Search Results

Search found 3409 results on 137 pages for 'distributed computing'.

Page 15/137 | < Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >

  • Pay in the future should make you think in the present

    - by BuckWoody
    Distributed Computing - and more importantly “-as-a-Service” models of computing have a different cost model. This is something that sounds obvious on the surface but it’s often forgotten during the design and coding phase of a project. In on-premises computing, we’re used to purchasing a server and all of the hardware infrastructure and software licenses needed not only for one project, but several. This is an up-front or “sunk” cost that we consume by running code the organization needs to perform its function. Using a direct connection over wires you’ve already paid for, we don’t often have to think about bandwidth, hits on the data store or the amount of compute we use - we just know more is better. In a pay-as-you-go model, however, each of these architecture decisions has a potential cost impact. The amount of data you store, the number of times you access it, and the amount you send back all come with a charge. The offset is that you don’t buy anything at all up-front, so that sunk cost is freed up. And financial professionals know that money now is worth more than money later. Saving that up-front cost allows you to invest it in other things. It’s not just that you’re using things that now cost money - it’s that the design itself in distributed computing has a cost impact. That can be a really good thing, such as when you dynamically add capacity for paying customers. If you can tie back the cost of a series of clicks to what a user will pay to do so, you can set a profit margin that is easy to track. Here’s a case in point: Assume you are using a large instance in Windows Azure to compute some data that you retrieve from a SQL Azure database. If you don’t monitor the path of the application, you may not know what you are really using. Since you’re paying by the size of the instance, it’s best to maximize it all the time. Recently I evaluated just this situation, and found that downsizing the instance and adding another one where needed, adding a caching function to the application, moving part of the data into Windows Azure tables not only increased the speed of the application, but reduced the cost and more closely tied the cost to the profit. The key is this: from the very outset - the design - make sure you include metrics to measure for the cost/performance (sometimes these are the same) for your application. Windows Azure opens up awesome new ways of doing things, so make sure you study distributed systems architecture before you try and force in the application design you have on premises into your new application structure.

    Read the article

  • What Parallel computing APIs make good use of sockets?

    - by Ole Jak
    My program uses sockets, what Parallel computing APIs could I use that would help me without obligating me to go from sockets to anything else? When we are on a cluster with a special, non-socket infrastructure system this API would emulate something like sockets but using that infrastructure (so programs perform much faster than on sockets, but still use the sockets API).

    Read the article

  • Windows Azure Use Case: Agility

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Agility in this context is defined as the ability to quickly develop and deploy an application. In theory, the speed at which your organization can develop and deploy an application on available hardware is identical to what you could deploy in a distributed environment. But in practice, this is not always the case. Having an option to use a distributed environment can be much faster for the deployment and even the development process. Implementation: When an organization designs code, they are essentially becoming a Software-as-a-Service (SaaS) provider to their own organization. To do that, the IT operations team becomes the Infrastructure-as-a-Service (IaaS) to the development teams. From there, the software is developed and deployed using an Application Lifecycle Management (ALM) process. A simplified view of an ALM process is as follows: Requirements Analysis Design and Development Implementation Testing Deployment to Production Maintenance In an on-premise environment, this often equates to the following process map: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including physical plant, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to on-premise Testing servers. If no server capacity available, more resources procured through standard budgeting and ordering processes. Manual and automated functional, load, security, etc. performed. Deployment to Production Server team involved to select platform and environments with available capacity. If no server capacity available, standard budgeting and procurement process followed. If no server capacity available, systems built, configured and put under standard organizational IT control. Systems configured for proper operating systems, patches, security and virus scans. System maintenance, HA/DR, backups and recovery plans configured and put into place. Maintenance Code changes evaluated and altered according to need. In a distributed computing environment like Windows Azure, the process maps a bit differently: Requirements Business requirements formed by Business Analysts, Developers and Data Professionals. Analysis Feasibility studies, including budget, security, manpower and other resources. Request is placed on the work task list if approved. Design and Development Code written according to organization’s chosen methodology, either on-premise or to multiple development teams on and off premise. Implementation Code checked into main branch. Code forked as needed. Testing Code deployed to Azure. Manual and automated functional, load, security, etc. performed. Deployment to Production Code deployed to Azure. Point in time backup and recovery plans configured and put into place.(HA/DR and automated backups already present in Azure fabric) Maintenance Code changes evaluated and altered according to need. This means that several steps can be removed or expedited. It also means that the business function requesting the application can be held directly responsible for the funding of that request, speeding the process further since the IT budgeting process may not be involved in the Azure scenario. An additional benefit is the “Azure Marketplace”, In effect this becomes an app store for Enterprises to select pre-defined code and data applications to mesh or bolt-in to their current code, possibly saving development time. Resources: Whitepaper download- What is ALM?  http://go.microsoft.com/?linkid=9743693  Whitepaper download - ALM and Business Strategy: http://go.microsoft.com/?linkid=9743690  LiveMeeting Recording on ALM and Windows Azure (registration required, but free): http://www.microsoft.com/uk/msdn/visualstudio/contact-us.aspx?sbj=Developing with Windows Azure (ALM perspective) - 10:00-11:00 - 19th Jan 2011

