Search Results

Search found 1742 results on 70 pages for 'combine'.

Page 15/70 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • Which combing css technique?

    - by DotnetShadow
    Hi there, Which of the following would you say is the best way to go when combining files for CSS: Say I have a master.css file that is used across all pages on my website (page1.aspx, page2.aspx) Page1.aspx - A specific page that has some unique css that is only ever used on that page, so I create a page1.css and it also uses another css grids.css Page2.aspx - Another specific page that is different from all other pages on the site and is different to page1.aspx, I'll name this page2.aspx and make a page2.css this doesn't use grids.css So would you combine the scripts as: Option1: Combine scripts csshandler.axd?d=master.css,page1.css,grids.css when visiting page1 Combine scripts csshandler.axd?d=master.css,page2.css when visiting page2 Benefits: Page specific, rendering quicker since only selectors for that page need to be matched up no unused selectors Drawback: Multiple combinations of master.css + page specific hence master.css has to be downloaded for each page Option2: Combine all scripts whether a page needs them or not csshandler.axd?d=master.css,page1.css,page2.css,grids.css (master, page1 and page2) that way it gets cached as one. The problem is that rendering maybe slower since it will have to try and match EVERY selector in the css with selectors on the page even the missing ones, so in the case of page2.aspx that doesn't use grids.css the selectors in grids.css will need to be parsed to see if they are in page2 which means rendering will be slow Benefits: One file will ever be downloaded and cached doesn't matter what page you visit Drawback: Unused selectors will need to be parsed by the browser slower rendering Option3: Leave the master file on it's own and only combine other scripts (the benefit of this is because master is used across all pages there is a chance that this is cached so doesn't need to keep on downloading csshandler.axd?d=Master.css csshandler.axd?d=page1.css,grids.css Benefits: master.css file can be cached doesn't matter what page you visit. Not many unused selectors as page spefic is applied Drawback: Initially minimum of 2 HTTP request will have to be made What do you guys think? Cheers DotnetShadow

    Read the article

  • Which combining css technique?

    - by DotnetShadow
    Hi there, Which of the following would you say is the best way to go when combining files for CSS: Say I have a master.css file that is used across all pages on my website (page1.aspx, page2.aspx) Page1.aspx - A specific page that has some unique css that is only ever used on that page, so I create a page1.css and it also uses another css grids.css Page2.aspx - Another specific page that is different from all other pages on the site and is different to page1.aspx, I'll name this page2.aspx and make a page2.css this doesn't use grids.css So would you combine the scripts as: Option1: Combine scripts csshandler.axd?d=master.css,page1.css,grids.css when visiting page1 Combine scripts csshandler.axd?d=master.css,page2.css when visiting page2 Benefits: Page specific, rendering quicker since only selectors for that page need to be matched up no unused selectors Drawback: Multiple combinations of master.css + page specific hence master.css has to be downloaded for each page Option2: Combine all scripts whether a page needs them or not csshandler.axd?d=master.css,page1.css,page2.css,grids.css (master, page1 and page2) that way it gets cached as one. The problem is that rendering maybe slower since it will have to try and match EVERY selector in the css with selectors on the page even the missing ones, so in the case of page2.aspx that doesn't use grids.css the selectors in grids.css will need to be parsed to see if they are in page2 which means rendering will be slow Benefits: One file will ever be downloaded and cached doesn't matter what page you visit Drawback: Unused selectors will need to be parsed by the browser slower rendering Option3: Leave the master file on it's own and only combine other scripts (the benefit of this is because master is used across all pages there is a chance that this is cached so doesn't need to keep on downloading csshandler.axd?d=Master.css csshandler.axd?d=page1.css,grids.css Benefits: master.css file can be cached doesn't matter what page you visit. Not many unused selectors as page spefic is applied Drawback: Initially minimum of 2 HTTP request will have to be made What do you guys think? Cheers DotnetShadow

