Search Results

Search found 16560 results on 663 pages for 'high tech resources'.

Page 153/663 | < Previous Page | 149 150 151 152 153 154 155 156 157 158 159 160  | Next Page >

  • SMB Guide: How to Buy a Netbook

    There's no lack of choice when it comes to small business netbooks, so it helps to have a tech Sherpa to guide your way. Check out this guide, and you'll get the most netbook for your buck.

    Read the article

  • 'Linux is Not User Friendly' - No Way!

    <b>Tech Drive-In:</b> "In our previous post, we discussed how mainstream media is adopting linux('Stop using Windows, Use Ubuntu instead'). And a lot of people started complaining how not-user-friendly Linux really is."

    Read the article

  • How to read oom-killer syslog messages?

    - by Grant
    I have a Ubuntu 12.04 server which sometimes dies completely - no SSH, no ping, nothing until it is physically rebooted. After the reboot, I see in syslog that the oom-killer killed, well, pretty much everything. There's a lot of detailed memory usage information in them. How do I read these logs to see what caused the OOM issue? The server has far more memory than it needs, so it shouldn't be running out of memory. Oct 25 07:28:04 nldedip4k031 kernel: [87946.529511] oom_kill_process: 9 callbacks suppressed Oct 25 07:28:04 nldedip4k031 kernel: [87946.529514] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529516] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529518] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:04 nldedip4k031 kernel: [87946.529519] Call Trace: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529525] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529528] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529530] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529532] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529535] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529537] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529541] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529543] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529546] [] vfs_read+0x8c/0x160 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529548] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529550] [] sys_read+0x3d/0x70 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529554] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529555] Mem-Info: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529556] DMA per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529557] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529558] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529560] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529561] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529562] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529563] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529564] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529565] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529566] Normal per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529567] CPU 0: hi: 186, btch: 31 usd: 179 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529568] CPU 1: hi: 186, btch: 31 usd: 182 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529569] CPU 2: hi: 186, btch: 31 usd: 132 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529570] CPU 3: hi: 186, btch: 31 usd: 175 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529571] CPU 4: hi: 186, btch: 31 usd: 91 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529572] CPU 5: hi: 186, btch: 31 usd: 173 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529573] CPU 6: hi: 186, btch: 31 usd: 159 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529574] CPU 7: hi: 186, btch: 31 usd: 164 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529575] HighMem per-cpu: Oct 25 07:28:04 nldedip4k031 kernel: [87946.529576] CPU 0: hi: 186, btch: 31 usd: 165 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529577] CPU 1: hi: 186, btch: 31 usd: 183 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529578] CPU 2: hi: 186, btch: 31 usd: 185 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529579] CPU 3: hi: 186, btch: 31 usd: 138 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529580] CPU 4: hi: 186, btch: 31 usd: 155 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529581] CPU 5: hi: 186, btch: 31 usd: 104 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529582] CPU 6: hi: 186, btch: 31 usd: 133 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529583] CPU 7: hi: 186, btch: 31 usd: 170 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_anon:5523 inactive_anon:354 isolated_anon:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529586] active_file:2815 inactive_file:6849119 isolated_file:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] unevictable:0 dirty:449 writeback:10 unstable:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529587] free:1304125 slab_reclaimable:104672 slab_unreclaimable:3419 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529588] mapped:2661 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529591] DMA free:4252kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:4kB inactive_file:0kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11564kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529594] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529599] Normal free:44052kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:616kB inactive_file:568kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:0kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:407124kB slab_unreclaimable:13672kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:2083 all_unreclaimable? yes Oct 25 07:28:04 nldedip4k031 kernel: [87946.529602] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529606] HighMem free:5168196kB min:512kB low:402312kB high:804112kB active_anon:22092kB inactive_anon:1416kB active_file:10640kB inactive_file:27395920kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:1796kB writeback:40kB mapped:10640kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:04 nldedip4k031 kernel: [87946.529609] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529611] DMA: 6*4kB 6*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4232kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529616] Normal: 297*4kB 180*8kB 119*16kB 73*32kB 67*64kB 47*128kB 35*256kB 13*512kB 5*1024kB 1*2048kB 1*4096kB = 44052kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529622] HighMem: 1*4kB 6*8kB 27*16kB 11*32kB 2*64kB 1*128kB 0*256kB 0*512kB 4*1024kB 1*2048kB 1260*4096kB = 5168196kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529627] 6852076 total pagecache pages Oct 25 07:28:04 nldedip4k031 kernel: [87946.529628] 0 pages in swap cache Oct 25 07:28:04 nldedip4k031 kernel: [87946.529629] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:04 nldedip4k031 kernel: [87946.529630] Free swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.529631] Total swap = 3998716kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.571914] 8437743 pages RAM Oct 25 07:28:04 nldedip4k031 kernel: [87946.571916] 8209409 pages HighMem Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 159556 pages reserved Oct 25 07:28:04 nldedip4k031 kernel: [87946.571917] 6862034 pages shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571918] 123540 pages non-shared Oct 25 07:28:04 nldedip4k031 kernel: [87946.571919] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:04 nldedip4k031 kernel: [87946.571927] [ 421] 0 421 709 152 3 0 0 upstart-udev-br Oct 25 07:28:04 nldedip4k031 kernel: [87946.571929] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571931] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571932] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571934] [ 764] 0 764 712 103 1 0 0 upstart-socket- Oct 25 07:28:04 nldedip4k031 kernel: [87946.571936] [ 772] 103 772 815 164 5 0 0 dbus-daemon Oct 25 07:28:04 nldedip4k031 kernel: [87946.571938] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571940] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571942] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571943] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571945] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571947] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571949] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571950] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571952] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:04 nldedip4k031 kernel: [87946.571954] [ 948] 0 948 902 159 3 0 0 irqbalance Oct 25 07:28:04 nldedip4k031 kernel: [87946.571956] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:04 nldedip4k031 kernel: [87946.571957] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571959] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:04 nldedip4k031 kernel: [87946.571961] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571963] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:04 nldedip4k031 kernel: [87946.571965] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571967] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571969] [ 1090] 33 1090 6175 1451 3 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571971] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571972] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571974] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571976] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:04 nldedip4k031 kernel: [87946.571978] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:04 nldedip4k031 kernel: [87946.571980] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571982] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:04 nldedip4k031 kernel: [87946.571984] [ 2573] 0 2573 3394 1689 0 0 0 sshd Oct 25 07:28:04 nldedip4k031 kernel: [87946.571986] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571988] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:04 nldedip4k031 kernel: [87946.571990] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:04 nldedip4k031 kernel: [87946.571992] Out of memory: Kill process 421 (upstart-udev-br) score 1 or sacrifice child Oct 25 07:28:04 nldedip4k031 kernel: [87946.572407] Killed process 421 (upstart-udev-br) total-vm:2836kB, anon-rss:156kB, file-rss:452kB Oct 25 07:28:04 nldedip4k031 kernel: [87946.573107] init: upstart-udev-bridge main process (421) killed by KILL signal Oct 25 07:28:04 nldedip4k031 kernel: [87946.573126] init: upstart-udev-bridge main process ended, respawning Oct 25 07:28:34 nldedip4k031 kernel: [87976.461570] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461573] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461576] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:34 nldedip4k031 kernel: [87976.461578] Call Trace: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461585] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461588] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461591] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461595] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461599] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461602] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461606] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461609] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461613] [] vfs_read+0x8c/0x160 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461616] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461619] [] sys_read+0x3d/0x70 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461624] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461626] Mem-Info: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461628] DMA