Search Results

Search found 32660 results on 1307 pages for 'big number'.

Page 153/1307 | < Previous Page | 149 150 151 152 153 154 155 156 157 158 159 160  | Next Page >

  • Using a "white list" for extracting terms for Text Mining, Part 2

    - by [email protected]
    In my last post, we set the groundwork for extracting specific tokens from a white list using a CTXRULE index. In this post, we will populate a table with the extracted tokens and produce a case table suitable for clustering with Oracle Data Mining. Our corpus of documents will be stored in a database table that is defined as create table documents(id NUMBER, text VARCHAR2(4000)); However, any suitable Oracle Text-accepted data type can be used for the text. We then create a table to contain the extracted tokens. The id column contains the unique identifier (or case id) of the document. The token column contains the extracted token. Note that a given document many have many tokens, so there will be one row per token for a given document. create table extracted_tokens (id NUMBER, token VARCHAR2(4000)); The next step is to iterate over the documents and extract the matching tokens using the index and insert them into our token table. We use the MATCHES function for matching the query_string from my_thesaurus_rules with the text. DECLARE     cursor c2 is       select id, text       from documents; BEGIN     for r_c2 in c2 loop        insert into extracted_tokens          select r_c2.id id, main_term token          from my_thesaurus_rules          where matches(query_string,                        r_c2.text)>0;     end loop; END; Now that we have the tokens, we can compute the term frequency - inverse document frequency (TF-IDF) for each token of each document. create table extracted_tokens_tfidf as   with num_docs as (select count(distinct id) doc_cnt                     from extracted_tokens),        tf       as (select a.id, a.token,                            a.token_cnt/b.num_tokens token_freq                     from                        (select id, token, count(*) token_cnt                        from extracted_tokens                        group by id, token) a,                       (select id, count(*) num_tokens                        from extracted_tokens                        group by id) b                     where a.id=b.id),        doc_freq as (select token, count(*) overall_token_cnt                     from extracted_tokens                     group by token)   select tf.id, tf.token,          token_freq * ln(doc_cnt/df.overall_token_cnt) tf_idf   from num_docs,        tf,        doc_freq df   where df.token=tf.token; From the WITH clause, the num_docs query simply counts the number of documents in the corpus. The tf query computes the term (token) frequency by computing the number of times each token appears in a document and divides that by the number of tokens found in the document. The doc_req query counts the number of times the token appears overall in the corpus. In the SELECT clause, we compute the tf_idf. Next, we create the nested table required to produce one record per case, where a case corresponds to an individual document. Here, we COLLECT all the tokens for a given document into the nested column extracted_tokens_tfidf_1. CREATE TABLE extracted_tokens_tfidf_nt              NESTED TABLE extracted_tokens_tfidf_1                  STORE AS extracted_tokens_tfidf_tab AS              select id,                     cast(collect(DM_NESTED_NUMERICAL(token,tf_idf)) as DM_NESTED_NUMERICALS) extracted_tokens_tfidf_1              from extracted_tokens_tfidf              group by id;   To build the clustering model, we create a settings table and then insert the various settings. Most notable are the number of clusters (20), using cosine distance which is better for text, turning off auto data preparation since the values are ready for mining, the number of iterations (20) to get a better model, and the split criterion of size for clusters that are roughly balanced in number of cases assigned. CREATE TABLE km_settings (setting_name  VARCHAR2(30), setting_value VARCHAR2(30)); BEGIN  INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.clus_num_clusters, 20);  INSERT INTO km_settings (setting_name, setting_value)     VALUES (dbms_data_mining.kmns_distance, dbms_data_mining.kmns_cosine);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.prep_auto,dbms_data_mining.prep_auto_off);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.kmns_iterations,20);   INSERT INTO km_settings (setting_name, setting_value) VALUES     VALUES (dbms_data_mining.kmns_split_criterion,dbms_data_mining.kmns_size);   COMMIT; END; With this in place, we can now build the clustering model. BEGIN     DBMS_DATA_MINING.CREATE_MODEL(     model_name          => 'TEXT_CLUSTERING_MODEL',     mining_function     => dbms_data_mining.clustering,     data_table_name     => 'extracted_tokens_tfidf_nt',     case_id_column_name => 'id',     settings_table_name => 'km_settings'); END;To generate cluster names from this model, check out my earlier post on that topic.

    Read the article

  • Seeking on a Heap, and Two Useful DMVs

    - by Paul White
    So far in this mini-series on seeks and scans, we have seen that a simple ‘seek’ operation can be much more complex than it first appears.  A seek can contain one or more seek predicates – each of which can either identify at most one row in a unique index (a singleton lookup) or a range of values (a range scan).  When looking at a query plan, we will often need to look at the details of the seek operator in the Properties window to see how many operations it is performing, and what type of operation each one is.  As you saw in the first post in this series, the number of hidden seeking operations can have an appreciable impact on performance. Measuring Seeks and Scans I mentioned in my last post that there is no way to tell from a graphical query plan whether you are seeing a singleton lookup or a range scan.  You can work it out – if you happen to know that the index is defined as unique and the seek predicate is an equality comparison, but there’s no separate property that says ‘singleton lookup’ or ‘range scan’.  This is a shame, and if I had my way, the query plan would show different icons for range scans and singleton lookups – perhaps also indicating whether the operation was one or more of those operations underneath the covers. In light of all that, you might be wondering if there is another way to measure how many seeks of either type are occurring in your system, or for a particular query.  As is often the case, the answer is yes – we can use a couple of dynamic management views (DMVs): sys.dm_db_index_usage_stats and sys.dm_db_index_operational_stats. Index Usage Stats The index usage stats DMV contains counts of index operations from the perspective of the Query Executor (QE) – the SQL Server component that is responsible for executing the query plan.  It has three columns that are of particular interest to us: user_seeks – the number of times an Index Seek operator appears in an executed plan user_scans – the number of times a Table Scan or Index Scan operator appears in an executed plan user_lookups – the number of times an RID or Key Lookup operator appears in an executed plan An operator is counted once per execution (generating an estimated plan does not affect the totals), so an Index Seek that executes 10,000 times in a single plan execution adds 1 to the count of user seeks.  Even less intuitively, an operator is also counted once per execution even if it is not executed at all.  I will show you a demonstration of each of these things later in this post. Index Operational Stats The index operational stats DMV contains counts of index and table operations from the perspective of the Storage Engine (SE).  It contains a wealth of interesting information, but the two columns of interest to us right now are: range_scan_count – the number of range scans (including unrestricted full scans) on a heap or index structure singleton_lookup_count – the number of singleton lookups in a heap or index structure This DMV counts each SE operation, so 10,000 singleton lookups will add 10,000 to the singleton lookup count column, and a table scan that is executed 5 times will add 5 to the range scan count. The Test Rig To explore the behaviour of seeks and scans in detail, we will need to create a test environment.  The scripts presented here are best run on SQL Server 2008 Developer Edition, but the majority of the tests will work just fine on SQL Server 2005.  A couple of tests use partitioning, but these will be skipped if you are not running an Enterprise-equivalent SKU.  Ok, first up we need a database: USE master; GO IF DB_ID('ScansAndSeeks') IS NOT NULL DROP DATABASE ScansAndSeeks; GO CREATE DATABASE ScansAndSeeks; GO USE ScansAndSeeks; GO ALTER DATABASE ScansAndSeeks SET ALLOW_SNAPSHOT_ISOLATION OFF ; ALTER DATABASE ScansAndSeeks SET AUTO_CLOSE OFF, AUTO_SHRINK OFF, AUTO_CREATE_STATISTICS OFF, AUTO_UPDATE_STATISTICS OFF, PARAMETERIZATION SIMPLE, READ_COMMITTED_SNAPSHOT OFF, RESTRICTED_USER ; Notice that several database options are set in particular ways to ensure we get meaningful and reproducible results from the DMVs.  In particular, the options to auto-create and update statistics are disabled.  There are also three stored procedures, the first of which creates a test table (which may or may not be partitioned).  The table is pretty much the same one we used yesterday: The table has 100 rows, and both the key_col and data columns contain the same values – the integers from 1 to 100 inclusive.  The table is a heap, with a non-clustered primary key on key_col, and a non-clustered non-unique index on the data column.  The only reason I have used a heap here, rather than a clustered table, is so I can demonstrate a seek on a heap later on.  The table has an extra column (not shown because I am too lazy to update the diagram from yesterday) called padding – a CHAR(100) column that just contains 100 spaces in every row.  It’s just there to discourage SQL Server from choosing table scan over an index + RID lookup in one of the tests. The first stored procedure is called ResetTest: CREATE PROCEDURE dbo.ResetTest @Partitioned BIT = 'false' AS BEGIN SET NOCOUNT ON ; IF OBJECT_ID(N'dbo.Example', N'U') IS NOT NULL BEGIN DROP TABLE dbo.Example; END ; -- Test table is a heap -- Non-clustered primary key on 'key_col' CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ; IF @Partitioned = 'true' BEGIN -- Enterprise, Trial, or Developer -- required for partitioning tests IF SERVERPROPERTY('EngineEdition') = 3 BEGIN EXECUTE (' DROP TABLE dbo.Example ; IF EXISTS ( SELECT 1 FROM sys.partition_schemes WHERE name = N''PS'' ) DROP PARTITION SCHEME PS ; IF EXISTS ( SELECT 1 FROM sys.partition_functions WHERE name = N''PF'' ) DROP PARTITION FUNCTION PF ; CREATE PARTITION FUNCTION PF (INTEGER) AS RANGE RIGHT FOR VALUES (20, 40, 60, 80, 100) ; CREATE PARTITION SCHEME PS AS PARTITION PF ALL TO ([PRIMARY]) ; CREATE TABLE dbo.Example ( key_col INTEGER NOT NULL, data INTEGER NOT NULL, padding CHAR(100) NOT NULL DEFAULT SPACE(100), CONSTRAINT [PK dbo.Example key_col] PRIMARY KEY NONCLUSTERED (key_col) ) ON PS (key_col); '); END ELSE BEGIN RAISERROR('Invalid SKU for partition test', 16, 1); RETURN; END; END ; -- Non-unique non-clustered index on the 'data' column CREATE NONCLUSTERED INDEX [IX dbo.Example data] ON dbo.Example (data) ; -- Add 100 rows INSERT dbo.Example WITH (TABLOCKX) ( key_col, data ) SELECT key_col = V.number, data = V.number FROM master.dbo.spt_values AS V WHERE V.[type] = N'P' AND V.number BETWEEN 1 AND 100 ; END; GO The second stored procedure, ShowStats, displays information from the Index Usage Stats and Index Operational Stats DMVs: CREATE PROCEDURE dbo.ShowStats @Partitioned BIT = 'false' AS BEGIN -- Index Usage Stats DMV (QE) SELECT index_name = ISNULL(I.name, I.type_desc), scans = IUS.user_scans, seeks = IUS.user_seeks, lookups = IUS.user_lookups FROM sys.dm_db_index_usage_stats AS IUS JOIN sys.indexes AS I ON I.object_id = IUS.object_id AND I.index_id = IUS.index_id WHERE IUS.database_id = DB_ID(N'ScansAndSeeks') AND IUS.object_id = OBJECT_ID(N'dbo.Example', N'U') ORDER BY I.index_id ; -- Index Operational Stats DMV (SE) IF @Partitioned = 'true' SELECT index_name = ISNULL(I.name, I.type_desc), partitions = COUNT(IOS.partition_number), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; ELSE SELECT index_name = ISNULL(I.name, I.type_desc), range_scans = SUM(IOS.range_scan_count), single_lookups = SUM(IOS.singleton_lookup_count) FROM sys.dm_db_index_operational_stats ( DB_ID(N'ScansAndSeeks'), OBJECT_ID(N'dbo.Example', N'U'), NULL, NULL ) AS IOS JOIN sys.indexes AS I ON I.object_id = IOS.object_id AND I.index_id = IOS.index_id GROUP BY I.index_id, -- Key I.name, I.type_desc ORDER BY I.index_id; END; The final stored procedure, RunTest, executes a query written against the example table: CREATE PROCEDURE dbo.RunTest @SQL VARCHAR(8000), @Partitioned BIT = 'false' AS BEGIN -- No execution plan yet SET STATISTICS XML OFF ; -- Reset the test environment EXECUTE dbo.ResetTest @Partitioned ; -- Previous call will throw an error if a partitioned -- test was requested, but SKU does not support it IF @@ERROR = 0 BEGIN -- IO statistics and plan on SET STATISTICS XML, IO ON ; -- Test statement EXECUTE (@SQL) ; -- Plan and IO statistics off SET STATISTICS XML, IO OFF ; EXECUTE dbo.ShowStats @Partitioned; END; END; The Tests The first test is a simple scan of the heap table: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example'; The top result set comes from the Index Usage Stats DMV, so it is the Query Executor’s (QE) view.  The lower result is from Index Operational Stats, which shows statistics derived from the actions taken by the Storage Engine (SE).  We see that QE performed 1 scan operation on the heap, and SE performed a single range scan.  Let’s try a single-value equality seek on a unique index next: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 32'; This time we see a single seek on the non-clustered primary key from QE, and one singleton lookup on the same index by the SE.  Now for a single-value seek on the non-unique non-clustered index: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32'; QE shows a single seek on the non-clustered non-unique index, but SE shows a single range scan on that index – not the singleton lookup we saw in the previous test.  That makes sense because we know that only a single-value seek into a unique index is a singleton seek.  A single-value seek into a non-unique index might retrieve any number of rows, if you think about it.  The next query is equivalent to the IN list example seen in the first post in this series, but it is written using OR (just for variety, you understand): EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data = 32 OR data = 33'; The plan looks the same, and there’s no difference in the stats recorded by QE, but the SE shows two range scans.  Again, these are range scans because we are looking for two values in the data column, which is covered by a non-unique index.  I’ve added a snippet from the Properties window to show that the query plan does show two seek predicates, not just one.  Now let’s rewrite the query using BETWEEN: EXECUTE dbo.RunTest @SQL = 'SELECT data FROM Example WHERE data BETWEEN 32 AND 33'; Notice the seek operator only has one predicate now – it’s just a single range scan from 32 to 33 in the index – as the SE output shows.  For the next test, we will look up four values in the key_col column: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col IN (2,4,6,8)'; Just a single seek on the PK from the Query Executor, but four singleton lookups reported by the Storage Engine – and four seek predicates in the Properties window.  On to a more complex example: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WITH (INDEX([PK dbo.Example key_col])) WHERE key_col BETWEEN 1 AND 8'; This time we are forcing use of the non-clustered primary key to return eight rows.  The index is not covering for this query, so the query plan includes an RID lookup into the heap to fetch the data and padding columns.  The QE reports a seek on the PK and a lookup on the heap.  The SE reports a single range scan on the PK (to find key_col values between 1 and 8), and eight singleton lookups on the heap.  Remember that a bookmark lookup (RID or Key) is a seek to a single value in a ‘unique index’ – it finds a row in the heap or cluster from a unique RID or clustering key – so that’s why lookups are always singleton lookups, not range scans. Our next example shows what happens when a query plan operator is not executed at all: EXECUTE dbo.RunTest @SQL = 'SELECT key_col FROM Example WHERE key_col = 8 AND @@TRANCOUNT < 0'; The Filter has a start-up predicate which is always false (if your @@TRANCOUNT is less than zero, call CSS immediately).  The index seek is never executed, but QE still records a single seek against the PK because the operator appears once in an executed plan.  The SE output shows no activity at all.  This next example is 2008 and above only, I’m afraid: EXECUTE dbo.RunTest @SQL = 'SELECT * FROM Example WHERE key_col BETWEEN 1 AND 30', @Partitioned = 'true'; This is the first example to use a partitioned table.  QE reports a single seek on the heap (yes – a seek on a heap), and the SE reports two range scans on the heap.  SQL Server knows (from the partitioning definition) that it only needs to look at partitions 1 and 2 to find all the rows where key_col is between 1 and 30 – the engine seeks to find the two partitions, and performs a range scan seek on each partition. The final example for today is another seek on a heap – try to work out the output of the query before running it! EXECUTE dbo.RunTest @SQL = 'SELECT TOP (2) WITH TIES * FROM Example WHERE key_col BETWEEN 1 AND 50 ORDER BY $PARTITION.PF(key_col) DESC', @Partitioned = 'true'; Notice the lack of an explicit Sort operator in the query plan to enforce the ORDER BY clause, and the backward range scan. © 2011 Paul White email: [email protected] twitter: @SQL_Kiwi