    Read the article

  • What is the root directory OR how do I set the directory in DotNetZip

    - by Chris
    where does DotNetZip get it's root directory for saving. All the save examples don't show the directory. My goal is to recurse a folder and subfolders. In each folder I want to zip all the files into one zip and delete the source files. private void CopyFolder(string srcPath, string dstPath) { if (!Directory.Exists(dstPath)) Directory.CreateDirectory(dstPath); string[] files = Directory.GetFiles(srcPath); string msg; string zipFileName; using (ZipFile z = new ZipFile(Path.Combine(srcPath,String.Format("Archive{0:yyyyMMdd}.zip", DateTime.Now)))) { z.ReadProgress += new EventHandler<ReadProgressEventArgs>(z_ReadProgress); foreach (string file in files) { FileInfo fi = new FileInfo(file); AddLog(String.Format("Adding {0}", file)); z.AddFile(file); } //z.Save(Path.Combine(srcPath, String.Format("Archive{0:yyyyMMdd}.zip", DateTime.Now))); z.Save(); if (deleteSource) { foreach (string file in files) { File.Delete(file); } } zipFileName = z.Name; } if (!compressOnly) File.Copy(Path.Combine(srcPath,zipFileName), Path.Combine(dstPath, Path.GetFileName(zipFileName))); string[] folders = Directory.GetDirectories(sourcePath); foreach (string folder in folders) { string name = Path.GetFileName(folder); string dest = Path.Combine(dstPath, name); Console.WriteLine(ln); log.Add(ln); msg = String.Format("{3}{4}Start Copy: {0}{4}Directory: {1}{4}To: {2}", DateTime.Now.ToString("G"), name, dest, ln, Environment.NewLine); AddLog(msg); if (recurseFolders) CopyFolder(folder, dest); msg = String.Format("Copied Directory: {0}{4}To: {1}\nAt: {2}{3}", folder, dest, DateTime.Now.ToString("G"), Environment.NewLine); AddLog(msg); } }

    Read the article

  • Deleting object in function

    - by wrongusername
    Let's say I have created two objects from class foo and now want to combine the two. How, if at all possible, can I accomplish that within a function like this: def combine(first, second): first.value += second.value del second #this doesn't work, though first.value *does* get changed instead of doing something like def combine(first, second): first.value += second.value in the function and putting del second immediately after the function call?

    Read the article

  • How to use parallel execution in a shell script?

    - by eSKay
    I have a C shell script that does something like this: #!/bin/csh gcc example.c -o ex gcc combine.c -o combine ex file1 r1 <-- 1 ex file2 r2 <-- 2 ex file3 r3 <-- 3 #... many more like the above combine r1 r2 r3 final \rm r1 r2 r3 Is there some way I can make lines 1, 2 and 3 run in parallel instead of one after the another?

    Read the article

  • A better way of representing File Attachment into a list(c#3.0)

    - by Newbie
    I have written List<Attachment> lstAttachment = new List<Attachment>(); //Check if any error file is present in which case it needs to be send if (new FileInfo(Path.Combine(errorFolder, errorFileName)).Exists) { Attachment unprocessedFile = new Attachment(Path.Combine(errorFolder, errorFileName)); lstAttachment.Add(unprocessedFile); } //Check if any processed file is present in which case it needs to be send if (new FileInfo(Path.Combine(outputFolder, outputFileName)).Exists) { Attachment processedFile = new Attachment(Path.Combine(outputFolder, outputFileName)); lstAttachment.Add(processedFile); } Working fine and is giving the expected output. Basically I am attaching the file to the list based on whether the file is present or not. I am looking for any other elegant solution than the one I have written. Reason: Want to learn differnt ways of representing the same program. I am using C#3.0 Thanks.

