Search Results

Search found 22162 results on 887 pages for 'limit size'.

Page 152/887 | < Previous Page | 148 149 150 151 152 153 154 155 156 157 158 159  | Next Page >

  • UIImageView and UIScrollView load lot of pictures

    - by Allan.Chen
    In my app, i use UIImageView and UIScrollView to show lot of pictures(Every time there are about 20 pictures and every pictures about 600px*500px and size is about 600KB ), i use for this code to do this function. Here is code: //Here is pictures Data; self.klpArry = self.pictureData; CGSize size = self.klpScrollView1.frame.size; for (int i=0; i < [klpArr count]; i++) { UIImageView *iv = [[UIImageView alloc] initWithFrame:CGRectMake((size.width * i)+300, 20, 546, 546)]; NSString *filePath = [[NSBundle mainBundle] pathForResource:[klpArr objectAtIndex:i] ofType:@"jpg"]; UIImage *imageData = [[UIImage alloc]initWithData:[NSData dataWithContentsOfFile:filePath]]; [iv setImage:imageData]; iv.backgroundColor = [UIColor grayColor]; [self.klpScrollView1 addSubview:iv]; imageData = nil; iv = nil; iv.image = nil; filePath = nil; [imageData release]; [filePath release]; [iv release]; } // show the picture in scrollview; [self.klpScrollView1 setContentSize:CGSizeMake(size.width * numImage, size.height)]; self.klpScrollView1.pagingEnabled = YES; self.klpScrollView1.showsHorizontalScrollIndicator = NO; self.klpScrollView1.backgroundColor = [UIColor grayColor]; But everytime i init this function, the memory will increase about 5MB, Actually i release UIImageView, UIimage and UIScrollView (vi.image=nil,[vi release]) but i doesn't work, it can't release the memory. BTW, i use my friend code first vi.image=nil then vi=nil; but the pictures not to show on scrollview. any one can help me ?? Thx ~~

    Read the article

  • Will 5 Terabyte NAS drive be compatible with Windows XP SP3 32 bit?

    - by TrevorBoydSmith
    (NOTE: The operating system (in this case Windows XP SP3 32 bit) we are using is not a choice.) I am trying to setup a short term storage device. First, I found a large 5 Terabyte NAS drive that would IMO fulfill my storage requirements. Second, I also found that Windows XP seems to have a hard drive size limit (see 'Is there a limit to the size of a hard drive for Windows XP pre-SP1?'): XP should handle up to 2 TB per volume after the service packs are applied. You are correct. There was a 137gb limit on the orginal pre service pack windows xp. This was addressed/fixed in SP1. My question is, will my Windows XP SP3 32 bit machine see the 5 Terabyte NAS and be able to read/write properly to the NAS drive?

    Read the article

  • Why does mmap() fail with ENOMEM on a 1TB sparse file?

    - by metadaddy
    I've been working with large sparse files on openSUSE 11.2 x86_64. When I try to mmap() a 1TB sparse file, it fails with ENOMEM. I would have thought that the 64 bit address space would be adequate to map in a terabyte, but it seems not. Experimenting further, a 1GB file works fine, but a 2GB file (and anything bigger) fails. I'm guessing there might be a setting somewhere to tweak, but an extensive search turns up nothing. Here's some sample code that shows the problem - any clues? #include <errno.h> #include <fcntl.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/mman.h> #include <sys/types.h> #include <unistd.h> int main(int argc, char *argv[]) { char * filename = argv[1]; int fd; off_t size = 1UL << 40; // 30 == 1GB, 40 == 1TB fd = open(filename, O_RDWR | O_CREAT | O_TRUNC, 0666); ftruncate(fd, size); printf("Created %ld byte sparse file\n", size); char * buffer = (char *)mmap(NULL, (size_t)size, PROT_READ | PROT_WRITE, MAP_SHARED, fd, 0); if ( buffer == MAP_FAILED ) { perror("mmap"); exit(1); } printf("Done mmap - returned 0x0%lx\n", (unsigned long)buffer); strcpy( buffer, "cafebabe" ); printf("Wrote to start\n"); strcpy( buffer + (size - 9), "deadbeef" ); printf("Wrote to end\n"); if ( munmap(buffer, (size_t)size) < 0 ) { perror("munmap"); exit(1); } close(fd); return 0; }

    Read the article

  • Get a unique data in a SQL query

    - by Jensen
    Hi, I've a database who contain some datas in that form: icon(name, size, tag) (myicon.png, 16, 'twitter') (myicon.png, 32, 'twitter') (myicon.png, 128, 'twitter') (myicon.png, 256, 'twitter') (anothericon.png, 32, 'facebook') (anothericon.png, 128, 'facebook') (anothericon.png, 256, 'facebook') So as you see it, the name field is not uniq I can have multiple icons with the same name and they are separated with the size field. Now in PHP I have a query that get ONE icon set, for example : $dbQueryIcons = mysql_query("SELECT * FROM pl_icon WHERE tag LIKE '%".$SEARCH_QUERY."%' GROUP BY name ORDER BY id DESC LIMIT ".$firstEntry.", ".$CONFIG['icon_per_page']."") or die(mysql_error()); With this example if $tag contain 'twitter' it will show ONLY the first SQL data entry with the tag 'twitter', so it will be : (myicon.png, 16, 'twitter') This is what I want, but I would prefer the '128' size by default. Is this possible to tell SQL to send me only the 128 size when existing and if not another size ? In an another question someone give me a solution with the GROUP BY but in this case that don't run because we have a GROUP BY name. And if I delete the GROUP BY, it show me all size of the same icons. Thanks !

    Read the article

  • Problem setting dynamic UITableViewCell height

    - by HiveHicks
    I've got a UITableView with two dynamic rows. Each of the rows is a subclass of UITableViewCell and is loaded from nib. As my rows contain dynamic content, I use layoutSubviews to reposition all subviews: - (void)layoutSubviews { [super layoutSubviews]; CGFloat initialHeight = titleLabel.bounds.size.height; CGSize constraintSize = CGSizeMake(titleLabel.bounds.size.width, MAXFLOAT); CGSize size = [titleLabel.text sizeWithFont:titleLabel.font constrainedToSize:constraintSize]; CGFloat delta = size.height - initialHeight; CGRect titleFrame = titleLabel.frame; titleFrame.size.height += delta; titleLabel.frame = titleFrame; locationLabel.frame = CGRectOffset(locationLabel.frame, 0, delta); dayLabel.frame = CGRectOffset(dayLabel.frame, 0, delta); timeLabel.frame = CGRectOffset(timeLabel.frame, 0, delta); } The problem is that I can't find a way to determine the height in table view delegate's tableView:heightForRowAtIndexPath: method. The trick is that I load cell from nib, so just after it's loaded titleLabel.bounds.size.width is 300 px (as in nib), not taking into account type of the device (iPhone/iPad) and current orientation, so it seems impossible to calculate the height without conditional checks for orientation and device type. Any ideas?

    Read the article

  • Open table cache in MySQL

    - by vvanscherpenseel
    I have my open table cache set to 1800 and I have a total of 1112 tables. MySQL Tuning Primer reports that 100% of my table cache is used yet my table cache hit rate is 5%. I understand that this happens due to concurrent connections all opening tables. I think I should raise the cache limit. I understand that the cache size is limited by the file descriptor limit of my operating system, but are there any other practical limitations I should be aware of? Searching Google or this very website yields mostly posts explaining the connection-factor or come up with indecisive answers. My question: can I safely increase the open table cache limit? Is there a maximum?

    Read the article

  • Could this C cast to avoid a signed/unsigned comparison make any sense?

    - by sharptooth
    I'm reviewing a C++ project and see effectively the following: std::vector<SomeType> objects; //then later int size = (int)objects.size(); for( int i = 0; i < size; ++i ) { process( objects[i] ); } Here's what I see. std::vector::size() returns size_t that can be of some size not related to the size of int. Even if sizeof(int) == sizeof(size_t) int is signed and can't hold all possible values of size_t. So the code above could only process the lower part of a very long vector and contains a bug. That said I'm curious of why the author might have written this? My only guess is that first he omitted the (int) cast and the compiler emitted something like Visual C++ C4018 warning: warning C4018: '<' : signed/unsigned mismatch so the author though that the best way to avoid the compiler warning would be to simply cast the size_t to int thus making the compiler shut up. Is there any other possible sane reason for that C cast?

    Read the article

  • Java: How ArrayList memory management

    - by cka3o4nik
    In my Data Structures class we have studies the Java ArrayList class, and how it grows the underlying array when a user adds more elements. That is understood. However, I cannot figure out how exactly this class frees up memory when lots of elements are removed from the list. Looking at the source, there are three methods that remove elements: [code] public E remove(int index) { RangeCheck(index); modCount++; E oldValue = (E) elementData[index]; int numMoved = size - index - 1; if (numMoved 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // Let gc do its work return oldValue; } public boolean remove(Object o) { if (o == null) { for (int index = 0; index < size; index++) if (elementData[index] == null) { fastRemove(index); return true; } } else { for (int index = 0; index < size; index++) if (o.equals(elementData[index])) { fastRemove(index); return true; } } return false; } private void fastRemove(int index) { modCount++; int numMoved = size - index - 1; if (numMoved 0) System.arraycopy(elementData, index+1, elementData, index, numMoved); elementData[--size] = null; // Let gc do its work } {/code] None of them reduce the datastore array. I even started questioning if memory free up ever happens, but empirical tests show that it does. So there must be some other way it is done, but where and how? I checked the parent classes as well with no success.

    Read the article

  • Using XSLT, how can I produce a table with elements at the position of the the node's attributes?