    Read the article

  • Tweak Conky Layout via a script

    - by begtognen
    I'm using a script in Conky in order to display my new gmail on my desktop. It works beautifully, but is kind of ugly, and I'm not sure how to fix it. What I've currently got looks like this: And what I'd like is this: Any ideas for how to make that happen are much appreciated. Here's the script I'm currently using (I think I've snipped out the correct part, if I haven't please let me know.) #!/usr/bin/perl use Switch; use Text::Wrap; my $what=$ARGV[0]; $user="username"; #username for gmail account $pass="password"; #password for gmail account $file="/tmp/gmail.html"; #temporary file to store gmail #wrap format for subject $Text::Wrap::columns=65; #Number of columns to wrap subject at $initial_tab=""; #Tab for first line of subject $subsequent_tab="\t"; #tab for wrapped lines $quote="\""; #put quotes around subject #limit the number of emails to be displayed $emails=-1; #if -1 display all emails &passwd; #give password the proper url character encoding switch($what){ #determine what the user wants case "n" {&gmail; print "$new\n";} #print number of new emails case "s" { #print $from and $subj for new email &gmail; if ($new0){ my $size=@from; if ($emails!=-1 && $size$emails){$size=$emails;} #limit number of emails displayed for(my $i=0; $i$emails){print "$emails out of $size new emails displayed\n";} } } case "e" { #print number of new emails, $from, and $subj &gmail; if($new==0){print "You have no new emails.\n";} else{ print "You have $new new email(s).\n"; my $size=@from; if ($emails!=-1 && $size$emails){$size=$emails;} #limit number of emails displayed for(my $i=0; $i$emails){print "$emails out of $size new emails displayed\n";} } } else { print "Usage Error: gmail.pl \n"; print "\tn displays number of new emails\n"; print "\ts displays from line and subject line for each new email.\n"; print "\te displays the number of new emails and from line plus \n"; print "\t\tsubject line for each new email.\n"; } #didn't give proper option } sub gmail{ if(!(-e $file)){ #create file if it does not exists `touch $file`; } #get new emails `wget -O - https://$user:$pass\@mail.google.com/mail/feed/atom --no-check-certificate $file`; open(IN, $file); #open $file my $i=0; #initialize count $new=0; #initialize new emails to 0 my $flag=0; while(){ #cycle through $file if(//){$flag=1;} elsif(/(\d+)/){$new=$1;} #grab number of new emails elsif($flag==1){ if(/.+/){push(@subj, &msg);} #grab new email titles elsif(/(.+)/){push(@from, $1); $flag=0;} #grab new email from lines } } close(IN); #close $file } sub passwd{ #change to url escape codes in password #URL ESCAPE CODES $_=$pass; s/\%/\%25/g; s/\#/\%23/g; s/\$/\%24/g; s/\&/\%26/g; s/\//\%2F/g; s/\:/\%3A/g; s/\;/\%3B/g; s/\/\%3E/g; s/\?/\%3F/g; s/\@/\%40/g; s/\[/\%5B/g; s/\\/\%5C/g; s/\]/\%5D/g; s/\^/\%5E/g; s/\`/\%60/g; s/\{/\%7B/g; s/\|/\%7C/g; s/\}/\%7D/g; s/\~/\%7E/g; $pass=$_; } sub msg{ #THE HTML CODED CHARACTER SET [ISO-8859-1] chomp; s/(.+)/$1/; #get just the subject #now replace any special characters s/\&\#33\;/!/g; #Exclamation mark s/\&\#34\;/"/g; s/\"\;/"/g; #Quotation mark s/\&\#35\;/#/g; #Number sign s/\&\#36\;/\$/g; #Dollar sign s/\&\#37\;/%/g; #Percent sign s/\&\#38\;/&/g; s/\&\;/&/g; #Ampersand s/\&\#39\;/'/g; #Apostrophe s/\&\#40\;/(/g; #Left parenthesis s/\&\#41\;/)/g; #Right parenthesis s/\&\#42\;/*/g; #Asterisk s/\&\#43\;/+/g; #Plus sign s/\&\#44\;/,/g; #Comma s/\&\#45\;/-/g; #Hyphen s/\&\#46\;/./g; #Period (fullstop) s/\&\#47\;/\//g; #Solidus (slash) s/\&\#58\;/:/g; #Colon s/\&\#59\;/\;/g; #Semi-colon s/\&\#60\;//g; s/\>\;//g; #Greater than s/\&\#63\;/\?/g; #Question mark s/\&\#64\;/\@/g; #Commercial at s/\&\#91\;/\[/g; #Left square bracket s/\&\#92\;/\\/g; #Reverse solidus (backslash) s/\&\#93\;/\]/g; #Right square bracket s/\&\#94\;/\^/g; #Caret s/\&\#95\;/_/g; #Horizontal bar (underscore) s/\&\#96\;/\`/g; #Acute accent s/\&\#123\;/\{/g; #Left curly brace s/\&\#124\;/|/g; #Vertical bar s/\&\#125\;/\}/g; #Right curly brace s/\&\#126\;/~/g; #Tilde s/\&\#161\;/¡/g; #Inverted exclamation s/\&\#162\;/¢/g; #Cent sign s/\&\#163\;/£/g; #Pound sterling s/\&\#164\;/¤/g; #General currency sign s/\&\#165\;/¥/g; #Yen sign s/\&\#166\;/¦/g; #Broken vertical bar s/\&\#167\;/§/g; #Section sign s/\&\#168\;/¨/g; #Umlaut (dieresis) s/\&\#169\;/©/g; s/\©\;/©/g; #Copyright s/\&\#170\;/ª/g; #Feminine ordinal s/\&\#171\;/«/g; #Left angle quote, guillemotleft s/\&\#172\;/¬/g; #Not sign s/\&\#174\;/®/g; #Registered trademark s/\&\#175\;/¯/g; #Macron accent s/\&\#176\;/°/g; #Degree sign s/\&\#177\;/±/g; #Plus or minus s/\&\#178\;/²/g; #Superscript two s/\&\#179\;/³/g; #Superscript three s/\&\#180\;/´/g; #Acute accent s/\&\#181\;/µ/g; #Micro sign s/\&\#182\;/¶/g; #Paragraph sign s/\&\#183\;/·/g; #Middle dot s/\&\#184\;/¸/g; #Cedilla s/\&\#185\;/¹/g; #Superscript one s/\&\#186\;/º/g; #Masculine ordinal s/\&\#187\;/»/g; #Right angle quote, guillemotright s/\&\#188\;/¼/g; s/\¼\;/¼/g; # Fraction one-fourth s/\&\#189\;/½/g; s/\½\;/½/g; # Fraction one-half s/\&\#190\;/¾/g; s/\¾\;/¾/g; # Fraction three-fourths s/\&\#191\;/¿/g; #Inverted question mark s/\&\#192\;/À/g; #Capital A, grave accent s/\&\#193\;/Á/g; #Capital A, acute accent s/\&\#194\;/Â/g; #Capital A, circumflex accent s/\&\#195\;/Ã/g; #Capital A, tilde s/\&\#196\;/Ä/g; #Capital A, dieresis or umlaut mark s/\&\#197\;/Å/g; #Capital A, ring s/\&\#198\;/Æ/g; #Capital AE dipthong (ligature) s/\&\#199\;/Ç/g; #Capital C, cedilla s/\&\#200\;/È/g; #Capital E, grave accent s/\&\#201\;/É/g; #Capital E, acute accent s/\&\#202\;/Ê/g; #Capital E, circumflex accent s/\&\#203\;/Ë/g; #Capital E, dieresis or umlaut mark s/\&\#204\;/Ì/g; #Capital I, grave accent s/\&\#205\;/Í/g; #Capital I, acute accent s/\&\#206\;/Î/g; #Capital I, circumflex accent s/\&\#207\;/Ï/g; #Capital I, dieresis or umlaut mark s/\&\#208\;/Ð/g; #Capital Eth, Icelandic s/\&\#209\;/Ñ/g; #Capital N, tilde s/\&\#210\;/Ò/g; #Capital O, grave accent s/\&\#211\;/Ó/g; #Capital O, acute accent s/\&\#212\;/Ô/g; #Capital O, circumflex accent s/\&\#213\;/Õ/g; #Capital O, tilde s/\&\#214\;/Ö/g; #Capital O, dieresis or umlaut mark s/\&\#215\;/×/g; #Multiply sign s/\&\#216\;/Ø/g; #Capital O, slash s/\&\#217\;/Ù/g; #Capital U, grave accent s/\&\#218\;/Ú/g; #Capital U, acute accent s/\&\#219\;/Û/g; #Capital U, circumflex accent s/\&\#220\;/Ü/g; #Capital U, dieresis or umlaut mark s/\&\#221\;/Ý/g; #Capital Y, acute accent s/\&\#222\;/Þ/g; #Capital THORN, Icelandic s/\&\#223\;/ß/g; #Small sharp s, German (sz ligature) s/\&\#224\;/à/g; #Small a, grave accent s/\&\#225\;/á/g; #Small a, acute accent s/\&\#226\;/â/g; #Small a, circumflex accent s/\&\#227\;/ã/g; #Small a, tilde s/\&\#228\;/ä/g; #Small a, dieresis or umlaut mark s/\&\#229\;/å/g; #Small a, ring s/\&\#230\;/æ/g; #Small ae dipthong (ligature) s/\&\#231\;/ç/g; #Small c, cedilla s/\&\#232\;/è/g; #Small e, grave accent s/\&\#233\;/é/g; #Small e, acute accent s/\&\#234\;/ê/g; #Small e, circumflex accent s/\&\#235\;/ë/g; #Small e, dieresis or umlaut mark s/\&\#236\;/ì/g; #Small i, grave accent s/\&\#237\;/í/g; #Small i, acute accent s/\&\#238\;/î/g; #Small i, circumflex accent s/\&\#239\;/ï/g; #Small i, dieresis or umlaut mark s/\&\#240\;/ð/g; #Small eth, Icelandic s/\&\#241\;/ñ/g; #Small n, tilde s/\&\#242\;/ò/g; #Small o, grave accent s/\&\#243\;/ó/g; #Small o, acute accent s/\&\#244\;/ô/g; #Small o, circumflex accent s/\&\#245\;/õ/g; #Small o, tilde s/\&\#246\;/ö/g; #Small o, dieresis or umlaut mark s/\&\#247\;/÷/g; #Division sign s/\&\#248\;/ø/g; #Small o, slash s/\&\#249\;/ù/g; #Small u, grave accent s/\&\#250\;/ú/g; #Small u, acute accent s/\&\#251\;/û/g; #Small u, circumflex accent s/\&\#252\;/ü/g; #Small u, dieresis or umlaut mark s/\&\#253\;/ý/g; #Small y, acute accent s/\&\#254\;/þ/g; #Small thorn, Icelandic s/\&\#255\;/ÿ/g; #Small y, dieresis or umlaut mark s/^\s+//; return $_; }

