Search Results

Search found 6884 results on 276 pages for 'apple ios'.

Page 156/276 | < Previous Page | 152 153 154 155 156 157 158 159 160 161 162 163  | Next Page >

  • UIDs for service users in Mac OS X

    - by LaC
    Some third-party servers should be run under a special user for security reasons (eg, PostgreSQL is typically run by "postgres"). Of course, these service users should not show up in the Mac OS X login windows. I know how to create hidden users using dscl or dsimport, but I'm wondering what the best policy is for assigning UIDs (and matching GIDs). Apple's documentation states that UIDs from 0 to 100 are reserved (pg. 69), but OS X comes with several special users and groups outside that range. I used to use ids from 401 onwards for services, but I noticed that OS X 10.6 has started using that range for groups created by the Sharing pane in System Preferences. What is the recommended ID range to use for third-party services, then? Perhaps I should just use IDs in the 500 range, since all that is needed to hide a user in Snow Leopard is setting his password to "*"? Also, most of Apple's services have names starting with an underscore, with an alias sans underscore; eg, _sandbox and sandbox. Is there any special significance to this? Should I do the same for my services?

    Read the article

  • How to set up Windows 7 Professional as a NAS

    - by Enyalius
    I searched and didn't find any answers, so please forgive me if this is a repeat. Anyway, I have an older computer that I'm using as an HTPC, and I was hoping that I could use it as a NAS/multimedia server, as well. My primary uses would include accessing content on my PS3 (same LAN), accessing content from other computers on my home network and (if I can) accessing content from my Android phone over the internet. I have used SubSonic to stream music to my Android phone and other computers before, but I would really like to find a way to do this natively if possible. I know that I can buy external hard disk cases that can plug in the USB port of my router, that I can get a Drobo or other network storage solution, but I would really just rather not spend the money (especially considering that I already have a computer that I should be able to use). Hardware involved: Apple AirPort Extreme base station router (most recent revision) Home Theater Personal Computer: Core 2 Duo @ 2.4GHz, 8GB DDR2 RAM, ~3.5TB hard drive space Sony Playstaiton 3 Thin 120GB HTC Thunderbolt (I have 4G coverage) rooted and running Android 2.2.1 Various Apple laptops Various Windows 7 desktops/laptops Thanks in advance! Note- I have looked at open source NAS software but I would like to preserve the Windows Media Center functionality in Windows 7, so other NAS software is not an option for me currently. .

    Read the article

  • Accessing CIFS shares from an OS X machine incredibly slow

    - by Aron Rotteveel
    This is a longshot, because this issue seems over-reported and unanswered on the internet (see references below), but it is about time this issue is permanently solved. The facts: Server: Windows Server 2008, acting as a file server Client: OS X Lion 10.7.3. Method of connecting: directly via IP through Finder: smb://192.168.1.100/share The problem: The initial connection attempt takes about a minute. After the connection is made, it takes one more minute to show the directories in Finder. After navigating to any other directory, it takes several seconds/minutes to parse the directory, seemingly based on the size of the contents. Actually, my entire Finder has this problem after connecting. When using Finder to show my desktop, it can literally take up to a minute to load. Obviously, this is not right. I have no clue how to fix this and would appreciate any help I can get. I am unsure about other relevant information I can provide, but if there is any, please let me know so I can update the post. I seem to be not the only one having this problem: Most importantly, an apple.stackexchange.com entry. Unsolved and unanswered. Several users on the Apple support forums. Users on EduGeek.