    Read the article

  • Pros and cons of distributed revision control systems?

    - by Ludwig Weinzierl
    What are the advantages and disadvantages of distributed revision control systems? If you have any experience with distributed systems like Git, Mercurial, Plastic SCM, etc. please share your experience. Tell us what worked well and where problems arose. I'm particularly interested to hear about the use of distributed systems in traditional, commercial, non-open source projects but answers about other uses are also welcome.

    Read the article

  • Terminology for mobile computing with a tablet?

    - by Idrise_Coulombe
    This is more of a terminology question... I'm developing an occasionally connected application that will run on a tablet for clinicians or field service workers but I'm struggling with what this type of computing is referred to. Mobile computing as connotations of a phone app. Whereas our clients may be occasionally at their desk. Microsoft uses Smart Client a lot, but I'm not sure if that best describes this scenario or is the common term for this kind of computing.

    Read the article

  • DNA and Quantum computing

    - by Jacques
    I recently(A couple of weeks ago) read an article about the future of processing and how quantum-processors and DNA-processors(DNA-computing) are the future competitors of computing since both will completely outperform the computers of this era. In terms of processing speeds, what do we expect from these two different processing techniques ? Personally I believe that DNA-processing will be a major step towards AI. For labs and office work I think quantum-processing which will be more logical. I'm quite excited that i'm still so young - to see what the future of technology holds! Then again my parents will soon find out what the after-life holds... just as bloody exciting, if not more..

    Read the article

  • Do you know what is a DevOps Project?

    - by Gopinath
    Yesterday I wrote about OpenStack project, an open source cloud computing stack that lets you build Cloud Computing environments. While reading more on this topic I stumbled about a new type of projects called DevOps projects.  OpenStack is all set to become the first DevOps project, reports Forbes …the way OpenStack is applying the open source model to creating cloud infrastructure, the open source model is on the verge of being extended so that the collaboration and design process will include software, hardware, and networking in the data center as well as operational processes. In modern development, the idea of designing software, data center, and operations using one integrated team is called DevOps.

    Read the article

  • Developing a Support Plan for Cloud Applications

    - by BuckWoody
    Last week I blogged about developing a High-Availability plan. The specifics of a given plan aren't as simple as "Step 1, then Step 2" because in a hybrid environment (which most of us have) the situation changes the requirements. There are those that look for simple "template" solutions, but unless you settle on a single vendor and a single way of doing things, that's not really viable. The same holds true for support. As I've mentioned before, I'm not fond of the term "cloud", and would rather use the tem "Distributed Computing". That being said, more people understand the former, so I'll just use that for now. What I mean by Distributed Computing is leveraging another system or setup to perform all or some of a computing function. If this definition holds true, then you're essentially creating a partnership with a vendor to run some of your IT - whether that be IaaS, PaaS or SaaS, or more often, a mix. In your on-premises systems, you're the first and sometimes only line of support. That changes when you bring in a Cloud vendor. For Windows Azure, we have plans for support that you can pay for if you like. http://www.windowsazure.com/en-us/support/plans/ You're not off the hook entirely, however. You still need to create a plan to support your users in their applications, especially for the parts you control. The last thing they want to hear is "That's vendor X's problem - you'll have to call them." I find that this is often the last thing the architects think about in a solution. It's fine to put off the support question prior to deployment, but I would hold off on calling it "production" until you have that plan in place. There are lots of examples, like this one: http://www.va-interactive.com/inbusiness/editorial/sales/ibt/customer.html some of which are technology-specific. Once again, this is an "it depends" kind of approach. While it would be nice if there was just something in a box we could buy, it just doesn't work that way in a hybrid system. You have to know your options and apply them appropriately.