    Read the article

  • RiverTrail - JavaScript GPPGU Data Parallelism

    - by JoshReuben
    Where is WebCL ? The Khronos WebCL working group is working on a JavaScript binding to the OpenCL standard so that HTML 5 compliant browsers can host GPGPU web apps – e.g. for image processing or physics for WebGL games - http://www.khronos.org/webcl/ . While Nokia & Samsung have some protype WebCL APIs, Intel has one-upped them with a higher level of abstraction: RiverTrail. Intro to RiverTrail Intel Labs JavaScript RiverTrail provides GPU accelerated SIMD data-parallelism in web applications via a familiar JavaScript programming paradigm. It extends JavaScript with simple deterministic data-parallel constructs that are translated at runtime into a low-level hardware abstraction layer. With its high-level JS API, programmers do not have to learn a new language or explicitly manage threads, orchestrate shared data synchronization or scheduling. It has been proposed as a draft specification to ECMA a (known as ECMA strawman). RiverTrail runs in all popular browsers (except I.E. of course). To get started, download a prebuilt version https://github.com/downloads/RiverTrail/RiverTrail/rivertrail-0.17.xpi , install Intel's OpenCL SDK http://www.intel.com/go/opencl and try out the interactive River Trail shell http://rivertrail.github.com/interactive For a video overview, see  http://www.youtube.com/watch?v=jueg6zB5XaM . ParallelArray the ParallelArray type is the central component of this API & is a JS object that contains ordered collections of scalars – i.e. multidimensional uniform arrays. A shape property describes the dimensionality and size– e.g. a 2D RGBA image will have shape [height, width, 4]. ParallelArrays are immutable & fluent – they are manipulated by invoking methods on them which produce new ParallelArray objects. ParallelArray supports several constructors over arrays, functions & even the canvas. // Create an empty Parallel Array var pa = new ParallelArray(); // pa0 = <>   // Create a ParallelArray out of a nested JS array. // Note that the inner arrays are also ParallelArrays var pa = new ParallelArray([ [0,1], [2,3], [4,5] ]); // pa1 = <<0,1>, <2,3>, <4.5>>   // Create a two-dimensional ParallelArray with shape [3, 2] using the comprehension constructor var pa = new ParallelArray([3, 2], function(iv){return iv[0] * iv[1];}); // pa7 = <<0,0>, <0,1>, <0,2>>   // Create a ParallelArray from canvas.  This creates a PA with shape [w, h, 4], var pa = new ParallelArray(canvas); // pa8 = CanvasPixelArray   ParallelArray exposes fluent API functions that take an elemental JS function for data manipulation: map, combine, scan, filter, and scatter that return a new ParallelArray. Other functions are scalar - reduce  returns a scalar value & get returns the value located at a given index. The onus is on the developer to ensure that the elemental function does not defeat data parallelization optimization (avoid global var manipulation, recursion). For reduce & scan, order is not guaranteed - the onus is on the dev to provide an elemental function that is commutative and associative so that scan will be deterministic – E.g. Sum is associative, but Avg is not. map Applies a provided elemental function to each element of the source array and stores the result in the corresponding position in the result array. The map method is shape preserving & index free - can not inspect neighboring values. // Adding one to each element. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.map(function inc(v) {     return v+1; }); //<2,3,4,5,6> combine Combine is similar to map, except an index is provided. This allows elemental functions to access elements from the source array relative to the one at the current index position. While the map method operates on the outermost dimension only, combine, can choose how deep to traverse - it provides a depth argument to specify the number of dimensions it iterates over. The elemental function of combine accesses the source array & the current index within it - element is computed by calling the get method of the source ParallelArray object with index i as argument. It requires more code but is more expressive. var source = new ParallelArray([1,2,3,4,5]); var plusOne = source.combine(function inc(i) { return this.get(i)+1; }); reduce reduces the elements from an array to a single scalar result – e.g. Sum. // Calculate the sum of the elements var source = new ParallelArray([1,2,3,4,5]); var sum = source.reduce(function plus(a,b) { return a+b; }); scan Like reduce, but stores the intermediate results – return a ParallelArray whose ith elements is the results of using the elemental function to reduce the elements between 0 and I in the original ParallelArray. // do a partial sum var source = new ParallelArray([1,2,3,4,5]); var psum = source.scan(function plus(a,b) { return a+b; }); //<1, 3, 6, 10, 15> scatter a reordering function - specify for a certain source index where it should be stored in the result array. An optional conflict function can prevent an exception if two source values are assigned the same position of the result: var source = new ParallelArray([1,2,3,4,5]); var reorder = source.scatter([4,0,3,1,2]); // <2, 4, 5, 3, 1> // if there is a conflict use the max. use 33 as a default value. var reorder = source.scatter([4,0,3,4,2], 33, function max(a, b) {return a>b?a:b; }); //<2, 33, 5, 3, 4> filter // filter out values that are not even var source = new ParallelArray([1,2,3,4,5]); var even = source.filter(function even(iv) { return (this.get(iv) % 2) == 0; }); // <2,4> Flatten used to collapse the outer dimensions of an array into a single dimension. pa = new ParallelArray([ [1,2], [3,4] ]); // <<1,2>,<3,4>> pa.flatten(); // <1,2,3,4> Partition used to restore the original shape of the array. var pa = new ParallelArray([1,2,3,4]); // <1,2,3,4> pa.partition(2); // <<1,2>,<3,4>> Get return value found at the indices or undefined if no such value exists. var pa = new ParallelArray([0,1,2,3,4], [10,11,12,13,14], [20,21,22,23,24]) pa.get([1,1]); // 11 pa.get([1]); // <10,11,12,13,14>

    Read the article

  • How do I perform multi-window operations on a non-combined group of windows in Windows 7?

    - by BACON
    With multiple windows/instances of an application open and the taskbar buttons set to "Always combine, hide labels", I can Shift + right-click the taskbar button for the window group to open a menu allowing me to "Cascade", "Show windows stacked", "Show windows side by side", "Restore all windows", "Minimize all windows", or "Close all windows". With the taskbar buttons set to "Combine when taskbar is full" or "Never combine", when I right-click, Shift + right-click, or Ctrl + right-click either the button or the Aero preview for a window in the group I get a menu allowing me to perform window operations on just that one window rather than each window in the group. When I have a non-combined group of windows in the taskbar, how would I cascade, stack, etc. that group of windows?