    Read the article

  • CodePlex Daily Summary for Friday, March 09, 2012

    CodePlex Daily Summary for Friday, March 09, 2012Popular ReleasesSSH.NET Library: 2012.3.9: There are still few outstanding issues I wanted to include in this release but since its been a while and there are few new features already I decided to create a new release now. New Features Add SOCKS4, SOCKS5 and HTTP Proxy support when connecting to remote server. For silverlight only IP address can be used for server address when using proxy. Add dynamic port forwarding support using ForwardedPortDynamic class. Add new ShellStream class to work with SSH Shell. Add supports for mu...fnr.exe - Find And Replace Tool: 1.0: You can read all about the new features here: Here is the Summary Preview Matches Stats File errors for read/write Support for regular expressions Fixed a bug that required you to press enter to continue after running fnr.exe from command line Context menu to display containing folder or open the file Double click on results row to open the file (similar to double clicking in windows explorer) Binary detection – skip files that are binaryTest Case Import Utilities for Visual Studio 2010 and Visual Studio 11 Beta: V1.2 RTM: This release (V1.2 RTM) includes: Support for connecting to Hosted Team Foundation Server Preview. Support for connecting to Team Foundation Server 11 Beta. Fix to issue with read-only attribute being set for LinksMapping-ReportFile which may have led to problems when saving the report file. Fix to issue with “related links” not being set properly in certain conditions. Fix to ensure that tool works fine when the Excel file contained rich text data. Note: Data is still imported in pl...Audio Pitch & Shift: Audio Pitch And Shift 3.5.0: Modules (mod, xm, it, etc..) supportcallisto: callisto 2.0.19: BUG FIX: Autorun.load() function in scripting now has sandboxed path (Thanks Mikey!) BUG FIX: UserObject.Name property now allows full 20 byte string replacements. FEATURE REQUEST: File.* script functions now allow file extensions.DotNetNuke® Community Edition CMS: 06.01.04: Major Highlights Fixed issue with loading the splash page skin in the login, privacy and terms of use pages Fixed issue when searching for words with special characters in them Fixed redirection issue when the user does not have permissions to access a resource Fixed issue when clearing the cache using the ClearHostCache() function Fixed issue when displaying the site structure in the link to page feature Fixed issue when inline editing the title of modules Fixed issue with ...Mayhem: Mayhem Developer Preview: This is the developer preview of Mayhem. Enjoy!Magelia WebStore Open-source Ecommerce software: Magelia WebStore 1.2: Medium trust compliant lot of small change for medium trust compliance full refactoring of user management refactoring of Client Refactoring of user management Magelia.WebStore.Client no longer reference Magelia.WebStore.Services.Contract Refactoring page category multi parent category added copy category feature added Refactoring page catalog copy catalog feature added variant management improvement ability to define a default variant for a variable product ability to ord...Delta Engine: Delta Engine Beta Preview v0.9.4: v0.9.4 is the release for February 2012, but it was delayed till 2012-03-07 until content generation worked much better for v0.9.4. The main improvements were done on the server side (content generation and improved build support for iOS and Android). v0.9.4 is also the first version everyone can use to deploy their application onto all supported platforms, see Marketplace Licensing for details: http://deltaengine.net/Marketplace Documentation for this version can be found at: http://help.de...PDFsharp - A .NET library for processing PDF: PDFsharp and MigraDoc Foundation 1.32: PDFsharp and MigraDoc Foundation 1.32 is a stable version that fixes a few bugs that were found with version 1.31. Version 1.32 includes solutions for Visual Studio 2010 only (but it should be possible to add the project files to existing solutions for VS 2005 or VS 2008). Users of VS 2005 or VS 2008 can still download version 1.31 with the solutions for those versions that allow them to easily try the samples that are included. While it may create smaller PDF files than version 1.30 because...Terminals: Version 2.0 - Release: Changes since version 1.9a:New art works New usability in Organize favorites window Improved usability of imports/exports and scans Large number of fixes Improvements in single instance mode Comparing November beta 4, this corrects: New application icons Doesn't show Logon error codes Fixed command line arguments exception for single instance mode Fixed detaching of tabs improved usability in detached window Fixed option settings for Capture manager Fixed system tray noti...AutoLoL: AutoLoL v2.1.5: Updated version of Autolol that works with the Fiora patch.MFCMAPI: March 2012 Release: Build: 15.0.0.1032 Full release notes at SGriffin's blog. If you just want to run the MFCMAPI or MrMAPI, get the executables. If you want to debug them, get the symbol files and the source. The 64 bit builds will only work on a machine with Outlook 2010 64 bit installed. All other machines should use the 32 bit builds, regardless of the operating system. Facebook BadgeSimple Injector: Simple Injector v1.4.1: This release adds two small improvements to the SimpleInjector.Extensions.dll. No changes have been made to the core library. New features and improvements in this release for the SimpleInjector.Extensions.dll The RegisterManyForOpenGeneric extension methods now accept non-generic decorator, as long as they implement the given open generic service type. GetTypesToRegister methods added to the OpenGenericBatchRegistrationExtensions class which allows to customize the behavior. Note that the...SQL Scriptz Runner: Application: Scriptz Runner source code and applicationPowerGUI Visual Studio Extension: PowerGUI VSX 1.5.2: Added support for PowerGUI 3.2.VidCoder: 1.3.1: Updated HandBrake core to 0.9.6 release (svn 4472). Removed erroneous "None" container choice. Change some logic and help text to stop assuming you have to pick the VIDEO_TS folder for a DVD scan. This should make previewing DVD titles on the Queue Multiple Titles window possible when you've picked the root DVD directory.Google Books Downloader for Windows: Google Books Downloader: Google Books Downloader 1.8ExtAspNet: ExtAspNet v3.1.0: ExtAspNet - ?? ExtJS ??? ASP.NET 2.0 ???,????? AJAX ?????????? ExtAspNet ????? ExtJS ??? ASP.NET 2.0 ???,????? AJAX ??????????。 ExtAspNet ??????? JavaScript,?? CSS,?? UpdatePanel,?? ViewState,?? WebServices ???????。 ??????: IE 7.0, Firefox 3.6, Chrome 3.0, Opera 10.5, Safari 3.0+ ????:Apache License 2.0 (Apache) ??:http://extasp.net/ ??:http://bbs.extasp.net/ ??:http://extaspnet.codeplex.com/ ??:http://sanshi.cnblogs.com/ ????: +2012-03-04 v3.1.0 -??Hidden???????(〓?〓)。 -?PageManager??...AcDown????? - Anime&Comic Downloader: AcDown????? v3.9.1: ?? ●AcDown??????????、??、??????,????1M,????,????,?????????????????????????。???????????Acfun、????(Bilibili)、??、??、YouTube、??、???、??????、SF????、????????????。??????AcPlay?????,??????、????????????????。 ● AcDown???????????????????????????,???,???????????????????。 ● AcDown???????C#??,????.NET Framework 2.0??。?????"Acfun?????"。 ????32??64? Windows XP/Vista/7/8 ????????????? ??:????????Windows XP???,?????????.NET Framework 2.0???(x86),?????"?????????"??? ??????????????,??????????: ??"AcDo...New ProjectsAngry Birds in 1 Hour: This is a simple "Angry Birds" clone on Windows Phone 7 written in just 1 hour.ascent: ascent capture a capture productascentexpress: ascentexpressASP.NET MVVM Excalibur: ASP.NET MVVM Excalibur Project.this is Web Form base, has a new Binding Expression like WPF MVVM.Azure Virtual Directory: A program (or windows service) that registers a virtual directory on your local machine that is actually a gateway into an Azure Blob service. This will allow you to browse, create, modify and delete files directly in Windows Explorer, through a command prompt, or by any software that would be able to do so (as if it was writing to the local machine). This is not a directory that backs-up to Azure, but is rather *only* on Azure. Developed in C#.ClipFlair: ClipFlair - Foreign Language Learning through Interactive Revoicing and Captioning of ClipsCloudSpotter: CloudSpotter is a Windows Azure sample application that can be used for demo purposes or for learning the basic concepts of cloud application development. CloudSpotter makes it possible to convert, webcam based, cloud pictures to time-lapse video footage. Composing Wcf: Basic library providing a service host and service behavior capable