 4 beta, so… what’s new in the RC ?   Rich Text · RichTextArea renamed to RichTextBox · Text position and selection APIs · “Xaml” property for serializing text content · XAML clipboard format · FlowDirection support on Runs tag · “Format then type” support when dragging controls to the designer · Thai/Vietnamese/Indic support · UI Automation Text pattern   Networking · UploadProgress support (Client stack) · Caching support (Client stack) · Sockets security restrictions removal (Elevated Trust) · Sockets policy file retrieval via HTTP · Accept-Language header   Out of Browser (Elevated Trust) · XAP signing · Silent install and emulation mode · Custom window chrome · Better support for COM Automation · Cancellable shutdown event · Updated security dialogs   Media · Pinned full-screen mode on secondary display · Webcam/Mic configuration preview · More descriptive MediaSourceStream errors · Content & Output protection updates · Updates to H.264 content protection (ClearNAL) · Digital Constraint Token · CGMS-A · Multicast · Graphics card driver validation & revocation   Graphics and Printing · HW accelerated Perspective Transforms · Ability to query page size and printable area · Memory usage and perf improvements   Data · Entity-level validation support of INotifyDataErrorInfo for DataGrid · XPath support for XML   Parser · New architecture enables future innovation · Performance and stability improvements · XmlnsPrefix & XmlnsDefinition attributes · Support setting order-dependent properties   Globalization & Localization · Support for 31 new languages · Arabic, Hebrew and Thai input on Mac · Indic support   More … · Update to DeepZoom code base with HW acceleration · Support for Private mode browsing · Google Chrome support (Windows) · FrameworkElement.Unloaded event · HTML Hosting accessibility · IsoStore perf improvements · Native hosting perf improvements (e.g., Bing Toolbar) · Consistency with Silverlight for Mobile APIs and Tooling · SDK   - System.Numerics.dll   - Dynamic XAP support (MEF)   - Frame/Navigation refresh support   That’s a lot!   You will find more details on the following links: http://timheuer.com/blog/archive/2010/03/15/whats-new-in-silverlight-4-rc-mix10.aspx http://www.davidpoll.com/2010/03/15/new-in-the-silverlight-4-rc-xaml-features/   Technorati Tags: Silverlight