    Read the article

  • Building an HTML5 App with ASP.NET

    - by Stephen Walther
    I’m teaching several JavaScript and ASP.NET workshops over the next couple of months (thanks everyone!) and I thought it would be useful for my students to have a really easy to use JavaScript reference. I wanted a simple interactive JavaScript reference and I could not find one so I decided to put together one of my own. I decided to use the latest features of JavaScript, HTML5 and jQuery such as local storage, offline manifests, and jQuery templates. What could be more appropriate than building a JavaScript Reference with JavaScript? You can try out the application by visiting: http://Superexpert.com/JavaScriptReference Because the app takes advantage of several advanced features of HTML5, it won’t work with Internet Explorer 6 (but really, you should stop using that browser). I have tested it with IE 8, Chrome 8, Firefox 3.6, and Safari 5. You can download the source for the JavaScript Reference application at the end of this article. Superexpert JavaScript Reference Let me provide you with a brief walkthrough of the app. When you first open the application, you see the following lookup screen: As you type the name of something from the JavaScript language, matching results are displayed: You can click the details link for any entry to view details for an entry in a modal dialog: Alternatively, you can click on any of the tabs -- Objects, Functions, Properties, Statements, Operators, Comments, or Directives -- to filter results by type of syntax. For example, you might want to see a list of all JavaScript built-in objects: You can login to the application to make modification to the application: After you login, you can add, update, or delete entries in the reference database: HTML5 Local Storage The application takes advantage of HTML5 local storage to store all of the reference entries on the local browser. IE 8, Chrome 8, Firefox 3.6, and Safari 5 all support local storage. When you open the application for the first time, all of the reference entries are transferred to the browser. The data is stored persistently. Even if you shutdown your computer and return to the application many days later, the data does not need to be transferred again. Whenever you open the application, the app checks with the server to see if any of the entries have been updated on the server. If there have been updates, then only the updates are transferred to the browser and the updates are merged with the existing entries in local storage. After the reference database has been transferred to your browser once, only changes are transferred in the future. You get two benefits from using local storage. First, the application loads very fast and works very fast after the data has been loaded once. The application does not query the server whenever you filter or view entries. All of the data is persisted in the browser. Second, you can browse the JavaScript reference even when you are not connected to the Internet (when you are on the proverbial airplane). The JavaScript Reference works as an offline application for browsers that support offline applications (unfortunately, not IE). When using Google Chrome, you can easily view the contents of local storage by selecting Tools, Developer Tools (CTRL-SHIFT I) and selecting Storage, Local Storage: The JavaScript Reference app stores two items in local storage: entriesLastUpdated and entries. HTML5 Offline App For browsers that support HTML5 offline applications – Chrome 8 and Firefox 3.6 but not Internet Explorer – you do not need to be connected to the Internet to use the JavaScript Reference. The JavaScript Reference can execute entirely on your machine just like any other desktop application. When you first open the application with Firefox, you are presented with the following warning: Notice the notification bar that asks whether you want to accept offline content. If you click the Allow button then all of the files (generated ASPX, images, CSS, JavaScript) needed for the JavaScript Reference will be stored on your local computer. Automatic Script Minification and Combination All of the custom JavaScript files are combined and minified automatically whenever the application is built with Visual Studio. All of the custom scripts are contained in a folder named App_Scripts: When you perform a build, the combine.js and combine.debug.js files are generated. The Combine.config file contains the list of files that should be combined (importantly, it specifies the order in which the files should be combined). Here’s the contents of the Combine.config file:   <?xml version="1.0"?> <combine> <scripts> <file path="compat.js" /> <file path="storage.js" /> <file path="serverData.js" /> <file path="entriesHelper.js" /> <file path="authentication.js" /> <file path="default.js" /> </scripts> </combine>   jQuery and jQuery UI The JavaScript Reference application takes heavy advantage of jQuery and jQuery UI. In particular, the application uses jQuery templates to format and display the reference entries. Each of the separate templates is stored in a separate ASP.NET user control in a folder named Templates: The contents of the user controls (and therefore the templates) are combined in the default.aspx page: <!-- Templates --> <user:EntryTemplate runat="server" /> <user:EntryDetailsTemplate runat="server" /> <user:BrowsersTemplate runat="server" /> <user:EditEntryTemplate runat="server" /> <user:EntryDetailsCloudTemplate runat="server" /> When the default.aspx page is requested, all of the templates are retrieved in a single page. WCF Data Services The JavaScript Reference application uses WCF Data Services to retrieve and modify database data. The application exposes a server-side WCF Data Service named EntryService.svc that supports querying, adding, updating, and deleting entries. jQuery Ajax calls are made against the WCF Data Service to perform the database operations from the browser. The OData protocol makes this easy. Authentication is handled on the server with a ChangeInterceptor. Only authenticated users are allowed to update the JavaScript Reference entry database. JavaScript Unit Tests In order to build the JavaScript Reference application, I depended on JavaScript unit tests. I needed the unit tests, in particular, to write the JavaScript merge functions which merge entry change sets from the server with existing entries in browser local storage. In order for unit tests to be useful, they need to run fast. I ran my unit tests after each build. For this reason, I did not want to run the unit tests within the context of a browser. Instead, I ran the unit tests using server-side JavaScript (the Microsoft Script Control). The source code that you can download at the end of this blog entry includes a project named JavaScriptReference.UnitTests that contains all of the JavaScripts unit tests. JavaScript Integration Tests Because not every feature of an application can be tested by unit tests, the JavaScript Reference application also includes integration tests. I wrote the integration tests using Selenium RC in combination with ASP.NET Unit Tests. The Selenium tests run against all of the target browsers for the JavaScript Reference application: IE 8, Chrome 8, Firefox 3.6, and Safari 5. For example, here is the Selenium test that checks whether authenticating with a valid user name and password correctly switches the application to Admin Mode: [TestMethod] [HostType("ASP.NET")] [UrlToTest("http://localhost:26303/JavaScriptReference")] [AspNetDevelopmentServerHost(@"C:\Users\Stephen\Documents\Repos\JavaScriptReference\JavaScriptReference\JavaScriptReference", "/JavaScriptReference")] public void TestValidLogin() { // Run test for each controller foreach (var controller in this.Controllers) { var selenium = controller.Value; var browserName = controller.Key; // Open reference page. selenium.Open("http://localhost:26303/JavaScriptReference/default.aspx"); // Click login button displays login form selenium.Click("btnLogin"); Assert.IsTrue(selenium.IsVisible("loginForm"), "Login form appears after clicking btnLogin"); // Enter user name and password selenium.Type("userName", "Admin"); selenium.Type("password", "secret"); selenium.Click("btnDoLogin"); // Should set adminMode == true selenium.WaitForCondition("selenium.browserbot.getCurrentWindow().adminMode==true", "30000"); } }   The results for running the Selenium tests appear in the Test Results window just like the unit tests: The Selenium tests take much longer to execute than the unit tests. However, they provide test coverage for actual browsers. Furthermore, if you are using Visual Studio ALM, you can run the tests automatically every night as part of your standard nightly build. You can view the Selenium tests by opening the JavaScriptReference.QATests project. Summary I plan to write more detailed blog entries about this application over the next week. I want to discuss each of the features – HTML5 local storage, HTML5 offline apps, jQuery templates, automatic script combining and minification, JavaScript unit tests, Selenium tests -- in more detail. You can download the source control for the JavaScript Reference Application by clicking the following link: Download You need Visual Studio 2010 and ASP.NET 4 to build the application. Before running the JavaScript unit tests, install the Microsoft Script Control. Before running the Selenium tests, start the Selenium server by running the StartSeleniumServer.bat file located in the JavaScriptReference.QATests project.