of utilizing MEF for runtime composition of WCF SOAP and REST web services. Library provides composing Hosts and Host Factories for standard ServiceHost types, as well as WebServiceHost (RESTful).convert digit to word upto thousand: convert digit to word upto thousandDAL Generator using Database Application Block 5 and T4 Template: T4 template code for generating data base layer for normal CRUD operation using Repository Pattern. Database application block 5 features are used for generating database call and automatic mapping with DTOeuler 12 problem: euler 12 problemeuler 14 problem: euler 14 problemeuler 19 problem: euler 19 problemeuler 28: euler 28euler 30: euler 30euler 36 problem: euler 36 problemeuler 45: euler 45 problemeuler 52 problem: euler 52 problemeuler21: euler 21euler22: euler 22 problemeuler23: euler 23euler29: euler 29 problemeVet: eVet is a guidance project based on the fictional scenario of a Veterinary System used to monitor pets' medical history. It will be based on Azure and leverage the Worker role and SQL Azure datase to illustrate a multi-tenant cloud-based Pet management system. The ORM layer will be NHibernate and it will be based on the repository design pattern. If you want to help and learn Azure at the same time, I am looking for: - Designers (CSS3, HTML 5, Javascript) - Web Developers (ASP.Net ...Firemap: Generates a html page which displays key performance statistics of chosen computers. FolderHiderNet: FolderHiderNet, its a simple application developed in C#, that let users easily hide and unhide folder on their windows systems. It could be used in USB dispositives.Game of Life for Windows Phone: This is an XNA implementation of Conway's Game of Life for Windows Phone. The game is a grid of cells that live and die based on a simple set of rules. The player can arrange the live and dead cells, and start/stop the cell generation to see how the cells are interrelated. Features: - Save and load games - Start and stop generations - Adjust generation speed - Clear grid - Generate random grid - Sample shapes preloaded as saved games For more information on Conway's Game of Life...Gamoliyas: Gamoliyas is an open source John Conway's Game of Life game totally written in DHTML (JavaScript, CSS and HTML). Uses mouse and keyboard. Very configurable. This cross-platform and cross-browser game was tested under BeOS, Linux, *BSD, Windows and others.Gembed: Transform url into Embed code using javascript. It is developed using jQuery, jQuery templates and javascript. Any contribution would be really apreciated.GIFT: gift appImageLoader iOS: ImageLoader is developed on iOS and it can be used in iPhone and iPad. It try to make application to support image downloading and cache easily. It downloads the image file from url, depended on ASIHttpRequest. And it cache the images into local file.MakkysStackOverflow: Learning how to build stackoverflow like site mysimpleproject: This is my test projectNWN Hak Merging Utility: Mostly automated Hak Merging utility for NWN .hak files.Oasis Text: Oasis Text is a simple, free text editor for Windows. It is written in C# and built with the ScintillaNET editing component. It is a work in progress and is free and open source software. Opds4Net: A .NET Library for Open Publication Distribution System (OPDS) Catalog protocol, a syndication format for electronic publications based on Atom. This project is created to simplify the process of creating an OPDS Catalog in .NET and standardize the result OPDS with least effort. Pratiques: Endroit pour gérer les Pratiques.scooby: This is a scooby dooby doo projectStaffKey: Study Project Projet d'étude Permet le lancement d'un serveur web sur une clé usb.SugataTools: SugataTools are the helper classes that I usually use in my projects.testtom03082012hg05: testtom03082012hg05testtom03082012tfs01: testtom03082012tfs01testtom03082012tfs02: testtom03082012tfs02TNTSerializer: A simple serializer which -Is faster than any other serializer -Does not require ISeriablable - Uses generic cached Reflection wrappers (FAST) -Should serialize ANY structure, no questions asked, no special markup required. -Can handle common attributes -handles optional parameteWholemy.LinkedLists: Wholemy Linked Lists realizationsworkApp: workAppWPF Yahoo Stock API: WPF application using PRISM & MVVM to display stock details using Yahoo API (YPL)