per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461629] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461631] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461633] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461634] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461636] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461638] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461639] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461641] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461642] Normal per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461644] CPU 0: hi: 186, btch: 31 usd: 61 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461646] CPU 1: hi: 186, btch: 31 usd: 49 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461647] CPU 2: hi: 186, btch: 31 usd: 8 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461649] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461651] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461652] CPU 5: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461654] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461656] CPU 7: hi: 186, btch: 31 usd: 30 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461657] HighMem per-cpu: Oct 25 07:28:34 nldedip4k031 kernel: [87976.461658] CPU 0: hi: 186, btch: 31 usd: 4 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461660] CPU 1: hi: 186, btch: 31 usd: 204 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461662] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461663] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461665] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461667] CPU 5: hi: 186, btch: 31 usd: 31 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461668] CPU 6: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461670] CPU 7: hi: 186, btch: 31 usd: 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_anon:5441 inactive_anon:412 isolated_anon:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461674] active_file:2668 inactive_file:6922842 isolated_file:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461675] unevictable:0 dirty:836 writeback:0 unstable:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461676] free:1231664 slab_reclaimable:105781 slab_unreclaimable:3399 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461677] mapped:2649 shmem:138 pagetables:313 bounce:0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461682] DMA free:4248kB min:780kB low:972kB high:1168kB active_anon:0kB inactive_anon:0kB active_file:0kB inactive_file:4kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:15756kB mlocked:0kB dirty:0kB writeback:0kB mapped:0kB shmem:0kB slab_reclaimable:11560kB slab_unreclaimable:4kB kernel_stack:0kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:5687 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461686] lowmem_reserve[]: 0 869 32460 32460 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461693] Normal free:44184kB min:44216kB low:55268kB high:66324kB active_anon:0kB inactive_anon:0kB active_file:20kB inactive_file:1096kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:890008kB mlocked:0kB dirty:4kB writeback:0kB mapped:4kB shmem:0kB slab_reclaimable:411564kB slab_unreclaimable:13592kB kernel_stack:992kB pagetables:0kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:1816 all_unreclaimable? yes Oct 25 07:28:34 nldedip4k031 kernel: [87976.461697] lowmem_reserve[]: 0 0 252733 252733 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461703] HighMem free:4878224kB min:512kB low:402312kB high:804112kB active_anon:21764kB inactive_anon:1648kB active_file:10652kB inactive_file:27690268kB unevictable:0kB isolated(anon):0kB isolated(file):0kB present:32349872kB mlocked:0kB dirty:3340kB writeback:0kB mapped:10592kB shmem:552kB slab_reclaimable:0kB slab_unreclaimable:0kB kernel_stack:0kB pagetables:1252kB unstable:0kB bounce:0kB writeback_tmp:0kB pages_scanned:0 all_unreclaimable? no Oct 25 07:28:34 nldedip4k031 kernel: [87976.461708] lowmem_reserve[]: 0 0 0 0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461711] DMA: 8*4kB 7*8kB 6*16kB 5*32kB 5*64kB 4*128kB 2*256kB 1*512kB 0*1024kB 1*2048kB 0*4096kB = 4248kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461719] Normal: 272*4kB 178*8kB 76*16kB 52*32kB 42*64kB 36*128kB 23*256kB 20*512kB 7*1024kB 2*2048kB 1*4096kB = 44176kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461727] HighMem: 1*4kB 45*8kB 31*16kB 24*32kB 5*64kB 3*128kB 1*256kB 2*512kB 4*1024kB 2*2048kB 1188*4096kB = 4877852kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461736] 6925679 total pagecache pages Oct 25 07:28:34 nldedip4k031 kernel: [87976.461737] 0 pages in swap cache Oct 25 07:28:34 nldedip4k031 kernel: [87976.461739] Swap cache stats: add 0, delete 0, find 0/0 Oct 25 07:28:34 nldedip4k031 kernel: [87976.461740] Free swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.461741] Total swap = 3998716kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.524951] 8437743 pages RAM Oct 25 07:28:34 nldedip4k031 kernel: [87976.524953] 8209409 pages HighMem Oct 25 07:28:34 nldedip4k031 kernel: [87976.524954] 159556 pages reserved Oct 25 07:28:34 nldedip4k031 kernel: [87976.524955] 6936141 pages shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524956] 124602 pages non-shared Oct 25 07:28:34 nldedip4k031 kernel: [87976.524957] [ pid ] uid tgid total_vm rss cpu oom_adj oom_score_adj name Oct 25 07:28:34 nldedip4k031 kernel: [87976.524966] [ 429] 0 429 773 326 5 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524968] [ 567] 0 567 772 224 4 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524971] [ 568] 0 568 772 231 7 -17 -1000 udevd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524973] [ 764] 0 764 712 103 3 0 0 upstart-socket- Oct 25 07:28:34 nldedip4k031 kernel: [87976.524976] [ 772] 103 772 815 164 2 0 0 dbus-daemon Oct 25 07:28:34 nldedip4k031 kernel: [87976.524979] [ 785] 0 785 1671 600 1 -17 -1000 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524981] [ 809] 101 809 7766 380 1 0 0 rsyslogd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524983] [ 869] 0 869 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524986] [ 873] 0 873 1158 214 6 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524988] [ 911] 0 911 1158 215 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524990] [ 912] 0 912 1158 214 2 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524992] [ 914] 0 914 1158 213 1 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.524995] [ 916] 0 916 618 86 1 0 0 atd Oct 25 07:28:34 nldedip4k031 kernel: [87976.524997] [ 917] 0 917 655 226 3 0 0 cron Oct 25 07:28:34 nldedip4k031 kernel: [87976.524999] [ 948] 0 948 902 159 5 0 0 irqbalance Oct 25 07:28:34 nldedip4k031 kernel: [87976.525002] [ 993] 0 993 1145 363 3 0 0 master Oct 25 07:28:34 nldedip4k031 kernel: [87976.525004] [ 1002] 104 1002 1162 333 1 0 0 qmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525007] [ 1016] 0 1016 730 149 2 0 0 mdadm Oct 25 07:28:34 nldedip4k031 kernel: [87976.525009] [ 1057] 0 1057 6066 2160 3 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525012] [ 1086] 0 1086 1158 213 3 0 0 getty Oct 25 07:28:34 nldedip4k031 kernel: [87976.525014] [ 1088] 33 1088 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525017] [ 1089] 33 1089 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525019] [ 1090] 33 1090 6175 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525021] [ 1091] 33 1091 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525024] [ 1092] 33 1092 6191 1451 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525026] [ 1109] 33 1109 6191 1517 0 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525029] [ 1151] 33 1151 6191 1451 1 0 0 /usr/sbin/apach Oct 25 07:28:34 nldedip4k031 kernel: [87976.525031] [ 1201] 104 1201 1803 652 1 0 0 tlsmgr Oct 25 07:28:34 nldedip4k031 kernel: [87976.525033] [ 2475] 0 2475 2435 812 0 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525036] [ 2494] 0 2494 1745 839 1 0 0 bash Oct 25 07:28:34 nldedip4k031 kernel: [87976.525038] [ 2573] 0 2573 3394 1689 3 0 0 sshd Oct 25 07:28:34 nldedip4k031 kernel: [87976.525040] [ 2589] 0 2589 5014 457 3 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525043] [ 2590] 0 2590 7970 522 1 0 0 rsync Oct 25 07:28:34 nldedip4k031 kernel: [87976.525045] [ 2652] 104 2652 1150 326 5 0 0 pickup Oct 25 07:28:34 nldedip4k031 kernel: [87976.525048] [ 2847] 0 2847 709 89 0 0 0 upstart-udev-br Oct 25 07:28:34 nldedip4k031 kernel: [87976.525050] Out of memory: Kill process 764 (upstart-socket-) score 1 or sacrifice child Oct 25 07:28:34 nldedip4k031 kernel: [87976.525484] Killed process 764 (upstart-socket-) total-vm:2848kB, anon-rss:204kB, file-rss:208kB Oct 25 07:28:34 nldedip4k031 kernel: [87976.526161] init: upstart-socket-bridge main process (764) killed by KILL signal Oct 25 07:28:34 nldedip4k031 kernel: [87976.526180] init: upstart-socket-bridge main process ended, respawning Oct 25 07:28:44 nldedip4k031 kernel: [87986.439671] irqbalance invoked oom-killer: gfp_mask=0x80d0, order=0, oom_adj=0, oom_score_adj=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439674] irqbalance cpuset=/ mems_allowed=0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439676] Pid: 948, comm: irqbalance Not tainted 3.2.0-55-generic-pae #85-Ubuntu Oct 25 07:28:44 nldedip4k031 kernel: [87986.439678] Call Trace: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439684] [] dump_header.isra.6+0x85/0xc0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439686] [] oom_kill_process+0x5c/0x80 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439688] [] out_of_memory+0xc5/0x1c0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439691] [] __alloc_pages_nodemask+0x72c/0x740 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439694] [] __get_free_pages+0x1c/0x30 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439696] [] get_zeroed_page+0x12/0x20 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439699] [] fill_read_buffer.isra.8+0xaa/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439702] [] sysfs_read_file+0x7d/0x90 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439704] [] vfs_read+0x8c/0x160 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439707] [] ? fill_read_buffer.isra.8+0xd0/0xd0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439709] [] sys_read+0x3d/0x70 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439712] [] sysenter_do_call+0x12/0x28 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] Mem-Info: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439714] DMA per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439716] CPU 0: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439717] CPU 1: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439718] CPU 2: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439719] CPU 3: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439720] CPU 4: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439721] CPU 5: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439722] CPU 6: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439723] CPU 7: hi: 0, btch: 1 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439724] Normal per-cpu: Oct 25 07:28:44 nldedip4k031 kernel: [87986.439725] CPU 0: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439726] CPU 1: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439727] CPU 2: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439728] CPU 3: hi: 186, btch: 31 usd: 0 Oct 25 07:28:44 nldedip4k031 kernel: [87986.439729] CPU 4: hi: 186, btch: 31 usd: 0 Oct 25 07:33:48 nldedip4k031 kernel: imklog 5.8.6, log source = /proc/kmsg started. Oct 25 07:33:48 nldedip4k031 rsyslogd: [origin software="rsyslogd" swVersion="5.8.6" x-pid="2880" x-info="http://www.rsyslog.com"] start Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's groupid changed to 103 Oct 25 07:33:48 nldedip4k031 rsyslogd: rsyslogd's userid changed to 101 Oct 25 07:33:48 nldedip4k031 rsyslogd-2039: Could not open output pipe '/dev/xconsole' [try http://www.rsyslog.com/e/2039 ]