    Read the article

  • Objective C and ios development training courses feedback

    - by Mutuelinvestor
    I'm thinking about taking an Objective C / iphone/ipad development training course. Pragmatic Studio and Big Nerd Ranch appear to be the key players. I'd love to hear any feed back from anyone who has completed training with Pragmatic, Big Nerd or others. I'd interested in quality of instruction, how much you learned, strengths, weaknesses and any other valuable insights. Its a pretty big financial commitment for me and I want to get the most bang for my buck. Thanks in advance for your input.

    Read the article

  • How to install Oracle Weblogic Server using OS-specific Package installer?(Windows)

    - by PratikS -- Oracle
    Note: OS-specific Package installer As the name suggests the installer is platform specific. It is meant for installation with a 32bit JVM only. Both SUN and JROCKIT 32 bit JDKs come bundled with "OS-specific Package installer", so no need to install the JDK in advance. There are three different ways of installing Oracle Weblogic Server: Graphical mode Console mode Silent mode For Windows: 1) Graphical mode:Installer: wls_<version>_win32.exe (E.g. wls1036_win32.exe)Steps to Install:1) Log in to the Windows system.2) Go to the directory that contains the installation program.3) Double-click the installation file.(wls1036_win32.exe)As soon as you double-click on the installation file you wold see the following screens: Once the installation preparation is complete you will see the welcome screen:  Click Next If there are existing Middleware Home Directories it will list all of them. You may either select an  existing Middleware Home Directory or create a new one. Note: It is always recommended to have one Middleware Home Directory per installation, so I'll select "Create a new Middleware Home" Click Next If you want to register for Security updates enter  your My Oracle Support credentials or else un-check the box, it will prompt to bypass click Yes and then click Next.  Click Next Again Click Next Click Next to All Users to access the Oracle Weblogic Server Installation.  Click Next ( Make sure the more then 1289.8 MB of space is available in the Middleware Home) Wait for the installation to complete. Click Done. And the installation is complete. 2) Console mode: Log in to the target Windows system. Open a command prompt window. Go to the directory that contains the installation program. Launch the installation by entering the name of the installation program.  C:\Documents and Settings\username>d:D:\>cd D:\WLS-InstallerD:\WLS-Installer>dir Volume in drive D is Data Volume Serial Number is 123A-4567 Directory of D:\WLS-Installer07/04/2012  08:02 AM    <DIR>          .07/04/2012  08:02 AM    <DIR>          ..07/04/2012  08:02 AM       859,548,533 wls1036_win32.exe               1 File(s)    859,548,533 bytes               2 Dir(s)  34,745,683,968 bytes freeD:\WLS-Installer>wls1036_win32.exe -mode=console A new prompt will open and you may continue with the installation as follows:  Extracting .................................................................................................... Done<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Welcome:--------This installer will guide you through the installation of WebLogic 10.3.6.0.Type "Next" or enter to proceed to the next prompt.  If you want to change dataentered previously, type "Previous".  You may quit the installer at any time bytyping "Exit".Enter [Exit][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Choose Middleware Home Directory:--------------------------------- ->1¦* Create a new Middleware Home   2¦D:\WLS\bea816   3¦D:\WLS\bea923   4¦D:\WLS\bea1033   5¦D:\WLS\bea1032 Enter index number to select OR [Exit][Previous][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Choose Middleware Home Directory:---------------------------------    "Middleware Home" = [Enter new value or use default "C:\Oracle\Middleware"]Enter new Middleware Home OR [Exit][Previous][Next]> D:\WLS1036<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Choose Middleware Home Directory:---------------------------------    "Middleware Home" = [D:\WLS1036]Use above value or select another option:    1 - Enter new Middleware Home    2 - Change to default [C:\Oracle\Middleware]Enter option number to select OR [Exit][Previous][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Register for Security Updates:------------------------------Provide your email address for security updates and  to initiate configuration manager.   1¦Email:[]   2¦Support Password:[]   3¦Receive Security Update:[Yes]Enter index number to select OR [Exit][Previous][Next]> 3<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Register for Security Updates:------------------------------Provide your email address for security updates and  to initiate configuration manager.    "Receive Security Update:" = [Enter new value or use default "Yes"]Enter [Yes][No]? No<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Register for Security Updates:------------------------------Provide your email address for security updates and  to initiate configuration manager.    "Receive Security Update:" = [Enter new value or use default "Yes"]    ** Do you wish to bypass initiation of the configuration manager and    **  remain uninformed of critical security issues in your configuration?Enter [Yes][No]? Yes<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Register for Security Updates:------------------------------Provide your email address for security updates and  to initiate configuration manager.   1¦Email:[]   2¦Support Password:[]   3¦Receive Security Update:[No]Enter index number to select OR [Exit][Previous][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Register for Security Updates:------------------------------Provide your email address for security updates and  to initiate configuration manager.   1¦Email:[]   2¦Support Password:[]   3¦Receive Security Update:[No]Enter index number to select OR [Exit][Previous][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Choose Install Type:--------------------Select the type of installation you wish to perform. ->1¦Typical    ¦  Install the following product(s) and component(s):    ¦ - WebLogic Server    ¦ - Oracle Coherence   2¦Custom    ¦  Choose software products and components to install and perform optional    ¦configuration.Enter index number to select OR [Exit][Previous][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Choose Product Installation Directories:----------------------------------------Middleware Home Directory: [D:\WLS1036]Product Installation Directories:   1¦WebLogic Server: [D:\WLS1036\wlserver_10.3]   2¦Oracle Coherence: [D:\WLS1036\coherence_3.7]Enter index number to select OR [Exit][Previous][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Choose Shortcut Location:-------------------------    *The installer creates shortcuts to Oracle components, samples, and tools.    *As a user with administrative privileges, you can specify where these    *shortcuts are created. ->1¦"All Users" Start Menu folder (recommended)    ¦For some installations, this setting may limit the automatic creation of    ¦server shortcuts for users without administrative privileges. Refer to the    ¦documentation for more information.   2¦Local user's Start Menu folder    ¦Select this option if you need to ensure that other profiles registered on    ¦this machine will not have access to these shortcuts.Enter index number to select OR [Exit][Previous][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Choose Shortcut Location:-------------------------    *Are you sure you wish to create the shortcuts in the selected location?    *    *"All Users" Start Menu folder (recommended)    *For some installations, this setting may limit the automatic creation of    *server shortcuts for users without administrative privileges. Refer to the    *documentation for more information. ->1¦Yes.   2¦No, Go back to the previous screen and make another choice.Enter index number to select OR [Exit][Previous][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->The following Products and JDKs will be installed:--------------------------------------------------    WebLogic Platform 10.3.6.0    +----WebLogic Server    ¦    +----Core Application Server    ¦    +----Administration Console    ¦    +----Configuration Wizard and Upgrade Framework    ¦    +----Web 2.0 HTTP Pub-Sub Server    ¦    +----WebLogic SCA    ¦    +----WebLogic JDBC Drivers    ¦    +----Third Party JDBC Drivers    ¦    +----WebLogic Server Clients    ¦    +----WebLogic Web Server Plugins    ¦    +----UDDI and Xquery Support    ¦    +----Evaluation Database    +----Oracle Coherence    ¦    +----Coherence Product Files    +----JDKs         +----SUN SDK 1.6.0_29         +----Oracle JRockit 1.6.0_29 SDK    *Estimated size of installation: 1,289.8 MBEnter [Exit][Previous][Next]>Next<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Installing files..0%          25%          50%          75%          100%[------------|------------|------------|------------][***************************************************]<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Installing JDK....0%          25%          50%          75%          100%[------------|------------|------------|------------][***************************************************]Performing String Substitutions...<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Configuring OCM...0%          25%          50%          75%          100%[------------|------------|------------|------------][***************************************************]Creating Domains...<-------------------- Oracle Installer - WebLogic 10.3.6.0 ------------------->Installation CompleteCongratulations! Installation is complete.Press [Enter] to continue or type [Exit]>...Finish installation. Press any key to close this window... Note: All the inputs are in Bold 3) Silent mode: Coming soon...

    Read the article

  • How Does AutoPatch Handle Shared E-Business Suite Products?

    - by Steven Chan
    Space... is big. Really big. You just won't believe how vastly hugely mindbogglingly big it is.~ Douglas AdamsDouglas Adams could have been talking about the E-Business Suite.  Depending upon whom you ask (and how you count them), there are between 200 to 240 products in Oracle E-Business Suite.  The products that make up Oracle E-Business Suite are tightly integrated. Some of these products are known as shared or dependent products. Installed and registered automatically by Rapid Install, such products depend on components from other products for full functionality.For example:General Ledger (GL) depends on Application Object Library (FND) and Oracle Receivables (AR)Inventory (INV) depends on FND and GLReceivables (AR) depends on FND, INV, and GLIt can sometimes be challenging to craft a patching strategy for these types of product dependencies.  To help you with that, our Applications Database (AD) team has recently published a new document that describes the actions AutoPatch takes with shared Oracle E-Business Suite products:Patching Shared Oracle E-Business Suite Products (Note 1069099.1)

    Read the article

  • VFS: file-max limit 1231582 reached

    - by Rick Koshi
    I'm running a Linux 2.6.36 kernel, and I'm seeing some random errors. Things like ls: error while loading shared libraries: libpthread.so.0: cannot open shared object file: Error 23 Yes, my system can't consistently run an 'ls' command. :( I note several errors in my dmesg output: # dmesg | tail [2808967.543203] EXT4-fs (sda3): re-mounted. Opts: (null) [2837776.220605] xv[14450] general protection ip:7f20c20c6ac6 sp:7fff3641b368 error:0 in libpng14.so.14.4.0[7f20c20a9000+29000] [4931344.685302] EXT4-fs (md16): re-mounted. Opts: (null) [4982666.631444] VFS: file-max limit 1231582 reached [4982666.764240] VFS: file-max limit 1231582 reached [4982767.360574] VFS: file-max limit 1231582 reached [4982901.904628] VFS: file-max limit 1231582 reached [4982964.930556] VFS: file-max limit 1231582 reached [4982966.352170] VFS: file-max limit 1231582 reached [4982966.649195] top[31095]: segfault at 14 ip 00007fd6ace42700 sp 00007fff20746530 error 6 in libproc-3.2.8.so[7fd6ace3b000+e000] Obviously, the file-max errors look suspicious, being clustered together and recent. # cat /proc/sys/fs/file-max 1231582 # cat /proc/sys/fs/file-nr 1231712 0 1231582 That also looks a bit odd to me, but the thing is, there's no way I have 1.2 million files open on this system. I'm the only one using it, and it's not visible to anyone outside the local network. # lsof | wc 16046 148253 1882901 # ps -ef | wc 574 6104 44260 I saw some documentation saying: file-max & file-nr: The kernel allocates file handles dynamically, but as yet it doesn't free them again. The value in file-max denotes the maximum number of file- handles that the Linux kernel will allocate. When you get lots of error messages about running out of file handles, you might want to increase this limit. Historically, the three values in file-nr denoted the number of allocated file handles, the number of allocated but unused file handles, and the maximum number of file handles. Linux 2.6 always reports 0 as the number of free file handles -- this is not an error, it just means that the number of allocated file handles exactly matches the number of used file handles. Attempts to allocate more file descriptors than file-max are reported with printk, look for "VFS: file-max limit reached". My first reading of this is that the kernel basically has a built-in file descriptor leak, but I find that very hard to believe. It would imply that any system in active use needs to be rebooted every so often to free up the file descriptors. As I said, I can't believe this would be true, since it's normal to me to have Linux systems stay up for months (even years) at a time. On the other hand, I also can't believe that my nearly-idle system is holding over a million files open. Does anyone have any ideas, either for fixes or further diagnosis? I could, of course, just reboot the system, but I don't want this to be a recurring problem every few weeks. As a stopgap measure, I've quit Firefox, which was accounting for almost 2000 lines of lsof output (!) even though I only had one window open, and now I can run 'ls' again, but I doubt that will fix the problem for long. (edit: Oops, spoke too soon. By the time I finished typing out this question, the symptom was/is back) Thanks in advance for any help. And another update: My system was basically unusable, so I decided I had no option but to reboot. But before I did, I carefully quit one process at a time, checking /proc/sys/fs/file-nr after each termination. I found that, predictably, the number of open files gradually went down as I closed things down. Unfortunately, it wasn't a large effect. Yes, I was able to clear up 5000-10000 open files, but there were still over 1.2 million left. I shut down just about everything. All interactive shells, except for the one ssh I left open to finish closing down, httpd, even nfs service. Basically everything in the process table that wasn't a kernel process, and there were still an appalling number of files apparently left open. After the reboot, I found that /proc/sys/fs/file-nr showed about 2000 files open, which is much more reasonable. Starting up 2 Xvnc sessions as usual, along with the dozen or so monitoring windows I like to keep open, brought the total up to about 4000 files. I can see nothing wrong with that, of course, but I've obviously failed to identify the root cause. I'm still looking for ideas, since I definitely expect it to happen again. And another update, the next day: I watched the system carefully, and discovered that /proc/sys/fs/file-nr showed a growth of about 900 open files per hour. I shut down the system's only NFS client for the night, and the growth stopped. Mind you, it didn't free up the resources, but it did at least stop consuming more. Is this a known bug with NFS? I'll be bringing the NFS client back online today, and I'll narrow it down further. If anyone is familiar with this behavior, feel free to jump in with "Yeah, NFS4 has this problem, go back to NFS3" or something like that.