    Read the article

  • iPhone SDK 3.0 and symbolicatecrash not getting along?

    - by Steve
    * UPDATE * I've reinstalled with Snow Leopard, clean install. Completely wiped my existing Leopard install. Same problem persists. I've tried numbers of versions of symbolicatecrash to resolve symbols in my crash reports. From the version provided by Apple, to Alan's Quatermain's version posted on GitHub and finally from http://openradar.appspot.com/6438643. For whatever reason, the best results I can get is for symbols on my own libraries to get resolved. Normally, this is enough data to point me in the right direction -- other times it is not. With 2.x I had no problems getting the symbols for my code + Apple provided libraries from within the stack traces in each thread. Most likely an issue with my environment here, I'm not at all doubting the work that Apple or Alan have done. Yes I'm certain the dSYM I have stashed away is the same exact one that's generating the crash report. Although 'Foo' is me, and getting symbols from it is wonderful, I need to see symbols from the other functions in the stack to truly understand my reports. Note: For devices that crash running the app on iPhone OS 2.2.1, I have no problem getting all symbols. This is an iPhone OS 3.0 issue it appears. Also, while running symbolicatecrash in verbose mode here's a few of the things that struck me as wrong: - NO MATCH NOT searching in Spotlight for dsym with UUID of /System/Library/Frameworks/CoreFoundation.framework/CoreFoundation ## Warning: Can't find any unstripped binary that matches version of /System/Library/Frameworks/CoreFoundation.framework/CoreFoundation ..........fetching symbol file for libobjc.A.dylib--[undef] Searching [/Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.0 (5A345)/Symbols/usr/lib/libobjc.A.dylib /Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.0 (5A347)/Symbols/usr/lib/libobjc.A.dylib /Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.0.1 (5B108)/Symbols/usr/lib/libobjc.A.dylib /Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.0.2 (5C1)/Symbols/usr/lib/libobjc.A.dylib /Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.1.1/Symbols/usr/lib/libobjc.A.dylib /Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.1/Symbols/usr/lib/libobjc.A.dylib /Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.2.1/Symbols/usr/lib/libobjc.A.dylib /Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.2/Symbols/usr/lib/libobjc.A.dylib /Developer/Platforms/iPhoneOS.platform/DeviceSupport/3.0 (7A341)/Symbols/usr/lib/libobjc.A.dylib]...