    Read the article

  • trying to use mod_proxy with httpd and tomcat

    - by techsjs2012
    I been trying to use mod_proxy with httpd and tomcat... I have on VirtualBox running Scientific Linux which has httpd and tomcat 6 on it.. I made two nodes of tomcat6. I followed this guide like 10 times and still cant get the 2nd node of tomcat working.. http://www.richardnichols.net/2010/08/5-minute-guide-clustering-apache-tomcat/ Here is the lines from my http.conf file <Proxy balancer://testcluster stickysession=JSESSIONID> BalancerMember ajp://127.0.0.1:8009 min=10 max=100 route=node1 loadfactor=1 BalancerMember ajp://127.0.0.1:8109 min=10 max=100 route=node2 loadfactor=1 </Proxy> ProxyPass /examples balancer://testcluster/examples <Location /balancer-manager> SetHandler balancer-manager AuthType Basic AuthName "Balancer Manager" AuthUserFile "/etc/httpd/conf/.htpasswd" Require valid-user </Location> Now here is my server.xml from node1 <?xml version='1.0' encoding='utf-8'?> <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <!-- Note: A "Server" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/server.html --> <Server port="8005" shutdown="SHUTDOWN"> <!--APR library loader. Documentation at /docs/apr.html --> <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" /> <!--Initialize Jasper prior to webapps are loaded. Documentation at /docs/jasper-howto.html --> <Listener className="org.apache.catalina.core.JasperListener" /> <!-- Prevent memory leaks due to use of particular java/javax APIs--> <Listener className="org.apache.catalina.core.JreMemoryLeakPreventionListener" /> <!-- JMX Support for the Tomcat server. Documentation at /docs/non-existent.html --> <Listener className="org.apache.catalina.mbeans.ServerLifecycleListener" /> <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" /> <!-- Global JNDI resources Documentation at /docs/jndi-resources-howto.html --> <GlobalNamingResources> <!-- Editable user database that can also be used by UserDatabaseRealm to authenticate users --> <Resource name="UserDatabase" auth="Container" type="org.apache.catalina.UserDatabase" description="User database that can be updated and saved" factory="org.apache.catalina.users.MemoryUserDatabaseFactory" pathname="conf/tomcat-users.xml" /> </GlobalNamingResources> <!-- A "Service" is a collection of one or more "Connectors" that share a single "Container" Note: A "Service" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/service.html --> <Service name="Catalina"> <!--The connectors can use a shared executor, you can define one or more named thread pools--> <!-- <Executor name="tomcatThreadPool" namePrefix="catalina-exec-" maxThreads="150" minSpareThreads="4"/> --> <!-- A "Connector" represents an endpoint by which requests are received and responses are returned. Documentation at : Java HTTP Connector: /docs/config/http.html (blocking & non-blocking) Java AJP Connector: /docs/config/ajp.html APR (HTTP/AJP) Connector: /docs/apr.html Define a non-SSL HTTP/1.1 Connector on port 8080 <Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" /> --> <!-- A "Connector" using the shared thread pool--> <!-- <Connector executor="tomcatThreadPool" port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" /> --> <!-- Define a SSL HTTP/1.1 Connector on port 8443 This connector uses the JSSE configuration, when using APR, the connector should be using the OpenSSL style configuration described in the APR documentation --> <!-- <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" /> --> <!-- Define an AJP 1.3 Connector on port 8009 --> <Connector port="8009" protocol="AJP/1.3" redirectPort="8443" /> <!-- An Engine represents the entry point (within Catalina) that processes every request. The Engine implementation for Tomcat stand alone analyzes the HTTP headers included with the request, and passes them on to the appropriate Host (virtual host). Documentation at /docs/config/engine.html --> <!-- You should set jvmRoute to support load-balancing via AJP ie : <Engine name="Catalina" defaultHost="localhost" jvmRoute="jvm1"> --> <Engine name="Catalina" defaultHost="localhost" jvmRoute="node1"> <!--For clustering, please take a look at documentation at: /docs/cluster-howto.html (simple how to) /docs/config/cluster.html (reference documentation) --> <!-- <Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"/> --> <!-- The request dumper valve dumps useful debugging information about the request and response data received and sent by Tomcat. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.RequestDumperValve"/> --> <!-- This Realm uses the UserDatabase configured in the global JNDI resources under the key "UserDatabase". Any edits that are performed against this UserDatabase are immediately available for use by the Realm. --> <Realm className="org.apache.catalina.realm.UserDatabaseRealm" resourceName="UserDatabase"/> <!-- Define the default virtual host Note: XML Schema validation will not work with Xerces 2.2. --> <Host name="localhost" appBase="webapps" unpackWARs="true" autoDeploy="true" xmlValidation="false" xmlNamespaceAware="false"> <!-- SingleSignOn valve, share authentication between web applications Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.authenticator.SingleSignOn" /> --> <!-- Access log processes all example. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs" prefix="localhost_access_log." suffix=".txt" pattern="common" resolveHosts="false"/> --> </Host> </Engine> </Service> </Server> now here is the server.xml file from node2 <?xml version='1.0' encoding='utf-8'?> <!-- Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to You under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. --> <!-- Note: A "Server" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/server.html --> <Server port="8105" shutdown="SHUTDOWN"> <!--APR library loader. Documentation at /docs/apr.html --> <Listener className="org.apache.catalina.core.AprLifecycleListener" SSLEngine="on" /> <!--Initialize Jasper prior to webapps are loaded. Documentation at /docs/jasper-howto.html --> <Listener className="org.apache.catalina.core.JasperListener" /> <!-- Prevent memory leaks due to use of particular java/javax APIs--> <Listener className="org.apache.catalina.core.JreMemoryLeakPreventionListener" /> <!-- JMX Support for the Tomcat server. Documentation at /docs/non-existent.html --> <Listener className="org.apache.catalina.mbeans.ServerLifecycleListener" /> <Listener className="org.apache.catalina.mbeans.GlobalResourcesLifecycleListener" /> <!-- Global JNDI resources Documentation at /docs/jndi-resources-howto.html --> <GlobalNamingResources> <!-- Editable user database that can also be used by UserDatabaseRealm to authenticate users --> <Resource name="UserDatabase" auth="Container" type="org.apache.catalina.UserDatabase" description="User database that can be updated and saved" factory="org.apache.catalina.users.MemoryUserDatabaseFactory" pathname="conf/tomcat-users.xml" /> </GlobalNamingResources> <!-- A "Service" is a collection of one or more "Connectors" that share a single "Container" Note: A "Service" is not itself a "Container", so you may not define subcomponents such as "Valves" at this level. Documentation at /docs/config/service.html --> <Service name="Catalina"> <!--The connectors can use a shared executor, you can define one or more named thread pools--> <!-- <Executor name="tomcatThreadPool" namePrefix="catalina-exec-" maxThreads="150" minSpareThreads="4"/> --> <!-- A "Connector" represents an endpoint by which requests are received and responses are returned. Documentation at : Java HTTP Connector: /docs/config/http.html (blocking & non-blocking) Java AJP Connector: /docs/config/ajp.html APR (HTTP/AJP) Connector: /docs/apr.html Define a non-SSL HTTP/1.1 Connector on port 8080 <Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" /> --> <!-- A "Connector" using the shared thread pool--> <!-- <Connector executor="tomcatThreadPool" port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" /> --> <!-- Define a SSL HTTP/1.1 Connector on port 8443 This connector uses the JSSE configuration, when using APR, the connector should be using the OpenSSL style configuration described in the APR documentation --> <!-- <Connector port="8443" protocol="HTTP/1.1" SSLEnabled="true" maxThreads="150" scheme="https" secure="true" clientAuth="false" sslProtocol="TLS" /> --> <!-- Define an AJP 1.3 Connector on port 8009 --> <Connector port="8109" protocol="AJP/1.3" redirectPort="8443" /> <!-- An Engine represents the entry point (within Catalina) that processes every request. The Engine implementation for Tomcat stand alone analyzes the HTTP headers included with the request, and passes them on to the appropriate Host (virtual host). Documentation at /docs/config/engine.html --> <!-- You should set jvmRoute to support load-balancing via AJP ie : <Engine name="Catalina" defaultHost="localhost" jvmRoute="jvm1"> --> <Engine name="Catalina" defaultHost="localhost" jvmRoute="node2"> <!--For clustering, please take a look at documentation at: /docs/cluster-howto.html (simple how to) /docs/config/cluster.html (reference documentation) --> <!-- <Cluster className="org.apache.catalina.ha.tcp.SimpleTcpCluster"/> --> <!-- The request dumper valve dumps useful debugging information about the request and response data received and sent by Tomcat. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.RequestDumperValve"/> --> <!-- This Realm uses the UserDatabase configured in the global JNDI resources under the key "UserDatabase". Any edits that are performed against this UserDatabase are immediately available for use by the Realm. --> <Realm className="org.apache.catalina.realm.UserDatabaseRealm" resourceName="UserDatabase"/> <!-- Define the default virtual host Note: XML Schema validation will not work with Xerces 2.2. --> <Host name="localhost" appBase="webapps" unpackWARs="true" autoDeploy="true" xmlValidation="false" xmlNamespaceAware="false"> <!-- SingleSignOn valve, share authentication between web applications Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.authenticator.SingleSignOn" /> --> <!-- Access log processes all example. Documentation at: /docs/config/valve.html --> <!-- <Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs" prefix="localhost_access_log." suffix=".txt" pattern="common" resolveHosts="false"/> --> </Host> </Engine> </Service> </Server> I dont know what it is. but I been trying for days

    Read the article

  • Improved appointment rendering in RadScheduler for ASP.NET AJAX, Q1 2010

    Now that Q1 2010 release is out in the wild, we can sit down and discuss some of the changes we decided to make in the new release. One of them is the new appointment rendering of RadScheduler - a potentially breaking change, but a much needed one. If you have problems with your old custom skins, include the old base stylesheet along with your RadScheduler and set EnableEmbeddedBaseStylesheet=false in your RadScheduler. You can find the said base stylesheet attached to this post.   While trying to improve the performance of RadScheduler, I noticed that the number of resources slows down the rendering and overall performance considerably. This had to be expected - the images to support the appointment rounded corners (and the predefined resources) were quite large. However, I didnt take into account that all browsers keep for performance reasons their images uncompressed in memory and with the color depth of the current desktop. A simple calculation later I discovered that the appointment sprite itself is taking 25MB memory when loaded. Add 5 resources to the fray and you have 150MB memory down with a single blow. As it turns out - a sprite image is not a panacea, if it gets too big - dont be afraid to break it in two. The loading time may suffer, but your browser suffers more while rendering a 25MB monster. First I thought of undertaking the aforementioned solution - breaking the appointment sprite in two and thus reducing the two appointment sprites to mere 2MB uncompressed. Then I thought - the rounded corners are small - I can use borders and backgrounds to simulate rounded appointment borders while still keeping the same HTML structure. The gradients can be done with a single 10x50px image plus we have a gain - border colors and backgrounds can be changed on the fly.  I started with five rendering elements at first, then tried with four and finally I settled on only three elements.  Behold the new appointment rendering (quite simple really):       On the left you can see that the first container has only top and bottom borders and a background. In fact, the background isnt even needed since it will be obscured by the elements on top of it. The whole first container is only needed for the four dots that reside in the four corners of the appointment. On top of this container is another one that holds the left and right borders and slightly lighter background to create the illusion of a second lighter border beside the other two. At last on top of all others is placed the text container that also holds the top and bottom borders and the gradient background. On the right you can see the final result - Im quite happy with it and I hope you will be too. After creating the new rendering we took another step further - we decided to use alpha gradients for the resource rendering, thus supporting any color appointments with rounded corners and gradients. You can see some examples below:We plan on adding BorderColor and BackColor properties  to the ResourceStyles definitions for Q1 SP1. However with the new rendering in Q1 2010 we do support BackColor and BorderColor appointment properties - you only need to set AppointmentStyleMode=Default to keep RadScheduler from switching to Simple appointment rendering. Here is one screenshot of RadScheduler with appointments set to different colors: I hope that you will enjoy working with the new appointments in RadScheduler. RadScheduler base stylesheet Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • Improved appointment rendering in RadScheduler for ASP.NET AJAX, Q1 2010

    Now that Q1 2010 release is out in the wild, we can sit down and discuss some of the changes we decided to make in the new release. One of them is the new appointment rendering of RadScheduler - a potentially breaking change, but a much needed one. If you have problems with your old custom skins, include the old base stylesheet along with your RadScheduler and set EnableEmbeddedBaseStylesheet=false in your RadScheduler. You can find the said base stylesheet attached to this post.   While trying to improve the performance of RadScheduler, I noticed that the number of resources slows down the rendering and overall performance considerably. This had to be expected - the images to support the appointment rounded corners (and the predefined resources) were quite large. However, I didnt take into account that all browsers keep for performance reasons their images uncompressed in memory and with the color depth of the current desktop. A simple calculation later I discovered that the appointment sprite itself is taking 25MB memory when loaded. Add 5 resources to the fray and you have 150MB memory down with a single blow. As it turns out - a sprite image is not a panacea, if it gets too big - dont be afraid to break it in two. The loading time may suffer, but your browser suffers more while rendering a 25MB monster. First I thought of undertaking the aforementioned solution - breaking the appointment sprite in two and thus reducing the two appointment sprites to mere 2MB uncompressed. Then I thought - the rounded corners are small - I can use borders and backgrounds to simulate rounded appointment borders while still keeping the same HTML structure. The gradients can be done with a single 10x50px image plus we have a gain - border colors and backgrounds can be changed on the fly.  I started with five rendering elements at first, then tried with four and finally I settled on only three elements.  Behold the new appointment rendering (quite simple really):       On the left you can see that the first container has only top and bottom borders and a background. In fact, the background isnt even needed since it will be obscured by the elements on top of it. The whole first container is only needed for the four dots that reside in the four corners of the appointment. On top of this container is another one that holds the left and right borders and slightly lighter background to create the illusion of a second lighter border beside the other two. At last on top of all others is placed the text container that also holds the top and bottom borders and the gradient background. On the right you can see the final result - Im quite happy with it and I hope you will be too. After creating the new rendering we took another step further - we decided to use alpha gradients for the resource rendering, thus supporting any color appointments with rounded corners and gradients. You can see some examples below:We plan on adding BorderColor and BackColor properties  to the ResourceStyles definitions for Q1 SP1. However with the new rendering in Q1 2010 we do support BackColor and BorderColor appointment properties - you only need to set AppointmentStyleMode=Default to keep RadScheduler from switching to Simple appointment rendering. Here is one screenshot of RadScheduler with appointments set to different colors: I hope that you will enjoy working with the new appointments in RadScheduler. RadScheduler base stylesheet Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