    Read the article

  • What is the politically correct way of refactoring other's code?

    - by dukeofgaming
    I'm currently working in a geographically distributed team in a big company. Everybody is just focused on today's tasks and getting things done, however this means sometimes things have to be done the quick way, and that causes problems... you know, same old, same old. I'm bumping into code with several smells such as: big functions pointless utility functions/methods (essentially just to save writing a word), overcomplicated algorithms, extremely big files that should be broken down into different files/classes (1,500+ lines), etc. What would be the best way of improving code without making other developers feel bad/wrong about any proposed improvements?

    Read the article

  • Solving Combinatory Problems with LINQ /.NET4

    - by slf
    I saw this article pop-up in my MSDN RSS feed, and after reading through it, and the sourced article here I began to wonder about the solution. The rules are simple: Find a number consisting of 9 digits in which each of the digits from 1 to 9 appears only once. This number must also satisfy these divisibility requirements: The number should be divisible by 9. If the rightmost digit is removed, the remaining number should be divisible by 8. If the rightmost digit of the new number is removed, the remaining number should be divisible by 7. And so on, until there's only one digit (which will necessarily be divisible by 1). This is his proposed monster LINQ query: // C# and LINQ solution to the numeric problem presented in: // http://software.intel.com/en-us/blogs/2009/12/07/intel-parallel-studio-great-for-serial-code-too-episode-1/ int[] oneToNine = new int[] { 1, 2, 3, 4, 5, 6, 7, 8, 9 }; // the query var query = from i1 in oneToNine from i2 in oneToNine where i2 != i1 && (i1 * 10 + i2) % 2 == 0 from i3 in oneToNine where i3 != i2 && i3 != i1 && (i1 * 100 + i2 * 10 + i3) % 3 == 0 from i4 in oneToNine where i4 != i3 && i4 != i2 && i4 != i1 && (i1 * 1000 + i2 * 100 + i3 * 10 + i4) % 4 == 0 from i5 in oneToNine where i5 != i4 && i5 != i3 && i5 != i2 && i5 != i1 && (i1 * 10000 + i2 * 1000 + i3 * 100 + i4 * 10 + i5) % 5 == 0 from i6 in oneToNine where i6 != i5 && i6 != i4 && i6 != i3 && i6 != i2 && i6 != i1 && (i1 * 100000 + i2 * 10000 + i3 * 1000 + i4 * 100 + i5 * 10 + i6) % 6 == 0 from i7 in oneToNine where i7 != i6 && i7 != i5 && i7 != i4 && i7 != i3 && i7 != i2 && i7 != i1 && (i1 * 1000000 + i2 * 100000 + i3 * 10000 + i4 * 1000 + i5 * 100 + i6 * 10 + i7) % 7 == 0 from i8 in oneToNine where i8 != i7 && i8 != i6 && i8 != i5 && i8 != i4 && i8 != i3 && i8 != i2 && i8 != i1 && (i1 * 10000000 + i2 * 1000000 + i3 * 100000 + i4 * 10000 + i5 * 1000 + i6 * 100 + i7 * 10 + i8) % 8 == 0 from i9 in oneToNine where i9 != i8 && i9 != i7 && i9 != i6 && i9 != i5 && i9 != i4 && i9 != i3 && i9 != i2 && i9 != i1 let number = i1 * 100000000 + i2 * 10000000 + i3 * 1000000 + i4 * 100000 + i5 * 10000 + i6 * 1000 + i7 * 100 + i8 * 10 + i9 * 1 where number % 9 == 0 select number; // run it! foreach (int n in query) Console.WriteLine(n); Octavio states "Note that no attempt at all has been made to optimize the code", what I'd like to know is what if we DID attempt to optimize this code. Is this really the best this code can get? I'd like to know how we can do this best with .NET4, in particular doing as much in parallel as we possibly can. I'm not necessarily looking for an answer in pure LINQ, assume .NET4 in any form (managed c++, c#, etc all acceptable).

    Read the article

  • Covariance and Contravariance in C#

    - by edalorzo
    I will start by saying that I am Java developer learning to program in C#. As such I do comparisons of what I know with what I am learning. I have been playing with C# generics for a few hours now, and I have been able to reproduce the same things I know in Java in C#, with the exception of a couple of examples using covariance and contravariance. The book I am reading is not very good in the subject. I will certainly seek more info on the web, but while I do that, perhaps you can help me find a C# implementation for the following Java code. An example is worth a thousand words, and I was hoping that by looking a good code sample I will be able to assimilate this more rapidly. Covariance In Java I can do something like this: public static double sum(List<? extends Number> numbers) { double summation = 0.0; for(Number number : numbers){ summation += number.doubleValue(); } return summation; } I can use this code as follows: List<Integer> myInts = asList(1,2,3,4,5); List<Double> myDoubles = asList(3.14, 5.5, 78.9); List<Long> myLongs = asList(1L, 2L, 3L); double result = 0.0; result = sum(myInts); result = sum(myDoubles) result = sum(myLongs); Now I did discover that C# supports covariance/contravariance only on interfaces and as long as they have been explicitly declared to do so (out). I think I was not able to reproduce this case, because I could not find a common ancestor of all numbers, but I believe that I could have used IEnumerable to implement such thing if a common ancestor exists. Since IEnumerable is a covariant type. Right? Any thoughts on how to implement the list above? Just point me into the right direction. Is there any common ancestor of all numeric types? Contravariance The contravariance example I tried was the following. In Java I can do this to copy one list into another. public static void copy(List<? extends Number> source, List<? super Number> destiny){ for(Number number : source) { destiny.add(number); } } Then I could use it with contravariant types as follows: List<Object> anything = new ArrayList<Object>(); List<Integer> myInts = asList(1,2,3,4,5); copy(myInts, anything); My basic problem, trying to implement this in C# is that I could not find an interface that was both covariant and contravariant at the same time, as it is case of List in my example above. Maybe it can be done with two different interface in C#. Any thoughts on how to implement this? Thank you very much to everyone for any answers you can contribute. I am pretty sure I will learn a lot from any example you can provide.

    Read the article

  • How to write a bison grammer for WDI?

    - by Rizo
    I need some help in bison grammar construction. From my another question: I'm trying to make a meta-language for writing markup code (such as xml and html) wich can be directly embedded into C/C++ code. Here is a simple sample written in this language, I call it WDI (Web Development Interface): /* * Simple wdi/html sample source code */ #include <mySite> string name = "myName"; string toCapital(string str); html { head { title { mySiteTitle; } link(rel="stylesheet", href="style.css"); } body(id="default") { // Page content wrapper div(id="wrapper", class="some_class") { h1 { "Hello, " + toCapital(name) + "!"; } // Lists post ul(id="post_list") { for(post in posts) { li { a(href=post.getID()) { post.tilte; } } } } } } } Basically it is a C source with a user-friendly interface for html. As you can see the traditional tag-based style is substituted by C-like, with blocks delimited by curly braces. I need to build an interpreter to translate this code to html and posteriorly insert it into C, so that it can be compiled. The C part stays intact. Inside the wdi source it is not necessary to use prints, every return statement will be used for output (in printf function). The program's output will be clean html code. So, for example a heading 1 tag would be transformed like this: h1 { "Hello, " + toCapital(name) + "!"; } // would become: printf("<h1>Hello, %s!</h1>", toCapital(name)); My main goal is to create an interpreter to translate wdi source to html like this: tag(attributes) {content} = <tag attributes>content</tag> Secondly, html code returned by the interpreter has to be inserted into C code with printfs. Variables and functions that occur inside wdi should also be sorted in order to use them as printf parameters (the case of toCapital(name) in sample source). Here are my flex/bison files: id [a-zA-Z_]([a-zA-Z0-9_])* number [0-9]+ string \".*\" %% {id} { yylval.string = strdup(yytext); return(ID); } {number} { yylval.number = atoi(yytext); return(NUMBER); } {string} { yylval.string = strdup(yytext); return(STRING); } "(" { return(LPAREN); } ")" { return(RPAREN); } "{" { return(LBRACE); } "}" { return(RBRACE); } "=" { return(ASSIGN); } "," { return(COMMA); } ";" { return(SEMICOLON); } \n|\r|\f { /* ignore EOL */ } [ \t]+ { /* ignore whitespace */ } . { /* return(CCODE); Find C source */ } %% %start wdi %token LPAREN RPAREN LBRACE RBRACE ASSIGN COMMA SEMICOLON CCODE QUOTE %union { int number; char *string; } %token <string> ID STRING %token <number> NUMBER %% wdi : /* empty */ | blocks ; blocks : block | blocks block ; block : head SEMICOLON | head body ; head : ID | ID attributes ; attributes : LPAREN RPAREN | LPAREN attribute_list RPAREN ; attribute_list : attribute | attribute COMMA attribute_list ; attribute : key ASSIGN value ; key : ID {$$=$1} ; value : STRING {$$=$1} /*| NUMBER*/ /*| CCODE*/ ; body : LBRACE content RBRACE ; content : /* */ | blocks | STRING SEMICOLON | NUMBER SEMICOLON | CCODE ; %% I am having difficulties on defining a proper grammar for the language, specially in splitting WDI and C code . I just started learning language processing techniques so I need some orientation. Could someone correct my code or give some examples of what is the right way to solve this problem?

    Read the article

  • What happens when you add/remove current site as trusted site?