    Read the article

  • Create PDF document using iTextSharp in ASP.Net 4.0 and MemoryMappedFile

    - by sreejukg
    In this article I am going to demonstrate how ASP.Net developers can programmatically create PDF documents using iTextSharp. iTextSharp is a software component, that allows developers to programmatically create or manipulate PDF documents. Also this article discusses the process of creating in-memory file, read/write data from/to the in-memory file utilizing the new feature MemoryMappedFile. I have a database of users, where I need to send a notice to all my users as a PDF document. The sending mail part of it is not covered in this article. The PDF document will contain the company letter head, to make it more official. I have a list of users stored in a database table named “tblusers”. For each user I need to send customized message addressed to them personally. The database structure for the users is give below. id Title Full Name 1 Mr. Sreeju Nair K. G. 2 Dr. Alberto Mathews 3 Prof. Venketachalam Now I am going to generate the pdf document that contains some message to the user, in the following format. Dear <Title> <FullName>, The message for the user. Regards, Administrator Also I have an image, bg.jpg that contains the background for the document generated. I have created .Net 4.0 empty web application project named “iTextSharpSample”. First thing I need to do is to download the iTextSharp dll from the source forge. You can find the url for the download here. http://sourceforge.net/projects/itextsharp/files/ I have extracted the Zip file and added the itextsharp.dll as a reference to my project. Also I have added a web form named default.aspx to my project. After doing all this, the solution explorer have the following view. In the default.aspx page, I inserted one grid view and associated it with a SQL Data source control that bind data from tblusers. I have added a button column in the grid view with text “generate pdf”. The output of the page in the browser is as follows. Now I am going to create a pdf document when the user clicking on the Generate PDF button. As I mentioned before, I am going to work with the file in memory, I am not going to create a file in the disk. I added an event handler for button by specifying onrowcommand event handler. My gridview source looks like <asp:GridView ID="GridView1" runat="server" AutoGenerateColumns="False" DataSourceID="SqlDataSource1" Width="481px" CellPadding="4" ForeColor="#333333" GridLines="None" onrowcommand="Generate_PDF" > ………………………………………………………………………….. ………………………………………………………………………….. </asp:GridView> In the code behind, I wrote the corresponding event handler. protected void Generate_PDF(object sender, GridViewCommandEventArgs e) { // The button click event handler code. // I am going to explain the code for this section in the remaining part of the article } The Generate_PDF method is straight forward, It get the title, fullname and message to some variables, then create the pdf using these variables. The code for getting data from the grid view is as follows // get the row index stored in the CommandArgument property int index = Convert.ToInt32(e.CommandArgument); // get the GridViewRow where the command is raised GridViewRow selectedRow = ((GridView)e.CommandSource).Rows[index]; string title = selectedRow.Cells[1].Text; string fullname = selectedRow.Cells[2].Text; string msg = @"There are some changes in the company policy, due to this matter you need to submit your latest address to us. Please update your contact details / personnal details by visiting the member area of the website. ................................... "; since I don’t want to save the file in the disk, I am going the new feature introduced in .Net framework 4, called Memory-Mapped Files. Using Memory-Mapped mapped file, you can created non-persisted memory mapped files, that are not associated with a file in a disk. So I am going to create a temporary file in memory, add the pdf content to it, then write it to the output stream. To read more about MemoryMappedFile, read this msdn article http://msdn.microsoft.com/en-us/library/dd997372.aspx The below portion of the code using MemoryMappedFile object to create a test pdf document in memory and perform read/write operation on file. The CreateViewStream() object will give you a stream that can be used to read or write data to/from file. The code is very straight forward and I included comment so that you can understand the code. using (MemoryMappedFile mmf = MemoryMappedFile.CreateNew("test1.pdf", 1000000)) { // Create a new pdf document object using the constructor. The parameters passed are document size, left margin, right margin, top margin and bottom margin. iTextSharp.text.Document d = new iTextSharp.text.Document(PageSize.A4, 72,72,172,72); //get an instance of the memory mapped file to stream object so that user can write to this using (MemoryMappedViewStream stream = mmf.CreateViewStream()) { // associate the document to the stream. PdfWriter.GetInstance(d, stream); /* add an image as bg*/ iTextSharp.text.Image jpg = iTextSharp.text.Image.GetInstance(Server.MapPath("Image/bg.png")); jpg.Alignment = iTextSharp.text.Image.UNDERLYING; jpg.SetAbsolutePosition(0, 0); //this is the size of my background letter head image. the size is in points. this will fit to A4 size document. jpg.ScaleToFit(595, 842); d.Open(); d.Add(jpg); d.Add(new Paragraph(String.Format("Dear {0} {1},", title, fullname))); d.Add(new Paragraph("\n")); d.Add(new Paragraph(msg)); d.Add(new Paragraph("\n")); d.Add(new Paragraph(String.Format("Administrator"))); d.Close(); } //read the file data byte[] b; using (MemoryMappedViewStream stream = mmf.CreateViewStream()) { BinaryReader rdr = new BinaryReader(stream); b = new byte[mmf.CreateViewStream().Length]; rdr.Read(b, 0, (int)mmf.CreateViewStream().Length); } Response.Clear(); Response.ContentType = "Application/pdf"; Response.BinaryWrite(b); Response.End(); } Press ctrl + f5 to run the application. First I got the user list. Click on the generate pdf icon. The created looks as follows. Summary: Creating pdf document using iTextSharp is easy. You will get lot of information while surfing the www. Some useful resources and references are mentioned below http://itextsharp.com/ http://www.mikesdotnetting.com/Article/82/iTextSharp-Adding-Text-with-Chunks-Phrases-and-Paragraphs http://somewebguy.wordpress.com/2009/05/08/itextsharp-simplify-your-html-to-pdf-creation/ Hope you enjoyed the article.

    Read the article

  • In JavaScript, curly brace placement matters: An example by David

    I used to follow Kernighan and Ritchie style of code formatting, but lost that habit. Not sure how may hours spent on fixing JS issues due to Allman format. Every time I feel bad whilst Visual Studio gives K&R style. Just realized the impotence of K&R style for JS. My Big thanks to David for pointing the curly brace placement issue with JS and posting such a nice article. In JavaScript, curly brace placement matters: An example span.fullpost {display:none;}

    Read the article

  • Can't add any PPA's after reinstalling Ubuntu 13.10

    - by Michael Clare
    I can't add any PPA's at all after reinstalling Ubuntu 13.10. Here is what it says: michael@MikesKomputer:~$ sudo add-apt-repository ppa:atareao/atareao Cannot add PPA: 'ppa:atareao/atareao'. Please check that the PPA name or format is correct. This repository is working as far as I know. The problem is that I can't add any new repositories. Even if I can use the Software Center, I can't have my system with the add-apt-repository command broken.

    Read the article

< Previous Page | 145 146 147 148 149 150 151 152 153 154 155 156  | Next Page >