    Read the article

  • Dealing with Fine-Grained Cache Entries in Coherence

    - by jpurdy
    On occasion we have seen significant memory overhead when using very small cache entries. Consider the case where there is a small key (say a synthetic key stored in a long) and a small value (perhaps a number or short string). With most backing maps, each cache entry will require an instance of Map.Entry, and in the case of a LocalCache backing map (used for expiry and eviction), there is additional metadata stored (such as last access time). Given the size of this data (usually a few dozen bytes) and the granularity of Java memory allocation (often a minimum of 32 bytes per object, depending on the specific JVM implementation), it is easily possible to end up with the case where the cache entry appears to be a couple dozen bytes but ends up occupying several hundred bytes of actual heap, resulting in anywhere from a 5x to 10x increase in stated memory requirements. In most cases, this increase applies to only a few small NamedCaches, and is inconsequential -- but in some cases it might apply to one or more very large NamedCaches, in which case it may dominate memory sizing calculations. Ultimately, the requirement is to avoid the per-entry overhead, which can be done either at the application level by grouping multiple logical entries into single cache entries, or at the backing map level, again by combining multiple entries into a smaller number of larger heap objects. At the application level, it may be possible to combine objects based on parent-child or sibling relationships (basically the same requirements that would apply to using partition affinity). If there is no natural relationship, it may still be possible to combine objects, effectively using a Coherence NamedCache as a "map of maps". This forces the application to first find a collection of objects (by performing a partial hash) and then to look within that collection for the desired object. This is most naturally implemented as a collection of entry processors to avoid pulling unnecessary data back to the client (and also to encapsulate that logic within a service layer). At the backing map level, the NIO storage option keeps keys on heap, and so has limited benefit for this situation. The Elastic Data features of Coherence naturally combine entries into larger heap objects, with the caveat that only data -- and not indexes -- can be stored in Elastic Data.

    Read the article

  • Can I "inherit" a delegate? Looking for ways to combine Moq and MSpec without conflicts around It...