    - by Dr. Sbaitso
    Given the following XML: <items> <item> <name>A</name> <address>0</address> <start>0</start> <size>2</size> </item> <item> <name>B</name> <address>1</address> <start>2</start> <size>4</size> </item> <item> <name>C</name> <address>2</address> <start>5</start> <size>2</size> </item> </items> I want to generate the following output including colspan's +---------+------+------+------+------+------+------+------+------+ | Address | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 | +---------+------+------+------+------+------+------+------+------+ | 0 | | | | | | | A | +---------+------+------+------+------+------+------+------+------+ | 1 | | | B | | | +---------+------+------+------+------+------+------+------+------+ | 2 | | C | | | | | | +---------+------+------+------+------+------+------+------+------+ | 3 | | | | | | | | | +---------+------+------+------+------+------+------+------+------+ I think I would be able to accomplish this with a mutable xslt variable, but alas, there's no such thing. Is it even possible? How?

    Read the article

  • Weird send() problem (with Wireshark log)

    - by Meta
    I had another question about this issue, but I didn't ask properly, so here I go again! I'm sending a file by sending it in chunks. Right now, I'm playing around with different numbers for the size of that chunk, to see what size is the most efficient. When testing on the localhost, any chunk size seems to work fine. But when I tested it over the network, it seems like the maximum chunk size is 8191 bytes. If I try anything higher, the transfer becomes extremely, painfully, slow. To show what happens, here are the first 100 lines of Wireshark logs when I use a chunk size of 8191 bytes, and when I use a chunk size of 8192 bytes: (the sender is 192.168.0.102, and the receiver is 192.168.0.100) 8191: http://pastebin.com/E7jFFY4p 8192: http://pastebin.com/9P2rYa1p Notice how in the 8192 log, on line 33, the receiver takes a long time to ACK the data. This happens again on line 103 and line 132. I believe this delay is the root of the problem. Note that I have not modified the SO_SNDBUF option nor the TCP_NODELAY option. So my question is, why am I getting delayed ACKs when sending files in chunks of 8192 bytes, when everything works fine when using chunks of 8191 bytes? Edit: As an experiment, I tried to do the file transfer in the other direction (from 192.168.0.100 to 192.168.0.102), and surprisingly, any number worked! (Although numbers around 8000 seemed to perform the smoothest). So then the problem is with my computer! But I'm really not sure what to check for. Edit 2: Here is the pseudocode I use to send and receive data.

    Read the article

  • two view controllers and reusability with delegate

    - by netcharmer
    Newbie question about design patterns in objC. I'm writing a functionality for my iphone app which I plan to use in other apps too. The functionality is written over two classes - Viewcontroller1 and Viewcontroller2. Viewcontroller1 is the root view of a navigation controller and it can push Viewcontroller2. Rest of the app will use only ViewController1 and will never access Viewcontroller2 directly. However, triggered by user events, Viewcontroller2 has to send a message to the rest of the app. My question is what is the best way of achieving it? Currently, I use two level of delegation to send the message out from Viewcontroller2. First send it to Viewcontroller1 and then let Viewcontroller1 send it to rest of the app or the application delegate. So my code looks like - //Viewcontroller1.h @protocol bellDelegate -(int)bellRang:(int)size; @end @interface Viewcontroller1 : UITableViewController <dummydelegate> { id <bellDelegate> delegate; @end //Viewcontroller1.m @implementation Viewcontroller1 -(void)viewDidLoad { //some stuff here Viewcontroller2 *vc2 = [[Viewcontroller2 alloc] init]; vc2.delegate = self; [self.navigationController pushViewController:vc2 animated:YES]; } -(int)dummyBell:(int)size { return([self.delegate bellRang:size]); } //Viewcontroller2.h @protocol dummyDelegate -(int)dummyBell:(int)size; @end @interface Viewcontroller2 : UITableViewController { id <dummyDelegate> delegate; @end //Viewcontroller2.m @implementation Viewcontroller2 -(int)eventFoo:(int)size { rval = [self.delegate dummyBell:size]; } @end

    Read the article

  • Empty vector of type <stuff*>

    - by bo23
    I have a vector populated with objects: std::vector<Stuff*> stuffVector; and am trying to delete all elements of it using a cleanup function void CleanUp() { for (std::vector<Stuff*>::size_type i = 0 ; i < stuffVector.size() ; i++) { stuffVector.erase(stuffVector.begin()+i); } cout << stuffVector.size() << endl; if (stuffVector.size() == 0) cout << "Vector Emptied" << endl; } This always reports back with a size of however many objects are in the vector, and doesn't actually seem to delete anything at all. It's odd as a similar function works elsewhere to delete a specific object from the vector: void DestroyStuff() { if (stuffVector.size() > 1) { for (std::vector<Stuff*>::size_type i = 0 ; i < stuffVector.size() ; i++ ) { if(stuffVector[i]->CanDestroy()) { stuffVector.erase (stuffVector.begin()+i); } } } } The above works fine, but CleanUp() does not. Why might this be happening?

    Read the article

  • Popovercontroller doesn't display full

    - by user2959234
    I have an UIPopovercontroller in with an content that generate from an viewcontroller. popOverController = [[UIPopoverController alloc]initWithPopUp:emLightPopUp]; popOverController.delegate = self; // Get device position. CGRect position = {parentButton.frame.origin,emLightPopUp.popUpView.frame.size}; CGSize popUpViewFrameSize = emLightPopUp.popUpView.frame.size; Link screenshot: http://i.stack.imgur.com/AxqoG.png The issue is that when I change the position of select devices (touched button) upwards, the displayed popup will be resized like the screenshot. I already try to set content size inside the subclass of uipopover but it still doesn't work: self.popoverContentSize = emLightPopUp.popUpView.frame.size; EDIT: I solved this problems by calculate the position that display the popup and scroll the scrollview inside into an upper position. Check out this code: -(void)moveDeviceOutMiddleScreen:(id)deviceButton { UIButton* button = (UIButton*)deviceButton; CGFloat yPositionRange = button.frame.origin.y - self.floorZoomScrollView.contentOffset.y; int middle_top_y = 70; int middle_bottom_y = 166; if (yPositionRange > middle_top_y && yPositionRange < middle_bottom_y) { CGRect newRect = CGRectMake(self.floorZoomScrollView.contentOffset.x, self.floorZoomScrollView.contentOffset.y +yPositionRange*0.6, self.floorZoomScrollView.frame.size.width, self.floorZoomScrollView.frame.size.height); [self.floorZoomScrollView scrollRectToVisible:newRect animated:NO]; } } Thanks for your responses.

    Read the article

  • Twitter User/Search Feature Header Support in LINQ to Twitter

    - by Joe Mayo
    LINQ to Twitter’s goal is to support the entire Twitter API. So, if you see a new feature pop-up, it will be in-queue for inclusion. The same holds for the new X-Feature… response headers for User/Search requests.  However, you don’t have to wait for a special property on the TwitterContext to access these headers, you can just use them via the TwitterContext.ResponseHeaders collection. The following code demonstrates how to access the new X-Feature… headers with LINQ to Twitter: var user = (from usr in twitterCtx.User where usr.Type == UserType.Search && usr.Query == "Joe Mayo" select usr) .FirstOrDefault(); Console.WriteLine( "X-FeatureRateLimit-Limit: {0}\n" + "X-FeatureRateLimit-Remaining: {1}\n" + "X-FeatureRateLimit-Reset: {2}\n" + "X-FeatureRateLimit-Class: {3}\n", twitterCtx.ResponseHeaders["X-FeatureRateLimit-Limit"], twitterCtx.ResponseHeaders["X-FeatureRateLimit-Remaining"], twitterCtx.ResponseHeaders["X-FeatureRateLimit-Reset"], twitterCtx.ResponseHeaders["X-FeatureRateLimit-Class"]); The query above is from the User entity, whose type is Search; allowing you to search for the Twitter user whose name is specified by the Query parameter filter. After materializing the query, with FirstOrDefault, twitterCtx will hold all of the headers, including X-Feature… that Twitter returned.  Running the code above will display results similar to the following: X-FeatureRateLimit-Limit: 60 X-FeatureRateLimit-Remaining: 59 X-FeatureRateLimit-Reset: 1271452177 X-FeatureRateLimit-Class: namesearch In addition to getting the X-Feature… headers a capability you might have noticed is that the TwitterContext.ResponseHeaders collection will contain any HTTP that Twitter sends back to a query. Therefore, you’ll be able to access new Twitter headers anytime in the future with LINQ to Twitter. @JoeMayo

    Read the article

  • Fix: Azure Disabled over 49 cents? Beware of using a Java Virtual Machine on Microsoft Azure

    - by Ken Cox [MVP]
    I love my MSDN Azure account. I can spin up a demo/dev app or VM in seconds. In fact, it is so easy to create a virtual machine that Azure shut down my whole account! Last night I spun up a Java Virtual Machine to play with some Android stuff. My mistake was that I didn’t read the Virtual Machine pricing warning: “I have a MSDN Azure Benefit subscription. Can I use my monthly Azure credits to purchase Oracle software?” “No, Azure credits in our MSDN offers are not applicable to Oracle software. In order to purchase Oracle software in the MSDN Azure Benefit subscription, customers need to turn off their {0} spending limit and pay at the regular pay-as-you-go rate. Otherwise, Oracle usage will hit the {1} spending limit and the subscription will be immediately disabled.”  Immediately disabled? Yup. Everything connected to the subscription was shut off, deallocated, rendered useless - even the free Web sites and the free Sendgrid email service.  The fix? I had to remove the spending limit from my account so I could pay $0.49 (49 cents) for the JVM usage. I still had $134.10 in credits remaining for regular usage with 6 days left in the billing month.  Now the restoration/clean-up begins… figuring out how to get the web sites and services back online.  To me, the preferable way would be for Azure to warn me when setting up a JVM that I had no way of paying for the service. In the alternative, shut down just the offending services – the ones that can’t be covered by the regular credits. What a mess.