    - by kasey
    What happens when you add/remove the current site, while logged on, as a trusted site? When users do this on our website, and then try to click on a link or close the browser, they get the following JavaScript exception: "Microsoft JScript runtime error: 'type' is null or not an object" in the below library code at the line "var etype = this.type = e.type.toLowerCase();" Sys.UI.DomEvent = function Sys$UI$DomEvent(eventObject) { /// <summary locid="M:J#Sys.UI.DomEvent.#ctor" /> /// <param name="eventObject"></param> /// <field name="altKey" type="Boolean" locid="F:J#Sys.UI.DomEvent.altKey"></field> /// <field name="button" type="Sys.UI.MouseButton" locid="F:J#Sys.UI.DomEvent.button"></field> /// <field name="charCode" type="Number" integer="true" locid="F:J#Sys.UI.DomEvent.charCode"></field> /// <field name="clientX" type="Number" integer="true" locid="F:J#Sys.UI.DomEvent.clientX"></field> /// <field name="clientY" type="Number" integer="true" locid="F:J#Sys.UI.DomEvent.clientY"></field> /// <field name="ctrlKey" type="Boolean" locid="F:J#Sys.UI.DomEvent.ctrlKey"></field> /// <field name="keyCode" type="Number" integer="true" locid="F:J#Sys.UI.DomEvent.keyCode"></field> /// <field name="offsetX" type="Number" integer="true" locid="F:J#Sys.UI.DomEvent.offsetX"></field> /// <field name="offsetY" type="Number" integer="true" locid="F:J#Sys.UI.DomEvent.offsetY"></field> /// <field name="screenX" type="Number" integer="true" locid="F:J#Sys.UI.DomEvent.screenX"></field> /// <field name="screenY" type="Number" integer="true" locid="F:J#Sys.UI.DomEvent.screenY"></field> /// <field name="shiftKey" type="Boolean" locid="F:J#Sys.UI.DomEvent.shiftKey"></field> /// <field name="target" locid="F:J#Sys.UI.DomEvent.target"></field> /// <field name="type" type="String" locid="F:J#Sys.UI.DomEvent.type"></field> var e = Function._validateParams(arguments, [ {name: "eventObject"} ]); if (e) throw e; var e = eventObject; var etype = this.type = e.type.toLowerCase(); this.rawEvent = e; this.altKey = e.altKey; if (typeof(e.button) !== 'undefined') { this.button = (typeof(e.which) !== 'undefined') ? e.button : (e.button === 4) ? Sys.UI.MouseButton.middleButton : (e.button === 2) ? Sys.UI.MouseButton.rightButton : Sys.UI.MouseButton.leftButton; } if (etype === 'keypress') { this.charCode = e.charCode || e.keyCode; } else if (e.keyCode && (e.keyCode === 46)) { this.keyCode = 127; } else { this.keyCode = e.keyCode; } this.clientX = e.clientX; this.clientY = e.clientY; this.ctrlKey = e.ctrlKey; this.target = e.target ? e.target : e.srcElement; if (!etype.startsWith('key')) { if ((typeof(e.offsetX) !== 'undefined') && (typeof(e.offsetY) !== 'undefined')) { this.offsetX = e.offsetX; this.offsetY = e.offsetY; } else if (this.target && (this.target.nodeType !== 3) && (typeof(e.clientX) === 'number')) { var loc = Sys.UI.DomElement.getLocation(this.target); var w = Sys.UI.DomElement._getWindow(this.target); this.offsetX = (w.pageXOffset || 0) + e.clientX - loc.x; this.offsetY = (w.pageYOffset || 0) + e.clientY - loc.y; } } this.screenX = e.screenX; this.screenY = e.screenY; this.shiftKey = e.shiftKey; } Note: the site does not require trusted privileges to function correctly.

    Read the article

  • Attaching functions to elements in a loop

    - by user435377
    I have the following HTML and JavaScript it works for the first set of elements when I have a '1' in the selector but when I replace the '1' with an 'i' it doesn't attach itself to any of the elements. Any ideas as to why this might not be working? (the script is meant to add the first 3 columns of each row and display it in the fourth) <html> <head> <script src="http://ajax.googleapis.com/ajax/libs/jquery/1.3/jquery.min.js" type="text/javascript"></script> <script> $(document).ready(function(){ for (i = 2; i <= 14; i++) { $("#Q19_LND_"+i).keyup(function(){ $("#autoSumRow_"+i).val(Number($("#Q19_LND_"+i).val()) + Number($("#Q19_CE_"+i).val()) + Number($("#Q19_SOLSD_"+i).val())); }); $("#Q19_CE_"+i).keyup(function(){ $("#autoSumRow_"+i).val(Number($("#Q19_LND_"+i).val()) + Number($("#Q19_CE_"+i).val()) + Number($("#Q19_SOLSD_"+i).val())); }); $("#Q19_SOLSD_"+i).keyup(function(){ $("#autoSumRow_"+i).val(Number($("#Q19_LND_"+i).val()) + Number($("#Q19_CE_"+i).val()) + Number($("#Q19_SOLSD_"+i).val())); }); } }); </script> </head> <body> <table> <tr> <td><font face="arial" size="-1">Lap Roux-N-Y</font>&nbsp;</td> <td align="center"><input tabindex="1" type="text" name="Q19_LND_1" size="3" value="" id="Q19_LND_1"></td> <td align="center"><input tabindex="2" type="text" name="Q19_CE_1" size="3" value="" id="Q19_CE_1"></td> <td align="center"><input tabindex="3" type="text" name="Q19_SOLSD_1" size="3" value="" id="Q19_SOLSD_1"></td> <td align="center"><input tabindex="4" disabled type="text" name="autoSumRow_1" size="3" value="" id="autoSumRow_1"></td> </tr> <tr> <td nowrap width="1" bgcolor="#006699" colspan="9"><img src="/images/wi/nothing.gif" width="1" height="1"></td> </tr> <tr> <td><font face="arial" size="-1">Lap Esophagectomy</font>&nbsp;</td> <td align="center"><input tabindex="5" type="text" name="Q19_LND_2" size="3" value="" id="Q19_LND_2"></td> <td align="center"><input tabindex="6" type="text" name="Q19_CE_2" size="3" value="" id="Q19_CE_2"></td> <td align="center"><input tabindex="7" type="text" name="Q19_SOLSD_2" size="3" value="" id="Q19_SOLSD_2"></td> <td align="center"><input tabindex="8" disabled type="text" name="autoSumRow_2" size="3" value="" id="autoSumRow_2"></td> </tr> <tr> </table> </body> </html>

    Read the article

  • Session memory – who’s this guy named Max and what’s he doing with my memory?

    - by extended_events
    SQL Server MVP Jonathan Kehayias (blog) emailed me a question last week when he noticed that the total memory used by the buffers for an event session was larger than the value he specified for the MAX_MEMORY option in the CREATE EVENT SESSION DDL. The answer here seems like an excellent subject for me to kick-off my new “401 – Internals” tag that identifies posts where I pull back the curtains a bit and let you peek into what’s going on inside the extended events engine. In a previous post (Option Trading: Getting the most out of the event session options) I explained that we use a set of buffers to store the event data before  we write the event data to asynchronous targets. The MAX_MEMORY along with the MEMORY_PARTITION_MODE defines how big each buffer will be. Theoretically, that means that I can predict the size of each buffer using the following formula: max memory / # of buffers = buffer size If it was that simple I wouldn’t be writing this post. I’ll take “boundary” for 64K Alex For a number of reasons that are beyond the scope of this blog, we create event buffers in 64K chunks. The result of this is that the buffer size indicated by the formula above is rounded up to the next 64K boundary and that is the size used to create the buffers. If you think visually, this means that the graph of your max_memory option compared to the actual buffer size that results will look like a set of stairs rather than a smooth line. You can see this behavior by looking at the output of dm_xe_sessions, specifically the fields related to the buffer sizes, over a range of different memory inputs: Note: This test was run on a 2 core machine using per_cpu partitioning which results in 5 buffers. (Seem my previous post referenced above for the math behind buffer count.) input_memory_kb total_regular_buffers regular_buffer_size total_buffer_size 637 5 130867 654335 638 5 130867 654335 639 5 130867 654335 640 5 196403 982015 641 5 196403 982015 642 5 196403 982015 This is just a segment of the results that shows one of the “jumps” between the buffer boundary at 639 KB and 640 KB. You can verify the size boundary by doing the math on the regular_buffer_size field, which is returned in bytes: 196403 – 130867 = 65536 bytes 65536 / 1024 = 64 KB The relationship between the input for max_memory and when the regular_buffer_size is going to jump from one 64K boundary to the next is going to change based on the number of buffers being created. The number of buffers is dependent on the partition mode you choose. If you choose any partition mode other than NONE, the number of buffers will depend on your hardware configuration. (Again, see the earlier post referenced above.) With the default partition mode of none, you always get three buffers, regardless of machine configuration, so I generated a “range table” for max_memory settings between 1 KB and 4096 KB as an example. start_memory_range_kb end_memory_range_kb total_regular_buffers regular_buffer_size total_buffer_size 1 191 NULL NULL NULL 192 383 3 130867 392601 384 575 3 196403 589209 576 767 3 261939 785817 768 959 3 327475 982425 960 1151 3 393011 1179033 1152 1343 3 458547 1375641 1344 1535 3 524083 1572249 1536 1727 3 589619 1768857 1728 1919 3 655155 1965465 1920 2111 3 720691 2162073 2112 2303 3 786227 2358681 2304 2495 3 851763 2555289 2496 2687 3 917299 2751897 2688 2879 3 982835 2948505 2880 3071 3 1048371 3145113 3072 3263 3 1113907 3341721 3264 3455 3 1179443 3538329 3456 3647 3 1244979 3734937 3648 3839 3 1310515 3931545 3840 4031 3 1376051 4128153 4032 4096 3 1441587 4324761 As you can see, there are 21 “steps” within this range and max_memory values below 192 KB fall below the 64K per buffer limit so they generate an error when you attempt to specify them. Max approximates True as memory approaches 64K The upshot of this is that the max_memory option does not imply a contract for the maximum memory that will be used for the session buffers (Those of you who read Take it to the Max (and beyond) know that max_memory is really only referring to the event session buffer memory.) but is more of an estimate of total buffer size to the nearest higher multiple of 64K times the number of buffers you have. The maximum delta between your initial max_memory setting and the true total buffer size occurs right after you break through a 64K boundary, for example if you set max_memory = 576 KB (see the green line in the table), your actual buffer size will be closer to 767 KB in a non-partitioned event session. You get “stepped up” for every 191 KB block of initial max_memory which isn’t likely to cause a problem for most machines. Things get more interesting when you consider a partitioned event session on a computer that has a large number of logical CPUs or NUMA nodes. Since each buffer gets “stepped up” when you break a boundary, the delta can get much larger because it’s multiplied by the number of buffers. For example, a machine with 64 logical CPUs will have 160 buffers using per_cpu partitioning or if you have 8 NUMA nodes configured on that machine you would have 24 buffers when using per_node. If you’ve just broken through a 64K boundary and get “stepped up” to the next buffer size you’ll end up with total buffer size approximately 10240 KB and 1536 KB respectively (64K * # of buffers) larger than max_memory value you might think you’re getting. Using per_cpu partitioning on large machine has the most impact because of the large number of buffers created. If the amount of memory being used by your system within these ranges is important to you then this is something worth paying attention to and considering when you configure your event sessions. The DMV dm_xe_sessions is the tool to use to identify the exact buffer size for your sessions. In addition to the regular buffers (read: event session buffers) you’ll also see the details for large buffers if you have configured MAX_EVENT_SIZE. The “buffer steps” for any given hardware configuration should be static within each partition mode so if you want to have a handy reference available when you configure your event sessions you can use the following code to generate a range table similar to the one above that is applicable for your specific machine and chosen partition mode. DECLARE @buf_size_output table (input_memory_kb bigint, total_regular_buffers bigint, regular_buffer_size bigint, total_buffer_size bigint) DECLARE @buf_size int, @part_mode varchar(8) SET @buf_size = 1 -- Set to the begining of your max_memory range (KB) SET @part_mode = 'per_cpu' -- Set to the partition mode for the table you want to generate WHILE @buf_size <= 4096 -- Set to the end of your max_memory range (KB) BEGIN     BEGIN TRY         IF EXISTS (SELECT * from sys.server_event_sessions WHERE name = 'buffer_size_test')             DROP EVENT SESSION buffer_size_test ON SERVER         DECLARE @session nvarchar(max)         SET @session = 'create event session buffer_size_test on server                         add event sql_statement_completed                         add target ring_buffer                         with (max_memory = ' + CAST(@buf_size as nvarchar(4)) + ' KB, memory_partition_mode = ' + @part_mode + ')'         EXEC sp_executesql @session         SET @session = 'alter event session buffer_size_test on server                         state = start'         EXEC sp_executesql @session         INSERT @buf_size_output (input_memory_kb, total_regular_buffers, regular_buffer_size, total_buffer_size)             SELECT @buf_size, total_regular_buffers, regular_buffer_size, total_buffer_size FROM sys.dm_xe_sessions WHERE name = 'buffer_size_test'     END TRY     BEGIN CATCH         INSERT @buf_size_output (input_memory_kb)             SELECT @buf_size     END CATCH     SET @buf_size = @buf_size + 1 END DROP EVENT SESSION buffer_size_test ON SERVER SELECT MIN(input_memory_kb) start_memory_range_kb, MAX(input_memory_kb) end_memory_range_kb, total_regular_buffers, regular_buffer_size, total_buffer_size from @buf_size_output group by total_regular_buffers, regular_buffer_size, total_buffer_size Thanks to Jonathan for an interesting question and a chance to explore some of the details of Extended Event internals. - Mike