    - by Tomas Lycken
    I have started to use MSpec for BDD, and since long ago I use Moq as my mocking framework. However, they both define It, which means I can't have using Moq and using Machine.Specifications in the same code file without having to specify the namespace explicitly each time I use It. Anyone who's used MSpec knows this isn't really an option. I googled for solutions to this problem, and this blogger mentions having forked MSpec for himself, and implemented paralell support for Given, When, Then. I'd like to do this, but I can't figure out how to declare for example Given without having to go through the entire framework looking for references to Establish, and changing code there to match that I want either to be OK. For reference, the Establish, Because and It are declared in the following way: public delegate void Establish(); public delegate void Because(); public delegate void It(); What I need is to somehow declare Given, so that everywhere the code looks for an Establish, Given is also OK.

    Read the article

  • Visual Studio 2008 Generation of Designer File Failed (Cannot use a leading .. to exit above the top

    - by tardomatic
    Hi, It seems the universe is against me this week. I have been happily coding away on my ASP.Net application for weeks now without issues. Today I tried to add a textbox to a form, and on saving the form, I received the following error: Generation of designer file failed: Cannot use a leading .. to exit above the top directory I googled, but with no luck. I did find a blog post that shows how to add a key into the registry so that Visual Studio logs more detail about these errors, and the following is what shows up in the generated log file: ------------------------------------------------------------- C:\[path to aspx file]\PageName.aspx Generation of designer file failed: Cannot use a leading .. to exit above the top directory. ------------------------------------------------------------- System.Web.HttpException: Cannot use a leading .. to exit above the top directory. at System.Web.Util.UrlPath.ReduceVirtualPath(String path) at System.Web.Util.UrlPath.Reduce(String path) at System.Web.Util.UrlPath.Combine(String appPath, String basepath, String relative) at System.Web.VirtualPath.Combine(VirtualPath relativePath) at System.Web.VirtualPath.Combine(VirtualPath v1, VirtualPath v2) at System.Web.VirtualPathUtility.Combine(String basePath, String relativePath) at Microsoft.VisualStudio.Web.Application.Parser.BeginParse(String virtualPath, String text) at Microsoft.VisualStudio.Web.Application.Generator.UpdateDesignerClass(String document, String codeBehind, String codeBehindFile, String[] publicFields, UDC_Flags flags) ------------------------------------------------------------- And, of course this means that there is no way I can reference the newly added text box from the code behind. I thought it might be just this page giving the issue, but I have tried three other pages with the same result. I haven't changed the environment for weeks, so I am not sure how this happens. Any ideas out there? Thanks in advance Hamish

    Read the article

  • FORTRAN: Invalid form for an assignment

    - by Sam Goodness
    I can't get this code to compile uding either the g77 minGW compiler or the g95 compiler. Does anyone know why? I get these errors with the g77: diff5z10.for: In subroutine `diffract': diff5z10.for:579: Tropo100 = 20.34 - .077 * Dist ^ Invalid form for assignment statement at (^) diff5z10.for:581: IF (Freq .GT. 1000) FreqAdj = 24.5 - 7200/(Freq+3000) ^ Invalid form for assignment statement at (^) and i get these errors when compiling with g95: In file diff5z10.for:574 CLUTTER = steep*CLUTTER 1 Error: Unclassifiable statement at (1) In file diff5z10.for:580 FreqAdj = 23.978 - 58026.76 / (Freq + 2320) 1 Error: Unclassifiable statement at (1) here is the code from this section of the program: (starting with line 362) Span = .28 - .144 * (Round - 1.2) Para = C / Span**2 IF (Ratio .GT. .4) Para = 6.25 * (C - 1) CLUTTER = Para * (RATIO - .4)**2 - C IF (CLUTTER .GT. 0.) CLUTTER = 0. CSlope = SQRT(freq)/350 steep = 1 + CSlope * (dist - Horizon) IF (steep .LT. 0) steep = 0 IF (steep .GT. 1) steep = 1 CLUTTER = steep*CLUTTER Tropo100 = 20.34 - .077 * Dist FreqAdj = 23.978 - 58026.76 / (Freq + 2320) IF (Freq .GT. 1000) FreqAdj = 24.5 - 7200/(Freq+3000) TropoFd = Tropo100 - FreqAdj FS_field = 106.9 - 20 * LOG10(Dist) Scatter = TropoFd - FS_field !loss ref to free space DiffL = Scatter - DLOSS Combine = 150/(20 - DiffL) - 5 IF (DiffL .LT. -10) Combine = 0 IF (DiffL .GT. 10) Combine = DiffL DLOSS = DLOSS + Combine RETURN END