    Read the article

  • Developing a Support Plan for Cloud Applications

    - by BuckWoody
    Last week I blogged about developing a High-Availability plan. The specifics of a given plan aren't as simple as "Step 1, then Step 2" because in a hybrid environment (which most of us have) the situation changes the requirements. There are those that look for simple "template" solutions, but unless you settle on a single vendor and a single way of doing things, that's not really viable. The same holds true for support. As I've mentioned before, I'm not fond of the term "cloud", and would rather use the tem "Distributed Computing". That being said, more people understand the former, so I'll just use that for now. What I mean by Distributed Computing is leveraging another system or setup to perform all or some of a computing function. If this definition holds true, then you're essentially creating a partnership with a vendor to run some of your IT - whether that be IaaS, PaaS or SaaS, or more often, a mix. In your on-premises systems, you're the first and sometimes only line of support. That changes when you bring in a Cloud vendor. For Windows Azure, we have plans for support that you can pay for if you like. http://www.windowsazure.com/en-us/support/plans/ You're not off the hook entirely, however. You still need to create a plan to support your users in their applications, especially for the parts you control. The last thing they want to hear is "That's vendor X's problem - you'll have to call them." I find that this is often the last thing the architects think about in a solution. It's fine to put off the support question prior to deployment, but I would hold off on calling it "production" until you have that plan in place. There are lots of examples, like this one: http://www.va-interactive.com/inbusiness/editorial/sales/ibt/customer.html some of which are technology-specific. Once again, this is an "it depends" kind of approach. While it would be nice if there was just something in a box we could buy, it just doesn't work that way in a hybrid system. You have to know your options and apply them appropriately.

    Read the article

  • Is there the equivalent of cloud computing for modems?

    - by morpheous
    I asked this question on SF, and someone recommended that I ask it here - (I don't think I have enough points to move a question from SF to SO - and in any case, I don't know how to do it - so here is the question again): I am interested in the concept of PAAS (platform as a service). However, all talk about SAAS/PAAS seems to focus on only the computer itself - not its peripherals. Is it possible to 'outsource' modems as a resource - so that an app running remotely can pump data to a modem in the cloud? As a bit of background to the question, a group of us are thinking of starting a company that offers similar services to companies like twilio etc - but I want to 'outsource' both the computing hardware (thats PAAS - the easy bit) and the modems (thats what I cant seem to find any info on). Does anyone know if modems can be bundled as part of a PAAS service? - alternatively, is there a way that an application running on one computer can communicate (i.e. pump data) to a remote modem residing on another machine?. I assume I can come up with some protocol over UDP or TCP - but there is no point reinventing the wheel - if such a protocol like that already exists (or if it some open source software allows one to do this). Any suggestions on how to solve this problem?

    Read the article

  • Memory management with Objective-C Distributed Objects: my temporary instances live forever!