    Read the article

  • General monitoring for SQL Server Analysis Services using Performance Monitor

    - by Testas
    A recent customer engagement required a setup of a monitoring solution for SSAS, due to the time restrictions placed upon this, native Windows Performance Monitor (Perfmon) and SQL Server Profiler Monitoring Tools was used as using a third party tool would have meant the customer providing an additional monitoring server that was not available.I wanted to outline the performance monitoring counters that was used to monitor the system on which SSAS was running. Due to the slow query performance that was occurring during certain scenarios, perfmon was used to establish if any pressure was being placed on the Disk, CPU or Memory subsystem when concurrent connections access the same query, and Profiler to pinpoint how the query was being managed within SSAS, profiler I will leave for another blogThis guide is not designed to provide a definitive list of what should be used when monitoring SSAS, different situations may require the addition or removal of counters as presented by the situation. However I hope that it serves as a good basis for starting your monitoring of SSAS. I would also like to acknowledge Chris Webb’s awesome chapters from “Expert Cube Development” that also helped shape my monitoring strategy:http://cwebbbi.spaces.live.com/blog/cns!7B84B0F2C239489A!6657.entrySimulating ConnectionsTo simulate the additional connections to the SSAS server whilst monitoring, I used ascmd to simulate multiple connections to the typical and worse performing queries that were identified by the customer. A similar sript can be downloaded from codeplex at http://www.codeplex.com/SQLSrvAnalysisSrvcs.     File name: ASCMD_StressTestingScripts.zip. Performance MonitorWithin performance monitor,  a counter log was created that contained the list of counters below. The important point to note when running the counter log is that the RUN AS property within the counter log properties should be changed to an account that has rights to the SSAS instance when monitoring MSAS counters. Failure to do so means that the counter log runs under the system account, no errors or warning are given while running the counter log, and it is not until you need to view the MSAS counters that they will not be displayed if run under the default account that has no right to SSAS. If your connection simulation takes hours, this could prove quite frustrating if not done beforehand JThe counters used……  Object Counter Instance Justification System Processor Queue legnth N/A Indicates how many threads are waiting for execution against the processor. If this counter is consistently higher than around 5 when processor utilization approaches 100%, then this is a good indication that there is more work (active threads) available (ready for execution) than the machine's processors are able to handle. System Context Switches/sec N/A Measures how frequently the processor has to switch from user- to kernel-mode to handle a request from a thread running in user mode. The heavier the workload running on your machine, the higher this counter will generally be, but over long term the value of this counter should remain fairly constant. If this counter suddenly starts increasing however, it may be an indicating of a malfunctioning device, especially if the Processor\Interrupts/sec\(_Total) counter on your machine shows a similar unexplained increase Process % Processor Time sqlservr Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process % Processor Time msmdsrv Definately should be used if Processor\% Processor Time\(_Total) is maxing at 100% to assess the effect of the SQL Server process on the processor Process Working Set sqlservr If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Process Working Set msmdsrv If the Memory\Available bytes counter is decreaing this counter can be run to indicate if the process is consuming larger and larger amounts of RAM. Process(instance)\Working Set measures the size of the working set for each process, which indicates the number of allocated pages the process can address without generating a page fault. Processor % Processor Time _Total and individual cores measures the total utilization of your processor by all running processes. If multi-proc then be mindful only an average is provided Processor % Privileged Time _Total To see how the OS is handling basic IO requests. If kernel mode utilization is high, your machine is likely underpowered as it's too busy handling basic OS housekeeping functions to be able to effectively run other applications. Processor % User Time _Total To see how the applications is interacting from a processor perspective, a high percentage utilisation determine that the server is dealing with too many apps and may require increasing thje hardware or scaling out Processor Interrupts/sec _Total  The average rate, in incidents per second, at which the processor received and serviced hardware interrupts. Shoulr be consistant over time but a sudden unexplained increase could indicate a device malfunction which can be confirmed using the System\Context Switches/sec counter Memory Pages/sec N/A Indicates the rate at which pages are read from or written to disk to resolve hard page faults. This counter is a primary indicator of the kinds of faults that cause system-wide delays, this is the primary counter to watch for indication of possible insufficient RAM to meet your server's needs. A good idea here is to configure a perfmon alert that triggers when the number of pages per second exceeds 50 per paging disk on your system. May also want to see the configuration of the page file on the Server Memory Available Mbytes N/A is the amount of physical memory, in bytes, available to processes running on the computer. if this counter is greater than 10% of the actual RAM in your machine then you probably have more than enough RAM. monitor it regularly to see if any downward trend develops, and set an alert to trigger if it drops below 2% of the installed RAM. Physical Disk Disk Transfers/sec for each physical disk If it goes above 10 disk I/Os per second then you've got poor response time for your disk. Physical Disk Idle Time _total If Disk Transfers/sec is above  25 disk I/Os per second use this counter. which measures the percent time that your hard disk is idle during the measurement interval, and if you see this counter fall below 20% then you've likely got read/write requests queuing up for your disk which is unable to service these requests in a timely fashion. Physical Disk Disk queue legnth For the OLAP and SQL physical disk A value that is consistently less than 2 means that the disk system is handling the IO requests against the physical disk Network Interface Bytes Total/sec For the NIC Should be monitored over a period of time to see if there is anb increase/decrease in network utilisation Network Interface Current Bandwidth For the NIC is an estimate of the current bandwidth of the network interface in bits per second (BPS). MSAS 2005: Memory Memory Limit High KB N/A Shows (as a percentage) the high memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Limit Low KB N/A Shows (as a percentage) the low memory limit configured for SSAS in C:\Program Files\Microsoft SQL Server\MSAS10.MSSQLSERVER\OLAP\Config\msmdsrv.ini MSAS 2005: Memory Memory Usage KB N/A Displays the memory usage of the server process. MSAS 2005: Memory File Store KB N/A Displays the amount of memory that is reserved for the Cache. Note if total memory limit in the msmdsrv.ini is set to 0, no memory is reserved for the cache MSAS 2005: Storage Engine Query Queries from Cache Direct / sec N/A Displays the rate of queries answered from the cache directly MSAS 2005: Storage Engine Query Queries from Cache Filtered / Sec N/A Displays the Rate of queries answered by filtering existing cache entry. MSAS 2005: Storage Engine Query Queries from File / Sec N/A Displays the Rate of queries answered from files. MSAS 2005: Storage Engine Query Average time /query N/A Displays the average time of a query MSAS 2005: Connection Current connections N/A Displays the number of connections against the SSAS instance MSAS 2005: Connection Requests / sec N/A Displays the rate of query requests per second MSAS 2005: Locks Current Lock Waits N/A Displays thhe number of connections waiting on a lock MSAS 2005: Threads Query Pool job queue Length N/A The number of queries in the job queue MSAS 2005:Proc Aggregations Temp file bytes written/sec N/A Shows the number of bytes of data processed in a temporary file MSAS 2005:Proc Aggregations Temp file rows written/sec N/A Shows the number of bytes of data processed in a temporary file 

    Read the article

  • RTS style fog of war woes

    - by Fricken Hamster
    So I'm trying to make a rts style line of sight fog of war style engine for my grid based game. Currently I am getting a set of vertices by raycasting in 360 degree. Then I use that list of vertices to do a graphics style polygon scanline fill to get a list of all points within the polygon. The I compare the new list of seen tiles and compare that with the old one and increment or decrement the world vision array as needed. The polygon scanline function is giving me trouble. I'm mostly following this http://www.cs.uic.edu/~jbell/CourseNotes/ComputerGraphics/PolygonFilling.html So far this is my code without cleaning anything up var edgeMinX:Vector.<int> = new Vector.<int>; var edgeMinY:Vector.<int> = new Vector.<int>; var edgeMaxY:Vector.<int> = new Vector.<int>; var edgeInvSlope:Vector.<Number> = new Vector.<Number>; var ilen:int = outvert.length; var miny:int = -1; var maxy:int = -1; for (i = 0; i < ilen; i++) { var curpoint:Point = outvert[i]; if (i == ilen -1) { var nextpoint:Point = outvert[0]; } else { nextpoint = outvert[i + 1]; } if (nextpoint.y == curpoint.y) { continue; } if (curpoint.y < nextpoint.y) { var curslope:Number = ((nextpoint.y - curpoint.y) / (nextpoint.x - curpoint.x)); edgeMinY.push(curpoint.y); edgeMinX.push(curpoint.x); edgeMaxY.push(nextpoint.y); edgeInvSlope.push(1 / curslope); if (curpoint.y < miny || miny == -1) { miny = curpoint.y; } if (nextpoint.y > maxy) { maxy = nextpoint.y; } } else { curslope = ((curpoint.y - nextpoint.y) / (curpoint.x - nextpoint.x)); edgeMinY.push(nextpoint.y); edgeMinX.push(nextpoint.x); edgeMaxY.push(curpoint.y); edgeInvSlope.push(1 / curslope); if (nextpoint.y < miny || miny == -1) { miny = curpoint.y; } if (curpoint.y > maxy) { maxy = nextpoint.y; } } } var activeMaxY:Vector.<int> = new Vector.<int>; var activeCurX:Vector.<Number> = new Vector.<Number>; var activeInvSlope:Vector.<Number> = new Vector.<Number>; for (var scanline:int = miny; scanline < maxy + 1; scanline++) { ilen = edgeMinY.length; for (i = 0; i < ilen; i++) { if (edgeMinY[i] == scanline) { activeMaxY.push(edgeMaxY[i]); activeCurX.push(edgeMinX[i]); activeInvSlope.push(edgeInvSlope[i]); //trace("added(" + edgeMinX[i]); edgeMaxY.splice(i, 1); edgeMinX.splice(i, 1); edgeMinY.splice(i, 1); edgeInvSlope.splice(i, 1); i--; ilen--; } } ilen = activeCurX.length; for (i = 0; i < ilen - 1; i++) { for (var j:int = i; j < ilen - 1; j++) { if (activeCurX[j] > activeCurX[j + 1]) { var tempint:int = activeMaxY[j]; activeMaxY[j] = activeMaxY[j + 1]; activeMaxY[j + 1] = tempint; var tempnum:Number = activeCurX[j]; activeCurX[j] = activeCurX[j + 1]; activeCurX[j + 1] = tempnum; tempnum = activeInvSlope[j]; activeInvSlope[j] = activeInvSlope[j + 1]; activeInvSlope[j + 1] = tempnum; } } } var prevx:int = -1; var jlen:int = activeCurX.length; for (j = 0; j < jlen; j++) { if (prevx == -1) { prevx = activeCurX[j]; } else { for (var k:int = prevx; k < activeCurX[j]; k++) { graphics.lineStyle(2, 0x124132); graphics.drawCircle(k * 20 + 10, scanline * 20 + 10, 5); if (k == prevx || k > activeCurX[j] - 1) { graphics.lineStyle(3, 0x004132); graphics.drawCircle(k * 20 + 10, scanline * 20 + 10, 2); } prevx = -1; //tileLightList.push(k, scanline); } } } ilen = activeCurX.length; for (i = 0; i < ilen; i++) { if (activeMaxY[i] == scanline + 1) { activeCurX.splice(i, 1); activeMaxY.splice(i, 1); activeInvSlope.splice(i, 1); i--; ilen--; } else { activeCurX[i] += activeInvSlope[i]; } } } It works in some cases but some of the x intersections are skipped, primarily when there are more than 2 x intersections in one scanline I think. Is there a way to fix this, or a better way to do what I described? Thanks