--[/Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.0 (5A345)/Symbols/usr/lib/libobjc.A.dylib] -- NO MATCH --[/Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.0 (5A347)/Symbols/usr/lib/libobjc.A.dylib] -- NO MATCH --[/Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.0.1 (5B108)/Symbols/usr/lib/libobjc.A.dylib] -- NO MATCH --[/Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.0.2 (5C1)/Symbols/usr/lib/libobjc.A.dylib] -- NO MATCH --[/Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.1.1/Symbols/usr/lib/libobjc.A.dylib] -- NO MATCH --[/Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.1/Symbols/usr/lib/libobjc.A.dylib] -- NO MATCH --[/Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.2.1/Symbols/usr/lib/libobjc.A.dylib] -- NO MATCH --[/Developer/Platforms/iPhoneOS.platform/DeviceSupport/2.2/Symbols/usr/lib/libobjc.A.dylib] -- NO MATCH --[/Developer/Platforms/iPhoneOS.platform/DeviceSupport/3.0 (7A341)/Symbols/usr/lib/libobjc.A.dylib] -- NO MATCH NOT searching in Spotlight for dsym with UUID of /usr/lib/libobjc.A.dylib ## Warning: Can't find any unstripped binary that matches version of /usr/lib/libobjc.A.dylib Here's an example of the crash report after running it through symbolicatecrash: Thread 0 Crashed: 0 libSystem.B.dylib 0x31dc476c 0x31d46000 + 517996 1 libSystem.B.dylib 0x31dc4755 0x31d46000 + 517973 2 Foo 0x00053075 uncaught_exception_handler + 21 3 CoreFoundation 0x3028f65f 0x301fd000 + 599647 4 libobjc.A.dylib 0x30013693 0x3000c000 + 30355 5 libstdc++.6.dylib 0x374ccc2d 0x3748a000 + 273453 6 libstdc++.6.dylib 0x374ccc81 0x3748a000 + 273537 7 libstdc++.6.dylib 0x374ccd4d 0x3748a000 + 273741 8 libobjc.A.dylib 0x300135ff 0x3000c000 + 30207 9 CoreFoundation 0x30222f2d 0x301fd000 + 155437 10 CoreFoundation 0x30222ecb 0x301fd000 + 155339 11 Foundation 0x30521e33 0x30501000 + 134707 12 Foundation 0x30570d47 0x30501000 + 458055 13 Foo 0x0000a1db -[Bar barfoo] (Bar.m:1617) 14 Foo 0x00032f73 -[MyViewController foobar] (MyViewController.m:727) 15 Foo 0x000329b9 -[MyViewController foobar] (MyViewController.m:666) 16 Foo 0x00031fab -[MyViewController tabBar:tabSelected:] (MyViewController.m:440) 17 Foo 0x00068d41 -[TTTabBar setSelectedTabIndex:] (TTTabBar.m:160) 18 Foo 0x00068ca3 -[TTTabBar setSelectedTabView:] (TTTabBar.m:142) 19 Foo 0x000689cf -[TTTabBar tabTouchedUp:] (TTTabBar.m:83) 20 CoreFoundation 0x302552f9 0x301fd000 + 361209 21 UIKit 0x3094d101 0x308ed000 + 393473 22 UIKit 0x3094d0a1 0x308ed000 + 393377 23 UIKit 0x3094d073 0x308ed000 + 393331 24 UIKit 0x3094cdcd 0x308ed000 + 392653 25 UIKit 0x309779c1 0x308ed000 + 567745 26 UIKit 0x30977011 0x308ed000 + 565265 27 UIKit 0x309767d9 0x308ed000 + 563161 28 UIKit 0x30923613 0x308ed000 + 222739 29 UIKit 0x30923163 0x308ed000 + 221539 30 GraphicsServices 0x32045a4d 0x32041000 + 19021 31 CoreFoundation 0x30253041 0x301fd000 + 352321 32 CoreFoundation 0x30252771 0x301fd000 + 350065 33 GraphicsServices 0x32044b0f 0x32041000 + 15119 34 GraphicsServices 0x32044bbb 0x32041000 + 15291 35 UIKit 0x308f0363 0x308ed000 + 13155 36 UIKit 0x308ef121 0x308ed000 + 8481 37 Foo 0x00002097 main (main.m:13)