    Read the article

  • iPhone SDK vs Windows Phone 7 Series SDK Challenge, Part 1: Hello World!

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. Hello World! Of course no first post would be allowed if it didnt focus on the hello world scenario.  The iPhone SDK follows that tradition with the Your First iPhone Application walkthrough.  I will say that the developer documentation for iPhone is pretty good.  There are plenty of walkthoughs and they break things down into nicely sized steps and do a good job of bringing the user along.  As expected, this application is quite simple.  It comprises of a text box, a label, and a button.  When you push the button, the label changes to Hello plus the  word you typed into the text box.  Makes perfect sense for a starter application.  Theres not much to this but it covers a few basic elements: Laying out basic UI Handling user input Hooking up events Formatting text     So, lets get started building a similar app for Windows Phone 7 Series! Implementing the UI: UI in Silverlight (and therefore Windows Phone 7) is defined in XAML, which is a declarative XML language also used by WPF on the desktop.  For anyone thats familiar with similar types of markup, its relatively straightforward to learn, but has a lot of power in it once you get it figured out.  Well talk more about that. This UI is very simple.  When I look at this, I note a couple of things: Elements are arranged vertically They are all centered So, lets create our Application and then start with the UI.  Once you have the the VS 2010 Express for Windows Phone tool running, create a new Windows Phone Project, and call it Hello World: Once created, youll see the designer on one side and your XAML on the other: Now, we can create our UI in one of three ways: Use the designer in Visual Studio to drag and drop the components Use the designer in Expression Blend 4 to drag and drop the components Enter the XAML by hand in either of the above Well start with (1), then kind of move to (3) just for instructional value. To develop this UI in the designer: First, delete all of the markup between inside of the Grid element (LayoutRoot).  You should be left with just this XAML for your MainPage.xaml (i shortened all the xmlns declarations below for brevity): 1: <phoneNavigation:PhoneApplicationPage 2: x:Class="HelloWorld.MainPage" 3: xmlns="...[snip]" 4: FontFamily="{StaticResource PhoneFontFamilyNormal}" 5: FontSize="{StaticResource PhoneFontSizeNormal}" 6: Foreground="{StaticResource PhoneForegroundBrush}"> 7:   8: <Grid x:Name="LayoutRoot" Background="{StaticResource PhoneBackgroundBrush}"> 9:   10: </Grid> 11:   12: </phoneNavigation:PhoneApplicationPage> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Well be adding XAML at line 9, so thats the important part. Now, Click on the center area of the phone surface Open the Toolbox and double click StackPanel Double click TextBox Double click TextBlock Double click Button That will create the necessary UI elements but they wont be arranged quite right.  Well fix it in a second.    Heres the XAML that we end up with: 1: <StackPanel Height="100" HorizontalAlignment="Left" Margin="10,10,0,0" Name="stackPanel1" VerticalAlignment="Top" Width="200"> 2: <TextBox Height="32" Name="textBox1" Text="TextBox" Width="100" /> 3: <TextBlock Height="23" Name="textBlock1" Text="TextBlock" /> 4: <Button Content="Button" Height="70" Name="button1" Width="160" /> 5: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The designer does its best at guessing what we want, but in this case we want things to be a bit simpler. So well just clean it up a bit.  We want the items to be centered and we want them to have a little bit of a margin on either side, so heres what we end up with.  Ive also made it match the values and style from the iPhone app: 1: <StackPanel Margin="10"> 2: <TextBox Name="textBox1" HorizontalAlignment="Stretch" Text="You" TextAlignment="Center"/> 3: <TextBlock Name="textBlock1" HorizontalAlignment="Center" Margin="0,100,0,0" Text="Hello You!" /> 4: <Button Name="button1" HorizontalAlignment="Center" Margin="0,150,0,0" Content="Hello"/> 5: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now lets take a look at what weve done there. Line 1: We removed all of the formatting from the StackPanel, except for Margin, as thats all we need.  Since our parent element is a Grid, by default the StackPanel will be sized to fit in that space.  The Margin says that we want to reserve 10 pixels on each side of the StackPanel. Line 2: Weve set the HorizontalAlignment of the TextBox to Stretch, which says that it should fill its parents size horizontally.  We want to do this so the TextBox is always full-width.  We also set TextAlignment to Center, to center the text. Line 3: In contrast to the TextBox above, we dont care how wide the TextBlock is, just so long as it is big enough for its text.  Thatll happen automatically, so we just set its Horizontal alignment to Center.  We also set a Margin above the TextBlock of 100 pixels to bump it down a bit, per the iPhone UI. Line 4: We do the same things here as in Line 3. Heres how the UI looks in the designer: Believe it or not, were almost done! Implementing the App Logic Now, we want the TextBlock to change its text when the Button is clicked.  In the designer, double click the Button to be taken to the Event Handler for the Buttons Click event.  In that event handler, we take the Text property from the TextBox, and format it into a string, then set it into the TextBlock.  Thats it! 1: private void button1_Click(object sender, RoutedEventArgs e) 2: { 3: string name = textBox1.Text; 4:   5: // if there isn't a name set, just use "World" 6: if (String.IsNullOrEmpty(name)) 7: { 8: name = "World"; 9: } 10:   11: // set the value into the TextBlock 12: textBlock1.Text = String.Format("Hello {0}!", name); 13:   14: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } We use the String.Format() method to handle the formatting for us.    Now all thats left is to test the app in the Windows Phone Emulator and verify it does what we think it does! And it does! Comparing against the iPhone Looking at the iPhone example, there are basically three things that you have to touch as the developer: 1) The UI in the Nib file 2) The app delegate 3) The view controller Counting lines is a bit tricky here, but to try to keep this even, Im going to only count lines of code that I could not have (or would not have) generated with the tooling.  Meaning, Im not counting XAML and Im not counting operations that happen in the Nib file with the XCode designer tool.  So in the case of the above, even though I modified the XAML, I could have done all of those operations using the visual designer tool.  And normally I would have, but the XAML is more instructive (and less steps!).  Im interested in things that I, as the developer have to figure out in code.  Im also not counting lines that just have a curly brace on them, or lines that are generated for me (e.g. method names that are generated for me when I make a connection, etc.) So, by that count, heres what I get from the code listing for the iPhone app found here: HelloWorldAppDelegate.h: 6 HelloWorldAppDelegate.m: 12 MyViewController.h: 8 MyViewController.m: 18 Which gives me a grand total of about 44 lines of code on iPhone.  I really do recommend looking at the iPhone code for a comparison to the above. Now, for the Windows Phone 7 Series application, the only code I typed was in the event handler above Main.Xaml.cs: 4 So a total of 4 lines of code on Windows Phone 7.  And more importantly, the process is just A LOT simpler.  For example, I was surprised that the User Interface Designer in XCode doesnt automatically create instance variables for me and wire them up to the corresponding elements.  I assumed I wouldnt have to write this code myself (and risk getting it wrong!).  I dont need to worry about view controllers or anything.  I just write my code.  This blog post up to this point has covered almost every aspect of this apps development in a few pages.  The iPhone tutorial has 5 top level steps with 2-3 sub sections of each. Now, its worth pointing out that the iPhone development model uses the Model View Controller (MVC) pattern, which is a very flexible and powerful pattern that enforces proper separation of concerns.  But its fairly complex and difficult to understand when you first walk up to it.  Here at Microsoft weve dabbled in MVC a bit, with frameworks like MFC on Visual C++ and with the ASP.NET MVC framework now.  Both are very powerful frameworks.  But one of the reasons weve stayed away from MVC with client UI frameworks is that its difficult to tool.  We havent seen the type of value that beats double click, write code! for the broad set of scenarios. Another thing to think about is how many of those lines of code were focused on my apps functionality?.  Or, the converse of How many lines of code were boilerplate plumbing?  In both examples, the actual number of functional code lines is similar.  I count most of them in MyViewController.m, in the changeGreeting method.  Its about 7 lines of code that do the work of taking the value from the TextBox and putting it into the label.  Versus 4 on the Windows Phone 7 side.  But, unfortunately, on iPhone I still have to write that other 37 lines of code, just to get there. 10% of the code, 1 file instead of 4, its just much simpler. Making Some Tweaks It turns out, I can actually do this application with ZERO  lines of code, if Im willing to change the spec a bit. The data binding functionality in Silverlight is incredibly powerful.  And what I can do is databind the TextBoxs value directly to the TextBlock.  Take some time looking at this XAML below.  Youll see that I have added another nested StackPanel and two more TextBlocks.  Why?  Because thats how I build that string, and the nested StackPanel will lay things out Horizontally for me, as specified by the Orientation property. 1: <StackPanel Margin="10"> 2: <TextBox Name="textBox1" HorizontalAlignment="Stretch" Text="You" TextAlignment="Center"/> 3: <StackPanel Orientation="Horizontal" HorizontalAlignment="Center" Margin="0,100,0,0" > 4: <TextBlock Text="Hello " /> 5: <TextBlock Name="textBlock1" Text="{Binding ElementName=textBox1, Path=Text}" /> 6: <TextBlock Text="!" /> 7: </StackPanel> 8: <Button Name="button1" HorizontalAlignment="Center" Margin="0,150,0,0" Content="Hello" Click="button1_Click" /> 9: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, the real action is there in the bolded TextBlock.Text property: Text="{Binding ElementName=textBox1, Path=Text}" .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That does all the heavy lifting.  It sets up a databinding between the TextBox.Text property on textBox1 and the TextBlock.Text property on textBlock1. As I change the text of the TextBox, the label updates automatically. In fact, I dont even need the button any more, so I could get rid of that altogether.  And no button means no event handler.  No event handler means no C# code at all.  Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • How to Upload Really Large Files to SkyDrive, Dropbox, or Email