    Read the article

  • Threading across multiple files

    - by Zach M.
    My program is reading in files and using thread to compute the highest prime number, when I put a print statement into the getNum() function my numbers are printing out. However, it seems to just lag no matter how many threads I input. Each file has 1 million integers in it. Does anyone see something apparently wrong with my code? Basically the code is giving each thread 1000 integers to check before assigning a new thread. I am still a C noobie and am just learning the ropes of threading. My code is a mess right now because I have been switching things around constantly. #include <stdio.h> #include <stdlib.h> #include <time.h> #include <string.h> #include <pthread.h> #include <math.h> #include <semaphore.h> //Global variable declaration char *file1 = "primes1.txt"; char *file2 = "primes2.txt"; char *file3 = "primes3.txt"; char *file4 = "primes4.txt"; char *file5 = "primes5.txt"; char *file6 = "primes6.txt"; char *file7 = "primes7.txt"; char *file8 = "primes8.txt"; char *file9 = "primes9.txt"; char *file10 = "primes10.txt"; char **fn; //file name variable int numberOfThreads; int *highestPrime = NULL; int fileArrayNum = 0; int loop = 0; int currentFile = 0; sem_t semAccess; sem_t semAssign; int prime(int n)//check for prime number, return 1 for prime 0 for nonprime { int i; for(i = 2; i <= sqrt(n); i++) if(n % i == 0) return(0); return(1); } int getNum(FILE* file) { int number; char* tempS = malloc(20 *sizeof(char)); fgets(tempS, 20, file); tempS[strlen(tempS)-1] = '\0'; number = atoi(tempS); free(tempS);//free memory for later call return(number); } void* findPrimality(void *threadnum) //main thread function to find primes { int tNum = (int)threadnum; int checkNum; char *inUseFile = NULL; int x=1; FILE* file; while(currentFile < 10){ if(inUseFile == NULL){//inUseFIle being used to check if a file is still being read sem_wait(&semAccess);//critical section inUseFile = fn[currentFile]; sem_post(&semAssign); file = fopen(inUseFile, "r"); while(!feof(file)){ if(x % 1000 == 0 && tNum !=1){ //go for 1000 integers and then wait sem_wait(&semAssign); } checkNum = getNum(file); /* * * * * I think the issue is here * * * */ if(checkNum > highestPrime[tNum]){ if(prime(checkNum)){ highestPrime[tNum] = checkNum; } } x++; } fclose(file); inUseFile = NULL; } currentFile++; } } int main(int argc, char* argv[]) { if(argc != 2){ //checks for number of arguements being passed printf("To many ARGS\n"); return(-1); } else{//Sets thread cound to user input checking for correct number of threads numberOfThreads = atoi(argv[1]); if(numberOfThreads < 1 || numberOfThreads > 10){ printf("To many threads entered\n"); return(-1); } time_t preTime, postTime; //creating time variables int i; fn = malloc(10 * sizeof(char*)); //create file array and initialize fn[0] = file1; fn[1] = file2; fn[2] = file3; fn[3] = file4; fn[4] = file5; fn[5] = file6; fn[6] = file7; fn[7] = file8; fn[8] = file9; fn[9] = file10; sem_init(&semAccess, 0, 1); //initialize semaphores sem_init(&semAssign, 0, numberOfThreads); highestPrime = malloc(numberOfThreads * sizeof(int)); //create an array to store each threads highest number for(loop = 0; loop < numberOfThreads; loop++){//set initial values to 0 highestPrime[loop] = 0; } pthread_t calculationThread[numberOfThreads]; //thread to do the work preTime = time(NULL); //start the clock for(i = 0; i < numberOfThreads; i++){ pthread_create(&calculationThread[i], NULL, findPrimality, (void *)i); } for(i = 0; i < numberOfThreads; i++){ pthread_join(calculationThread[i], NULL); } for(i = 0; i < numberOfThreads; i++){ printf("this is a prime number: %d \n", highestPrime[i]); } postTime= time(NULL); printf("Wall time: %ld seconds\n", (long)(postTime - preTime)); } } Yes I am trying to find the highest number over all. So I have made some head way the last few hours, rescucturing the program as spudd said, currently I am getting a segmentation fault due to my use of structures, I am trying to save the largest individual primes in the struct while giving them the right indices. This is the revised code. So in short what the first thread is doing is creating all the threads and giving them access points to a very large integer array which they will go through and find prime numbers, I want to implement semaphores around the while loop so that while they are executing every 2000 lines or the end they update a global prime number. #include <stdio.h> #include <stdlib.h> #include <time.h> #include <string.h> #include <pthread.h> #include <math.h> #include <semaphore.h> //Global variable declaration char *file1 = "primes1.txt"; char *file2 = "primes2.txt"; char *file3 = "primes3.txt"; char *file4 = "primes4.txt"; char *file5 = "primes5.txt"; char *file6 = "primes6.txt"; char *file7 = "primes7.txt"; char *file8 = "primes8.txt"; char *file9 = "primes9.txt"; char *file10 = "primes10.txt"; int numberOfThreads; int entries[10000000]; int entryIndex = 0; int fileCount = 0; char** fileName; int largestPrimeNumber = 0; //Register functions int prime(int n); int getNum(FILE* file); void* findPrimality(void *threadNum); void* assign(void *num); typedef struct package{ int largestPrime; int startingIndex; int numberCount; }pack; //Beging main code block int main(int argc, char* argv[]) { if(argc != 2){ //checks for number of arguements being passed printf("To many threads!!\n"); return(-1); } else{ //Sets thread cound to user input checking for correct number of threads numberOfThreads = atoi(argv[1]); if(numberOfThreads < 1 || numberOfThreads > 10){ printf("To many threads entered\n"); return(-1); } int threadPointer[numberOfThreads]; //Pointer array to point to entries time_t preTime, postTime; //creating time variables int i; fileName = malloc(10 * sizeof(char*)); //create file array and initialize fileName[0] = file1; fileName[1] = file2; fileName[2] = file3; fileName[3] = file4; fileName[4] = file5; fileName[5] = file6; fileName[6] = file7; fileName[7] = file8; fileName[8] = file9; fileName[9] = file10; FILE* filereader; int currentNum; for(i = 0; i < 10; i++){ filereader = fopen(fileName[i], "r"); while(!feof(filereader)){ char* tempString = malloc(20 *sizeof(char)); fgets(tempString, 20, filereader); tempString[strlen(tempString)-1] = '\0'; entries[entryIndex] = atoi(tempString); entryIndex++; free(tempString); } } //sem_init(&semAccess, 0, 1); //initialize semaphores //sem_init(&semAssign, 0, numberOfThreads); time_t tPre, tPost; pthread_t coordinate; tPre = time(NULL); pthread_create(&coordinate, NULL, assign, (void**)numberOfThreads); pthread_join(coordinate, NULL); tPost = time(NULL); } } void* findPrime(void* pack_array) { pack* currentPack= pack_array; int lp = currentPack->largestPrime; int si = currentPack->startingIndex; int nc = currentPack->numberCount; int i; int j = 0; for(i = si; i < nc; i++){ while(j < 2000 || i == (nc-1)){ if(prime(entries[i])){ if(entries[i] > lp) lp = entries[i]; } j++; } } return (void*)currentPack; } void* assign(void* num) { int y = (int)num; int i; int count = 10000000/y; int finalCount = count + (10000000%y); int sIndex = 0; pack pack_array[(int)num]; pthread_t workers[numberOfThreads]; //thread to do the workers for(i = 0; i < y; i++){ if(i == (y-1)){ pack_array[i].largestPrime = 0; pack_array[i].startingIndex = sIndex; pack_array[i].numberCount = finalCount; } pack_array[i].largestPrime = 0; pack_array[i].startingIndex = sIndex; pack_array[i].numberCount = count; pthread_create(&workers[i], NULL, findPrime, (void *)&pack_array[i]); sIndex += count; } for(i = 0; i< y; i++) pthread_join(workers[i], NULL); } //Functions int prime(int n)//check for prime number, return 1 for prime 0 for nonprime { int i; for(i = 2; i <= sqrt(n); i++) if(n % i == 0) return(0); return(1); }

    Read the article

  • Use Advanced Font Ligatures in Office 2010

    - by Matthew Guay
    Fonts can help your documents stand out and be easier to read, and Office 2010 helps you take your fonts even further with support for OpenType ligatures, stylistic sets, and more.  Here’s a quick look at these new font features in Office 2010. Introduction Starting with Windows 7, Microsoft has made an effort to support more advanced font features across their products.  Windows 7 includes support for advanced OpenType font features and laid the groundwork for advanced font support in programs with the new DirectWrite subsystem.  It also includes the new font Gabriola, which includes an incredible number of beautiful stylistic sets and ligatures. Now, with the upcoming release of Office 2010, Microsoft is bringing advanced typographical features to the Office programs we love.  This includes support for OpenType ligatures, stylistic sets, number forms, contextual alternative characters, and more.  These new features are available in Word, Outlook, and Publisher 2010, and work the same on Windows XP, Vista and Windows 7. Please note that Windows does include several OpenType fonts that include these advanced features.  Calibri, Cambria, Constantia, and Corbel all include multiple number forms, while Consolas, Palatino Linotype, and Gabriola (Windows 7 only) include all the OpenType features.  And, of course, these new features will work great with any other OpenType fonts you have that contain advanced ligatures, stylistic sets, and number forms. Using advanced typography in Word To use the new font features, open a new document, select an OpenType font, and enter some text.  Here we have Word 2010 in Windows 7 with some random text in the Gabriola font.  Click the arrow on the bottom of the Font section of the ribbon to open the font properties. Alternately, select the text and click Font. Now, click on the Advanced tab to see the OpenType features. You can change the ligatures setting… Choose Proportional or Tabular number spacing… And even select Lining or Old-style number forms. Here’s a comparison of Lining and Old-style number forms in Word 2010 with the Calibri font. Finally, you can choose various Stylistic sets for your font.  The dialog always shows 20 styles, whether or not your font includes that many.  Most include only 1 or 2; Gabriola includes 6. Here’s lorem ipsum text, using the Gabriola font with Stylistic set 6. Impressive, huh?  The font ligatures change based on context, so they will automatically change as you are typing.  Watch the transition as we typed the word Microsoft in Word with Gabriola stylistic set 6. Here’s another example, showing the fi and tt ligatures in Calibri. These effects work great in Word 2010 in XP, too. And, since Outlook uses Word as it’s editing engine, you can use the same options in Outlook 2010.  Note that these font effects may not show up the same if the recipient’s email client doesn’t support advanced OpenType typography.  It will, of course, display perfectly if the recipient is using Outlook 2010. Using advanced typography in Publisher 2010 Publisher 2010 includes the same advanced font features.  This is especially nice for those using Publisher for professional layout and design.  Simply insert a text box, enter some text, select it, and click the arrow on the bottom of the font box as in Word to open the font properties. This font options dialog is actually more advanced than Word’s font options.  You can preview your font changes on sample text right in the properties box.  You can also choose to add or remove a swash from your characters.   Conclusion Advanced typographical effects are a welcome addition to Word and Publisher 2010, and they are very impressive when coupled with modern fonts such as Gabriola.  From designing elegant headers to using old-style numbers, these features are very useful and fun. Do you have a favorite OpenType font that includes advanced typographical features?  Let us know in the comments! More Reading Advances in typography in Windows 7 – Engineering 7 Blog New features in Microsoft Word 2010 Similar Articles Productive Geek Tips Change the Default Font in Excel 2007Ask the Readers: Do You Use a Laptop, Desktop, or Both?Keep Websites From Using Tiny Fonts in SafariAdd or Remove Apps from the Microsoft Office 2007 or 2010 SuiteFriday Fun: Desktop Tower Defense Pro TouchFreeze Alternative in AutoHotkey The Icy Undertow Desktop Windows Home Server – Backup to LAN The Clear & Clean Desktop Use This Bookmarklet to Easily Get Albums Use AutoHotkey to Assign a Hotkey to a Specific Window Latest Software Reviews Tinyhacker Random Tips Revo Uninstaller Pro Registry Mechanic 9 for Windows PC Tools Internet Security Suite 2010 PCmover Professional SpeedyFox Claims to Speed up your Firefox Beware Hover Kitties Test Drive Mobile Phones Online With TryPhone Ben & Jerry’s Free Cone Day, 3/23/10 New Stinger from McAfee Helps Remove ‘FakeAlert’ Threats Google Apps Marketplace: Tools & Services For Google Apps Users

    Read the article

  • Figuring out the IIS Version for a given OS in .NET Code

    - by Rick Strahl
    Here's an odd requirement: I need to figure out what version of IIS is available on a given machine in order to take specific configuration actions when installing an IIS based application. I build several configuration tools for application configuration and installation and depending on which version of IIS is available on IIS different configuration paths are taken. For example, when dealing with XP machine you can't set up an Application Pool for an application because XP (IIS 5.1) didn't support Application pools. Configuring 32 and 64 bit settings are easy in IIS 7 but this didn't work in prior versions and so on. Along the same lines I saw a question on the AspInsiders list today, regarding a similar issue where somebody needed to know the IIS version as part of an ASP.NET application prior to when the Request object is available. So it's useful to know which version of IIS you can possibly expect. This should be easy right? But it turns there's no real easy way to detect IIS on a machine. There's no registry key that gives you the full version number - you can detect installation but not which version is installed. The easiest way: Request.ServerVariables["SERVER_SOFTWARE"] The easiest way to determine IIS version number is if you are already running inside of ASP.NET and you are inside of an ASP.NET request. You can look at Request.ServerVariables["SERVER_SOFTWARE"] to get a string like Microsoft-IIS/7.5 returned to you. It's a cinch to parse this to retrieve the version number. This works in the limited scenario where you need to know the version number inside of a running ASP.NET application. Unfortunately this is not a likely use case, since most times when you need to know a specific version of IIS when you are configuring or installing your application. The messy way: Match Windows OS Versions to IIS Versions Since Version 5.x of IIS versions of IIS have always been tied very closely to the Operating System. Meaning the only way to get a specific version of IIS was through the OS - you couldn't install another version of IIS on the given OS. Microsoft has a page that describes the OS version to IIS version relationship here: http://support.microsoft.com/kb/224609 In .NET you can then sniff the OS version and based on that return the IIS version. The following is a small utility function that accomplishes the task of returning an IIS version number for a given OS: /// <summary> /// Returns the IIS version for the given Operating System. /// Note this routine doesn't check to see if IIS is installed /// it just returns the version of IIS that should run on the OS. /// /// Returns the value from Request.ServerVariables["Server_Software"] /// if available. Otherwise uses OS sniffing to determine OS version /// and returns IIS version instead. /// </summary> /// <returns>version number or -1 </returns> public static decimal GetIisVersion() { // if running inside of IIS parse the SERVER_SOFTWARE key // This would be most reliable if (HttpContext.Current != null && HttpContext.Current.Request != null) { string os = HttpContext.Current.Request.ServerVariables["SERVER_SOFTWARE"]; if (!string.IsNullOrEmpty(os)) { //Microsoft-IIS/7.5 int dash = os.LastIndexOf("/"); if (dash > 0) { decimal iisVer = 0M; if (Decimal.TryParse(os.Substring(dash + 1), out iisVer)) return iisVer; } } } decimal osVer = (decimal) Environment.OSVersion.Version.Major + ((decimal) Environment.OSVersion.Version.MajorRevision / 10); // Windows 7 and Win2008 R2 if (osVer == 6.1M) return 7.5M; // Windows Vista and Windows 2008 else if (osVer == 6.0M) return 7.0M; // Windows 2003 and XP 64 bit else if (osVer == 5.2M) return 6.0M; // Windows XP else if (osVer == 5.1M) return 5.1M; // Windows 2000 else if (osVer == 5.0M) return 5.0M; // error result return -1M; } } Talk about a brute force apporach, but it works. This code goes only back to IIS 5 - anything before that is not something you possibly would want to have running. :-) Note that this is updated through Windows 7/Windows Server 2008 R2. Later versions will need to be added as needed. Anybody know what the Windows Version number of Windows 8 is?© Rick Strahl, West Wind Technologies, 2005-2011Posted in ASP.NET  IIS   Tweet (function() { var po = document.createElement('script'); po.type = 'text/javascript'; po.async = true; po.src = 'https://apis.google.com/js/plusone.js'; var s = document.getElementsByTagName('script')[0]; s.parentNode.insertBefore(po, s); })();