    Read the article

  • how to resize image

    - by saadan
    I am a little forgetful have made it many times and can not find the code from the last time I made it how do I get it to resize more than one picture i do like this Guid imageName; imageName = Guid.NewGuid(); string storePath = Server.MapPath("~") + "/MultipleUpload"; if (!Directory.Exists(storePath)) Directory.CreateDirectory(storePath); hif.PostedFile.SaveAs(storePath + "/" + Path.GetFileName(hif.PostedFile.FileName)); string tempPath = "Gallery"; string imgPath = "Galleryt"; string savePath = Path.Combine(Request.PhysicalApplicationPath, tempPath); string TempImagesPath = Path.Combine(savePath, imageName + hif.PostedFile.FileName); string imgSavePath = Path.Combine(Request.PhysicalApplicationPath, imgPath); string ProductImageNormal = Path.Combine(imgSavePath, "t__" + imageName + hif.PostedFile.FileName); string extension = Path.GetExtension(hif.PostedFile.FileName); switch (extension.ToLower()) { case ".png": goto case "Upload"; case ".gif": goto case "Upload"; case ".jpg": goto case "Upload"; case "Upload": hif.PostedFile.SaveAs(TempImagesPath); ImageTools.GenerateThumbnail(TempImagesPath, ProductImageNormal, 250, 350, true, "heigh"); Label1.Text = ""; break; }

    Read the article

  • Python programming - Windows focus and program process

    - by Zack
    I'm working on a python program that will automatically combine sets of files based on their names. Being a newbie, I wasn't quite sure how to go about it, so I decided to just brute force it with the win32api. So I'm attempting to do everything with virtual keys. So I run the script, it selects the top file (after arranging the by name), then sends a right click command,selects 'combine as adobe PDF', and then have it push enter. This launched the Acrobat combine window, where I send another 'enter' command. The here's where I hit the problem. The folder where I'm converting these things loses focus and I'm unsure how to get it back. Sending alt+tab commands seems somewhat unreliable. It sometimes switches to the wrong thing. A much bigger issue for me.. Different combination of files take different times to combine. though I haven't gotten this far in my code, my plan was to set some arbitrarily long time.sleep() command before it finally sent the last "enter" command to finish and confirm the file name completing the combination process. Is there a way to monitor another programs progress? Is there a way to have python not execute anymore code until something else has finished?

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • computing "node closure" of graph with removal

    - by Fakrudeen
    Given a directed graph, the goal is to combine the node with the nodes it is pointing to and come up with minimum number of these [lets give the name] super nodes. The catch is once you combine the nodes you can't use those nodes again. [first node as well as all the combined nodes - that is all the members of one super node] The greedy approach would be to pick the node with maximum out degree and combine that node with nodes it is pointing to and remove all of them. Do this every time with the nodes which are not removed yet from graph. The greedy is O(V), but this won't necessarily output minimum number super nodes. So what is the best algorithm to do this?

    Read the article

  • Only compiles as an array of pointers, not array of arrays

    - by Dustin
    Suppose I define two arrays, each of which have 2 elements (for theoretical purposes): char const *arr1[] = { "i", "j" }; char const *arr2[] = { "m", "n" }; Is there a way to define a multidimensional array that contains these two arrays as elements? I was thinking of something like the following, but my compiler displays warnings about incompatible types: char const *combine[][2] = { arr1, arr2 }; The only way it would compile was to make the compiler treat the arrays as pointers: char const *const *combine[] = { arr1, arr2 }; Is that really the only way to do it or can I preserve the type somehow (in C++, the runtime type information would know it is an array) and treat combine as a multidimensional array? I realise it works because an array name is a const pointer, but I'm just wondering if there is a way to do what I'm asking in standard C/C++ rather than relying on compiler extensions. Perhaps I've gotten a bit too used to Python's lists where I could just throw anything in them...

    Read the article

  • The ultimate .NET file and directory utility library?

    - by Serge van den Oever
    I find myself writing file and directory utility functions all the time, and I was wondering if there is good file and directory library that already implements a more extensive set than available by default in System.IO. The kind of functions I'm looking for is things like: public static void GetTemporaryDirectory() { string tempDirectory = Path.Combine(Path.GetTempPath(), Path.GetRandomFileName()); Directory.CreateDirectory(tempDirectory); return tempDirectory; } public static void CreateEmptyFile(string filename) { File.Create(filename).Dispose(); } public static void CreateEmptyFile(string path, string filename) { File.Create(Path.Combine(path, filename)).Dispose(); } public static void CreateDirectory(string path) { Directory.CreateDirectory(path); } public static void CreateDirectory(string path, string childpath) { Directory.CreateDirectory(Path.Combine(path, childpath)); }

    Read the article

  • The ultimate c# file and directory utility library?