    - by Matthew Guay
    Do you need to upload a very large file to store online or email to a friend? Unfortunately, whether you’re emailing a file or using online storage sites like SkyDrive, there’s a limit on the size of files you can use. Here’s how to get around the limits. Skydrive only lets you add files up to 50 MB, and while the Dropbox desktop client lets you add really large files, the web interface has a 300 MB limit, so if you were on another PC and wanted to add giant files to your Dropbox, you’d need to split them. This same technique also works for any file sharing service—even if you were sending files through email. There’s two ways that you can get around the limits—first, by just compressing the files if you’re close to the limit, but the second and more interesting way is to split up the files into smaller chunks. Keep reading for how to do both. Latest Features How-To Geek ETC The How-To Geek Guide to Learning Photoshop, Part 8: Filters Get the Complete Android Guide eBook for Only 99 Cents [Update: Expired] Improve Digital Photography by Calibrating Your Monitor The How-To Geek Guide to Learning Photoshop, Part 7: Design and Typography How to Choose What to Back Up on Your Linux Home Server How To Harmonize Your Dual-Boot Setup for Windows and Ubuntu Hang in There Scrat! – Ice Age Wallpaper How Do You Know When You’ve Passed Geek and Headed to Nerd? On The Tip – A Lamborghini Theme for Chrome and Iron What if Wile E. Coyote and the Road Runner were Human? [Video] Peaceful Winter Cabin Wallpaper Store Tabs for Later Viewing in Opera with Tab Vault

    Read the article

  • deWitters Game loop in libgdx(Android)

    - by jaysingh
    I am a beginner and I want a complete example in LibGDX for android(Fixed time game loop) how to limit the framerate to 50 or 60. Also how to mangae interpolation between game state with simple example code e.g. deWiTTERS Game Loop: @Override public void render() { float deltaTime = Gdx.graphics.getDeltaTime(); Update(deltaTime); Render(deltaTime); } libgdx comments:- There is a Gdx.graphics.setVsync() method (generic = backend-independant), but it is not present in 0.9.1, only in the Nightlies. "Relying on vsync for fixed time steps is a REALLY bad idea. It will break on almost all hardware out there. See LwjglApplicationConfiguration, there's a flag in there that let s use toggle gpu/software vsynching. Play around with it." (Mario) NOTE that none of these limit the framerate to a specific value... if you REALLY need to limit the framerate for some reason, you'll have to handle it yourself by returning from render calls if xxx ms haven't passed since the last render call. li

    Read the article

  • Search inside Xournal files (.xoj)

    - by Javad Sadeqzadeh
    I'm a big fan of Evernote, I use it regularly. However, it has a 60MB storage limit (although text files are not going to occupy much space, but the limitation concern still remains). Today, I installed Xournal, which has great features like annotating, nice background, free hand shapes and notes, save in PDF format, and many more. But the big problem is that as far as I've noticd, there is no intrinsic feature for seach inside the notes (created using Xournal with .xoj suffix). I used Catfish File Search application (which creates bash commands for full text search), but it couldn't help as well. Is there anyway to search inside a .xoj file at all? If so, it could be a suitable alternative to evernote, if you put your .xoj files on a cloud (which certainly offers you much more storage space than 60MB). If not, is there any other convenient app similar to Evernote, but with higher storage limit or without a limit? Somebody suggested Zim desktop wiki app, which looks great, but I'm nut sure if I could copy and paste everything there (a mixture of photos and tables and text with various formats and highlights), like what I do with Evernote. And a very useful tool I use is Evernote Web Clipper (browser extension). Of course, having a desktop client like Everpad is a plus, but not the absolute need. PS: I use pocket, so please do suggest that (it only preserve links (which might change over time) not the actual text). I also use google drive or docs, I don't like that for this purpose niether, it's too slow, doesn't have a browser extension and a desktop client. Thank you so much in advance.

    Read the article

  • Using ConcurrentQueue for thread-safe Performance Bookkeeping.

    - by Strenium
    Just a small tidbit that's sprung up today. I had to book-keep and emit diagnostics for the average thread performance in a highly-threaded code over a period of last X number of calls and no more. Need of the day: a thread-safe, self-managing stats container. Since .NET 4.0 introduced new thread-safe 'Collections.Concurrent' objects and I've been using them frequently - the one in particular seemed like a good fit for storing each threads' performance data - ConcurrentQueue. But I wanted to store only the most recent X# of calls and since the ConcurrentQueue currently does not support size constraint I had to come up with my own generic version which attempts to restrict usage to numeric types only: unfortunately there is no IArithmetic-like interface which constrains to only numeric types – so the constraints here here aren't as elegant as they could be. (Note the use of the Average() method, of course you can use others as well as make your own).   FIFO FixedSizedConcurrentQueue using System;using System.Collections.Concurrent;using System.Linq; namespace xxxxx.Data.Infrastructure{    [Serializable]    public class FixedSizedConcurrentQueue<T> where T : struct, IConvertible, IComparable<T>    {        private FixedSizedConcurrentQueue() { }         public FixedSizedConcurrentQueue(ConcurrentQueue<T> queue)        {            _queue = queue;        }         ConcurrentQueue<T> _queue = new ConcurrentQueue<T>();         public int Size { get { return _queue.Count; } }        public double Average { get { return _queue.Average(arg => Convert.ToInt32(arg)); } }         public int Limit { get; set; }        public void Enqueue(T obj)        {            _queue.Enqueue(obj);            lock (this)            {                T @out;                while (_queue.Count > Limit) _queue.TryDequeue(out @out);            }        }    } }   The usage case is straight-forward, in this case I’m using a FIFO queue of maximum size of 200 to store doubles to which I simply Enqueue() the calculated rates: Usage var RateQueue = new FixedSizedConcurrentQueue<double>(new ConcurrentQueue<double>()) { Limit = 200 }; /* greater size == longer history */   That’s about it. Happy coding!

    Read the article

  • Index was out of range. Must be non-negative and less than the size of the collection. Parameter: In

    - by user356973
    Dear Telerik Team, When I am trying to display data using radgrid I am getting error like "Index was out of range. Must be non-negative and less than the size of the collection. Parameter: Index". Here is my code <telerik:RadGrid ID="gvCktMap" BorderColor="White" runat="server" AutoGenerateColumns="true" AllowSorting="true" BackColor="White" AllowPaging="true" PageSize="25" GridLines="None" OnPageIndexChanging="gvCktMap_PageIndexChanging" OnRowCancelingEdit="gvCktMap_RowCancelingEdit" OnRowCommand="gvCktMap_RowCommand" OnRowUpdating="gvCktMap_RowUpdating" OnRowDataBound="gvCktMap_RowDataBound" OnSorting="gvCktMap_Sorting" OnRowEditing="gvCktMap_RowEditing" ShowGroupPanel="True" EnableHeaderContextMenu="true" EnableHeaderContextFilterMenu="true" AllowMultiRowSelection="true" AllowFilteringByColumn="True" AllowCustomPaging="false" OnItemCreated="gvCktMap_ItemCreated" EnableViewState="false" OnNeedDataSource="gvCktMap_NeedDataSource" OnItemUpdated="gvCktMap_ItemUpdated" > <MasterTableView DataKeyNames="sId" UseAllDataFields="true"> <Columns> <telerik:GridBoundColumn UniqueName="sId" HeaderText="sId" DataField="sId" Visible="false"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="orderId" HeaderText="orderId" DataField="orderId"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="REJ" HeaderText="REJ" DataField="REJ"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="Desc" HeaderText="Desc" DataField="Desc"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="CustomerName" HeaderText="CustomerName" DataField="CustomerName"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="MarketName" HeaderText="MarketName" DataField="MarketName"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="HeadendName" HeaderText="HeadendName" DataField="HeadendName"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="SiteName" HeaderText="SiteName" DataField="SiteName"> </telerik:GridBoundColumn> <telerik:GridBoundColumn UniqueName="TaskStatus" HeaderText="TaskStatus" DataField="TaskStatus"> </telerik:GridBoundColumn> </Columns> </telerik:RadGrid> Here is my code behind private void bingGrid() { try { gvCktMap.Columns.Clear(); DataSet dsResult = new DataSet(); DataSet dsEditItems = new DataSet(); dsEditItems.ReadXml(Server.MapPath("XMLS/" + Session["TaskID"].ToString() + ".xml")); clsSearch_BL clsObj = new clsSearch_BL(); clsObj.TaskID = (string)Session["TaskID"]; clsObj.CustName = (string)Session["CustName"]; clsObj.MarketName = (string)Session["MarketName"]; clsObj.HeadendName = (string)Session["HeadendName"]; clsObj.SiteName = (string)Session["SiteName"]; clsObj.TaskStatus = (string)Session["TaskStatus"]; clsObj.OrdType = (string)Session["OrdType"]; clsObj.OrdStatus = (string)Session["OrdStatus"]; clsObj.ProName = (string)Session["ProName"]; clsObj.LOC = (string)Session["LOC"]; dsResult = clsObj.getSearchResults_BL(clsObj); Session["SearchRes"] = dsResult; DataTable dtFilter = new DataTable(); DataColumn dtCol = new DataColumn("FilterBy"); dtFilter.Columns.Add(dtCol); dtCol = new DataColumn("DataType"); dtFilter.Columns.Add(dtCol); gvCktMap.DataSource = dsResult; gvCktMap.DataBind(); } catch (Exception ex) { } } If i remove <MasterTableView></MasterTableView> Its working fine without any error. But for some reasons i need to use <MasterTableView></MasterTableView> Can anyone help me out to fix this error. Thanks In Advance