    - by jkp
    I'm playing with Objective-C Distributed Objects and I'm having some problems understanding how memory management works under the system. The example given below illustrates my problem: Protocol.h #import <Foundation/Foundation.h> @protocol DOServer - (byref id)createTarget; @end Server.m #import <Foundation/Foundation.h> #import "Protocol.h" @interface DOTarget : NSObject @end @interface DOServer : NSObject < DOServer > @end @implementation DOTarget - (id)init { if ((self = [super init])) { NSLog(@"Target created"); } return self; } - (void)dealloc { NSLog(@"Target destroyed"); [super dealloc]; } @end @implementation DOServer - (byref id)createTarget { return [[[DOTarget alloc] init] autorelease]; } @end int main() { NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; DOServer *server = [[DOServer alloc] init]; NSConnection *connection = [[NSConnection new] autorelease]; [connection setRootObject:server]; if ([connection registerName:@"test-server"] == NO) { NSLog(@"Failed to vend server object"); } else [[NSRunLoop currentRunLoop] run]; [pool drain]; return 0; } Client.m #import <Foundation/Foundation.h> #import "Protocol.h" int main() { unsigned i = 0; for (; i < 3; i ++) { NSAutoreleasePool *pool = [[NSAutoreleasePool alloc] init]; id server = [NSConnection rootProxyForConnectionWithRegisteredName:@"test-server" host:nil]; [server setProtocolForProxy:@protocol(DOServer)]; NSLog(@"Created target: %@", [server createTarget]); [[NSRunLoop currentRunLoop] runUntilDate:[NSDate dateWithTimeIntervalSinceNow:1.0]]; [pool drain]; } return 0; } The issue is that any remote objects created by the root proxy are not released when their proxy counterparts in the client go out of scope. According to the documentation: When an object’s remote proxy is deallocated, a message is sent back to the receiver to notify it that the local object is no longer shared over the connection. I would therefore expect that as each DOTarget goes out of scope (each time around the loop) it's remote counterpart would be dellocated, since there is no other reference to it being held on the remote side of the connection. In reality this does not happen: the temporary objects are only deallocate when the client application quits, or more accurately, when the connection is invalidated. I can force the temporary objects on the remote side to be deallocated by explicitly invalidating the NSConnection object I'm using each time around the loop and creating a new one but somehow this just feels wrong. Is this the correct behaviour from DO? Should all temporary objects live as long as the connection that created them? Are connections therefore to be treated as temporary objects which should be opened and closed with each series of requests against the server? Any insights would be appreciated.

    Read the article

  • Setting up MongoDB in High Performance Computing LSF linux cluster

    - by Dnaiel
    I am trying to run mongo in a LSF cluster computing environment where I have no admin control. Our sysadmin installed mongodb, but it is not running. Any ideas on what should I ask the server admin to do for it to run? Or if I could run it locally? [node1382]allelix> mongod --dbpath /users/dnaiel/ma/mongodb/ Tue Oct 2 21:33:48 [initandlisten] MongoDB starting : pid=22436 port=27017 dbpath=/seq/epigenome01/allelix/ma/mongodb/ 64-bit host=node1382 Tue Oct 2 21:33:48 [initandlisten] Tue Oct 2 21:33:48 [initandlisten] ** WARNING: You are running on a NUMA machine. Tue Oct 2 21:33:48 [initandlisten] ** We suggest launching mongod like this to avoid performance problems: Tue Oct 2 21:33:48 [initandlisten] ** numactl --interleave=all mongod [other options] Tue Oct 2 21:33:48 [initandlisten] Tue Oct 2 21:33:48 [initandlisten] db version v2.2.0, pdfile version 4.5 Tue Oct 2 21:33:48 [initandlisten] git version: f5e83eae9cfbec7fb7a071321928f00d1b0c5207 Tue Oct 2 21:33:48 [initandlisten] build info: Linux ip-10-2-29-40 2.6.21.7-2.ec2.v1.2.fc8xen #1 SMP Fri Nov 20 17:48:28 EST 2009 x86_64 BOOST_LIB_VERSION=1_49 Tue Oct 2 21:33:48 [initandlisten] options: { dbpath: "/users/dnaiel/ma/mongodb/" } Tue Oct 2 21:33:48 [initandlisten] journal dir=users/dnaiel/ma/mongodb/journal Tue Oct 2 21:33:48 [initandlisten] recover begin Tue Oct 2 21:33:48 [initandlisten] info no lsn file in journal/ directory Tue Oct 2 21:33:48 [initandlisten] recover lsn: 0 Tue Oct 2 21:33:48 [initandlisten] recover /seq/epigenome01/allelix/ma/mongodb/journal/j._0 Tue Oct 2 21:33:48 [initandlisten] recover cleaning up Tue Oct 2 21:33:48 [initandlisten] removeJournalFiles Tue Oct 2 21:33:48 [initandlisten] recover done Tue Oct 2 21:33:48 [websvr] admin web console waiting for connections on port 28017 Tue Oct 2 21:33:48 [initandlisten] waiting for connections on port 27017 It basically waits forever and cannot start mongodb. These servers are not webservers but they do have network access, it's a cloud computing LSF environment system. Any advice would be welcome, thanks in advance.