  • GPGPU

    WhatGPU obviously stands for Graphics Processing Unit (the silicon powering the display you are using to read this blog post). The extra GP in front of that stands for General Purpose computing.So, altogether GPGPU refers to computing we can perform on GPU for purposes beyond just drawing on the screen. In effect, we can use a GPGPU a bit like we already use a CPU: to perform some calculation (that doesn’t have to have any visual element to it). The attraction is that a GPGPU can be orders of magnitude faster than a CPU.WhyWhen I was at the SuperComputing conference in Portland last November, GPGPUs were all the rage. A quick online search reveals many articles introducing the GPGPU topic. I'll just share 3 here: pcper (ignoring all pages except the first, it is a good consumer perspective), gizmodo (nice take using mostly layman terms) and vizworld (answering the question on "what's the big deal").The GPGPU programming paradigm (from a high level) is simple: in your CPU program you define functions (aka kernels) that take some input, can perform the costly operation and return the output. The kernels are the things that execute on the GPGPU leveraging its power (and hence execute faster than what they could on the CPU) while the host CPU program waits for the results or asynchronously performs other tasks.However, GPGPUs have different characteristics to CPUs which means they are suitable only for certain classes of problem (i.e. data parallel algorithms) and not for others (e.g. algorithms with branching or recursion or other complex flow control). You also pay a high cost for transferring the input data from the CPU to the GPU (and vice versa the results back to the CPU), so the computation itself has to be long enough to justify the overhead transfer costs. If your problem space fits the criteria then you probably want to check out this technology.HowSo where can you get a graphics card to start playing with all this? At the time of writing, the two main vendors ATI (owned by AMD) and NVIDIA are the obvious players in this industry. You can read about GPGPU on this AMD page and also on this NVIDIA page. NVIDIA's website also has a free chapter on the topic from the "GPU Gems" book: A Toolkit for Computation on GPUs.If you followed the links above, then you've already come across some of the choices of programming models that are available today. Essentially, AMD is offering their ATI Stream technology accessible via a language they call Brook+; NVIDIA offers their CUDA platform which is accessible from CUDA C. Choosing either of those locks you into the GPU vendor and hence your code cannot run on systems with cards from the other vendor (e.g. imagine if your CPU code would run on Intel chips but not AMD chips). Having said that, both vendors plan to support a new emerging standard called OpenCL, which theoretically means your kernels can execute on any GPU that supports it. To learn more about all of these there is a website: gpgpu.org. The caveat about that site is that (currently) it completely ignores the Microsoft approach, which I touch on next.On Windows, there is already a cross-GPU-vendor way of programming GPUs and that is the DirectX API. Specifically, on Windows Vista and Windows 7, the DirectX 11 API offers a dedicated subset of the API for GPGPU programming: DirectCompute. You use this API on the CPU side, to set up and execute the kernels that run on the GPU. The kernels are written in a language called HLSL (High Level Shader Language). You can use DirectCompute with HLSL to write a "compute shader", which is the term DirectX uses for what I've been referring to in this post as a "kernel". For a comprehensive collection of links about this (including tutorials, videos and samples) please see my blog post: DirectCompute.Note that there are many efforts to build even higher level languages on top of DirectX that aim to expose GPGPU programming to a wider audience by making it as easy as today's mainstream programming models. I'll mention here just two of those efforts: Accelerator from MSR and Brahma by Ananth. Comments about this post welcome at the original blog.

    Read the article

  • Using NServiceBus behind a custom web service

    - by Michael Stephenson
    In this post I'd like to talk about an architecture scenario we had recently and how we were able to utilise NServiceBus to help us address this problem. Scenario Cognos is a reporting system used by one of my clients. A while back we developed a web service façade to allow line of business applications to be able to access reports from Cognos to support their various functions. The service was intended to provide access to reports which were quick running reports or pre-generated reports which could be accessed real-time on demand. One of the key aims of the web service was to provide a simple generic interface to allow applications to get any report without needing to worry about the complex .net SDK for Cognos. The web service also supported multi-hop kerberos delegation so that report data could be accesses under the context of the end user. This service was working well for a period of time. The Problem The problem we encountered was that reports were now also required to be available to batch processes. The original design was optimised for low latency so users would enjoy a positive experience, however when the batch processes started to request 250+ concurrent reports over an extended period of time you can begin to imagine the sorts of problems that come into play. The key problems this new scenario caused are: Users may be affected and the latency of on demand reports was significantly slower The Cognos infrastructure was not scaled sufficiently to be able to cope with these long peaks of load From a cost perspective it just isn't feasible to scale the Cognos infrastructure to be able to handle the load when it is only for a couple of hour window each night. We really needed to introduce a second pattern for accessing this service which would support high through-put scenarios. We also had little control over the batch process in terms of being able to throttle its load. We could however make some changes to the way it accessed the reports. The Approach My idea was to introduce a throttling mechanism between the Web Service Façade and Cognos. This would allow the batch processes to push reports requests hard at the web service which we were confident the web service can handle. The web service would then queue these requests and process them behind the scenes and make a call back to the batch application to provide the report once it had been accessed. In terms of technology we had some limitations because we were not able to use WCF or IIS7 where the MSMQ-Activated WCF services could have helped, but we did have MSMQ as an option and I thought NServiceBus could do just the job to help us here. The flow of how this would work was as follows: The batch applications would send a request for a report to the web service The web service uses NServiceBus to send the message to a Queue The NServiceBus Generic Host is running as a windows service with a message handler which subscribes to these messages The message handler gets the message, accesses the report from Cognos The message handler calls back to the original batch application, this is decoupled because the calling application provides a call back url The report gets into the batch application and is processed as normal This approach looks something like the below diagram: The key points are an application wanting to take advantage of the batch driven reports needs to do the following: Implement our call back contract Make a call to the service providing a call back url Provide a correlation ID so it knows how to tie each response back to its request What does NServiceBus offer in this solution So this scenario is not the typical messaging service bus type of solution people implement with NServiceBus, but it did offer the following: Simplified interaction with MSMQ Offered the ability to configure the number of processes working through the queue so we could find a balance between load on Cognos versus the applications end to end processing time NServiceBus offers retries and a way to manage failed messages NServiceBus offers a high availability setup The simple thing is that NServiceBus gave us the platform to build the solution on. We just implemented a message handler which functionally processed a message and we could rely on NServiceBus to do all of the hard work around managing the queues and all of the lower level things that would have took ages to write to any kind of robust level. Conclusion With this approach we were able to deal with a fairly significant performance issue with out too much rework. Hopefully this write up gives people some insight into ideas on how to leverage the excellent NServiceBus framework to help solve integration and high through-put scenarios.

    Read the article

  • Windows Azure Use Case: Web Applications

    - by BuckWoody
    This is one in a series of posts on when and where to use a distributed architecture design in your organization's computing needs. You can find the main post here: http://blogs.msdn.com/b/buckwoody/archive/2011/01/18/windows-azure-and-sql-azure-use-cases.aspx  Description: Many applications have a requirement to be located outside of the organization’s internal infrastructure control. For instance, the company website for a brick-and-mortar retail company may want to post not only static but interactive content to be available to their external customers, and not want the customers to have access inside the organization’s firewall. There are also cases of pure web applications used for a great many of the internal functions of the business. This allows for remote workers, shared customer/employee workloads and data and other advantages. Some firms choose to host these web servers internally, others choose to contract out the infrastructure to an “ASP” (Application Service Provider) or an Infrastructure as a Service (IaaS) company. In any case, the design of these applications often resembles the following: In this design, a server (or perhaps more than one) hosts the presentation function (http or https) access to the application, and this same system may hold the computational aspects of the program. Authorization and Access is controlled programmatically, or is more open if this is a customer-facing application. Storage is either placed on the same or other servers, hosted within an RDBMS or NoSQL database, or a combination of the options, all coded into the application. High-Availability within this scenario is often the responsibility of the architects of the application, and by purchasing more hosting resources which must be built, licensed and configured, and manually added as demand requires, although some IaaS providers have a partially automatic method to add nodes for scale-out, if the architecture of the application supports it. Disaster Recovery is the responsibility of the system architect as well. Implementation: In a Windows Azure Platform as a Service (PaaS) environment, many of these architectural considerations are designed into the system. The Azure “Fabric” (not to be confused with the Azure implementation of Application Fabric - more on that in a moment) is designed to provide scalability. Compute resources can be added and removed programmatically based on any number of factors. Balancers at the request-level of the Fabric automatically route http and https requests. The fabric also provides High-Availability for storage and other components. Disaster recovery is a shared responsibility between the facilities (which have the ability to restore in case of catastrophic failure) and your code, which should build in recovery. In a Windows Azure-based web application, you have the ability to separate out the various functions and components. Presentation can be coded for multiple platforms like smart phones, tablets and PC’s, while the computation can be a single entity shared between them. This makes the applications more resilient and more object-oriented, and lends itself to a SOA or Distributed Computing architecture. It is true that you could code up a similar set of functionality in a traditional web-farm, but the difference here is that the components are built into the very design of the architecture. The API’s and DLL’s you call in a Windows Azure code base contains components as first-class citizens. For instance, if you need storage, it is simply called within the application as an object.  Computation has multiple options and the ability to scale linearly. You also gain another component that you would either have to write or bolt-in to a typical web-farm: the Application Fabric. This Windows Azure component provides communication between applications or even to on-premise systems. It provides authorization in either person-based or claims-based perspectives. SQL Azure provides relational storage as another option, and can also be used or accessed from on-premise systems. It should be noted that you can use all or some of these components individually. Resources: Design Strategies for Scalable Active Server Applications - http://msdn.microsoft.com/en-us/library/ms972349.aspx  Physical Tiers and Deployment  - http://msdn.microsoft.com/en-us/library/ee658120.aspx