    Read the article

  • Oracle Coherence, Split-Brain and Recovery Protocols In Detail

    - by Ricardo Ferreira
    This article provides a high level conceptual overview of Split-Brain scenarios in distributed systems. It will focus on a specific example of cluster communication failure and recovery in Oracle Coherence. This includes a discussion on the witness protocol (used to remove failed cluster members) and the panic protocol (used to resolve Split-Brain scenarios). Note that the removal of cluster members does not necessarily indicate a Split-Brain condition. Oracle Coherence does not (and cannot) detect a Split-Brain as it occurs, the condition is only detected when cluster members that previously lost contact with each other regain contact. Cluster Topology and Configuration In order to create an good didactic for the article, let's assume a cluster topology and configuration. In this example we have a six member cluster, consisting of one JVM on each physical machine. The member IDs are as follows: Member ID  IP Address  1  10.149.155.76  2  10.149.155.77  3  10.149.155.236  4  10.149.155.75  5  10.149.155.79  6  10.149.155.78 Members 1, 2, and 3 are connected to a switch, and members 4, 5, and 6 are connected to a second switch. There is a link between the two switches, which provides network connectivity between all of the machines. Member 1 is the first member to join this cluster, thus making it the senior member. Member 6 is the last member to join this cluster. Here is a log snippet from Member 6 showing the complete member set: 2010-02-26 15:27:57.390/3.062 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=main, member=6): Started DefaultCacheServer... SafeCluster: Name=cluster:0xDDEB Group{Address=224.3.5.3, Port=35465, TTL=4} MasterMemberSet ( ThisMember=Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) OldestMember=Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) ActualMemberSet=MemberSet(Size=6, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=5, Timestamp=2010-02-26 15:27:49.095, Address=10.149.155.79:8088, MachineId=1103, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:3229, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) RecycleMillis=120000 RecycleSet=MemberSet(Size=0, BitSetCount=0 ) ) At approximately 15:30, the connection between the two switches is severed: Thirty seconds later (the default packet timeout in development mode) the logs indicate communication failures across the cluster. In this example, the communication failure was caused by a network failure. In a production setting, this type of communication failure can have many root causes, including (but not limited to) network failures, excessive GC, high CPU utilization, swapping/virtual memory, and exceeding maximum network bandwidth. In addition, this type of failure is not necessarily indicative of a split brain. Any communication failure will be logged in this fashion. Member 2 logs a communication failure with Member 5: 2010-02-26 15:30:32.638/196.928 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=2): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=5, Timestamp=2010-02-26 15:27:49.095, Address=10.149.155.79:8088, MachineId=1103, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:3229, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) ) The Coherence clustering protocol (TCMP) is a reliable transport mechanism built on UDP. In order for the protocol to be reliable, it requires an acknowledgement (ACK) for each packet delivered. If a packet fails to be acknowledged within the configured timeout period, the Coherence cluster member will log a packet timeout (as seen in the log message above). When this occurs, the cluster member will consult with other members to determine who is at fault for the communication failure. If the witness members agree that the suspect member is at fault, the suspect is removed from the cluster. If the witnesses unanimously disagree, the accuser is removed. This process is known as the witness protocol. Since Member 2 cannot communicate with Member 5, it selects two witnesses (Members 1 and 4) to determine if the communication issue is with Member 5 or with itself (Member 2). However, Member 4 is on the switch that is no longer accessible by Members 1, 2 and 3; thus a packet timeout for member 4 is recorded as well: 2010-02-26 15:30:35.648/199.938 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=2): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) Member 1 has the ability to confirm the departure of member 4, however Member 6 cannot as it is also inaccessible. At the same time, Member 3 sends a request to remove Member 6, which is followed by a report from Member 3 indicating that Member 6 has departed the cluster: 2010-02-26 15:30:35.706/199.996 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=2): MemberLeft request for Member 6 received from Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) 2010-02-26 15:30:35.709/199.999 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=2): MemberLeft notification for Member 6 received from Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) The log for Member 3 determines how Member 6 departed the cluster: 2010-02-26 15:30:35.161/191.694 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=3): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) ) 2010-02-26 15:30:35.165/191.698 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=3): Member departure confirmed by MemberSet(Size=2, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) Member(Id=2, Timestamp=2010-02-26 15:27:17.847, Address=10.149.155.77:8088, MachineId=1101, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:296, Role=CoherenceServer) ); removing Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) In this case, Member 3 happened to select two witnesses that it still had connectivity with (Members 1 and 2) thus resulting in a simple decision to remove Member 6. Given the departure of Member 6, Member 2 is left with a single witness to confirm the departure of Member 4: 2010-02-26 15:30:35.713/200.003 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=2): Member departure confirmed by MemberSet(Size=1, BitSetCount=2 Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) ); removing Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) In the meantime, Member 4 logs a missing heartbeat from the senior member. This message is also logged on Members 5 and 6. 2010-02-26 15:30:07.906/150.453 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=PacketListenerN, member=4): Scheduled senior member heartbeat is overdue; rejoining multicast group. Next, Member 4 logs a TcpRing failure with Member 2, thus resulting in the termination of Member 2: 2010-02-26 15:30:21.421/163.968 Oracle Coherence GE 3.5.3/465p2 <D4> (thread=Cluster, member=4): TcpRing: Number of socket exceptions exceeded maximum; last was "java.net.SocketTimeoutException: connect timed out"; removing the member: 2 For quick process termination detection, Oracle Coherence utilizes a feature called TcpRing which is a sparse collection of TCP/IP-based connections between different members in the cluster. Each member in the cluster is connected to at least one other member, which (if at all possible) is running on a different physical box. This connection is not used for any data transfer, only heartbeat communications are sent once a second per each link. If a certain number of exceptions are thrown while trying to re-establish a connection, the member throwing the exceptions is removed from the cluster. Member 5 logs a packet timeout with Member 3 and cites witnesses Members 4 and 6: 2010-02-26 15:30:29.791/165.037 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=PacketPublisher, member=5): Timeout while delivering a packet; requesting the departure confirmation for Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) by MemberSet(Size=2, BitSetCount=2 Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ) 2010-02-26 15:30:29.798/165.044 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=5): Member departure confirmed by MemberSet(Size=2, BitSetCount=2 Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member(Id=6, Timestamp=2010-02-26 15:27:58.635, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) ); removing Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer) Eventually we are left with two distinct clusters consisting of Members 1, 2, 3 and Members 4, 5, 6, respectively. In the latter cluster, Member 4 is promoted to senior member. The connection between the two switches is restored at 15:33. Upon the restoration of the connection, the cluster members immediately receive cluster heartbeats from the two senior members. In the case of Members 1, 2, and 3, the following is logged: 2010-02-26 15:33:14.970/369.066 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=1): The member formerly known as Member(Id=4, Timestamp=2010-02-26 15:30:35.341, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) has been forcefully evicted from the cluster, but continues to emit a cluster heartbeat; henceforth, the member will be shunned and its messages will be ignored. Likewise for Members 4, 5, and 6: 2010-02-26 15:33:14.343/336.890 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=4): The member formerly known as Member(Id=1, Timestamp=2010-02-26 15:30:31.64, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) has been forcefully evicted from the cluster, but continues to emit a cluster heartbeat; henceforth, the member will be shunned and its messages will be ignored. This message indicates that a senior heartbeat is being received from members that were previously removed from the cluster, in other words, something that should not be possible. For this reason, the recipients of these messages will initially ignore them. After several iterations of these messages, the existence of multiple clusters is acknowledged, thus triggering the panic protocol to reconcile this situation. When the presence of more than one cluster (i.e. Split-Brain) is detected by a Coherence member, the panic protocol is invoked in order to resolve the conflicting clusters and consolidate into a single cluster. The protocol consists of the removal of smaller clusters until there is one cluster remaining. In the case of equal size clusters, the one with the older Senior Member will survive. Member 1, being the oldest member, initiates the protocol: 2010-02-26 15:33:45.970/400.066 Oracle Coherence GE 3.5.3/465p2 <Warning> (thread=Cluster, member=1): An existence of a cluster island with senior Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) containing 3 nodes have been detected. Since this Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) is the senior of an older cluster island, the panic protocol is being activated to stop the other island's senior and all junior nodes that belong to it. Member 3 receives the panic: 2010-02-26 15:33:45.803/382.336 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=3): Received panic from senior Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer) caused by Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer) Member 4, the senior member of the younger cluster, receives the kill message from Member 3: 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. In turn, Member 4 requests the departure of its junior members 5 and 6: 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. 2010-02-26 15:33:43.343/349.015 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=6): Received a Kill message from a valid Member(Id=4, Timestamp=2010-02-26 15:27:39.574, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer); stopping cluster service. Once Members 4, 5, and 6 restart, they rejoin the original cluster with senior member 1. The log below is from Member 4. Note that it receives a different member id when it rejoins the cluster. 2010-02-26 15:33:44.921/367.468 Oracle Coherence GE 3.5.3/465p2 <Error> (thread=Cluster, member=4): Received a Kill message from a valid Member(Id=3, Timestamp=2010-02-26 15:27:24.892, Address=10.149.155.236:8088, MachineId=1260, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:32459, Role=CoherenceServer); stopping cluster service. 2010-02-26 15:33:46.921/369.468 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Service Cluster left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Invocation:InvocationService, member=4): Service InvocationService left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=OptimisticCache, member=4): Service OptimisticCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=ReplicatedCache, member=4): Service ReplicatedCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=DistributedCache, member=4): Service DistributedCache left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Invocation:Management, member=4): Service Management left the cluster 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service Management with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service DistributedCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service ReplicatedCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service OptimisticCache with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member 6 left service InvocationService with senior member 5 2010-02-26 15:33:47.046/369.593 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=4): Member(Id=6, Timestamp=2010-02-26 15:33:47.046, Address=10.149.155.78:8088, MachineId=1102, Location=process:228, Role=CoherenceServer) left Cluster with senior member 4 2010-02-26 15:33:49.218/371.765 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=main, member=n/a): Restarting cluster 2010-02-26 15:33:49.421/371.968 Oracle Coherence GE 3.5.3/465p2 <D5> (thread=Cluster, member=n/a): Service Cluster joined the cluster with senior service member n/a 2010-02-26 15:33:49.625/372.172 Oracle Coherence GE 3.5.3/465p2 <Info> (thread=Cluster, member=n/a): This Member(Id=5, Timestamp=2010-02-26 15:33:50.499, Address=10.149.155.75:8088, MachineId=1099, Location=process:800, Role=CoherenceServer, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=1) joined cluster "cluster:0xDDEB" with senior Member(Id=1, Timestamp=2010-02-26 15:27:06.931, Address=10.149.155.76:8088, MachineId=1100, Location=site:usdhcp.oraclecorp.com,machine:dhcp-burlington6-4fl-east-10-149,process:511, Role=CoherenceServer, Edition=Grid Edition, Mode=Development, CpuCount=2, SocketCount=2) Cool isn't it?