    Read the article

  • Ruby: Widely Distributed?

    - by Yar
    While I know it's not part of the Posix standard, but how widely distributed is Ruby on Linux, Unix and other *nix's? I ask because I loathe sh and use Ruby whenever I can on Ubuntu and OSX, but I don't want to get too locked in to 'strange' solutions.

    Read the article

  • faking NAT with a VMware distributed switch across multiple hosts

    - by romant
    Have a VM that will act as the router, and will be connected to both networks (NAT + 'real'). I spread the distributed switch across the hosts, although any VM that is not on the same physical host as the router/dhcpd simply doesn't get an IP. So its obviously my dvSwitch config. Has anyone achieved a NAT solution using a dvSwitch before that they could share?! Thanks.

    Read the article

  • How DNS server resolves when web servers are geographically distributed

    - by Supratik
    Hi A domain abc.com has two web servers located in two different location one in India and another in Malaysia. If the request are handled by the servers depending on the location from where the request originates then how DNS server resolves for such geographically distributed servers when my client system is configured to a local DNS server in Indian or a DNS server in Malyasia ? Warm Regards Supratik

    Read the article

  • EL FUTURO DEL CLOUD, A DEBATE EN EL XX CONGRESO NACIONAL DE USUARIOS ORACLE

    - by comunicacion-es_es(at)oracle.com
    Normal 0 21 false false false ES X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin;} ¡Vuelta a un mini Oracle OpenWorld! La Comunidad de Usuarios de Oracle celebrará en Madrid los próximos 16 y 17 de marzo su XX Congreso Nacional, donde estarán representadas TODAS las áreas de Oracle (aplicaciones, tecnología, hardware y canal). Bajo el lema "Agilidad, innovación y optimización del negocio", contaremos con prestigiosos ponentes internacionales como Massimo Pezzini, vicepresidente de Gartner; Rex Wang, experto en Cloud Computing y vicepresidente de marketing de producto de Oracle; y Janny Ekelson, director de aplicaciones y arquitectura FedEx Express Europa. A parte de los más de 15 casos de éxito, en las más de 40 presentaciones programadas, el Cloud Computing será uno de los temas estrella junto a la estrategia en hardware de Oracle tras la adquisición de Sun. ¡Os esperamos!

    Read the article

  • Deploying Data Mining Models using Model Export and Import, Part 2

    - by [email protected]
    In my last post, Deploying Data Mining Models using Model Export and Import, we explored using DBMS_DATA_MINING.EXPORT_MODEL and DBMS_DATA_MINING.IMPORT_MODEL to enable moving a model from one system to another. In this post, we'll look at two distributed scenarios that make use of this capability and a tip for easily moving models from one machine to another using only Oracle Database, not an external file transport mechanism, such as FTP. The first scenario, consider a company with geographically distributed business units, each collecting and managing their data locally for the products they sell. Each business unit has in-house data analysts that build models to predict which products to recommend to customers in their space. A central telemarketing business unit also uses these models to score new customers locally using data collected over the phone. Since the models recommend different products, each customer is scored using each model. This is depicted in Figure 1.Figure 1: Target instance importing multiple remote models for local scoring In the second scenario, consider multiple hospitals that collect data on patients with certain types of cancer. The data collection is standardized, so each hospital collects the same patient demographic and other health / tumor data, along with the clinical diagnosis. Instead of each hospital building it's own models, the data is pooled at a central data analysis lab where a predictive model is built. Once completed, the model is distributed to hospitals, clinics, and doctor offices who can score patient data locally.Figure 2: Multiple target instances importing the same model from a source instance for local scoring Since this blog focuses on model export and import, we'll only discuss what is necessary to move a model from one database to another. Here, we use the package DBMS_FILE_TRANSFER, which can move files between Oracle databases. The script is fairly straightforward, but requires setting up a database link and directory objects. We saw how to create directory objects in the previous post. To create a database link to the source database from the target, we can use, for example: create database link SOURCE1_LINK connect to <schema> identified by <password> using 'SOURCE1'; Note that 'SOURCE1' refers to the service name of the remote database entry in your tnsnames.ora file. From SQL*Plus, first connect to the remote database and export the model. Note that the model_file_name does not include the .dmp extension. This is because export_model appends "01" to this name.  Next, connect to the local database and invoke DBMS_FILE_TRANSFER.GET_FILE and import the model. Note that "01" is eliminated in the target system file name.  connect <source_schema>/<password>@SOURCE1_LINK; BEGIN  DBMS_DATA_MINING.EXPORT_MODEL ('EXPORT_FILE_NAME' || '.dmp',                                 'MY_SOURCE_DIR_OBJECT',                                 'name =''MY_MINING_MODEL'''); END; connect <target_schema>/<password>; BEGIN  DBMS_FILE_TRANSFER.GET_FILE ('MY_SOURCE_DIR_OBJECT',                               'EXPORT_FILE_NAME' || '01.dmp',                               'SOURCE1_LINK',                               'MY_TARGET_DIR_OBJECT',                               'EXPORT_FILE_NAME' || '.dmp' );  DBMS_DATA_MINING.IMPORT_MODEL ('EXPORT_FILE_NAME' || '.dmp',                                 'MY_TARGET_DIR_OBJECT'); END; To clean up afterward, you may want to drop the exported .dmp file at the source and the transferred file at the target. For example, utl_file.fremove('&directory_name', '&model_file_name' || '.dmp');