    Read the article

  • WEB203 &ndash; Jump into Silverlight!&hellip; and Become Effective Immediately with Tim Huckaby, Fou

    - by Robert Burger
    Getting ready for the good stuff. Definitely wish there were more Silverlight and WCF RIA sessions, but this is a start.  Was lucky to get a coveted power-enabled seat.  Luckily, due to my trustily slow Verizon data card, I can get these notes out amidst a total Internet outage here.  This is the second breakout session of the day, and is by far standing-room only.  I stepped out before the session started to get a cool Diet COKE and wouldn’t have gotten back in if I didn’t already have a seat. Tim says this is an intro session and that he’s been begging for intro sessions at TechEd for years and that by looking at this audience, he thinks the demand is there.  Admittedly, I didn’t know this was an intro session, or I might have gone elsewhere.  But, it was the very first Silverlight session, so I had to be here. Tim says he will be providing a very good comprehensive reference application at the end of the presentation.  He has just demoed it, and it is a full CRUD-based Sales Manager application based on…  AdventureWorks! Session Agenda What it is / How to get started Declarative Programming Layout and Controls, Events and Commands Working with Data Adding Style to Your Application   Silverlight…  “WPF Light” Why is the download 4.2MB?  Because the direct competitor is a 4.2MB download.  There is no technical reason it is not the entire framework.  It is purely to “be competitive”.   Getting Started Get all of the following downloads from www.silverlight.net/getstarted Install VS2010 or Visual Web Developer Express 2010 Install Silverlight 4 Tools for VS2010 Install Expression Blend 4 Install the Silverlight 4 Toolkit   Reference Application Features Uses MVVM pattern – a way to move data access code that would normally be inline within the UI and placing it in nice data access libraries Images loaded dynamically from the database, converting GIF to PNG because Silverlight does not support GIF. LINQ to SQL is the data access model WCF is the data provider and is using binary message encoding   Declarative Programming XAML replaces code for UI representation Attributes control Layout and Style Event handlers wired-up in XAML Declarative Data Binding   Layout Overview Content rendering flows inside of parent Fixed positioning (Canvas) is seldom used Panels are used to house content Margins and Padding over fixed size   Panels StackPanel – Arranges child elements into a single line oriented horizontally or vertically Grid – A flexible grid are that consists of rows and columns Canvas – An are where positions are specifically fixed WrapPanel (in Toolkit) – Positions child elements in sequential position left to right and top to bottom. DockPanel (in Toolkit) – Positions child controls within a dockable area   Positioning Horizontal and Vertical Alignment Margin – Separates an element from neighboring elements Padding – Enlarges the effective size of an element by a thickness   Controls Overview Not all controls created equal Silverlight, as a subset of WPF, so many WPF controls do not exist in the core Siverlight release Silverlight Toolkit continues to add controls, but are released in different quality bands Plenty of good 3rd party controls to fill the gaps Windows Phone 7 is to have 95% of controls available in Silverlight Core and Toolkit.   Events and Commands Standard .NET Events Routed Events Commands – based on the ICommand interface – logical action that can be invoked in several ways   Adding Style to Your Application Resource Dictionaries – Contains a hash table of key/value pairs.  Silverlight can only use Static Resources whereas WPF can also use Dynamic Resources Visual State Manager Silverlight 4 supports Implicit styles ResourceDictionary.MergedDictionaries combines many different file-based resources   Downloads

    Read the article

  • Java Spotlight Episode 103: 2012 Duke Choice Award Winners

    - by Roger Brinkley
    Our annual interview with the 2012 Duke Choice Award Winners recorded live at the JavaOne 2012. Right-click or Control-click to download this MP3 file. You can also subscribe to the Java Spotlight Podcast Feed to get the latest podcast automatically. If you use iTunes you can open iTunes and subscribe with this link:  Java Spotlight Podcast in iTunes. Show Notes Events Oct 13, Devoxx 4 Kids Nederlands Oct 15-17, JAX London Oct 20, Devoxx 4 Kids Français Oct 22-23, Freescale Technology Forum - Japan, Tokyo Oct 30-Nov 1, Arm TechCon, Santa Clara Oct 31, JFall, Netherlands Nov 2-3, JMagreb, Morocco Nov 13-17, Devoxx, Belgium Feature Interview Duke Choice Award Winners 2012 - Show Presentation London Java CommunityThe second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. Student Nokia Developer GroupThis year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. Jelastic, Inc.Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. NATOThe first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. DuchessRather than focus on a specific geographic area like most Java User Groups (JUGs), Duchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. AgroSense ProjectImproving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. Apache Software Foundation Hadoop ProjectThe Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. Parleys.comE-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Winners not presenting at JavaOne 2012 Duke Choice Awards BOF Liquid RoboticsRobotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect.United Nations High Commissioner for RefugeesThe United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed.

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Oracle WebCenter: Extending Oracle Applications & Oracle Fusion Applications

    - by kellsey.ruppel(at)oracle.com
    Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";} -- Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Calibri","sans-serif";}We’ve talked in previous weeks about the key goals of the new release of WebCenter are providing a Modern User Experience, unparalleled Application Integration, converging all the best of the existing portal platforms into WebCenter and delivering a Common User Experience Architecture.  We’ve provided an overview of Oracle WebCenter and discussed some of the other key goals in previous weeks, and this week, we’ll focus on how the new release of Oracle WebCenter extends Oracle Applications and Fusion Applications.When we talk about the new release of Oracle WebCenter, we really emphasize to customers that they can leverage their existing investments and benefit from WebCenter’s Complete, Open and Integrated platform. To summarize what we mean here, Oracle WebCenter is:COMPLETEComprehensive platform for Portals/Websites, Composite Applications with integrated Social/Collaboration services and Content Management infrastructureOPENStandards support improves reuse of existing resources and extends the value of existing systemsINTEGRATEDImplicit integration with Oracle Applications, Oracle Fusion Applications & other enterprise applicationsWith all the existing enterprise applications in Oracle’s application portfolio, in the new release of WebCenter we’ve got a set of pre-built catalogs that customers can use directly to get at all the portlet resources certified and available from Oracle.  It provides customers with a ready-to-use view of their application resources.  And since WebCenter provides seamless support for building these portlets/components in a professional IDE like JDeveloper or from within a Browser, developers and business analysts can quickly assemble the information they require for their existing application investment.  In addition, we’ve taken all the user flows and patterns that we’ve learned in building Fusion Applications and focused on making it dramatically easier to use tools to create reusable application UI components. In this way, one team in the organization using an application can share their components with other teams.  And more importantly, the new team can make changes to the component without breaking the original component.  When tied to enterprise applications, this capability is extremely powerful.  This is what Oracle means when they talk about Enterprise Mashups.  And finally, we’ve provided an innovative way to go well beyond traditional “on the glass” integration by enabling business transactions for the existing applications direct integration using activity streams. This delivers aggregated and “on time” delivery of information to the business users based on what‘s happening in the enterprise that is relevant to their particular job function.  Most importantly, it ties into the personalization interactions discussed earlier so that it can help target information to you directly based on past interactions.  Application integration is key to making businesses function more efficiently with these new Enterprise 2.0 technologies.Keep checking back this week as we share more information on how WebCenter is the most complete, open and integrated modern user experience platform and show key ways WebCenter can extend Oracle Applications & Oracle Fusion Applications.

    Read the article

  • Microsoft hosting free Hyper-V training for VMware Pros

    - by Ryan Roussel
    Microsoft will be hosting free training for virtualization professionals focused on Hyper-V, System Center, and virtualization architecture.  Details are below:   Just one week after Microsoft Management Summit 2011 (MMS), Microsoft Learning will be hosting an exclusive three-day Jump Start class specially tailored for VMware and Microsoft virtualization technology pros.  Registration for “Microsoft Virtualization for VMware Professionals” is open now and will be delivered as an online class on March 29-31, 2010 from 10:00am-4:00pm PDT.    The course is COMPLETELY FREE and OPEN TO ANYONE!  Please share with your customers, blog, Tweet, etc. – help us get the word out to strengthen support for Microsoft’s virtualization offerings. What’s the high-level overview? This cutting edge course will feature expert instruction and real-world demonstrations of Hyper-V and brand new releases from System Center Virtual Machine Manager 2012 Beta (many of which will be announced just one week earlier at MMS).  Register Now!   Day 1 will focus on “Platform” (Hyper-V, virtualization architecture, high availability & clustering) 10:00am – 10:30pm PDT:  Virtualization 360 Overview 10:30am – 12:00pm:  Microsoft Hyper-V Deployment Options & Architecture 1:00pm – 2:00pm:  Differentiating Microsoft and VMware (terminology, etc.) 2:00pm – 4:00pm:  High Availability & Clustering Day 2 will focus on “Management” (System Center Suite, SCVMM 2012 Beta, Opalis, Private Cloud solutions) 10:00am – 11:00pm PDT:  System Center Suite Overview w/ focus on DPM 11:00am – 12:00pm:  Virtual Machine Manager 2012 | Part 1 1:00pm –   1:30pm:  Virtual Machine Manager 2012 | Part 2 1:30pm – 2:30pm:  Automation with System Center Opalis & PowerShell 2:30pm – 4:00pm:  Private Cloud Solutions, Architecture & VMM SSP 2.0 Day 3 will focus on “VDI” (VDI Infrastructure/architecture, v-Alliance, application delivery via VDI) 10:00am – 11:00pm PDT:  Virtual Desktop Infrastructure (VDI) Architecture | Part 1 11:00am – 12:00pm:  Virtual Desktop Infrastructure (VDI) Architecture | Part 2 1:00pm – 2:30pm:  v-Alliance Solution Overview 2:30pm – 4:00pm:  Application Delivery for VDI     Every section will be team-taught by two of the most respected authorities on virtualization technologies: Microsoft Technical Evangelist Symon Perriman and leading Hyper-V, VMware, and XEN infrastructure consultant, Corey Hynes Who is the target audience for this training? Suggested prerequisite skills include real-world experience with Windows Server 2008 R2, virtualization and datacenter management. The course is tailored to these types of roles: · IT Professional · IT Decision Maker · Network Administrators & Architects · Storage/Infrastructure Administrators & Architects How do I to register and learn more about this great training opportunity? · Register: Visit the Registration Page and sign up for all three sessions · Blog: Learn more from the Microsoft Learning Blog · Twitter: Here are a few posts you can retweet: o Mar. 29-31 "Microsoft #Virtualization for VMware Pros" @SymonPerriman Corey Hynes http://bit.ly/JS-Hyper-V @MSLearning #Hyper-V o @SysCtrOpalis Mar. 29-31 "Microsoft #Virtualization for VMware Pros" @SymonPerriman Corey Hynes http://bit.ly/JS-Hyper-V #Hyper-V o Learn all the cool new features in Hyper-V & System Center 2012! SCVMM, Self-Service Portal 2.0, http://bit.ly/JS-Hyper-V #Hyper-V #Opalis What is a “Jump Start” course? A “Jump Start” course is “team-taught” by two expert instructors in an engaging radio talk show style format. The idea is to deliver readiness training on strategic and emerging technologies that drive awareness at scale before Microsoft Learning develops mainstream Microsoft Official Courses (MOC) that map to certifications.  All sessions are professionally recorded and distributed through MS Showcase, Channel 9, Zune Marketplace and iTunes for broader reach.