    Read the article

  • Gnome Shell segfault in libglib-2.0

    - by slohui
    I have been using Ubuntu 11.10 + Gnome Shell with a Nvidia card, but now I've moved it to my new PC which has an ATI card, at first it wasn't booting but I installed the driver from amd.com and then it worked. Anyway my problem is that gnome-shell is crashing, mostly when I try to start a VirtualBox machine (it happened in other times but I don't remember what I was doing). Sometimes gnome-shell respawns and it continue working but sometimes it doesn't so I have to restart lightdm and lose all the windows I was using. Here's some of the syslog when the crash occurs: Apr 9 12:20:08 desktop-1 NetworkManager[1032]: SCPlugin-Ifupdown: devices added (path: /sys/devices/virtual/net/vboxnet0, iface: vboxnet0) Apr 9 12:20:08 desktop-1 NetworkManager[1032]: SCPlugin-Ifupdown: device added (path: /sys/devices/virtual/net/vboxnet0, iface: vboxnet0): no ifupdown configuration found. Apr 9 12:20:08 desktop-1 NetworkManager[1032]: <warn> /sys/devices/virtual/net/vboxnet0: couldn't determine device driver; ignoring... Apr 9 12:20:08 desktop-1 kernel: [ 4498.689561] warning: `VirtualBox' uses 32-bit capabilities (legacy support in use) Apr 9 12:24:29 desktop-1 gnome-session[1617]: WARNING: Application 'gnome-shell.desktop' killed by signal Apr 9 12:24:45 desktop-1 gnome-session[1617]: WARNING: App 'gnome-shell.desktop' respawning too quickly Apr 9 12:24:45 desktop-1 gnome-session[1617]: CRITICAL: We failed, but the fail whale is dead. Sorry.... Apr 9 12:25:20 desktop-1 kernel: [ 4810.769775] show_signal_msg: 30 callbacks suppressed |----- > Apr 9 12:25:20 desktop-1 kernel: [ 4810.769785] gnome-shell[3427]: segfault at b0 ip b6bd09cd sp bfc9b650 error 4 in libglib-2.0.so.0.3000.0[b6b71000+f7000]** Apr 9 12:25:20 desktop-1 gnome-session[1617]: WARNING: Application 'gnome-shell.desktop' killed by signal Apr 9 12:25:23 desktop-1 kernel: [ 4814.055705] EXT4-fs (sda1): Unaligned AIO/DIO on inode 133295 by VirtualBox; performance will be poor. Apr 9 12:26:55 desktop-1 gnome-session[1617]: Gdk-WARNING: gnome-session: Fatal IO error 11 (Resource temporarily unavailable) on X server :0.#012 Apr 9 12:26:55 desktop-1 kernel: [ 4905.373256] [fglrx] IRQ 56 Disabled Apr 9 12:26:59 desktop-1 acpid: client 1124[0:0] has disconnected Apr 9 12:26:59 desktop-1 acpid: client connected from 3864[0:0] Apr 9 12:26:59 desktop-1 acpid: 1 client rule loaded Apr 9 12:26:59 desktop-1 kernel: [ 4909.700095] fglrx_pci 0000:02:00.0: irq 56 for MSI/MSI-X Apr 9 12:26:59 desktop-1 kernel: [ 4909.701466] [fglrx] Firegl kernel thread PID: 3867 Apr 9 12:26:59 desktop-1 kernel: [ 4909.701625] [fglrx] Firegl kernel thread PID: 3868 Apr 9 12:26:59 desktop-1 kernel: [ 4909.701852] [fglrx] Firegl kernel thread PID: 3869 Apr 9 12:26:59 desktop-1 kernel: [ 4909.702021] [fglrx] IRQ 56 Enabled Apr 9 12:26:59 desktop-1 kernel: [ 4909.861815] [fglrx] Gart USWC size:1280 M. Apr 9 12:26:59 desktop-1 kernel: [ 4909.861817] [fglrx] Gart cacheable size:508 M. Apr 9 12:26:59 desktop-1 kernel: [ 4909.861820] [fglrx] Reserved FB block: Shared offset:0, size:1000000 Apr 9 12:26:59 desktop-1 kernel: [ 4909.861821] [fglrx] Reserved FB block: Unshared offset:f8fd000, size:403000 Apr 9 12:26:59 desktop-1 kernel: [ 4909.861823] [fglrx] Reserved FB block: Unshared offset:3fff4000, size:c000 Does anyone could guide me on how to fix this? Or the proper place where to ask for help.