    Read the article

  • What alternatives do I have if I want a distributed multi-master database?

    - by Jonas
    I will build a system where I want to reduce single-point-of-failures, and I need a database. Is there any (free) relational database systems that can handle multi-master setups good (i.e where it is easy to add and remove nodes) or is it better to go with a NoSQL-database? As what I have understood, a key-value store will handle this better. What database system do you recommend for a multi-master (cluster) setup?

    Read the article

  • One bigger Virtual Machine distributed across many OpenStack nodes [duplicate]

    - by flyer
    This question already has an answer here: Can a virtualized machine have the CPU and RAM resources of multiple underlying physical machines? 2 answers I just setup virtual machines on one hardware with Vagrant. I want to use a Puppet to configure them and next try to setup OpenStack. I am not sure If I am understanding how this should look at the end. Is it possible to have below architecture with OpenStack after all where I will run one Virtual Machine with Linux? ------------------------------- | VM with OS | ------------------------------- | NOVA | NOVA | NOVA | ------------------------------- | OpenStack | ------------------------------- | Node | Node | Node | ------------------------------- More details: In my environment Nodes are just virtual machines, but my question concerns separate Hardware nodes. If we imagine this Nodes(Novas) are placed on a separate machines (e.g. every has 4 cores) can I run one Virtual Machine across many OpenStack Nodes? Is it possible to aggregate the computation power of OpenStack in one virtual distributed operating system?

    Read the article

  • How To Perform Distributed Website Monitoring?

    - by cballou
    I would like to know how sites like the following perform distributed website monitoring (from multiple checkpoints/countries). pingdom.com, site24x7.com, uptrends.com, siteuptime.com, etc, etc. To be exact, what process would occur in checking if a given domain name went down? If the server finds that the site is down, what is the next step? Would it make a REST API request to a separate server to run the same test and report the results? I have a few theories, including: utilizing host(s) from different countries utilizing proxies from different countries I'm looking for the most proper or correct way to handle this, which can include the usage of servers from multiple countries/hosts.

    Read the article

  • GPU Computing - # of GPUs supported

    - by TehTypoKing
    I currently have a desktop with 6 GPUs ( 3x HD 5970s ) in non-crossfire mode. Unfortunately, it seems that Windows 7 64bit only supports up to 4 GPUs. I have not been able to find a reliable source to deny or confirm this. If windows 7 has this limitation, is there a Linux flavor that supports more than 4 GPUs? In-case you are wondering, this is not for gaming but high-speed single precision computing. With this current setup ( if I can find 6gpu support ) I am looking to reach 13.8 Teraflops. Also, my motherboard does support 3 16x pci-xpress gen2 slots... and I have a 1500w powersupply plugged into a 20amp outlet. Windows is able to detect all 6 cores.. although, 2 of which displays the warning "Drivers failed to load". To recap: - Can windows support 6 GPUs? - If not, does Linux? Thank you.

    Read the article

< Previous Page | 11 12 13 14 15 16 17 18 19 20 21 22  | Next Page >