    Read the article

  • ActiveSync / Exchange 2007 password expiration buffer on device

    - by Matt Hamende
    I'm trying to determine if there is any buffer of time from the time a password expires in AD to the time that users would stop receiving email on their mobile devices our setup is Exchange 2007 ActiveSync DC's are Server 2008 R2 primarily Android shop, with maybe a few iOS devices I've heard some rumors of people still receiving email after their password expired / changed on the domain, just want to see if anyone else has ever heard of this. Did a bit more reading, read about Token Cache in IIS 7.0 and 15min lagtime, still would like to hear any thoughts about this.

    Read the article

  • How to disable Mac OS X from using swap when there still is "Inactive" memory?

    - by Motin
    A common phenomena in my day to day usage (and several other's according to various posts throughout the internet) of OS X, the system seems to become slow whenever there is no more "Free" memory available. Supposedly, this is due to swapping, since heavy disk activity is apparent and that vm_stat reports many pageouts. (Correct me from wrong) However, the amount of "Inactive" ram is typically around 12.5%-25% of all available memory (^1.) when swapping starts/occurs/ends. According to http://support.apple.com/kb/ht1342 : Inactive memory This information in memory is not actively being used, but was recently used. For example, if you've been using Mail and then quit it, the RAM that Mail was using is marked as Inactive memory. This Inactive memory is available for use by another application, just like Free memory. However, if you open Mail before its Inactive memory is used by a different application, Mail will open quicker because its Inactive memory is converted to Active memory, instead of loading Mail from the slower hard disk. And according to http://developer.apple.com/library/mac/#documentation/Performance/Conceptual/ManagingMemory/Articles/AboutMemory.html : The inactive list contains pages that are currently resident in physical memory but have not been accessed recently. These pages contain valid data but may be released from memory at any time. So, basically: When a program has quit, it's memory becomes marked as Inactive and should be claimable at any time. Still, OS X will prefer to start swapping out memory to the Swap file instead of just claiming this memory, whenever the "Free" memory gets to low. Why? What is the advantage of this behavior over, say, instantly releasing Inactive memory and not even touch the swap file? Some sources (^2.) indicate that OS X would page out the "Inactive" memory to swap before releasing it, but that doesn't make sense now does it if the memory may be released from memory at any time? Swapping is expensive, releasing is cheap, right? Can this behavior be changed using some preference or known hack? (Preferably one that doesn't include disabling swap/dynamic_pager altogether and restarting...) I do appreciate the purge command, as well as the concept of Repairing disk permissions to force some Free memory, but those are ways to painfully force more Free memory than to actually fixing the swap/release decision logic... Btw a similar question was asked here: http://forums.macnn.com/90/mac-os-x/434650/why-does-os-x-swap-when/ and here: http://hintsforums.macworld.com/showthread.php?t=87688 but even though the OPs re-asked the core question, none of the replies addresses an answer to it... ^1. UPDATE 17-mar-2012 Since I first posted this question, I have gone from 4gb to 8gb of installed ram, and the problem remains. The amount of "Inactive" ram was 0.5gb-1.0gb before and is now typically around 1.0-2.0GB when swapping starts/occurs/ends, ie it seems that around 12.5%-25% of the ram is preserved as Inactive by osx kernel logic. ^2. For instance http://apple.stackexchange.com/questions/4288/what-does-it-mean-if-i-have-lots-of-inactive-memory-at-the-end-of-a-work-day : Once all your memory is used (free memory is 0), the OS will write out inactive memory to the swapfile to make more room in active memory. UPDATE 17-mar-2012 Here is a round-up of the methods that have been suggested to help so far: The purge command "Used to approximate initial boot conditions with a cold disk buffer cache for performance analysis. It does not affect anonymous memory that has been allocated through malloc, vm_allocate, etc". This is useful to prevent osx to swap-out the disk cache (which is ridiculous that osx actually does so in the first place), but with the downside that the disk cache is released, meaning that if the disk cache was not about to be swapped out, one would simply end up with a cold disk buffer cache, probably affecting performance negatively. The FreeMemory app and/or Repairing disk permissions to force some Free memory Doesn't help releasing any memory, only moving some gigabytes of memory contents from ram to the hd. In the end, this causes lots of swap-ins when I attempt to use the applications that were open while freeing memory, as a lot of its vm is now on swap. Speeding up swap-allocation using dynamicpagerwrapper Seems a good thing to do in order to speed up swap-usage, but does not address the problem of osx swapping in the first place while there is still inactive memory. Disabling swap by disabling dynamicpager and restarting This will force osx not to use swap to the price of the system hanging when all memory is used. Not a viable alternative... Disabling swap using a hacked dynamicpager Similar to disabling dynamicpager above, some excerpts from the comments to the blog post indicate that this is not a viable solution: "The Inactive Memory is high as usual". "when your system is running out of memory, the whole os hangs...", "if you consume the whole amount of memory of the mac, the machine will likely hang" To sum up, I am still unaware of a way of disabling Mac OS X from using swap when there still is "Inactive" memory. If it isn't possible, maybe at least there is an explanation somewhere of why osx prefers to swap out memory that may be released from memory at any time?