    Read the article

  • Advanced TSQL Tuning: Why Internals Knowledge Matters

    - by Paul White
    There is much more to query tuning than reducing logical reads and adding covering nonclustered indexes.  Query tuning is not complete as soon as the query returns results quickly in the development or test environments.  In production, your query will compete for memory, CPU, locks, I/O and other resources on the server.  Today’s entry looks at some tuning considerations that are often overlooked, and shows how deep internals knowledge can help you write better TSQL. As always, we’ll need some example data.  In fact, we are going to use three tables today, each of which is structured like this: Each table has 50,000 rows made up of an INTEGER id column and a padding column containing 3,999 characters in every row.  The only difference between the three tables is in the type of the padding column: the first table uses CHAR(3999), the second uses VARCHAR(MAX), and the third uses the deprecated TEXT type.  A script to create a database with the three tables and load the sample data follows: USE master; GO IF DB_ID('SortTest') IS NOT NULL DROP DATABASE SortTest; GO CREATE DATABASE SortTest COLLATE LATIN1_GENERAL_BIN; GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest', SIZE = 3GB, MAXSIZE = 3GB ); GO ALTER DATABASE SortTest MODIFY FILE ( NAME = 'SortTest_log', SIZE = 256MB, MAXSIZE = 1GB, FILEGROWTH = 128MB ); GO ALTER DATABASE SortTest SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE SortTest SET AUTO_CLOSE OFF ; ALTER DATABASE SortTest SET AUTO_CREATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_SHRINK OFF ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS ON ; ALTER DATABASE SortTest SET AUTO_UPDATE_STATISTICS_ASYNC ON ; ALTER DATABASE SortTest SET PARAMETERIZATION SIMPLE ; ALTER DATABASE SortTest SET READ_COMMITTED_SNAPSHOT OFF ; ALTER DATABASE SortTest SET MULTI_USER ; ALTER DATABASE SortTest SET RECOVERY SIMPLE ; USE SortTest; GO CREATE TABLE dbo.TestCHAR ( id INTEGER IDENTITY (1,1) NOT NULL, padding CHAR(3999) NOT NULL,   CONSTRAINT [PK dbo.TestCHAR (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestMAX ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAX (id)] PRIMARY KEY CLUSTERED (id), ) ; CREATE TABLE dbo.TestTEXT ( id INTEGER IDENTITY (1,1) NOT NULL, padding TEXT NOT NULL,   CONSTRAINT [PK dbo.TestTEXT (id)] PRIMARY KEY CLUSTERED (id), ) ; -- ============= -- Load TestCHAR (about 3s) -- ============= INSERT INTO dbo.TestCHAR WITH (TABLOCKX) ( padding ) SELECT padding = REPLICATE(CHAR(65 + (Data.n % 26)), 3999) FROM ( SELECT TOP (50000) n = ROW_NUMBER() OVER (ORDER BY (SELECT 0)) - 1 FROM master.sys.columns C1, master.sys.columns C2, master.sys.columns C3 ORDER BY n ASC ) AS Data ORDER BY Data.n ASC ; -- ============ -- Load TestMAX (about 3s) -- ============ INSERT INTO dbo.TestMAX WITH (TABLOCKX) ( padding ) SELECT CONVERT(VARCHAR(MAX), padding) FROM dbo.TestCHAR ORDER BY id ; -- ============= -- Load TestTEXT (about 5s) -- ============= INSERT INTO dbo.TestTEXT WITH (TABLOCKX) ( padding ) SELECT CONVERT(TEXT, padding) FROM dbo.TestCHAR ORDER BY id ; -- ========== -- Space used -- ========== -- EXECUTE sys.sp_spaceused @objname = 'dbo.TestCHAR'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAX'; EXECUTE sys.sp_spaceused @objname = 'dbo.TestTEXT'; ; CHECKPOINT ; That takes around 15 seconds to run, and shows the space allocated to each table in its output: To illustrate the points I want to make today, the example task we are going to set ourselves is to return a random set of 150 rows from each table.  The basic shape of the test query is the same for each of the three test tables: SELECT TOP (150) T.id, T.padding FROM dbo.Test AS T ORDER BY NEWID() OPTION (MAXDOP 1) ; Test 1 – CHAR(3999) Running the template query shown above using the TestCHAR table as the target, we find that the query takes around 5 seconds to return its results.  This seems slow, considering that the table only has 50,000 rows.  Working on the assumption that generating a GUID for each row is a CPU-intensive operation, we might try enabling parallelism to see if that speeds up the response time.  Running the query again (but without the MAXDOP 1 hint) on a machine with eight logical processors, the query now takes 10 seconds to execute – twice as long as when run serially. Rather than attempting further guesses at the cause of the slowness, let’s go back to serial execution and add some monitoring.  The script below monitors STATISTICS IO output and the amount of tempdb used by the test query.  We will also run a Profiler trace to capture any warnings generated during query execution. DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TC.id, TC.padding FROM dbo.TestCHAR AS TC ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; Let’s take a closer look at the statistics and query plan generated from this: Following the flow of the data from right to left, we see the expected 50,000 rows emerging from the Clustered Index Scan, with a total estimated size of around 191MB.  The Compute Scalar adds a column containing a random GUID (generated from the NEWID() function call) for each row.  With this extra column in place, the size of the data arriving at the Sort operator is estimated to be 192MB. Sort is a blocking operator – it has to examine all of the rows on its input before it can produce its first row of output (the last row received might sort first).  This characteristic means that Sort requires a memory grant – memory allocated for the query’s use by SQL Server just before execution starts.  In this case, the Sort is the only memory-consuming operator in the plan, so it has access to the full 243MB (248,696KB) of memory reserved by SQL Server for this query execution. Notice that the memory grant is significantly larger than the expected size of the data to be sorted.  SQL Server uses a number of techniques to speed up sorting, some of which sacrifice size for comparison speed.  Sorts typically require a very large number of comparisons, so this is usually a very effective optimization.  One of the drawbacks is that it is not possible to exactly predict the sort space needed, as it depends on the data itself.  SQL Server takes an educated guess based on data types, sizes, and the number of rows expected, but the algorithm is not perfect. In spite of the large memory grant, the Profiler trace shows a Sort Warning event (indicating that the sort ran out of memory), and the tempdb usage monitor shows that 195MB of tempdb space was used – all of that for system use.  The 195MB represents physical write activity on tempdb, because SQL Server strictly enforces memory grants – a query cannot ‘cheat’ and effectively gain extra memory by spilling to tempdb pages that reside in memory.  Anyway, the key point here is that it takes a while to write 195MB to disk, and this is the main reason that the query takes 5 seconds overall. If you are wondering why using parallelism made the problem worse, consider that eight threads of execution result in eight concurrent partial sorts, each receiving one eighth of the memory grant.  The eight sorts all spilled to tempdb, resulting in inefficiencies as the spilled sorts competed for disk resources.  More importantly, there are specific problems at the point where the eight partial results are combined, but I’ll cover that in a future post. CHAR(3999) Performance Summary: 5 seconds elapsed time 243MB memory grant 195MB tempdb usage 192MB estimated sort set 25,043 logical reads Sort Warning Test 2 – VARCHAR(MAX) We’ll now run exactly the same test (with the additional monitoring) on the table using a VARCHAR(MAX) padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TM.id, TM.padding FROM dbo.TestMAX AS TM ORDER BY NEWID() OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query takes around 8 seconds to complete (3 seconds longer than Test 1).  Notice that the estimated row and data sizes are very slightly larger, and the overall memory grant has also increased very slightly to 245MB.  The most marked difference is in the amount of tempdb space used – this query wrote almost 391MB of sort run data to the physical tempdb file.  Don’t draw any general conclusions about VARCHAR(MAX) versus CHAR from this – I chose the length of the data specifically to expose this edge case.  In most cases, VARCHAR(MAX) performs very similarly to CHAR – I just wanted to make test 2 a bit more exciting. MAX Performance Summary: 8 seconds elapsed time 245MB memory grant 391MB tempdb usage 193MB estimated sort set 25,043 logical reads Sort warning Test 3 – TEXT The same test again, but using the deprecated TEXT data type for the padding column: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) TT.id, TT.padding FROM dbo.TestTEXT AS TT ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; This time the query runs in 500ms.  If you look at the metrics we have been checking so far, it’s not hard to understand why: TEXT Performance Summary: 0.5 seconds elapsed time 9MB memory grant 5MB tempdb usage 5MB estimated sort set 207 logical reads 596 LOB logical reads Sort warning SQL Server’s memory grant algorithm still underestimates the memory needed to perform the sorting operation, but the size of the data to sort is so much smaller (5MB versus 193MB previously) that the spilled sort doesn’t matter very much.  Why is the data size so much smaller?  The query still produces the correct results – including the large amount of data held in the padding column – so what magic is being performed here? TEXT versus MAX Storage The answer lies in how columns of the TEXT data type are stored.  By default, TEXT data is stored off-row in separate LOB pages – which explains why this is the first query we have seen that records LOB logical reads in its STATISTICS IO output.  You may recall from my last post that LOB data leaves an in-row pointer to the separate storage structure holding the LOB data. SQL Server can see that the full LOB value is not required by the query plan until results are returned, so instead of passing the full LOB value down the plan from the Clustered Index Scan, it passes the small in-row structure instead.  SQL Server estimates that each row coming from the scan will be 79 bytes long – 11 bytes for row overhead, 4 bytes for the integer id column, and 64 bytes for the LOB pointer (in fact the pointer is rather smaller – usually 16 bytes – but the details of that don’t really matter right now). OK, so this query is much more efficient because it is sorting a very much smaller data set – SQL Server delays retrieving the LOB data itself until after the Sort starts producing its 150 rows.  The question that normally arises at this point is: Why doesn’t SQL Server use the same trick when the padding column is defined as VARCHAR(MAX)? The answer is connected with the fact that if the actual size of the VARCHAR(MAX) data is 8000 bytes or less, it is usually stored in-row in exactly the same way as for a VARCHAR(8000) column – MAX data only moves off-row into LOB storage when it exceeds 8000 bytes.  The default behaviour of the TEXT type is to be stored off-row by default, unless the ‘text in row’ table option is set suitably and there is room on the page.  There is an analogous (but opposite) setting to control the storage of MAX data – the ‘large value types out of row’ table option.  By enabling this option for a table, MAX data will be stored off-row (in a LOB structure) instead of in-row.  SQL Server Books Online has good coverage of both options in the topic In Row Data. The MAXOOR Table The essential difference, then, is that MAX defaults to in-row storage, and TEXT defaults to off-row (LOB) storage.  You might be thinking that we could get the same benefits seen for the TEXT data type by storing the VARCHAR(MAX) values off row – so let’s look at that option now.  This script creates a fourth table, with the VARCHAR(MAX) data stored off-row in LOB pages: CREATE TABLE dbo.TestMAXOOR ( id INTEGER IDENTITY (1,1) NOT NULL, padding VARCHAR(MAX) NOT NULL,   CONSTRAINT [PK dbo.TestMAXOOR (id)] PRIMARY KEY CLUSTERED (id), ) ; EXECUTE sys.sp_tableoption @TableNamePattern = N'dbo.TestMAXOOR', @OptionName = 'large value types out of row', @OptionValue = 'true' ; SELECT large_value_types_out_of_row FROM sys.tables WHERE [schema_id] = SCHEMA_ID(N'dbo') AND name = N'TestMAXOOR' ; INSERT INTO dbo.TestMAXOOR WITH (TABLOCKX) ( padding ) SELECT SPACE(0) FROM dbo.TestCHAR ORDER BY id ; UPDATE TM WITH (TABLOCK) SET padding.WRITE (TC.padding, NULL, NULL) FROM dbo.TestMAXOOR AS TM JOIN dbo.TestCHAR AS TC ON TC.id = TM.id ; EXECUTE sys.sp_spaceused @objname = 'dbo.TestMAXOOR' ; CHECKPOINT ; Test 4 – MAXOOR We can now re-run our test on the MAXOOR (MAX out of row) table: DECLARE @read BIGINT, @write BIGINT ; SELECT @read = SUM(num_of_bytes_read), @write = SUM(num_of_bytes_written) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; SET STATISTICS IO ON ; SELECT TOP (150) MO.id, MO.padding FROM dbo.TestMAXOOR AS MO ORDER BY NEWID() OPTION (MAXDOP 1, RECOMPILE) ; SET STATISTICS IO OFF ; SELECT tempdb_read_MB = (SUM(num_of_bytes_read) - @read) / 1024. / 1024., tempdb_write_MB = (SUM(num_of_bytes_written) - @write) / 1024. / 1024., internal_use_MB = ( SELECT internal_objects_alloc_page_count / 128.0 FROM sys.dm_db_task_space_usage WHERE session_id = @@SPID ) FROM tempdb.sys.database_files AS DBF JOIN sys.dm_io_virtual_file_stats(2, NULL) AS FS ON FS.file_id = DBF.file_id WHERE DBF.type_desc = 'ROWS' ; TEXT Performance Summary: 0.3 seconds elapsed time 245MB memory grant 0MB tempdb usage 193MB estimated sort set 207 logical reads 446 LOB logical reads No sort warning The query runs very quickly – slightly faster than Test 3, and without spilling the sort to tempdb (there is no sort warning in the trace, and the monitoring query shows zero tempdb usage by this query).  SQL Server is passing the in-row pointer structure down the plan and only looking up the LOB value on the output side of the sort. The Hidden Problem There is still a huge problem with this query though – it requires a 245MB memory grant.  No wonder the sort doesn’t spill to tempdb now – 245MB is about 20 times more memory than this query actually requires to sort 50,000 records containing LOB data pointers.  Notice that the estimated row and data sizes in the plan are the same as in test 2 (where the MAX data was stored in-row). The optimizer assumes that MAX data is stored in-row, regardless of the sp_tableoption setting ‘large value types out of row’.  Why?  Because this option is dynamic – changing it does not immediately force all MAX data in the table in-row or off-row, only when data is added or actually changed.  SQL Server does not keep statistics to show how much MAX or TEXT data is currently in-row, and how much is stored in LOB pages.  This is an annoying limitation, and one which I hope will be addressed in a future version of the product. So why should we worry about this?  Excessive memory grants reduce concurrency and may result in queries waiting on the RESOURCE_SEMAPHORE wait type while they wait for memory they do not need.  245MB is an awful lot of memory, especially on 32-bit versions where memory grants cannot use AWE-mapped memory.  Even on a 64-bit server with plenty of memory, do you really want a single query to consume 0.25GB of memory unnecessarily?  That’s 32,000 8KB pages that might be put to much better use. The Solution The answer is not to use the TEXT data type for the padding column.  That solution happens to have better performance characteristics for this specific query, but it still results in a spilled sort, and it is hard to recommend the use of a data type which is scheduled for removal.  I hope it is clear to you that the fundamental problem here is that SQL Server sorts the whole set arriving at a Sort operator.  Clearly, it is not efficient to sort the whole table in memory just to return 150 rows in a random order. The TEXT example was more efficient because it dramatically reduced the size of the set that needed to be sorted.  We can do the same thing by selecting 150 unique keys from the table at random (sorting by NEWID() for example) and only then retrieving the large padding column values for just the 150 rows we need.  The following script implements that idea for all four tables: SET STATISTICS IO ON ; WITH TestTable AS ( SELECT * FROM dbo.TestCHAR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id = ANY (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAX ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestTEXT ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; WITH TestTable AS ( SELECT * FROM dbo.TestMAXOOR ), TopKeys AS ( SELECT TOP (150) id FROM TestTable ORDER BY NEWID() ) SELECT T1.id, T1.padding FROM TestTable AS T1 WHERE T1.id IN (SELECT id FROM TopKeys) OPTION (MAXDOP 1) ; SET STATISTICS IO OFF ; All four queries now return results in much less than a second, with memory grants between 6 and 12MB, and without spilling to tempdb.  The small remaining inefficiency is in reading the id column values from the clustered primary key index.  As a clustered index, it contains all the in-row data at its leaf.  The CHAR and VARCHAR(MAX) tables store the padding column in-row, so id values are separated by a 3999-character column, plus row overhead.  The TEXT and MAXOOR tables store the padding values off-row, so id values in the clustered index leaf are separated by the much-smaller off-row pointer structure.  This difference is reflected in the number of logical page reads performed by the four queries: Table 'TestCHAR' logical reads 25511 lob logical reads 000 Table 'TestMAX'. logical reads 25511 lob logical reads 000 Table 'TestTEXT' logical reads 00412 lob logical reads 597 Table 'TestMAXOOR' logical reads 00413 lob logical reads 446 We can increase the density of the id values by creating a separate nonclustered index on the id column only.  This is the same key as the clustered index, of course, but the nonclustered index will not include the rest of the in-row column data. CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestCHAR (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAX (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestTEXT (id); CREATE UNIQUE NONCLUSTERED INDEX uq1 ON dbo.TestMAXOOR (id); The four queries can now use the very dense nonclustered index to quickly scan the id values, sort them by NEWID(), select the 150 ids we want, and then look up the padding data.  The logical reads with the new indexes in place are: Table 'TestCHAR' logical reads 835 lob logical reads 0 Table 'TestMAX' logical reads 835 lob logical reads 0 Table 'TestTEXT' logical reads 686 lob logical reads 597 Table 'TestMAXOOR' logical reads 686 lob logical reads 448 With the new index, all four queries use the same query plan (click to enlarge): Performance Summary: 0.3 seconds elapsed time 6MB memory grant 0MB tempdb usage 1MB sort set 835 logical reads (CHAR, MAX) 686 logical reads (TEXT, MAXOOR) 597 LOB logical reads (TEXT) 448 LOB logical reads (MAXOOR) No sort warning I’ll leave it as an exercise for the reader to work out why trying to eliminate the Key Lookup by adding the padding column to the new nonclustered indexes would be a daft idea Conclusion This post is not about tuning queries that access columns containing big strings.  It isn’t about the internal differences between TEXT and MAX data types either.  It isn’t even about the cool use of UPDATE .WRITE used in the MAXOOR table load.  No, this post is about something else: Many developers might not have tuned our starting example query at all – 5 seconds isn’t that bad, and the original query plan looks reasonable at first glance.  Perhaps the NEWID() function would have been blamed for ‘just being slow’ – who knows.  5 seconds isn’t awful – unless your users expect sub-second responses – but using 250MB of memory and writing 200MB to tempdb certainly is!  If ten sessions ran that query at the same time in production that’s 2.5GB of memory usage and 2GB hitting tempdb.  Of course, not all queries can be rewritten to avoid large memory grants and sort spills using the key-lookup technique in this post, but that’s not the point either. The point of this post is that a basic understanding of execution plans is not enough.  Tuning for logical reads and adding covering indexes is not enough.  If you want to produce high-quality, scalable TSQL that won’t get you paged as soon as it hits production, you need a deep understanding of execution plans, and as much accurate, deep knowledge about SQL Server as you can lay your hands on.  The advanced database developer has a wide range of tools to use in writing queries that perform well in a range of circumstances. By the way, the examples in this post were written for SQL Server 2008.  They will run on 2005 and demonstrate the same principles, but you won’t get the same figures I did because 2005 had a rather nasty bug in the Top N Sort operator.  Fair warning: if you do decide to run the scripts on a 2005 instance (particularly the parallel query) do it before you head out for lunch… This post is dedicated to the people of Christchurch, New Zealand. © 2011 Paul White email: @[email protected] twitter: @SQL_Kiwi