    Read the article

  • Oracle WebCenter: Common User Experience Architecture

    - by kellsey.ruppel(at)oracle.com
    You may remember that the key goals of the new release of WebCenter are providing a Modern User Experience, unparalleled Application Integration, converging all the best of the existing portal platforms into WebCenter and delivering a Common User Experience Architecture.  In previous weeks we've provided an overview of Oracle WebCenter and discussed some of the other key goals and this week, we'll focus on how the new release of Oracle WebCenter delivers a Common User Experience Architecture.When Oracle talks about a Common User Experience Architecture, it really focuses on a core set of areas.  First, the way that information is accessed needs to be consistent and extensible so that as requirements change, the applications don't need to be rewritten for every change. Second, this information access layer needs to be securely accessible to any application, site, or any other channel that needs to leverage this information.  Third, there needs to be a consistent presentation layout, Oracle calls it a UI shell, so that all resources can fit together in a useable, productive way.  Fourth, there needs to be a common set of design patterns for how different menus, features, and services fit into this UI Shell for broad and productive usability.  Fifth, there needs to be a set of design patterns for the individual services that plug into this UI shell so that end users can move from one module of the application to another without new learning.  Finally, all of these layers need to be customizable in an easy way that insulates IT from patching and upgrading problems and allows the business owners the agility to quickly change with the market conditions.As Oracle has already announced, we will release our next generation of enterprise applications called Oracle Fusion Applications.  We have thousands of developers building these applications that all had different programming tool experience and UI design experience.  We've educated over 6,000 developers building Oracle Fusion Applications to leverage these Common User Experience Architecture patterns to speed their learning curve of the new Java standards as well as SOA principles to deliver a revolutionary new set of applications.  You could imagine the big challenge with getting all these developers with different backgrounds and different UI design skills to deliver a completely integrated application user experience.  This is why Oracle invested heavily in designing this Common User Experience Architecture, based on Oracle WebCenter and the Oracle Application Development Framework (ADF).  It pulls together the best practices and design patterns that Oracle development required in order to bring Fusion Applications to market and Oracle WebCenter is the user experience layer that all of this is surfaced through.  In this way, customers can quickly brand a deployment for new partnerships without having to redevelop a new site.  Or they can quickly add new options to the UI Shell to enable their line of business managers to quickly adapt to a new competitive product.  And with the core integration of the activities to produce a Business Activity Stream, customers are able to stay on top of all their key business actions when they happen as they happen and more importantly, the system can recommend actions or resources to help act on these activities.And we've authored this whole set of design patterns for Oracle development to take advantage of in delivering Fusion Applications.  We're also applying these design patterns to our existing eBusiness Suite, Peoplesoft, Siebel, and JD Edwards applications so that they can tie in the exact same way that Fusion Applications has been brought together.  This will provide customers with a complete Common User Experience Architecture for their entire ecosystem of applications within their enterprise whether they are from Oracle, another vender, or custom built applications. And this is all provided in the new release of Oracle WebCenter.  These design patterns cover elements around delivering a complete, aggregated menu of all the capabilities that their role allows independent of which application they are trying to access.   It means that as they move from one application to another, they will have a consistent user experience.  And if they are using an Oracle application, any customizations that are made to the application are preserved and managed through upgrades and patches.Be sure to check back this week as we share more information and resources on Oracle's Common User Experience Architecture.

    Read the article

  • Windows Azure Recipe: Mobile Computing

    - by Clint Edmonson
    A while back, mashups were all the rage. The idea was to compose solutions that provided aggregation and integration across applications and services to make information more available, useful, and personal. Mashups ushered in the era of Web 2.0 in all it’s socially connected goodness. They taught us that to be successful, we needed to add web service APIs to our web applications. Web and client based mashups met with great success and have evolved even further with the introduction of the internet connected smartphone. Nothing is more available, useful, or personal than our smartphones. The current generation of cloud connected mobile computing mashups allow our mobilized workforces to receive, process, and react to information from disparate sources faster than ever before. Drivers Integration Reach Time to market Solution Here’s a sketch of a prototypical mobile computing solution using Windows Azure: Ingredients Web Role – with the phone running a dedicated client application, the web role is responsible for serving up backend web services that implement the solution’s core connected functionality. Database – used to store core operational and workflow data for the solution’s web services. Access Control – this service is used to authenticate and manage users identity, roles, and groups, possibly in conjunction with 3rd identity providers such as Windows LiveID, Google, Yahoo!, and Facebook. Worker Role – this role is used to handle the orchestration of long-running, complex, asynchronous operations. While much of the integration and interaction with other services can be handled directly by the mobile client application, it’s possible that the backend may need to integrate with 3rd party services as well. Offloading this work to a worker role better distributes computing resources and keeps the web roles focused on direct client interaction. Queues – these provide reliable, persistent messaging between applications and processes. They are an absolute necessity once asynchronous processing is involved. Queues facilitate the flow of distributed events and allow a solution to send push notifications back to mobile devices at appropriate times. Training & Resources These links point to online Windows Azure training labs and resources where you can learn more about the individual ingredients described above. (Note: The entire Windows Azure Training Kit can also be downloaded for offline use.) Windows Azure (16 labs) Windows Azure is an internet-scale cloud computing and services platform hosted in Microsoft data centers, which provides an operating system and a set of developer services which can be used individually or together. It gives developers the choice to build web applications; applications running on connected devices, PCs, or servers; or hybrid solutions offering the best of both worlds. New or enhanced applications can be built using existing skills with the Visual Studio development environment and the .NET Framework. With its standards-based and interoperable approach, the services platform supports multiple internet protocols, including HTTP, REST, SOAP, and plain XML SQL Azure (7 labs) Microsoft SQL Azure delivers on the Microsoft Data Platform vision of extending the SQL Server capabilities to the cloud as web-based services, enabling you to store structured, semi-structured, and unstructured data. Windows Azure Services (9 labs) As applications collaborate across organizational boundaries, ensuring secure transactions across disparate security domains is crucial but difficult to implement. Windows Azure Services provides hosted authentication and access control using powerful, secure, standards-based infrastructure. Windows Azure Toolkit for Windows Phone The Windows Azure Toolkit for Windows Phone is designed to make it easier for you to build mobile applications that leverage cloud services running in Windows Azure. The toolkit includes Visual Studio project templates for Windows Phone and Windows Azure, class libraries optimized for use on the phone, sample applications, and documentation Windows Azure Toolkit for iOS The Windows Azure Toolkit for iOS is a toolkit for developers to make it easy to access Windows Azure storage services from native iOS applications. The toolkit can be used for both iPhone and iPad applications, developed using Objective-C and XCode. Windows Azure Toolkit for Android The Windows Azure Toolkit for Android is a toolkit for developers to make it easy to work with Windows Azure from native Android applications. The toolkit can be used for native Android applications developed using Eclipse and the Android SDK. See my Windows Azure Resource Guide for more guidance on how to get started, including links web portals, training kits, samples, and blogs related to Windows Azure.

    Read the article

  • Big Data – Operational Databases Supporting Big Data – Key-Value Pair Databases and Document Databases – Day 13 of 21

    - by Pinal Dave
    In yesterday’s blog post we learned the importance of the Relational Database and NoSQL database in the Big Data Story. In this article we will understand the role of Key-Value Pair Databases and Document Databases Supporting Big Data Story. Now we will see a few of the examples of the operational databases. Relational Databases (Yesterday’s post) NoSQL Databases (Yesterday’s post) Key-Value Pair Databases (This post) Document Databases (This post) Columnar Databases (Tomorrow’s post) Graph Databases (Tomorrow’s post) Spatial Databases (Tomorrow’s post) Key Value Pair Databases Key Value Pair Databases are also known as KVP databases. A key is a field name and attribute, an identifier. The content of that field is its value, the data that is being identified and stored. They have a very simple implementation of NoSQL database concepts. They do not have schema hence they are very flexible as well as scalable. The disadvantages of Key Value Pair (KVP) database are that they do not follow ACID (Atomicity, Consistency, Isolation, Durability) properties. Additionally, it will require data architects to plan for data placement, replication as well as high availability. In KVP databases the data is stored as strings. Here is a simple example of how Key Value Database will look like: Key Value Name Pinal Dave Color Blue Twitter @pinaldave Name Nupur Dave Movie The Hero As the number of users grow in Key Value Pair databases it starts getting difficult to manage the entire database. As there is no specific schema or rules associated with the database, there are chances that database grows exponentially as well. It is very crucial to select the right Key Value Pair Database which offers an additional set of tools to manage the data and provides finer control over various business aspects of the same. Riak Rick is one of the most popular Key Value Database. It is known for its scalability and performance in high volume and velocity database. Additionally, it implements a mechanism for collection key and values which further helps to build manageable system. We will further discuss Riak in future blog posts. Key Value Databases are a good choice for social media, communities, caching layers for connecting other databases. In simpler words, whenever we required flexibility of the data storage keeping scalability in mind – KVP databases are good options to consider. Document Database There are two different kinds of document databases. 1) Full document Content (web pages, word docs etc) and 2) Storing Document Components for storage. The second types of the document database we are talking about over here. They use Javascript Object Notation (JSON) and Binary JSON for the structure of the documents. JSON is very easy to understand language and it is very easy to write for applications. There are two major structures of JSON used for Document Database – 1) Name Value Pairs and 2) Ordered List. MongoDB and CouchDB are two of the most popular Open Source NonRelational Document Database. MongoDB MongoDB databases are called collections. Each collection is build of documents and each document is composed of fields. MongoDB collections can be indexed for optimal performance. MongoDB ecosystem is highly available, supports query services as well as MapReduce. It is often used in high volume content management system. CouchDB CouchDB databases are composed of documents which consists fields and attachments (known as description). It supports ACID properties. The main attraction points of CouchDB are that it will continue to operate even though network connectivity is sketchy. Due to this nature CouchDB prefers local data storage. Document Database is a good choice of the database when users have to generate dynamic reports from elements which are changing very frequently. A good example of document usages is in real time analytics in social networking or content management system. Tomorrow In tomorrow’s blog post we will discuss about various other Operational Databases supporting Big Data. Reference: Pinal Dave (http://blog.sqlauthority.com) Filed under: Big Data, PostADay, SQL, SQL Authority, SQL Query, SQL Server, SQL Tips and Tricks, T SQL

    Read the article

  • F1 Pit Pragmatics

    - by mikef
    "I hate computers. No, really, I hate them. I love the communications they facilitate, I love the conveniences they provide to my life. but I actually hate the computers themselves." - Scott Merrill, 'I hate computers: confessions of a Sysadmin' If Scott's goal was to polarize opinion and trigger raging arguments over the 'real reasons why computers suck', then he certainly succeeded. Impassioned vitriol sits side-by-side with rational debate. Yet Scott's fundamental point is absolutely on the money - Computers are a means to an end. The IT industry is finally starting to put weight behind the notion that good User Experience is an absolutely crucial goal, a cause championed by the likes of Microsoft's Bill Buxton, and which Apple's increasingly ubiquitous touch screen interface exemplifies. However, that doesn't change the fact that, occasionally, you just have to man up and deal with complex systems. In fact, sometimes you just need to sacrifice everything else in the name of performance. You'll find a perfect example of this Faustian bargain in Trevor Clarke's fascinating look into the (diabolical) IT infrastructure of modern F1 racing - high performance, high availability. high everything. To paraphrase, each car has up to 100 sensors, transmitting around 30Gb of data over the course of a race (70% in real-time). This data is then processed by no less than 3 servers (per car) so that the engineers in the pit have access to telemetry, strategy information, timing feeds, a connection back to the operations room in the team's home base - the list goes on. All of this while the servers are exposed "to carbon dust, oil, vibration, rain, heat, [and] variable power". Now, this is admittedly an extreme context where there's no real choice but to use complex systems where ease-of-use is, at best, a secondary concern. The flip-side is seen in small-scale personal computing such as that seen in Apple's iDevices, which are incredibly intuitive but limited in their scope. In terms of what kinds of systems they prefer to use, I suspect that most SysAdmins find themselves somewhere along this axis of Power vs. Usability, and which end of this axis you resonate with also hints at where you think the IT industry should focus its energy. Do you see yourself in the F1 pit, making split-second decisions, wrestling with information flows and reticent hardware to bend them to your will? If so, I imagine you feel that computers are subtle tools which need to be tuned and honed, using the advanced knowledge possessed only by responsible SysAdmins (If you have an iPhone, I suspect it's jail-broken). If the machines throw enigmatic errors, it's the price of flexibility and raw power. Alternatively, would you prefer to have your role more accessible, with users empowered by knowledge, spreading the load of managing IT environments? In that case, then you want hardware and software to have User Experience as their primary focus, and are of the "means to an end" school of thought (you're probably also fed up with users not listening to you when you try and help). At its heart, the dichotomy is between raw power (which might be difficult to use) and ease-of-use (which might have some limitations, but you can be up and running immediately). Of course, the ultimate goal is a fusion of flexibility, power and usability all in one system. It's achievable in specific software environments, and Red Gate considers it a target worth aiming for, but in other cases it's a goal right up there with cold fusion. I think it'll be a long time before we see it become ubiquitous. In the meantime, are you Power-Hungry or a Champion of Usability? Cheers, Michael Francis Simple Talk SysAdmin Editor

    Read the article

  • ALC889 - GA-P55-UD4 -no sound - Ubuntu 11.10

    - by george
    I have computer with a Gigabyte P55A-UD4 motherboard. I have on-board audio - Realtek ALC889. I am using Ubuntu 11.10 and have no sound. please please heeeelp :). i have tryed to install high definition audio codecs from realtek but it doesn't work. in bios the azalia codec is turned on. ps : sorry for my english. 00:00.0 Host bridge: Intel Corporation Core Processor DRAM Controller (rev 12) 00:01.0 PCI bridge: Intel Corporation Core Processor PCI Express x16 Root Port (rev 12) 00:1a.0 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB Universal Host Controller (rev 06) 00:1a.1 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB Universal Host Controller (rev 06) 00:1a.2 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB Universal Host Controller (rev 06) 00:1a.7 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 06) 00:1b.0 Audio device: Intel Corporation 5 Series/3400 Series Chipset High Definition Audio (rev 06) 00:1c.0 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 1 (rev 06) 00:1c.4 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 5 (rev 06) 00:1c.5 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 6 (rev 06) 00:1c.6 PCI bridge: Intel Corporation 5 Series/3400 Series Chipset PCI Express Root Port 7 (rev 06) 00:1d.0 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB Universal Host Controller (rev 06) 00:1d.1 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB Universal Host Controller (rev 06) 00:1d.2 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB Universal Host Controller (rev 06) 00:1d.3 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB Universal Host Controller (rev 06) 00:1d.7 USB Controller: Intel Corporation 5 Series/3400 Series Chipset USB2 Enhanced Host Controller (rev 06) 00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev a6) 00:1f.0 ISA bridge: Intel Corporation 5 Series Chipset LPC Interface Controller (rev 06) 00:1f.2 SATA controller: Intel Corporation 5 Series/3400 Series Chipset 6 port SATA AHCI Controller (rev 06) 00:1f.3 SMBus: Intel Corporation 5 Series/3400 Series Chipset SMBus Controller (rev 06) 01:00.0 VGA compatible controller: nVidia Corporation GT216 [GeForce GT 220] (rev a2) 01:00.1 Audio device: nVidia Corporation High Definition Audio Controller (rev a1) 03:00.0 SATA controller: JMicron Technology Corp. JMB362/JMB363 Serial ATA Controller (rev 03) 03:00.1 IDE interface: JMicron Technology Corp. JMB362/JMB363 Serial ATA Controller (rev 03) 04:00.0 IDE interface: Marvell Technology Group Ltd. Device 91a3 (rev 11) 05:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL8111/8168B PCI Express Gigabit Ethernet controller (rev 06) 06:03.0 IDE interface: Integrated Technology Express, Inc. IT8213 IDE Controller 06:07.0 FireWire (IEEE 1394): Texas Instruments TSB43AB23 IEEE-1394a-2000 Controller (PHY/Link) 3f:00.0 Host bridge: Intel Corporation Core Processor QuickPath Architecture Generic Non-core Registers (rev 02) 3f:00.1 Host bridge: Intel Corporation Core Processor QuickPath Architecture System Address Decoder (rev 02) 3f:02.0 Host bridge: Intel Corporation Core Processor QPI Link 0 (rev 02) 3f:02.1 Host bridge: Intel Corporation Core Processor QPI Physical 0 (rev 02) 3f:02.2 Host bridge: Intel Corporation Core Processor Reserved (rev 02) 3f:02.3 Host bridge: Intel Corporation Core Processor Reserved (rev 02) aplay -l karta 0: Intel [HDA Intel], urzadzenie 0: ALC889 Analog [ALC889 Analog] Urzadzenia podrzedne: 1/1 Urzadzenie podrzedne #0: subdevice #0 karta 0: Intel [HDA Intel], urzadzenie 1: ALC889 Digital [ALC889 Digital] Urzadzenia podrzedne: 1/1 Urzadzenie podrzedne #0: subdevice #0 karta 1: NVidia [HDA NVidia], urzadzenie 3: HDMI 0 [HDMI 0] Urzadzenia podrzedne: 1/1 Urzadzenie podrzedne #0: subdevice #0 karta 1: NVidia [HDA NVidia], urzadzenie 7: HDMI 0 [HDMI 0] Urzadzenia podrzedne: 1/1 Urzadzenie podrzedne #0: subdevice #0 karta 1: NVidia [HDA NVidia], urzadzenie 8: HDMI 0 [HDMI 0] Urzadzenia podrzedne: 1/1 Urzadzenie podrzedne #0: subdevice #0 karta 1: NVidia [HDA NVidia], urzadzenie 9: HDMI 0 [HDMI 0] Urzadzenia podrzedne: 1/1 Urzadzenie podrzedne #0: subdevice #0

    Read the article

  • IPgallery banks on Solaris SPARC

    - by Frederic Pariente
    IPgallery is a global supplier of converged legacy and Next Generation Networks (NGN) products and solutions, including: core network components and cloud-based Value Added Services (VAS) for voice, video and data sessions. IPgallery enables network operators and service providers to offer advanced converged voice, chat, video/content services and rich unified social communications in a combined legacy (fixed/mobile), Over-the-Top (OTT) and Social Community (SC) environments for home and business customers. Technically speaking, this offer is a scalable and robust telco solution enabling operators to offer new services while controlling operating expenses (OPEX). In its solutions, IPgallery leverages the following Oracle components: Oracle Solaris, Netra T4 and SPARC T4 in order to provide a competitive and scalable solution without the price tag often associated with high-end systems. Oracle Solaris Binary Application Guarantee A unique feature of Oracle Solaris is the guaranteed binary compatibility between releases of the Solaris OS. That means, if a binary application runs on Solaris 2.6 or later, it will run on the latest release of Oracle Solaris.  IPgallery developed their application on Solaris 9 and Solaris 10 then runs it on Solaris 11, without any code modification or rebuild. The Solaris Binary Application Guarantee helps IPgallery protect their long-term investment in the development, training and maintenance of their applications. Oracle Solaris Image Packaging System (IPS) IPS is a new repository-based package management system that comes with Oracle Solaris 11. It provides a framework for complete software life-cycle management such as installation, upgrade and removal of software packages. IPgallery leverages this new packaging system in order to speed up and simplify software installation for the R&D and production environments. Notably, they use IPS to deliver Solaris Studio 12.3 packages as part of the rapid installation process of R&D environments, and during the production software deployment phase, they ensure software package integrity using the built-in verification feature. Solaris IPS thus improves IPgallery's time-to-market with a faster, more reliable software installation and deployment in production environments. Extreme Network Performance IPgallery saw a huge improvement in application performance both in CPU and I/O, when running on SPARC T4 architecture in compared to UltraSPARC T2 servers.  The same application (with the same activation environment) running on T2 consumes 40%-50% CPU, while it consumes only 10% of the CPU on T4. The testing environment comprised of: Softswitch (Call management), TappS (Telecom Application Server) and Billing Server running on same machine and initiating various services in capacity of 1000 CAPS (Call Attempts Per Second). In addition, tests showed a huge improvement in the performance of the TCP/IP stack, which reduces network layer processing and in the end Call Attempts latency. Finally, there is a huge improvement within the file system and disk I/O operations; they ran all tests with maximum logging capability and it didn't influence any benchmark values. "Due to the huge improvements in performance and capacity using the T4-1 architecture, IPgallery has engineered the solution with less hardware.  This means instead of deploying the solution on six T2-based machines, we will deploy on 2 redundant machines while utilizing Oracle Solaris Zones and Oracle VM for higher availability and virtualization" Shimon Lichter, VP R&D, IPgallery In conclusion, using the unique combination of Oracle Solaris and SPARC technologies, IPgallery is able to offer solutions with much lower TCO, while providing a higher level of service capacity, scalability and resiliency. This low-OPEX solution enables the operator, the end-customer, to deliver a high quality service while maintaining high profitability.

    Read the article

  • Duke's Choice Award Ceremony

    - by Tori Wieldt
    The 2012 Duke's Choice Awards winners and their creative, Java-based technologies and Java community contributions were honored after the Sunday night JavaOne keynotes. Sharat Chander, Group Director for Java Technology Outreach, presented the awards. "Having the community participate directly in both submission and selection truly shows how we are driving exposure of the innovation happening in the Java community," he said. Apache Software Foundation Hadoop Project The Apache Software Foundation’s Hadoop project, written in Java, provides a framework for distributed processing of big data sets across clusters of computers, ranging from a few servers to thousands of machines. This harnessing of large data pools allows organizations to better understand and improve their business. AgroSense Project Improving farming methods to feed a hungry world is the goal of AgroSense, an open source farm information management system built in Java and the NetBeans platform. AgroSense enables farmers, agribusinesses, suppliers and others to develop modular applications that will easily exchange information through a common underlying NetBeans framework. JDuchess Rather than focus on a specific geographic area like most Java User Groups (JUGs), JDuchess fosters the participation of women in the Java community worldwide. The group has more than 500 members in 60 countries, and provides a platform through which women can connect with each other and get involved in all aspects of the Java community. Jelastic, Inc. Moving existing Java applications to the cloud can be a daunting task, but startup Jelastic, Inc. offers the first all-Java platform-as-a-service (PaaS) that enables existing Java applications to be deployed in the cloud without code changes or lock-in. Liquid Robotics Robotics – Liquid Robotics is an ocean data services provider whose Wave Glider technology collects information from the world’s oceans for application in government, science and commercial applications. The organization features the “father of Java” James Gosling as its chief software architect. London Java Community The second user group receiving a Duke’s Choice Award this year, the London Java Community (LJC) and its users have been active in the OpenJDK, the Java Community Process (JCP) and other efforts within the global Java community. NATO The first-ever Community Choice Award goes to the MASE Integrated Console Environment (MICE) in use at NATO. Built in Java on the NetBeans platform, MICE provides a high-performance visualization environment for conducting air defense and battle-space operations. Parleys.com E-learning specialist Parleys.com, based in Brussels, Belgium, uses Java technologies to bring online classes and full IT conferences to desktops, laptops, tablets and mobile devices. Parleys.com has hosted more than 1,700 conferences—including Devoxx and JavaOne—for more than 800,000 unique visitors. Student Nokia Developer Group This year’s student winner, Ram Kashyap, is the founder and president of the Nokia Student Network, and was profiled in the “The New Java Developers” feature in the March/April 2012 issue of Java Magazine. Since then, Ram has maintained a hectic pace, graduating from the People’s Education Society Institute of Technology in Bangalore, India, while working on a Java mobile startup and training students on Java ME. United Nations High Commissioner for Refugees The United Nations High Commissioner for Refugees (UNHCR) is on the front lines of crises around the world, from civil wars to natural disasters. To help facilitate its mission of humanitarian relief, the UNHCR has developed a light-client Java application on the NetBeans platform. The Level One registration tool enables the UNHCR to collect information on the number of refugees and their water, food, housing, health, and other needs in the field, and combines that with geocoding information from various sources. This enables the UNHCR to deliver the appropriate kind and amount of assistance where it is needed. You can read more about the winners in the current issue of Java Magazine.

    Read the article

  • Getting Started with StreamInsight 2.1

    - by Roman Schindlauer
    If you're just beginning to get familiar with StreamInsight, you may be looking for a way to get started. What are the basics? How can I get my first StreamInsight application running so I can see how it works? Where is the 'front door' that will get me going? If that describes you, then this blog entry might be just what you need. If you're already a StreamInsight wiz, keep reading anyway - you may find some helpful links here that you weren't aware of. But here's what we'd like from you experienced readers in particular: if you know of other good resources that we missed, please feel free to add them in the comments below. We appreciate you sharing your expertise. The Book The basic documentation for StreamInsight is located in the MSDN Library (Microsoft StreamInsight 2.1). You'll notice that previous versions of StreamInsight are still there (1.2 and 2.0), but if you're just getting started you can stick to the 2.1 section. The documentation has been organized to function as reference material, which is fine after you're familiar with the technology. But if you're trying to learn the basics, you might want to take a different path instead of just starting at the top. The following is one map you can use. What Is StreamInsight? Here is a sequence of topics that should give you a good overview of what StreamInsight is and how it works: Overview answers the question, "what is it?" StreamInsight Server Architecture gives you a quick look at a high-level architectural drawing StreamInsight Concepts lays out an overview of the basic components Deploying StreamInsight Entities to a StreamInsight Server describes the mechanics of how these components work together Getting an Example Running Once you have this background, go ahead and install StreamInsight and get a basic example up and running: Installation download and install the software StreamInsight Examples walk through a set of 3 simple StreamInsight applications that work together to demonstrate what you learned in the topics above; you can copy and paste the code into Visual Studio, compile, and run That's it - you now have a real, functioning StreamInsight system! Now that you have a handle on the basics, you might want to start digging deeper. Digging Deeper Here's a suggested path through the documentation to help you understand the next layer of StreamInsight technologies: Using Event Sources and Event Sinks sources supply data and sinks consume it; this topic gives you an overview of how they work Publishing and Connecting to the StreamInsight Server practical details on how to set up a StreamInsight server A Hitchhiker’s Guide to StreamInsight 2.1 Queries queries are the heart of how StreamInsight performs data analytics, and this whitepaper will help you really understand how they work Using StreamInsight LINQ root through this section for technical details on specific query components Using the StreamInsight Event Flow Debugger in addition to troubleshooting, the debugger is a great way to learn more about what goes on inside a StreamInsight application And Even Deeper Finally, to get a handle on some of the more complex things you can do with StreamInsight, dig into these: Input and Output Adapters adapters can be useful for handling more complex sources and sinks Building Resilient StreamInsight Applications a resilient application is able to recover from system failures Operations this section will help you monitor and troubleshoot a running StreamInsight system The StreamInsight Community As you're designing and developing your StreamInsight solutions, you probably will find it helpful to see working examples or to learn tips and tricks from others. Or maybe you need a place to post a vexing question. Here are some community resources that we have found useful. If you know of others, please add them in the comments below. Code samples and tools Official StreamInsight code samples Introduction to LinqPad Driver for StreamInsight 2.1 - LinqPad is a very useful tool for developing queries The following case studies are based on earlier versions of StreamInsight, but they still are useful examples: Microsoft Media Analytics - real-time monitoring and analytic Edgenet - responding to information from multiple source ICONICS - managing energy usage Blogs Microsoft StreamInsight Ruminations of J.net Richard Seroter's Architecture Musings pluralsight Forums MSDN StreamInsight Forum stackoverflow Training Microsoft StreamInsight Fundamentals (“Introducing StreamInsight” is free) from pluralsight Twitter @streaminsight   You’re a StreamInsight Expert That should get you going. Please add any other resources you have found useful in the comments below.   Regards, The StreamInsight Team

    Read the article

  • Upgrades in 5 Easy Pieces

    - by Anne R.
    Even though there are a few select tasks that I have to do once or twice a year, I can’t remember how to do them! Or where to find the bits and pieces to complete the task. So I love it when someone consolidates everything under one spot. That’s what the CRM On Demand team has done with the upgrade information. Specifically, they have: Provided a “one-stop” area for managing upgrades at your company. Broken down the upgrade process into 5 (yes, 5) steps. Explained when and how to perform each step with dates specific to your pod. Included details about each step, visible by expanding the step. Translated the steps into 11 languages. Added a list of release-specific resources with links from the page. Now, just head for the Training and Support portal, click the Release Info tab, and walk through the “5 Essential Steps to a Successful Upgrade.” Before you continue, though, select your language from the drop-down list on the Release Info page. CRM On Demand now has the upgrade steps translated into 11 languages. On the Step page, you can expand each section in sequence and follow the more detailed instructions that appear. This will ensure that you’ve covered all your bases for each upgrade. Here’s a shortened version of the information that you’ll find: 1. Verify your Primary Contact Information. Have you checked your primary contact information to make sure you’re being notified of all upgrade information? Or do you want more users to receive upgrade announcements? This section provides you with the navigation path to do that in CRM On Demand. 2. Review your Key Upgrade Dates. If you expand this step, a nice table appears with your critical dates for the various milestones. IMPORTANT: When your CRM On Demand pod has been officially added to the upgrade schedule, closer to the release date itself, this table will display your specific timetable. 3. Migrate your Customizations from the Staging Environment before the Snapshot Date. Oracle refreshes the Staging data with a copy of your Production data made on the Production Snapshot Date. So this section lists considerations relevant to this step. It also reminds you of the 2-week period when you should not be making any changes in your Staging environment.   4. Conduct your Upgrade Validation on the Staging Environment. When the Customer Validation Testing period begins, you need to log in to your Staging Environment to validate that your key business processes and customizations continue to behave as expected. If your company utilizes Web Services, Web Links, Web Applets or Workflow, focus on testing these first. You generally have about two weeks for testing. If you run into problems during this time, follow the instructions shown in this section for logging a service request. It describes exactly how to fill out the fields in the SR for the fastest resolution. 5. Conduct "White Glove" Testing in your Upgraded Production Environment. Before users start using the upgrade, you should access a few tabs and reports. Doing this actually warms up the cache so that frequently used pages and reports will come up at normal speed on Monday morning, when users log in to the upgraded system. Resources listed under this step help you in further preparing for the upgrade. Now there’s also a new Documentation section on the right with links to these release-specific resources.   Very nice, I commented, when discussing these improvements with the “responsible party.” She confirmed that, yes, they tried to consolidate the upgrade information, translate it for better communication, simplify it into 5 easy pieces, and drive admins responsible for handling upgrades to this one site instead of sending out elaborate emails. Yes, I just love it when someone practically reaches out and holds my hand through a process. Next best thing to a wizard!

    Read the article

< Previous Page | 149 150 151 152 153 154 155 156 157 158 159 160  | Next Page >