    Read the article

  • JavaScript Intellisense Improvements with VS 2010

    - by ScottGu
    This is the twentieth in a series of blog posts I’m doing on the upcoming VS 2010 and .NET 4 release.  Today’s blog post covers some of the nice improvements coming with JavaScript intellisense with VS 2010 and the free Visual Web Developer 2010 Express.  You’ll find with VS 2010 that JavaScript Intellisense loads much faster for large script files and with large libraries, and that it now provides statement completion support for more advanced scenarios compared to previous versions of Visual Studio. [In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu] Improved JavaScript Intellisense Providing Intellisense for a dynamic language like JavaScript is more involved than doing so with a statically typed language like VB or C#.  Correctly inferring the shape and structure of variables, methods, etc is pretty much impossible without pseudo-executing the actual code itself – since JavaScript as a language is flexible enough to dynamically modify and morph these things at runtime.  VS 2010’s JavaScript code editor now has the smarts to perform this type of pseudo-code execution as you type – which is how its intellisense completion is kept accurate and complete.  Below is a simple walkthrough that shows off how rich and flexible it is with the final release. Scenario 1: Basic Type Inference When you declare a variable in JavaScript you do not have to declare its type.  Instead, the type of the variable is based on the value assigned to it.  Because VS 2010 pseudo-executes the code within the editor, it can dynamically infer the type of a variable, and provide the appropriate code intellisense based on the value assigned to a variable. For example, notice below how VS 2010 provides statement completion for a string (because we assigned a string to the “foo” variable): If we later assign a numeric value to “foo” the statement completion (after this assignment) automatically changes to provide intellisense for a number: Scenario 2: Intellisense When Manipulating Browser Objects It is pretty common with JavaScript to manipulate the DOM of a page, as well as work against browser objects available on the client.  Previous versions of Visual Studio would provide JavaScript statement completion against the standard browser objects – but didn’t provide much help with more advanced scenarios (like creating dynamic variables and methods).  VS 2010’s pseudo-execution of code within the editor now allows us to provide rich intellisense for a much broader set of scenarios. For example, below we are using the browser’s window object to create a global variable named “bar”.  Notice how we can now get intellisense (with correct type inference for a string) with VS 2010 when we later try and use it: When we assign the “bar” variable as a number (instead of as a string) the VS 2010 intellisense engine correctly infers its type and modifies statement completion appropriately to be that of a number instead: Scenario 3: Showing Off Because VS 2010 is psudo-executing code within the editor, it is able to handle a bunch of scenarios (both practical and wacky) that you throw at it – and is still able to provide accurate type inference and intellisense. For example, below we are using a for-loop and the browser’s window object to dynamically create and name multiple dynamic variables (bar1, bar2, bar3…bar9).  Notice how the editor’s intellisense engine identifies and provides statement completion for them: Because variables added via the browser’s window object are also global variables – they also now show up in the global variable intellisense drop-down as well: Better yet – type inference is still fully supported.  So if we assign a string to a dynamically named variable we will get type inference for a string.  If we assign a number we’ll get type inference for a number.  Just for fun (and to show off!) we could adjust our for-loop to assign a string for even numbered variables (bar2, bar4, bar6, etc) and assign a number for odd numbered variables (bar1, bar3, bar5, etc): Notice above how we get statement completion for a string for the “bar2” variable.  Notice below how for “bar1” we get statement completion for a number:   This isn’t just a cool pet trick While the above example is a bit contrived, the approach of dynamically creating variables, methods and event handlers on the fly is pretty common with many Javascript libraries.  Many of the more popular libraries use these techniques to keep the size of script library downloads as small as possible.  VS 2010’s support for parsing and pseudo-executing libraries that use these techniques ensures that you get better code Intellisense out of the box when programming against them. Summary Visual Studio 2010 (and the free Visual Web Developer 2010 Express) now provide much richer JavaScript intellisense support.  This support works with pretty much all popular JavaScript libraries.  It should help provide a much better development experience when coding client-side JavaScript and enabling AJAX scenarios within your ASP.NET applications. Hope this helps, Scott P.S. You can read my previous blog post on VS 2008’s JavaScript Intellisense to learn more about our previous JavaScript intellisense (and some of the scenarios it supported).  VS 2010 obviously supports all of the scenarios previously enabled with VS 2008.

    Read the article

  • PHP: Loop or no loop?

    - by Joseph Robidoux
    In this situation, is it better to use a loop or not? echo "0"; echo "1"; echo "2"; echo "3"; echo "4"; echo "5"; echo "6"; echo "7"; echo "8"; echo "9"; echo "10"; echo "11"; echo "12"; echo "13"; or $number = 0; while ($number != 13) { echo $number; $number = $number + 1; }

    Read the article

  • Python Random Question

    - by coson
    Good Day, I am using Python 2.6 and am trying to run a simple random number generator program (random.py): import random for i in range(5): # random float: 0.0 <= number < 1.0 print random.random(), # random float: 10 <= number < 20 print random.uniform(10, 20), # random integer: 100 <= number <= 1000 print random.randint(100, 1000), # random integer: even numbers in 100 <= number < 1000 print random.randrange(100, 1000, 2) I'm now receiving the following error: C:\Users\Developer\Documents\PythonDemo>python random.py Traceback (most recent call last): File "random.py", line 3, in <module> import random File "C:\Users\Developer\Documents\PythonDemo\random.py", line 8, in <module> print random.random(), TypeError: 'module' object is not callable C:\Users\Developer\Documents\PythonDemo> I've looked at the Python docs and this version of Python supports random. Is there something else I'm missing? TIA, coson

    Read the article

  • How to add a another value to a key in python

    - by Nanowatt
    First I'm sorry this might be a dumb question but I'm trying to self learn python and I can't find the answer to my question. I want to make a phonebook and I need to add an email to an already existing name. That name has already a phone number attached. I have this first code: phonebook = {} phonebook ['ana'] = '12345' phonebook ['maria']= '23456' , '[email protected]' def add_contact(): name = raw_input ("Please enter a name:") number = raw_input ("Please enter a number:") phonebook[name] = number Then I wanted to add an email to the name "ana" for example: ana: 12345, [email protected]. I created this code but instead of addend a new value (the email), it just changes the old one, removing the number: def add_email(): name = raw_input("Please enter a name:") email = raw_input("Please enter an email:") phonebook[name] = email I tried .append() too but it didn't work. Can you help me? And I'm sorry if the code is bad, I'm just trying to learn and I'm a bit noob yet :)

    Read the article

  • SPARC T4-4 Delivers World Record Performance on Oracle OLAP Perf Version 2 Benchmark

    - by Brian
    Oracle's SPARC T4-4 server delivered world record performance with subsecond response time on the Oracle OLAP Perf Version 2 benchmark using Oracle Database 11g Release 2 running on Oracle Solaris 11. The SPARC T4-4 server achieved throughput of 430,000 cube-queries/hour with an average response time of 0.85 seconds and the median response time of 0.43 seconds. This was achieved by using only 60% of the available CPU resources leaving plenty of headroom for future growth. The SPARC T4-4 server operated on an Oracle OLAP cube with a 4 billion row fact table of sales data containing 4 dimensions. This represents as many as 90 quintillion aggregate rows (90 followed by 18 zeros). Performance Landscape Oracle OLAP Perf Version 2 Benchmark 4 Billion Fact Table Rows System Queries/hour Users* Response Time (sec) Average Median SPARC T4-4 430,000 7,300 0.85 0.43 * Users - the supported number of users with a given think time of 60 seconds Configuration Summary and Results Hardware Configuration: SPARC T4-4 server with 4 x SPARC T4 processors, 3.0 GHz 1 TB memory Data Storage 1 x Sun Fire X4275 (using COMSTAR) 2 x Sun Storage F5100 Flash Array (each with 80 FMODs) Redo Storage 1 x Sun Fire X4275 (using COMSTAR with 8 HDD) Software Configuration: Oracle Solaris 11 11/11 Oracle Database 11g Release 2 (11.2.0.3) with Oracle OLAP option Benchmark Description The Oracle OLAP Perf Version 2 benchmark is a workload designed to demonstrate and stress the Oracle OLAP product's core features of fast query, fast update, and rich calculations on a multi-dimensional model to support enhanced Data Warehousing. The bulk of the benchmark entails running a number of concurrent users, each issuing typical multidimensional queries against an Oracle OLAP cube consisting of a number of years of sales data with fully pre-computed aggregations. The cube has four dimensions: time, product, customer, and channel. Each query user issues approximately 150 different queries. One query chain may ask for total sales in a particular region (e.g South America) for a particular time period (e.g. Q4 of 2010) followed by additional queries which drill down into sales for individual countries (e.g. Chile, Peru, etc.) with further queries drilling down into individual stores, etc. Another query chain may ask for yearly comparisons of total sales for some product category (e.g. major household appliances) and then issue further queries drilling down into particular products (e.g. refrigerators, stoves. etc.), particular regions, particular customers, etc. Results from version 2 of the benchmark are not comparable with version 1. The primary difference is the type of queries along with the query mix. Key Points and Best Practices Since typical BI users are often likely to issue similar queries, with different constants in the where clauses, setting the init.ora prameter "cursor_sharing" to "force" will provide for additional query throughput and a larger number of potential users. Except for this setting, together with making full use of available memory, out of the box performance for the OLAP Perf workload should provide results similar to what is reported here. For a given number of query users with zero think time, the main measured metrics are the average query response time, the median query response time, and the query throughput. A derived metric is the maximum number of users the system can support achieving the measured response time assuming some non-zero think time. The calculation of the maximum number of users follows from the well-known response-time law N = (rt + tt) * tp where rt is the average response time, tt is the think time and tp is the measured throughput. Setting tt to 60 seconds, rt to 0.85 seconds and tp to 119.44 queries/sec (430,000 queries/hour), the above formula shows that the T4-4 server will support 7,300 concurrent users with a think time of 60 seconds and an average response time of 0.85 seconds. For more information see chapter 3 from the book "Quantitative System Performance" cited below. -- See Also Quantitative System Performance Computer System Analysis Using Queueing Network Models Edward D. Lazowska, John Zahorjan, G. Scott Graham, Kenneth C. Sevcik external local Oracle Database 11g – Oracle OLAP oracle.com OTN SPARC T4-4 Server oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 11/2/2012.

    Read the article

  • ms-access: DB engine cannot find input table or query

    - by every_answer_gets_a_point
    here's the query: SELECT * FROM (SELECT [Occurrence Number], [Occurrence Date], [1 0 Preanalytical (Before Testing)], [Cup Type], NULL as [2 0 Analytical (Testing Phase)], [2 0 Area], NULL as [3 0 Postanalytical ( After Testing)],NULL as [4 0 Other], [Practice Code], [Specimen ID #] FROM [Lab Occurrence Form] WHERE NOT ([1 0 Preanalytical (Before Testing)] IS NULL) UNION SELECT [Occurrence Number], [Occurrence Date],NULL, [Cup Type],[2 0 Analytical (Testing Phase)], [2 0 Area], NULL,NULL, [Practice Code], [Specimen ID #] FROM [Lab Occurrence Form] WHERE NOT ([2 0 Analytical (Testing Phase)] IS NULL) UNION SELECT [Occurrence Number], [Occurrence Date],NULL, [Cup Type],NULL, [2 0 Area], [3 0 Postanalytical ( After Testing)],NULL, [Practice Code], [Specimen ID #] FROM [Lab Occurrence Form] WHERE NOT ([3 0 Postanalytical ( After Testing)] IS NULL) UNION SELECT [Occurrence Number], [Occurrence Date],NULL, [Cup Type],NULL, [2 0 Area], NULL, [4 0 Other] FROM [Lab Occurrence Form], [Practice Code], [Specimen ID #] WHERE NOT ([4 0 Other] IS NULL) ) AS mySubQuery ORDER BY mySubQuery.[Occurrence Number]; for some reason it doesnt like [Practice Code]. it's definitely a column in the table so i dont understand the problem. the error is the microsoft office access database engine cannot find the input table or query 'Practice Code'........

    Read the article

< Previous Page | 149 150 151 152 153 154 155 156 157 158 159 160  | Next Page >