    Read the article

  • Changing the default installation path to a newly installed hard disk

    - by mgj
    Hi, I am currently working on a dual-booted PC. I am using Windows XP and Ubuntu 10.04 Lucid Lynx released in April 2010. The allocated partition to Ubuntu that I am making use of has almost exhausted. Current memory allocations on the PC wrt Ubuntu OS looks like this: bodhgaya@pc146724-desktop:~$ df -h Filesystem Size Used Avail Use% Mounted on /dev/sda2 8.6G 8.0G 113M 99% / none 998M 268K 998M 1% /dev none 1002M 580K 1002M 1% /dev/shm none 1002M 100K 1002M 1% /var/run none 1002M 0 1002M 0% /var/lock none 1002M 0 1002M 0% /lib/init/rw /dev/sda1 25G 16G 9.8G 62% /media/C /dev/sdb1 37G 214M 35G 1% /media/ubuntulinuxstore bodhgaya@pc146724-desktop:~$ cd /tmp I am trying to mount a 40GB(/dev/sdb1 - given below) new hard disk along with my existing Ubuntu system to overcome with hard disk space related issues. I referred to the following tutorial to mount a new hard disk onto the system:- http://www.smorgasbord.net/how-to-in...untu-linux%20/ I was able to successfully mount this hard disk for Ubuntu 0S. I have this new hard disk setup in /media/ubuntulinuxstore directory. The current partition in my system looks like this: bodhgaya@pc146724-desktop:/media/ubuntulinuxstore$ sudo fdisk -l [sudo] password for bodhgaya: Disk /dev/sda: 40.0 GB, 40000000000 bytes 255 heads, 63 sectors/track, 4863 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0x446eceb5 Device Boot Start End Blocks Id System /dev/sda1 * 2 3264 26210047+ 7 HPFS/NTFS /dev/sda2 3265 4385 9004432+ 83 Linux /dev/sda3 4386 4863 3839535 82 Linux swap / Solaris Disk /dev/sdb: 40.0 GB, 40000000000 bytes 255 heads, 63 sectors/track, 4863 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Sector size (logical/physical): 512 bytes / 512 bytes I/O size (minimum/optimal): 512 bytes / 512 bytes Disk identifier: 0xfa8afa8a Device Boot Start End Blocks Id System /dev/sdb1 1 4862 39053983+ 7 HPFS/NTFS bodhgaya@pc146724-desktop:/media/ubuntulinuxstore$ Now, I have a concern wrt the "location" where the new softwares will be installed. Generally softwares are installed via the terminal and by default a fixed path is used to where the post installation set up files can be found (I am talking in context of the drive). This is like the typical case of Windows, where softwares by default are installed in the C: drive. These days people customize their installations to a drive which they find apt to serve their purpose (generally based on availability of hard disk space). I am trying to figure out how to customize the same for Ubuntu. As we all know the most softwares are installed via commands given from the Terminal. My road block is how do I redirect the default path set on the terminal where files get installed to this new hard disk. This if done will help me overcome space constraints I am currently facing wrt the partition on which my Ubuntu is initially installed. I would also by this, save time on not formatting my system and reinstalling Ubuntu and other softwares all over again. Please help me with this, your suggestions are much appreciated.

    Read the article

< Previous Page | 148 149 150 151 152 153 154 155 156 157 158 159  | Next Page >