    - by Serge van den Oever
    I find myself writing file and directory utility functions all the time, and I was wondering if there is good file and directory library that already implements a more extensive set than available by default in System.IO. The kind of functions I'm looking for is things like: public static void GetTemporaryDirectory() { string tempDirectory = Path.Combine(Path.GetTempPath(), Path.GetRandomFileName()); Directory.CreateDirectory(tempDirectory); return tempDirectory; } public static void CreateEmptyFile(string filename) { File.Create(filename).Dispose(); } public static void CreateEmptyFile(string path, string filename) { File.Create(Path.Combine(path, filename)).Dispose(); } public static void CreateDirectory(string path) { Directory.CreateDirectory(path); } public static void CreateDirectory(string path, string childpath) { Directory.CreateDirectory(Path.Combine(path, childpath)); }

    Read the article

  • Problem with access to file

    - by phenevo
    Hi, I have winforms application and it has reference to library MyLibrary. MyLibrary has method: string[] GiveMeNamesOfAirports() { string[] lines= File.ReadLines("airports.txt"); foreach(string line in lines) ... } And when I run my Winforms application: I get error: file couldn't be find. I was trying other function: string[] lines = File.ReadAllLines(Path.Combine(System.Environment.CurrentDirectory, "airports.txt")); string[] lines = File.ReadAllLines(Path.Combine(Assembly.GetExecutingAssembly().Location, "airports.txt")); string[] lines = File.ReadAllLines(Path.Combine(Assembly.GetAssembly(typeof(Airport)).Location, "airports.txt"));

    Read the article

  • Using Delegates in C# (Part 1)

    - by rajbk
    This post provides a very basic introduction of delegates in C#. Part 2 of this post can be read here. A delegate is a class that is derived from System.Delegate.  It contains a list of one or more methods called an invocation list. When a delegate instance is “invoked” with the arguments as defined in the signature of the delegate, each of the methods in the invocation list gets invoked with the arguments. The code below shows example with static and instance methods respectively: Static Methods 1: using System; 2: using System.Linq; 3: using System.Collections.Generic; 4: 5: public delegate void SayName(string name); 6: 7: public class Program 8: { 9: [STAThread] 10: static void Main(string[] args) 11: { 12: SayName englishDelegate = new SayName(SayNameInEnglish); 13: SayName frenchDelegate = new SayName(SayNameInFrench); 14: SayName combinedDelegate =(SayName)Delegate.Combine(englishDelegate, frenchDelegate); 15: 16: combinedDelegate.Invoke("Tom"); 17: Console.ReadLine(); 18: } 19: 20: static void SayNameInFrench(string name) { 21: Console.WriteLine("J'ai m'appelle " + name); 22: } 23: 24: static void SayNameInEnglish(string name) { 25: Console.WriteLine("My name is " + name); 26: } 27: } We have declared a delegate of type SayName with return type of void and taking an input parameter of name of type string. On line 12, we create a new instance of this delegate which refers to a static method - SayNameInEnglish.  SayNameInEnglish has the same return type and parameter list as the delegate declaration.  Once a delegate is instantiated, the instance will always refer to the same target. Delegates are immutable. On line 13, we create a new instance of the delegate but point to a different static method. As you may recall, a delegate instance encapsulates an invocation list. You create an invocation list by combining delegates using the Delegate.Combine method (there is an easier syntax as you will see later). When two non null delegate instances are combined, their invocation lists get combined to form a new invocation list. This is done in line 14.  On line 16, we invoke the delegate with the Invoke method and pass in the required string parameter. Since the delegate has an invocation list with two entries, each of the method in the invocation list is invoked. If an unhandled exception occurs during the invocation of one of these methods, the exception gets bubbled up to the line where the invocation was made (line 16). If a delegate is null and you try to invoke it, you will get a System.NullReferenceException. We see the following output when the method is run: My name is TomJ'ai m'apelle Tom Instance Methods The code below outputs the same results as before. The only difference here is we are creating delegates that point to a target object (an instance of Translator) and instance methods which have the same signature as the delegate type. The target object can never be null. We also use the short cut syntax += to combine the delegates instead of Delegate.Combine. 1: public delegate void SayName(string name); 2: 3: public class Program 4: { 5: [STAThread] 6: static void Main(string[] args) 7: { 8: Translator translator = new Translator(); 9: SayName combinedDelegate = new SayName(translator.SayNameInEnglish); 10: combinedDelegate += new SayName(translator.SayNameInFrench); 11:  12: combinedDelegate.Invoke("Tom"); 13: Console.ReadLine(); 14: } 15: } 16: 17: public class Translator { 18: public void SayNameInFrench(string name) { 19: Console.WriteLine("J'ai m'appelle " + name); 20: } 21: 22: public void SayNameInEnglish(string name) { 23: Console.WriteLine("My name is " + name); 24: } 25: } A delegate can be removed from a combination of delegates by using the –= operator. Removing a delegate from an empty list or removing a delegate that does not exist in a non empty list will not result in an exception. Delegates are invoked synchronously using the Invoke method. We can also invoke them asynchronously using the BeginInvoke and EndInvoke methods which are compiler generated.

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >