Search Results

Search found 11003 results on 441 pages for 'usb storage'.

Page 155/441 | < Previous Page | 151 152 153 154 155 156 157 158 159 160 161 162  | Next Page >

  • How to read external USB hard drive formatted ext3 from Windows 7?

    - by CChriss
    I had to format a USB hard drive to ext3 to use it with a Linksys nas box. Now I can't read the hd when I unplug it from the nas and plug it directly into my Windows 7 computer. (The computer accesses the nas over a wireless connection, so I like to plug the hd directly into my pc when transferring large files.) How can I leave the hd formatted with ext3 and yet be able to access it (read/write) when I plug it directly into my pc?

    Read the article

  • What kind of storage with two-way replication for multi site C# application?

    - by twk
    Hi I have a web-based system written using asp.net backed by mssql. A synchronized replica of this system is to be run on mobile locations and must be available regardless of the state of the connection to the main system (few hours long interruptions happens). For now I am using a copy of the main web application and a copy of the mssql server with merge replication to the main system. This works unreliably, and setting the replication is a pain. The amount of data the system contains is not huge, so I can migrate to different storage type. For the new version of this system I would like to implement a new replication system. I am considering migration to db4o for storage with it's replication support. I am thinking about other possible solutions like couchdb which had native replication support. I would like to stay with C#. Could you recommend a way to go for such a distributed environment? PS. Master-Slave replication is not an option: any side must be allowed to add/update data.

    Read the article

  • How to design data storage for partitioned tagging system?

    - by Morgan Cheng
    How to design data storage for huge tagging system (like digg or delicious)? There is already discussion about it, but it is about centralized database. Since the data is supposed to grow, we'll need to partition the data into multiple shards soon or later. So, the question turns to be: How to design data storage for partitioned tagging system? The tagging system basically has 3 tables: Item (item_id, item_content) Tag (tag_id, tag_title) TagMapping(map_id, tag_id, item_id) That works fine for finding all items for given tag and finding all tags for given item, if the table is stored in one database instance. If we need to partition the data into multiple database instances, it is not that easy. For table Item, we can partition its content with its key item_id. For table Tag, we can partition its content with its key tag_id. For example, we want to partition table Tag into K databases. We can simply choose number (tag_id % K) database to store given tag. But, how to partition table TagMapping? The TagMapping table represents the many-to-many relationship. I can only image to have duplication. That is, same content of TagMappping has two copies. One is partitioned with tag_id and the other is partitioned with item_id. In scenario to find tags for given item, we use partition with tag_id. If scenario to find items for given tag, we use partition with item_id. As a result, there is data redundancy. And, the application level should keep the consistency of all tables. It looks hard. Is there any better solution to solve this many-to-many partition problem?

    Read the article

  • Are C++ exceptions sufficient to implement thread-local storage?

    - by Potatoswatter
    I was commenting on an answer that thread-local storage is nice and recalled another informative discussion about exceptions where I supposed The only special thing about the execution environment within the throw block is that the exception object is referenced by rethrow. Putting two and two together, wouldn't executing an entire thread inside a function-catch-block of its main function imbue it with thread-local storage? It seems to work fine: #include <iostream> #include <pthread.h> using namespace std; struct thlocal { string name; thlocal( string const &n ) : name(n) {} }; thlocal &get_thread() { try { throw; } catch( thlocal &local ) { return local; } } void print_thread() { cerr << get_thread().name << endl; } void *kid( void *local_v ) try { thlocal &local = * static_cast< thlocal * >( local_v ); throw local; } catch( thlocal & ) { print_thread(); return NULL; } int main() try { thlocal local( "main" ); throw local; } catch( thlocal & ) { print_thread(); pthread_t th; thlocal kid_local( "kid" ); pthread_create( &th, NULL, &kid, &kid_local ); pthread_join( th, NULL ); print_thread(); return 0; } Is this novel or well-characterized? Was my initial premise correct? What kind of overhead does get_thread incur in, say, GCC and VC++? It would require throwing only exceptions derived from struct thlocal, but altogether this doesn't feel like an unproductive insomnia-ridden Sunday morning…

    Read the article

  • write a batch file to copy files from one folder to another folder

    - by user73628
    I am having a storage folder on network in which all users will store their active data on a server now that server is going to be replaced by new one due to place problem so I need to copy sub folders files from the old server storage folder to new server storage folder. I have below ex: from \Oldeserver\storage\data & files to \New server\storage\data & files.

    Read the article

  • Oracle Systems and Solutions at OpenWorld Tokyo 2012

    - by ferhat
    Oracle OpenWorld Tokyo and JavaOne Tokyo will start next week April 4th. We will cover Oracle systems and Oracle Optimized Solutions in several keynote talks and general sessions. Full schedule can be found here. Come by the DemoGrounds to learn more about mission critical integration and optimization of complete Oracle stack. Our Oracle Optimized Solutions experts will be at hand to discuss 1-1 several of Oracle's systems solutions and technologies. Oracle Optimized Solutions are proven blueprints that eliminate integration guesswork by combing best in class hardware and software components to deliver complete system architectures that are fully tested, and include documented best practices that reduce integration risks and deliver better application performance. And because they are highly flexible by design, Oracle Optimized Solutions can be implemented as an end-to-end solution or easily adapted into existing environments. Oracle Optimized Solutions, Servers,  Storage, and Oracle Solaris  Sessions, Keynotes, and General Session Talks DAY TIME TITLE Notes Session Wednesday  April 4 9:00 - 11:15 Keynote: ENGINEERED FOR INNOVATION - Engineered Systems Mark Hurd,  President, Oracle Takao Endo, President & CEO, Oracle Corporation Japan John Fowler, EVP of Systems, Oracle Ed Screven, Chief Corporate Architect, Oracle English Session K1-01 11:50 - 12:35 Simplifying IT: Transforming the Data Center with Oracle's Engineered Systems Robert Shimp, Group VP, Product Marketing, Oracle English Session S1-01 15:20 - 16:05 Introducing Tiered Storage Solution for low cost Big Data Archiving S1-33 16:30 - 17:15 Simplifying IT - IT System Consolidation that also Accelerates Business Agility S1-42 Thursday  April 5 9:30 - 11:15 Keynote: Extreme Innovation Larry Ellison, Chief Executive Officer, Oracle English Session K2-01 11:50 - 13:20 General Session: Server and Storage Systems Strategy John Fowler, EVP of Systems, Oracle English Session G2-01 16:30 - 17:15 Top 5 Reasons why ZFS Storage appliance is "The cloud storage" by SAKURA Internet Inc L2-04 16:30 - 17:15 The UNIX based Exa* Performance IT Integration Platform - SPARC SuperCluster S2-42 17:40 - 18:25 Full stack solutions of hardware and software with SPARC SuperCluster and Oracle E-Business Suite  to minimize the business cost while maximizing the agility, performance, and availability S2-53 Friday April 6 9:30 - 11:15 Keynote: Oracle Fusion Applications & Cloud Robert Shimp, Group VP, Product Marketing Anthony Lye, Senior VP English Session K3-01 11:50 - 12:35 IT at Oracle: The Art of IT Transformation to Enable Business Growth English Session S3-02 13:00-13:45 ZFS Storagge Appliance: Architecture of high efficient and high performance S3-13 14:10 - 14:55 Why "Niko Niko doga" chose ZFS Storage Appliance to support their growing requirements and storage infrastructure By DWANGO Co, Ltd. S3-21 15:20 - 16:05 Osaka University: Lower TCO and higher flexibility for student study by Virtual Desktop By Osaka University S3-33 Oracle Developer Sessions with Oracle Systems and Oracle Solaris DAY TIME TITLE Notes LOCATION Friday April 6 13:00 - 13:45 Oracle Solaris 11 Developers D3-03 13:00 - 14:30 Oracle Solaris Tuning Contest Hands-On Lab D3-04 14:00 - 14:35 How to build high performance and high security Oracle Database environment with Oracle SPARC/Solaris English Session D3-13 15:00 - 15:45 IT Assets preservation and constructive migration with Oracle Solaris virtualization D3-24 16:00 - 17:30 The best packaging system for cloud environment - Creating an IPS package D3-34 Follow Oracle Infrared at Twitter, Facebook, Google+, and LinkedIn  to catch the latest news, developments, announcements, and inside views from  Oracle Optimized Solutions.

    Read the article

  • vga_switcheroo and Intel HD 3000 on Ubuntu 12.04

    - by Ikalou
    I'm trying to get vga_switcheroo to enable my integrated Intel HD 3000 instead of my ATI card. My problem is that there is no vgaswitcheroo directory in /sys/kernel/debug/ on my system. > grep -i switcheroo /boot/config-3.2.0-26-generic CONFIG_VGA_SWITCHEROO=y And yet: > sudo ls /sys/kernel/debug/ acpi bdi bluetooth dri extfrag gpio ieee80211 kprobes mce mmc0 regmap regulator sched_features suspend_stats tracing usb wakeup_sources x86 I am NOT using the fglrx driver. Here is the output of lspci; glxinfo | grep renderer: 00:00.0 Host bridge: Intel Corporation 2nd Generation Core Processor Family DRAM Controller (rev 09) 00:01.0 PCI bridge: Intel Corporation Xeon E3-1200/2nd Generation Core Processor Family PCI Express Root Port (rev 09) 00:16.0 Communication controller: Intel Corporation 6 Series/C200 Series Chipset Family MEI Controller #1 (rev 04) 00:19.0 Ethernet controller: Intel Corporation 82579LM Gigabit Network Connection (rev 04) 00:1a.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #2 (rev 04) 00:1b.0 Audio device: Intel Corporation 6 Series/C200 Series Chipset Family High Definition Audio Controller (rev 04) 00:1c.0 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 1 (rev b4) 00:1c.1 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 2 (rev b4) 00:1c.2 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 3 (rev b4) 00:1c.3 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 4 (rev b4) 00:1c.7 PCI bridge: Intel Corporation 6 Series/C200 Series Chipset Family PCI Express Root Port 8 (rev b4) 00:1d.0 USB controller: Intel Corporation 6 Series/C200 Series Chipset Family USB Enhanced Host Controller #1 (rev 04) 00:1f.0 ISA bridge: Intel Corporation QM67 Express Chipset Family LPC Controller (rev 04) 00:1f.2 SATA controller: Intel Corporation 6 Series/C200 Series Chipset Family 6 port SATA AHCI Controller (rev 04) 01:00.0 VGA compatible controller: Advanced Micro Devices [AMD] nee ATI Seymour [Radeon HD 6400M Series] 01:00.1 Audio device: Advanced Micro Devices [AMD] nee ATI Caicos HDMI Audio [Radeon HD 6400 Series] 24:00.0 FireWire (IEEE 1394): JMicron Technology Corp. IEEE 1394 Host Controller (rev 30) 24:00.1 System peripheral: JMicron Technology Corp. SD/MMC Host Controller (rev 30) 24:00.2 SD Host controller: JMicron Technology Corp. Standard SD Host Controller (rev 30) 25:00.0 Network controller: Intel Corporation Centrino Advanced-N 6205 (rev 34) 26:00.0 USB controller: NEC Corporation uPD720200 USB 3.0 Host Controller (rev 04) OpenGL renderer string: Gallium 0.4 on AMD CAICOS Both xserver-xorg-video-intel and xserver-xorg-video-radeon packages are installed. I know there are tons of posts about hybrid-graphics already but I couldn't quite find a solution to my problem. Does anyone know why is /sys/kernel/debug/vgaswitcheroo not showing?

    Read the article

  • Wired connection not being recognized

    - by maxifick
    I'm on Ubuntu Maverick (10.10). I've read a few threads regarding wired connection problems, but haven't found a solution yet. The problem appears after I connect to a wireless network. When I disconnect wireless and plug in an internet cable, the wired connection is not recognized at all. Even the socket appears dead (there are no diodes flashing). The only solution so far seems to be restarting the computer. Network Manager then tries to connect to a Wi-Fi, but the wired connection is listed and working. I've tried sudo restart network-manager, but that doesn't solve anything. After a while, available wireless networks start appearing, but the wired still doesn't. Any ideas? Thanks in advance. Edit: Here is the dmesg output after switching off Wi-Fi and then plugging the internet cable. [18200.623543] Restarting tasks ... done. [18200.648422] video LNXVIDEO:00: Restoring backlight state [18200.707580] sky2 0000:02:00.0: eth0: phy I/O error [18200.707715] sky2 0000:02:00.0: eth0: phy I/O error [18200.707819] sky2 0000:02:00.0: eth0: phy I/O error [18200.707922] sky2 0000:02:00.0: eth0: phy I/O error [18200.708025] sky2 0000:02:00.0: eth0: phy I/O error [18200.708127] sky2 0000:02:00.0: eth0: phy I/O error [18200.708229] sky2 0000:02:00.0: eth0: phy I/O error [18200.708332] sky2 0000:02:00.0: eth0: phy I/O error [18200.708824] sky2 0000:02:00.0: eth0: enabling interface [18200.709587] ADDRCONF(NETDEV_UP): eth0: link is not ready [18202.662422] EXT4-fs (sda9): re-mounted. Opts: errors=remount-ro,user_xattr,commit=0 [18203.324061] EXT4-fs (sda9): re-mounted. Opts: errors=remount-ro,user_xattr,commit=0 [18211.193137] eth1: no IPv6 routers present [18212.844649] usb 5-1: new low speed USB device using ohci_hcd and address 5 [18213.017235] input: USB Optical Mouse as /devices/pci0000:00/0000:00:13.0/usb5/5-1/5-1:1.0/input/input16 [18213.017499] generic-usb 0003:0461:4D17.0004: input,hidraw0: USB HID v1.11 Mouse [USB Optical Mouse] on usb-0000:00:13.0-1/input0 After system restart, dmesg says this: [ 19.802126] sky2 0000:02:00.0: eth0: enabling interface [ 19.802394] ADDRCONF(NETDEV_UP): eth0: link is not ready [ 20.812533] device eth0 entered promiscuous mode [ 21.495547] sky2 0000:02:00.0: eth0: Link is up at 100 Mbps, full duplex, flow control rx [ 21.495677] sky2 0000:02:00.0: eth0: Link is up at 100 Mbps, full duplex, flow control rx [ 21.496574] ADDRCONF(NETDEV_CHANGE): eth0: link becomes ready

    Read the article

  • 256 Windows Azure Worker Roles, Windows Kinect and a 90's Text-Based Ray-Tracer

    - by Alan Smith
    For a couple of years I have been demoing a simple render farm hosted in Windows Azure using worker roles and the Azure Storage service. At the start of the presentation I deploy an Azure application that uses 16 worker roles to render a 1,500 frame 3D ray-traced animation. At the end of the presentation, when the animation was complete, I would play the animation delete the Azure deployment. The standing joke with the audience was that it was that it was a “$2 demo”, as the compute charges for running the 16 instances for an hour was $1.92, factor in the bandwidth charges and it’s a couple of dollars. The point of the demo is that it highlights one of the great benefits of cloud computing, you pay for what you use, and if you need massive compute power for a short period of time using Windows Azure can work out very cost effective. The “$2 demo” was great for presenting at user groups and conferences in that it could be deployed to Azure, used to render an animation, and then removed in a one hour session. I have always had the idea of doing something a bit more impressive with the demo, and scaling it from a “$2 demo” to a “$30 demo”. The challenge was to create a visually appealing animation in high definition format and keep the demo time down to one hour.  This article will take a run through how I achieved this. Ray Tracing Ray tracing, a technique for generating high quality photorealistic images, gained popularity in the 90’s with companies like Pixar creating feature length computer animations, and also the emergence of shareware text-based ray tracers that could run on a home PC. In order to render a ray traced image, the ray of light that would pass from the view point must be tracked until it intersects with an object. At the intersection, the color, reflectiveness, transparency, and refractive index of the object are used to calculate if the ray will be reflected or refracted. Each pixel may require thousands of calculations to determine what color it will be in the rendered image. Pin-Board Toys Having very little artistic talent and a basic understanding of maths I decided to focus on an animation that could be modeled fairly easily and would look visually impressive. I’ve always liked the pin-board desktop toys that become popular in the 80’s and when I was working as a 3D animator back in the 90’s I always had the idea of creating a 3D ray-traced animation of a pin-board, but never found the energy to do it. Even if I had a go at it, the render time to produce an animation that would look respectable on a 486 would have been measured in months. PolyRay Back in 1995 I landed my first real job, after spending three years being a beach-ski-climbing-paragliding-bum, and was employed to create 3D ray-traced animations for a CD-ROM that school kids would use to learn physics. I had got into the strange and wonderful world of text-based ray tracing, and was using a shareware ray-tracer called PolyRay. PolyRay takes a text file describing a scene as input and, after a few hours processing on a 486, produced a high quality ray-traced image. The following is an example of a basic PolyRay scene file. background Midnight_Blue   static define matte surface { ambient 0.1 diffuse 0.7 } define matte_white texture { matte { color white } } define matte_black texture { matte { color dark_slate_gray } } define position_cylindrical 3 define lookup_sawtooth 1 define light_wood <0.6, 0.24, 0.1> define median_wood <0.3, 0.12, 0.03> define dark_wood <0.05, 0.01, 0.005>     define wooden texture { noise surface { ambient 0.2  diffuse 0.7  specular white, 0.5 microfacet Reitz 10 position_fn position_cylindrical position_scale 1  lookup_fn lookup_sawtooth octaves 1 turbulence 1 color_map( [0.0, 0.2, light_wood, light_wood] [0.2, 0.3, light_wood, median_wood] [0.3, 0.4, median_wood, light_wood] [0.4, 0.7, light_wood, light_wood] [0.7, 0.8, light_wood, median_wood] [0.8, 0.9, median_wood, light_wood] [0.9, 1.0, light_wood, dark_wood]) } } define glass texture { surface { ambient 0 diffuse 0 specular 0.2 reflection white, 0.1 transmission white, 1, 1.5 }} define shiny surface { ambient 0.1 diffuse 0.6 specular white, 0.6 microfacet Phong 7  } define steely_blue texture { shiny { color black } } define chrome texture { surface { color white ambient 0.0 diffuse 0.2 specular 0.4 microfacet Phong 10 reflection 0.8 } }   viewpoint {     from <4.000, -1.000, 1.000> at <0.000, 0.000, 0.000> up <0, 1, 0> angle 60     resolution 640, 480 aspect 1.6 image_format 0 }       light <-10, 30, 20> light <-10, 30, -20>   object { disc <0, -2, 0>, <0, 1, 0>, 30 wooden }   object { sphere <0.000, 0.000, 0.000>, 1.00 chrome } object { cylinder <0.000, 0.000, 0.000>, <0.000, 0.000, -4.000>, 0.50 chrome }   After setting up the background and defining colors and textures, the viewpoint is specified. The “camera” is located at a point in 3D space, and it looks towards another point. The angle, image resolution, and aspect ratio are specified. Two lights are present in the image at defined coordinates. The three objects in the image are a wooden disc to represent a table top, and a sphere and cylinder that intersect to form a pin that will be used for the pin board toy in the final animation. When the image is rendered, the following image is produced. The pins are modeled with a chrome surface, so they reflect the environment around them. Note that the scale of the pin shaft is not correct, this will be fixed later. Modeling the Pin Board The frame of the pin-board is made up of three boxes, and six cylinders, the front box is modeled using a clear, slightly reflective solid, with the same refractive index of glass. The other shapes are modeled as metal. object { box <-5.5, -1.5, 1>, <5.5, 5.5, 1.2> glass } object { box <-5.5, -1.5, -0.04>, <5.5, 5.5, -0.09> steely_blue } object { box <-5.5, -1.5, -0.52>, <5.5, 5.5, -0.59> steely_blue } object { cylinder <-5.2, -1.2, 1.4>, <-5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, -1.2, 1.4>, <5.2, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <-5.2, 5.2, 1.4>, <-5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <5.2, 5.2, 1.4>, <5.2, 5.2, -0.74>, 0.2 steely_blue } object { cylinder <0, -1.2, 1.4>, <0, -1.2, -0.74>, 0.2 steely_blue } object { cylinder <0, 5.2, 1.4>, <0, 5.2, -0.74>, 0.2 steely_blue }   In order to create the matrix of pins that make up the pin board I used a basic console application with a few nested loops to create two intersecting matrixes of pins, which models the layout used in the pin boards. The resulting image is shown below. The pin board contains 11,481 pins, with the scene file containing 23,709 lines of code. For the complete animation 2,000 scene files will be created, which is over 47 million lines of code. Each pin in the pin-board will slide out a specific distance when an object is pressed into the back of the board. This is easily modeled by setting the Z coordinate of the pin to a specific value. In order to set all of the pins in the pin-board to the correct position, a bitmap image can be used. The position of the pin can be set based on the color of the pixel at the appropriate position in the image. When the Windows Azure logo is used to set the Z coordinate of the pins, the following image is generated. The challenge now was to make a cool animation. The Azure Logo is fine, but it is static. Using a normal video to animate the pins would not work; the colors in the video would not be the same as the depth of the objects from the camera. In order to simulate the pin board accurately a series of frames from a depth camera could be used. Windows Kinect The Kenect controllers for the X-Box 360 and Windows feature a depth camera. The Kinect SDK for Windows provides a programming interface for Kenect, providing easy access for .NET developers to the Kinect sensors. The Kinect Explorer provided with the Kinect SDK is a great starting point for exploring Kinect from a developers perspective. Both the X-Box 360 Kinect and the Windows Kinect will work with the Kinect SDK, the Windows Kinect is required for commercial applications, but the X-Box Kinect can be used for hobby projects. The Windows Kinect has the advantage of providing a mode to allow depth capture with objects closer to the camera, which makes for a more accurate depth image for setting the pin positions. Creating a Depth Field Animation The depth field animation used to set the positions of the pin in the pin board was created using a modified version of the Kinect Explorer sample application. In order to simulate the pin board accurately, a small section of the depth range from the depth sensor will be used. Any part of the object in front of the depth range will result in a white pixel; anything behind the depth range will be black. Within the depth range the pixels in the image will be set to RGB values from 0,0,0 to 255,255,255. A screen shot of the modified Kinect Explorer application is shown below. The Kinect Explorer sample application was modified to include slider controls that are used to set the depth range that forms the image from the depth stream. This allows the fine tuning of the depth image that is required for simulating the position of the pins in the pin board. The Kinect Explorer was also modified to record a series of images from the depth camera and save them as a sequence JPEG files that will be used to animate the pins in the animation the Start and Stop buttons are used to start and stop the image recording. En example of one of the depth images is shown below. Once a series of 2,000 depth images has been captured, the task of creating the animation can begin. Rendering a Test Frame In order to test the creation of frames and get an approximation of the time required to render each frame a test frame was rendered on-premise using PolyRay. The output of the rendering process is shown below. The test frame contained 23,629 primitive shapes, most of which are the spheres and cylinders that are used for the 11,800 or so pins in the pin board. The 1280x720 image contains 921,600 pixels, but as anti-aliasing was used the number of rays that were calculated was 4,235,777, with 3,478,754,073 object boundaries checked. The test frame of the pin board with the depth field image applied is shown below. The tracing time for the test frame was 4 minutes 27 seconds, which means rendering the2,000 frames in the animation would take over 148 hours, or a little over 6 days. Although this is much faster that an old 486, waiting almost a week to see the results of an animation would make it challenging for animators to create, view, and refine their animations. It would be much better if the animation could be rendered in less than one hour. Windows Azure Worker Roles The cost of creating an on-premise render farm to render animations increases in proportion to the number of servers. The table below shows the cost of servers for creating a render farm, assuming a cost of $500 per server. Number of Servers Cost 1 $500 16 $8,000 256 $128,000   As well as the cost of the servers, there would be additional costs for networking, racks etc. Hosting an environment of 256 servers on-premise would require a server room with cooling, and some pretty hefty power cabling. The Windows Azure compute services provide worker roles, which are ideal for performing processor intensive compute tasks. With the scalability available in Windows Azure a job that takes 256 hours to complete could be perfumed using different numbers of worker roles. The time and cost of using 1, 16 or 256 worker roles is shown below. Number of Worker Roles Render Time Cost 1 256 hours $30.72 16 16 hours $30.72 256 1 hour $30.72   Using worker roles in Windows Azure provides the same cost for the 256 hour job, irrespective of the number of worker roles used. Provided the compute task can be broken down into many small units, and the worker role compute power can be used effectively, it makes sense to scale the application so that the task is completed quickly, making the results available in a timely fashion. The task of rendering 2,000 frames in an animation is one that can easily be broken down into 2,000 individual pieces, which can be performed by a number of worker roles. Creating a Render Farm in Windows Azure The architecture of the render farm is shown in the following diagram. The render farm is a hybrid application with the following components: ·         On-Premise o   Windows Kinect – Used combined with the Kinect Explorer to create a stream of depth images. o   Animation Creator – This application uses the depth images from the Kinect sensor to create scene description files for PolyRay. These files are then uploaded to the jobs blob container, and job messages added to the jobs queue. o   Process Monitor – This application queries the role instance lifecycle table and displays statistics about the render farm environment and render process. o   Image Downloader – This application polls the image queue and downloads the rendered animation files once they are complete. ·         Windows Azure o   Azure Storage – Queues and blobs are used for the scene description files and completed frames. A table is used to store the statistics about the rendering environment.   The architecture of each worker role is shown below.   The worker role is configured to use local storage, which provides file storage on the worker role instance that can be use by the applications to render the image and transform the format of the image. The service definition for the worker role with the local storage configuration highlighted is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceDefinition name="CloudRay" >   <WorkerRole name="CloudRayWorkerRole" vmsize="Small">     <Imports>     </Imports>     <ConfigurationSettings>       <Setting name="DataConnectionString" />     </ConfigurationSettings>     <LocalResources>       <LocalStorage name="RayFolder" cleanOnRoleRecycle="true" />     </LocalResources>   </WorkerRole> </ServiceDefinition>     The two executable programs, PolyRay.exe and DTA.exe are included in the Azure project, with Copy Always set as the property. PolyRay will take the scene description file and render it to a Truevision TGA file. As the TGA format has not seen much use since the mid 90’s it is converted to a JPG image using Dave's Targa Animator, another shareware application from the 90’s. Each worker roll will use the following process to render the animation frames. 1.       The worker process polls the job queue, if a job is available the scene description file is downloaded from blob storage to local storage. 2.       PolyRay.exe is started in a process with the appropriate command line arguments to render the image as a TGA file. 3.       DTA.exe is started in a process with the appropriate command line arguments convert the TGA file to a JPG file. 4.       The JPG file is uploaded from local storage to the images blob container. 5.       A message is placed on the images queue to indicate a new image is available for download. 6.       The job message is deleted from the job queue. 7.       The role instance lifecycle table is updated with statistics on the number of frames rendered by the worker role instance, and the CPU time used. The code for this is shown below. public override void Run() {     // Set environment variables     string polyRayPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), PolyRayLocation);     string dtaPath = Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), DTALocation);       LocalResource rayStorage = RoleEnvironment.GetLocalResource("RayFolder");     string localStorageRootPath = rayStorage.RootPath;       JobQueue jobQueue = new JobQueue("renderjobs");     JobQueue downloadQueue = new JobQueue("renderimagedownloadjobs");     CloudRayBlob sceneBlob = new CloudRayBlob("scenes");     CloudRayBlob imageBlob = new CloudRayBlob("images");     RoleLifecycleDataSource roleLifecycleDataSource = new RoleLifecycleDataSource();       Frames = 0;       while (true)     {         // Get the render job from the queue         CloudQueueMessage jobMsg = jobQueue.Get();           if (jobMsg != null)         {             // Get the file details             string sceneFile = jobMsg.AsString;             string tgaFile = sceneFile.Replace(".pi", ".tga");             string jpgFile = sceneFile.Replace(".pi", ".jpg");               string sceneFilePath = Path.Combine(localStorageRootPath, sceneFile);             string tgaFilePath = Path.Combine(localStorageRootPath, tgaFile);             string jpgFilePath = Path.Combine(localStorageRootPath, jpgFile);               // Copy the scene file to local storage             sceneBlob.DownloadFile(sceneFilePath);               // Run the ray tracer.             string polyrayArguments =                 string.Format("\"{0}\" -o \"{1}\" -a 2", sceneFilePath, tgaFilePath);             Process polyRayProcess = new Process();             polyRayProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), polyRayPath);             polyRayProcess.StartInfo.Arguments = polyrayArguments;             polyRayProcess.Start();             polyRayProcess.WaitForExit();               // Convert the image             string dtaArguments =                 string.Format(" {0} /FJ /P{1}", tgaFilePath, Path.GetDirectoryName (jpgFilePath));             Process dtaProcess = new Process();             dtaProcess.StartInfo.FileName =                 Path.Combine(Environment.GetEnvironmentVariable("RoleRoot"), dtaPath);             dtaProcess.StartInfo.Arguments = dtaArguments;             dtaProcess.Start();             dtaProcess.WaitForExit();               // Upload the image to blob storage             imageBlob.UploadFile(jpgFilePath);               // Add a download job.             downloadQueue.Add(jpgFile);               // Delete the render job message             jobQueue.Delete(jobMsg);               Frames++;         }         else         {             Thread.Sleep(1000);         }           // Log the worker role activity.         roleLifecycleDataSource.Alive             ("CloudRayWorker", RoleLifecycleDataSource.RoleLifecycleId, Frames);     } }     Monitoring Worker Role Instance Lifecycle In order to get more accurate statistics about the lifecycle of the worker role instances used to render the animation data was tracked in an Azure storage table. The following class was used to track the worker role lifecycles in Azure storage.   public class RoleLifecycle : TableServiceEntity {     public string ServerName { get; set; }     public string Status { get; set; }     public DateTime StartTime { get; set; }     public DateTime EndTime { get; set; }     public long SecondsRunning { get; set; }     public DateTime LastActiveTime { get; set; }     public int Frames { get; set; }     public string Comment { get; set; }       public RoleLifecycle()     {     }       public RoleLifecycle(string roleName)     {         PartitionKey = roleName;         RowKey = Utils.GetAscendingRowKey();         Status = "Started";         StartTime = DateTime.UtcNow;         LastActiveTime = StartTime;         EndTime = StartTime;         SecondsRunning = 0;         Frames = 0;     } }     A new instance of this class is created and added to the storage table when the role starts. It is then updated each time the worker renders a frame to record the total number of frames rendered and the total processing time. These statistics are used be the monitoring application to determine the effectiveness of use of resources in the render farm. Rendering the Animation The Azure solution was deployed to Windows Azure with the service configuration set to 16 worker role instances. This allows for the application to be tested in the cloud environment, and the performance of the application determined. When I demo the application at conferences and user groups I often start with 16 instances, and then scale up the application to the full 256 instances. The configuration to run 16 instances is shown below. <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="16" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     About six minutes after deploying the application the first worker roles become active and start to render the first frames of the animation. The CloudRay Monitor application displays an icon for each worker role instance, with a number indicating the number of frames that the worker role has rendered. The statistics on the left show the number of active worker roles and statistics about the render process. The render time is the time since the first worker role became active; the CPU time is the total amount of processing time used by all worker role instances to render the frames.   Five minutes after the first worker role became active the last of the 16 worker roles activated. By this time the first seven worker roles had each rendered one frame of the animation.   With 16 worker roles u and running it can be seen that one hour and 45 minutes CPU time has been used to render 32 frames with a render time of just under 10 minutes.     At this rate it would take over 10 hours to render the 2,000 frames of the full animation. In order to complete the animation in under an hour more processing power will be required. Scaling the render farm from 16 instances to 256 instances is easy using the new management portal. The slider is set to 256 instances, and the configuration saved. We do not need to re-deploy the application, and the 16 instances that are up and running will not be affected. Alternatively, the configuration file for the Azure service could be modified to specify 256 instances.   <?xml version="1.0" encoding="utf-8"?> <ServiceConfiguration serviceName="CloudRay" xmlns="http://schemas.microsoft.com/ServiceHosting/2008/10/ServiceConfiguration" osFamily="1" osVersion="*">   <Role name="CloudRayWorkerRole">     <Instances count="256" />     <ConfigurationSettings>       <Setting name="DataConnectionString"         value="DefaultEndpointsProtocol=https;AccountName=cloudraydata;AccountKey=..." />     </ConfigurationSettings>   </Role> </ServiceConfiguration>     Six minutes after the new configuration has been applied 75 new worker roles have activated and are processing their first frames.   Five minutes later the full configuration of 256 worker roles is up and running. We can see that the average rate of frame rendering has increased from 3 to 12 frames per minute, and that over 17 hours of CPU time has been utilized in 23 minutes. In this test the time to provision 140 worker roles was about 11 minutes, which works out at about one every five seconds.   We are now half way through the rendering, with 1,000 frames complete. This has utilized just under three days of CPU time in a little over 35 minutes.   The animation is now complete, with 2,000 frames rendered in a little over 52 minutes. The CPU time used by the 256 worker roles is 6 days, 7 hours and 22 minutes with an average frame rate of 38 frames per minute. The rendering of the last 1,000 frames took 16 minutes 27 seconds, which works out at a rendering rate of 60 frames per minute. The frame counts in the server instances indicate that the use of a queue to distribute the workload has been very effective in distributing the load across the 256 worker role instances. The first 16 instances that were deployed first have rendered between 11 and 13 frames each, whilst the 240 instances that were added when the application was scaled have rendered between 6 and 9 frames each.   Completed Animation I’ve uploaded the completed animation to YouTube, a low resolution preview is shown below. Pin Board Animation Created using Windows Kinect and 256 Windows Azure Worker Roles   The animation can be viewed in 1280x720 resolution at the following link: http://www.youtube.com/watch?v=n5jy6bvSxWc Effective Use of Resources According to the CloudRay monitor statistics the animation took 6 days, 7 hours and 22 minutes CPU to render, this works out at 152 hours of compute time, rounded up to the nearest hour. As the usage for the worker role instances are billed for the full hour, it may have been possible to render the animation using fewer than 256 worker roles. When deciding the optimal usage of resources, the time required to provision and start the worker roles must also be considered. In the demo I started with 16 worker roles, and then scaled the application to 256 worker roles. It would have been more optimal to start the application with maybe 200 worker roles, and utilized the full hour that I was being billed for. This would, however, have prevented showing the ease of scalability of the application. The new management portal displays the CPU usage across the worker roles in the deployment. The average CPU usage across all instances is 93.27%, with over 99% used when all the instances are up and running. This shows that the worker role resources are being used very effectively. Grid Computing Scenarios Although I am using this scenario for a hobby project, there are many scenarios where a large amount of compute power is required for a short period of time. Windows Azure provides a great platform for developing these types of grid computing applications, and can work out very cost effective. ·         Windows Azure can provide massive compute power, on demand, in a matter of minutes. ·         The use of queues to manage the load balancing of jobs between role instances is a simple and effective solution. ·         Using a cloud-computing platform like Windows Azure allows proof-of-concept scenarios to be tested and evaluated on a very low budget. ·         No charges for inbound data transfer makes the uploading of large data sets to Windows Azure Storage services cost effective. (Transaction charges still apply.) Tips for using Windows Azure for Grid Computing Scenarios I found the implementation of a render farm using Windows Azure a fairly simple scenario to implement. I was impressed by ease of scalability that Azure provides, and by the short time that the application took to scale from 16 to 256 worker role instances. In this case it was around 13 minutes, in other tests it took between 10 and 20 minutes. The following tips may be useful when implementing a grid computing project in Windows Azure. ·         Using an Azure Storage queue to load-balance the units of work across multiple worker roles is simple and very effective. The design I have used in this scenario could easily scale to many thousands of worker role instances. ·         Windows Azure accounts are typically limited to 20 cores. If you need to use more than this, a call to support and a credit card check will be required. ·         Be aware of how the billing model works. You will be charged for worker role instances for the full clock our in which the instance is deployed. Schedule the workload to start just after the clock hour has started. ·         Monitor the utilization of the resources you are provisioning, ensure that you are not paying for worker roles that are idle. ·         If you are deploying third party applications to worker roles, you may well run into licensing issues. Purchasing software licenses on a per-processor basis when using hundreds of processors for a short time period would not be cost effective. ·         Third party software may also require installation onto the worker roles, which can be accomplished using start-up tasks. Bear in mind that adding a startup task and possible re-boot will add to the time required for the worker role instance to start and activate. An alternative may be to use a prepared VM and use VM roles. ·         Consider using the Windows Azure Autoscaling Application Block (WASABi) to autoscale the worker roles in your application. When using a large number of worker roles, the utilization must be carefully monitored, if the scaling algorithms are not optimal it could get very expensive!

    Read the article

  • Printing fails after first print with Centos 6 and HP LaserJet P3015dn printer

    - by Gavin Simpson
    Centos 6 recognises and configures a HP LaserJet P3015dn printer connected via USB. This machine is being configured as a small group file/print server. I can print a test page, which is processed/printed correctly. The next time printing is attempted (say printing a second test page), the page is not printed and the printer is set to disabled. The status of the printer is stated as: Stopped - /usr/lib/cups/backend/hp failed in the printer configuration dialogue. /var/log/cups/error_log contains this information (first two lines were there prior to the failed print job) E [24/Jun/2004:09:12:57 +0100] Returning HTTP Forbidden for Resume-Printer (ipp://localhost/printers/HP-LaserJet-P3010-Series) from localhost E [24/Jun/2004:09:20:59 +0100] Returning HTTP Forbidden for CUPS-Delete-Printer (ipp://localhost/printers/HP-LaserJet-P3010-Series) from localhost D [24/Jun/2004:09:37:28 +0100] [Job 28] The following messages were recorded from 09:36:43 AM to 09:37:28 AM D [24/Jun/2004:09:37:28 +0100] [Job 28] Adding start banner page "none". D [24/Jun/2004:09:37:28 +0100] [Job 28] Adding end banner page "none". D [24/Jun/2004:09:37:28 +0100] [Job 28] File of type application/vnd.cups-banner queued by "gavin". D [24/Jun/2004:09:37:28 +0100] [Job 28] hold_until=0 D [24/Jun/2004:09:37:28 +0100] [Job 28] Queued on "HP-LaserJet-P3010-Series" by "gavin". D [24/Jun/2004:09:37:28 +0100] [Job 28] job-sheets=none,none D [24/Jun/2004:09:37:28 +0100] [Job 28] argv[0]="HP-LaserJet-P3010-Series" D [24/Jun/2004:09:37:28 +0100] [Job 28] argv[1]="28" D [24/Jun/2004:09:37:28 +0100] [Job 28] argv[2]="gavin" D [24/Jun/2004:09:37:28 +0100] [Job 28] argv[3]="Test Page" D [24/Jun/2004:09:37:28 +0100] [Job 28] argv[4]="1" D [24/Jun/2004:09:37:28 +0100] [Job 28] argv[5]="job-uuid=urn:uuid:b3370a97-4ab6-3451-40a2-6239b13fa3e1 job-originating-host-name=localhost" D [24/Jun/2004:09:37:28 +0100] [Job 28] argv[6]="/var/spool/cups/d00028-001" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[0]="CUPS_CACHEDIR=/var/cache/cups" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[1]="CUPS_DATADIR=/usr/share/cups" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[2]="CUPS_DOCROOT=/usr/share/cups/www" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[3]="CUPS_FONTPATH=/usr/share/cups/fonts" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[4]="CUPS_REQUESTROOT=/var/spool/cups" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[5]="CUPS_SERVERBIN=/usr/lib/cups" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[6]="CUPS_SERVERROOT=/etc/cups" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[7]="CUPS_STATEDIR=/var/run/cups" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[8]="HOME=/var/spool/cups/tmp" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[9]="PATH=/usr/lib/cups/filter:/usr/bin:/usr/sbin:/bin:/usr/bin" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[10]="[email protected]" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[11]="SOFTWARE=CUPS/1.4.2" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[12]="TMPDIR=/var/spool/cups/tmp" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[13]="USER=root" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[14]="CUPS_SERVER=/var/run/cups/cups.sock" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[15]="CUPS_ENCRYPTION=IfRequested" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[16]="IPP_PORT=631" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[17]="CHARSET=utf-8" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[18]="LANG=en_US.UTF-8" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[19]="PPD=/etc/cups/ppd/HP-LaserJet-P3010-Series.ppd" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[20]="RIP_MAX_CACHE=8m" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[21]="CONTENT_TYPE=application/vnd.cups-banner" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[22]="DEVICE_URI=hp:/usb/HP_LaserJet_P3010_Series?serial=VNBV993GM4" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[23]="PRINTER_INFO=Hewlett-Packard HP LaserJet P3010 Series" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[24]="PRINTER_LOCATION=electra.geog.ucl.ac.uk" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[25]="PRINTER=HP-LaserJet-P3010-Series" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[26]="CUPS_FILETYPE=document" D [24/Jun/2004:09:37:28 +0100] [Job 28] envp[27]="FINAL_CONTENT_TYPE=application/vnd.cups-postscript" D [24/Jun/2004:09:37:28 +0100] [Job 28] Started filter /usr/lib/cups/filter/bannertops (PID 2858) D [24/Jun/2004:09:37:28 +0100] [Job 28] Started filter /usr/lib/cups/filter/pstops (PID 2859) D [24/Jun/2004:09:37:28 +0100] [Job 28] Started backend /usr/lib/cups/backend/hp (PID 2860) D [24/Jun/2004:09:37:28 +0100] [Job 28] load_banner(filename="/var/spool/cups/d00028-001") D [24/Jun/2004:09:37:28 +0100] [Job 28] Page = 612x792; 12,12 to 600,780 D [24/Jun/2004:09:37:28 +0100] [Job 28] Page = 612x792; 12,12 to 600,780 D [24/Jun/2004:09:37:28 +0100] [Job 28] slow_collate=0, slow_duplex=0, slow_order=0 D [24/Jun/2004:09:37:28 +0100] [Job 28] Before copy_comments - %!PS-Adobe-3.0 D [24/Jun/2004:09:37:28 +0100] [Job 28] %!PS-Adobe-3.0 D [24/Jun/2004:09:37:28 +0100] [Job 28] %%BoundingBox: 12 12 600 780 D [24/Jun/2004:09:37:28 +0100] [Job 28] %cupsRotation: 0 D [24/Jun/2004:09:37:28 +0100] [Job 28] %%Creator: bannertops/CUPS v1.4.2 D [24/Jun/2004:09:37:28 +0100] [Job 28] %%CreationDate: Thu 24 Jun 2004 09:36:43 AM BST D [24/Jun/2004:09:37:28 +0100] [Job 28] %%LanguageLevel: 2 D [24/Jun/2004:09:37:28 +0100] [Job 28] %%DocumentData: Clean7Bit D [24/Jun/2004:09:37:28 +0100] [Job 28] %%Title: (Test Page) D [24/Jun/2004:09:37:28 +0100] [Job 28] %%For: (gavin) D [24/Jun/2004:09:37:28 +0100] [Job 28] %%Pages: 1 D [24/Jun/2004:09:37:28 +0100] [Job 28] %%DocumentSuppliedResources: font Monospace D [24/Jun/2004:09:37:28 +0100] [Job 28] %%+ font Monospace-Bold D [24/Jun/2004:09:37:28 +0100] [Job 28] %%+ font Monospace-BoldOblique D [24/Jun/2004:09:37:28 +0100] [Job 28] %%+ font Monospace-Oblique D [24/Jun/2004:09:37:28 +0100] [Job 28] %%EndComments D [24/Jun/2004:09:37:28 +0100] [Job 28] Before copy_prolog - %%BeginProlog D [24/Jun/2004:09:37:28 +0100] [Job 28] STATE: +connecting-to-device D [24/Jun/2004:09:37:28 +0100] [Job 28] prnt/backend/hp.c 762: ERROR: cannot open channel PRINT D [24/Jun/2004:09:37:28 +0100] [Job 28] Backend returned status 1 (failed) D [24/Jun/2004:09:37:28 +0100] [Job 28] Printer stopped due to backend errors; please consult the error_log file for details. D [24/Jun/2004:09:37:28 +0100] [Job 28] End of messages D [24/Jun/2004:09:37:28 +0100] [Job 28] printer-state=5(stopped) D [24/Jun/2004:09:37:28 +0100] [Job 28] printer-state-message="/usr/lib/cups/backend/hp failed" D [24/Jun/2004:09:37:28 +0100] [Job 28] printer-state-reasons=paused /var/log/messages contains the following reports associated with the recognition of the printer and the failed print job: Jun 24 09:35:07 electra kernel: usb 1-8: new high speed USB device using ehci_hcd and address 2 Jun 24 09:35:07 electra kernel: usb 1-8: New USB device found, idVendor=03f0, idProduct=8d17 Jun 24 09:35:07 electra kernel: usb 1-8: New USB device strings: Mfr=1, Product=2, SerialNumber=3 Jun 24 09:35:07 electra kernel: usb 1-8: Product: HP LaserJet P3010 Series Jun 24 09:35:07 electra kernel: usb 1-8: Manufacturer: Hewlett-Packard Jun 24 09:35:07 electra kernel: usb 1-8: SerialNumber: VNBV993GM4 Jun 24 09:35:07 electra kernel: usb 1-8: configuration #1 chosen from 1 choice Jun 24 09:35:07 electra kernel: usblp0: USB Bidirectional printer dev 2 if 0 alt 1 proto 2 vid 0x03F0 pid 0x8D17 Jun 24 09:35:07 electra kernel: usbcore: registered new interface driver usblp Jun 24 09:35:07 electra udev-configure-printer: invalid or missing IEEE 1284 Device ID Jun 24 09:35:08 electra hp[1942]: io/hpmud/pp.c 627: unable to read device-id ret=-1 Jun 24 09:35:09 electra python: io/hpmud/pp.c 627: unable to read device-id ret=-1 Jun 24 09:35:51 electra kernel: usblp0: removed Jun 24 09:37:28 electra hp[2860]: io/hpmud/dot4.c 254: unable to read Dot4ReverseReply data: Resource temporarily unavailable exp=2 act=0 Jun 24 09:37:28 electra hp[2860]: io/hpmud/dot4.c 330: invalid DOT4InitReply: cmd=0, result=20#012, revision=0 Jun 24 09:37:28 electra hp[2860]: prnt/backend/hp.c 762: ERROR: cannot open channel PRINT I am now at a loss as to how to proceed to get this printer working on my Centos machine. How can I configure the machine to print more than a single print job without needing to be unplugged/plugged in repeatedly?

    Read the article

  • Creating a variable-speed slideshow based on USB input on OSX.

    - by Dave A
    I have a friend who is trying to put together a geeky little contraption for a wedding, where people can view a slideshow. Neither of us use Macs, nor have programmed for one, but for various reasons it has to run on a Mac. There will be a USB ammeter hooked up to a bike dynamo. What we want is for a slideshow to be run, and advance at a speed relative to how fast someone is pedaling on a stationary bike. After much googling, it seems like we could load an iPhoto slideshow up via applescript. Is it possible to pause the slideshow and advance it with keypress commands? The applescript commands would be run via a bash script or similar that would monitor the value returned by the USB ammeter's command-line app and issue the keypress events accordingly. Is there some other app that could be likewise scripted to display photos?Hoping someone has some hints to get us started in the right direction! Thanks!

    Read the article

  • Using the Onboard VGA output with a PCIe video card. Both nVidia

    - by sebikul
    I have 2 video cards, one On board, a nVidia 6150SE nForce 430 and a PCIe nVidia GeForce GT 220 1GB DDR2 RAM I have already configured the PCIe card to use the dual monitor feature, using the VGA and HDMI ports, but now I want to add a third monitor, using the On board VGA port I have managed to enable the On board graphics processor, which is taking 400MB of ram, but I cant manage to use it, nvidia-settings does not detect it, like it's not usable (but is there) My questions are the following: How can I manage to get the On board VGA display to work together with the PCIe graphics card? If possible, how can I recover those 400 MB the on board card is taking (even without being used) or how can I get it to use the PCIe card available memory? System Details: Linux 2.6.35-28-generic i686 Ubuntu 10.10 (All updates installed) NVIDIA Driver Version: 260.19.06 (Official) If more info is needed please let me know. Here is the lspci output when the On board card is disabled: 00:00.0 RAM memory: nVidia Corporation MCP61 Memory Controller (rev a1) 00:01.0 ISA bridge: nVidia Corporation MCP61 LPC Bridge (rev a2) 00:01.1 SMBus: nVidia Corporation MCP61 SMBus (rev a2) 00:01.2 RAM memory: nVidia Corporation MCP61 Memory Controller (rev a2) 00:01.3 Co-processor: nVidia Corporation MCP61 SMU (rev a2) 00:02.0 USB Controller: nVidia Corporation MCP61 USB Controller (rev a3) 00:02.1 USB Controller: nVidia Corporation MCP61 USB Controller (rev a3) 00:04.0 PCI bridge: nVidia Corporation MCP61 PCI bridge (rev a1) 00:05.0 Audio device: nVidia Corporation MCP61 High Definition Audio (rev a2) 00:06.0 IDE interface: nVidia Corporation MCP61 IDE (rev a2) 00:07.0 Bridge: nVidia Corporation MCP61 Ethernet (rev a2) 00:08.0 IDE interface: nVidia Corporation MCP61 SATA Controller (rev a2) 00:09.0 PCI bridge: nVidia Corporation MCP61 PCI Express bridge (rev a2) 00:0b.0 PCI bridge: nVidia Corporation MCP61 PCI Express bridge (rev a2) 00:0c.0 PCI bridge: nVidia Corporation MCP61 PCI Express bridge (rev a2) 00:0d.0 VGA compatible controller: nVidia Corporation C61 [GeForce 6150SE nForce 430] (rev a2) 00:18.0 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] HyperTransport Technology Configuration 00:18.1 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] Address Map 00:18.2 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] DRAM Controller 00:18.3 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] Miscellaneous Control 01:09.0 Ethernet controller: Intel Corporation 82557/8/9/0/1 Ethernet Pro 100 (rev 08) 02:00.0 VGA compatible controller: nVidia Corporation GT216 [GeForce GT 220] (rev a2) 02:00.1 Audio device: nVidia Corporation High Definition Audio Controller (rev a1) And this is when both are enabled: 00:00.0 RAM memory: nVidia Corporation MCP61 Memory Controller (rev a1) 00:01.0 ISA bridge: nVidia Corporation MCP61 LPC Bridge (rev a2) 00:01.1 SMBus: nVidia Corporation MCP61 SMBus (rev a2) 00:01.2 RAM memory: nVidia Corporation MCP61 Memory Controller (rev a2) 00:01.3 Co-processor: nVidia Corporation MCP61 SMU (rev a2) 00:02.0 USB Controller: nVidia Corporation MCP61 USB Controller (rev a3) 00:02.1 USB Controller: nVidia Corporation MCP61 USB Controller (rev a3) 00:04.0 PCI bridge: nVidia Corporation MCP61 PCI bridge (rev a1) 00:05.0 Audio device: nVidia Corporation MCP61 High Definition Audio (rev a2) 00:06.0 IDE interface: nVidia Corporation MCP61 IDE (rev a2) 00:07.0 Bridge: nVidia Corporation MCP61 Ethernet (rev a2) 00:08.0 IDE interface: nVidia Corporation MCP61 SATA Controller (rev a2) 00:09.0 PCI bridge: nVidia Corporation MCP61 PCI Express bridge (rev a2) 00:0b.0 PCI bridge: nVidia Corporation MCP61 PCI Express bridge (rev a2) 00:0c.0 PCI bridge: nVidia Corporation MCP61 PCI Express bridge (rev a2) 00:0d.0 VGA compatible controller: nVidia Corporation C61 [GeForce 6150SE nForce 430] (rev a2) 00:18.0 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] HyperTransport Technology Configuration 00:18.1 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] Address Map 00:18.2 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] DRAM Controller 00:18.3 Host bridge: Advanced Micro Devices [AMD] K8 [Athlon64/Opteron] Miscellaneous Control 01:09.0 Ethernet controller: Intel Corporation 82557/8/9/0/1 Ethernet Pro 100 (rev 08) 02:00.0 VGA compatible controller: nVidia Corporation GT216 [GeForce GT 220] (rev a2) 02:00.1 Audio device: nVidia Corporation High Definition Audio Controller (rev a1) Output of lshw -class display: *-display description: VGA compatible controller product: GT216 [GeForce GT 220] vendor: nVidia Corporation physical id: 0 bus info: pci@0000:02:00.0 version: a2 width: 64 bits clock: 33MHz capabilities: pm msi pciexpress vga_controller bus_master cap_list rom configuration: driver=nvidia latency=0 resources: irq:18 memory:df000000-dfffffff memory:c0000000-cfffffff memory:da000000-dbffffff ioport:ef80(size=128) memory:def80000-deffffff *-display description: VGA compatible controller product: C61 [GeForce 6150SE nForce 430] vendor: nVidia Corporation physical id: d bus info: pci@0000:00:0d.0 version: a2 width: 64 bits clock: 66MHz capabilities: pm msi vga_controller bus_master cap_list rom configuration: driver=nvidia latency=0 resources: irq:22 memory:dd000000-ddffffff memory:b0000000-bfffffff memory:dc000000-dcffffff memory:deb40000-deb5ffff If what I'm looking for is not possible, please tell me, so I can disable the On board card and recover those 400MB of wasted RAM Thanks for your help!

    Read the article

  • How to use Btrfs with compression on external USB hard drive?

    - by Andre
    I would like to make use of Btrfs' transparent compression on an external drive. Which tool is best for formatting the drive? Disk Utility or GParted? How do I activate the compression? During formatting or when I mount the drive? I guess at mount time. I'm using usbmount to automatically mount newly attached devices, because nobody is logged in on the desktop. Would I have to set general default options somewhere in a system configuration file to get Btrfs mounted with compression, or would I specify this via FS_MOUNTOPTIONS in /etc/usbmount/usbmount.conf and how? Thanks!

    Read the article

  • Canon MG8150 - unable to scan document to PC via wireless router, but works via USB connection?

    - by Heidi
    Please help. Get error that scanner disconnected or locked "code:5,146,555" when I try to scan a document to PC or attach to an email. Can't remember this function ever working and I've had this MFD for 2-3 years now. Printer function works fine via wireless, but not scanning. Upgraded my laptop a few months ago from Windows 98 to Windows Vista and reinstalled my printer/scanner software and drivers. Any ideas?

    Read the article

  • How can I connect my USB (HP) printer in 10.4, which can't be discovered and worked in 9.x

    - by Brian
    My printer was working under 9.x. It is a an hp photosmart C3100 series. When I open the Admin- printing. no local printers are found. I try to add via other (My local choices are Serial and other). I have tried many uri's - ipp://localhost:631/ipp, http://localhost/ipp, localhost, 127.0.0.1, etc... None have worked. Under the networked I have tried JetDirect, using localhost and 127.0.0.1 and port 631. I have tried many options under IPP with different variants in the host trying to verify a printer. No luck. I tried LPD/LPR with localhost and tried the probe. no luck. I tried the cups admin via localhost:631 and that didn't work. On the old version its simply found the local printer, I might have picked the driver, I can't remember but it was the photosmart c3100 series that was working. I just can't get 10.4 to print.

    Read the article

  • can unbuntu 13.03 be loaded with flash drive? USB

    - by Steve Shaw
    I am wanting to do a split pc, half win xp, half unbuntu 13.04, want to use the linux for internet surfing, youtube, crackle, hulu videos viewing. My pc is a older DELL C521, 1.87ghz, 1.5 gb ram, 32bit, 80gb hd...will this be better than present slow slow slow win xp? need it for internet mostly. Would consider dumping win xp later on if I get the hang of the linux distro...any help appreciated. thanks

    Read the article

  • How do I get a Realtek Wireless USB Airlink101 AWLL5088 working?

    - by Tobias_Mann
    I am running Ubuntu 11.10, 32bit. I ordered them a Realtek Airlink101 AWLL5088 based upon the relative ease for linux installation. I am having trouble installing the drivers. I copied the drivers to /usr/src/ and ran sudo ./install.sh from that director listed above. I have tried ndiswrapper, and allowing the default drivers, but with no luck. It seems to continue to try and use the default free drivers, even though I have blacklisted them using the guide described here. There was no error, I was asked which card I was using. I looked at the packaging and at the support page, and guessed number 2, allowed to finish, and rebooted. It continued detect the wireless network after the reboot, but would never complete the connection. I would appreciate any feedback. I am kind of stuck trying to figure this out.

    Read the article

  • How do i get the data from a surveillance camera to a storage i can stream from?

    - by radbyx
    Hi my sisters house was robbed chrismas evening :( I talked with her about making a surveillance system for her. The idea is to have a system that detects intruders and then send a SMS to you while streaming it to a private website. The hard part: How and where do I storage the data from the camera so it's streamable? I think i can manage to do the streaming, website and SMS server, but i need the data (fundamentation). Thanks, any help is much appriciated.

    Read the article

< Previous Page | 151 152 153 154 155 156 157 158 159 160 161 162  | Next Page >