    Read the article

  • Adaptec 5805 after reboot don't starting

    - by Rakedko ShotGuns
    After rebooting the system, the controller is not included. It only works if the computer is shut down and turn off. Late i update firmware "Adaptec RAID 5805 Firmware Build 18948" How to fix the problem? add Log Configuration summary Server name.....................raid_test Adaptec Storage Manager agent...7.31.00 (18856) Adaptec Storage Manager console.7.31.00 (18856) Number of controllers...........1 Operating system................Windows Configuration information for controller 1 ------------------------------------------------------- Type............................Controller Model...........................Adaptec 5805 Controller number...............1 Physical slot...................2 Installed memory size...........512 MB Serial number...................8C4510C6C9E Boot ROM........................5.2-0 (18948) Firmware........................5.2-0 (18948) Device driver...................5.2-0 (16119) Controller status...............Optimal Battery status..................Charging Battery temperature.............Normal Battery charge amount (%).......37 Estimated charge remaining......0 days, 16 hours, 12 minutes Background consistency check....Disabled Copy back.......................Disabled Controller temperature..........Normal (40C / 104F) Default logical drive task priorityHigh Performance mode................Dynamic Number of logical devices.......1 Number of hot-spare drives......0 Number of ready drives..........0 Number of drive(s) assigned to MaxCache cache0 Maximum drives allowed for MaxCache cache8 MaxCache Read Cache Pool Size...0 GB NCQ status......................Enabled Stay awake status...............Disabled Internal drive spinup limit.....0 External drive spinup limit.....0 Phy 0...........................No device attached Phy 1...........................No device attached Phy 2...........................No device attached Phy 3...........................1.50 Gb/s Phy 4...........................No device attached Phy 5...........................No device attached Phy 6...........................No device attached Phy 7...........................No device attached Statistics version..............2.0 SSD Cache size..................0 Pages on fetch list.............0 Fetch list candidates...........0 Candidate replacements..........0 69319...........................31293 Logical device..................0 Logical device name............. RAID level......................Simple volume Data space......................148,916 GB Date created....................09/19/2012 Interface type..................Serial ATA State...........................Optimal Read-cache mode.................Enabled Preferred MaxCache read cache settingEnabled Actual MaxCache read cache setting Disabled Write-cache mode................Enabled (write-back) Write-cache setting.............Enabled (write-back) Partitioned.....................Yes Protected by hot spare..........No Bootable........................Yes Bad stripes.....................No Power Status....................Disabled Power State.....................Active Reduce RPM timer................Never Power off timer.................Never Verify timer....................Never Segment 0.......................Present: controller 1, connector 0, device 0, S/N 9RX3KZMT Overall host IOs................99075 Overall MB......................4411203 DRAM cache hits.................71929 SSD cache hits..................0 Uncached IOs....................29239 Overall disk failures...........0 DRAM cache full hits............71929 DRAM cache fetch / flush wait...0 DRAM cache hybrid reads.........3476 DRAM cache flushes..............-- Read hits.......................0 Write hits......................0 Valid Pages.....................0 Updates on writes...............0 Invalidations by large writes...0 Invalidations by R/W balance....0 Invalidations by replacement....0 Invalidations by other..........0 Page Fetches....................0 0...............................0 73..............................10822 8...............................3 46138...........................4916 27184...........................15226 20875...........................323 16982...........................1771 1563............................5317 1948............................2969 Serial attached SCSI ----------------------- Type............................Disk drive Vendor..........................Unknown Model...........................ST3160815AS Serial Number...................9RX3KZMT Firmware level..................3.AAD Reported channel................0 Reported SCSI device ID.........0 Interface type..................Serial ATA Size............................149,05 GB Negotiated transfer speed.......1.50 Gb/s State...........................Optimal S.M.A.R.T. error................No Write-cache mode................Write back Hardware errors.................0 Medium errors...................0 Parity errors...................0 Link failures...................0 Aborted commands................0 S.M.A.R.T. warnings.............0 Solid-state disk (non-spinning).false MaxCache cache capable..........false MaxCache cache assigned.........false NCQ status......................Enabled Phy 0...........................1.50 Gb/s Power State.....................Full rpm Supported power states..........Full rpm, Powered off 0x01............................113 0x03............................98 0x04............................99 0x05............................100 0x07............................83 0x09............................75 0x0A............................100 0x0C............................99 0xBB............................100 0xBD............................100 0xBE............................61 0xC2............................39 0xC3............................69 0xC5............................100 0xC6............................100 0xC7............................200 0xC8............................100 0xCA............................100 Aborted commands................0 Link failures...................0 Medium errors...................0 Parity errors...................0 Hardware errors.................0 SMART errors....................0 End of the configuration information for controller 1 List item

    Read the article

  • Linux buffer cache effect on IO writes?

    - by Patrick LeBoutillier
    I'm copying large files (3 x 30G) between 2 filesystems on a Linux server (kernel 2.6.37, 16 cores, 32G RAM) and I'm getting poor performance. I suspect that the usage of the buffer cache is killing the I/O performance. To try and narrow down the problem I used fio directly on the SAS disk to monitor the performance. Here is the output of 2 fio runs (the first with direct=1, the second one direct=0): Config: [test] rw=write blocksize=32k size=20G filename=/dev/sda # direct=1 Run 1: test: (g=0): rw=write, bs=32K-32K/32K-32K, ioengine=sync, iodepth=1 Starting 1 process Jobs: 1 (f=1): [W] [100.0% done] [0K/205M /s] [0/6K iops] [eta 00m:00s] test: (groupid=0, jobs=1): err= 0: pid=4667 write: io=20,480MB, bw=199MB/s, iops=6,381, runt=102698msec clat (usec): min=104, max=13,388, avg=152.06, stdev=72.43 bw (KB/s) : min=192448, max=213824, per=100.01%, avg=204232.82, stdev=4084.67 cpu : usr=3.37%, sys=16.55%, ctx=655410, majf=0, minf=29 IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0% submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% issued r/w: total=0/655360, short=0/0 lat (usec): 250=99.50%, 500=0.45%, 750=0.01%, 1000=0.01% lat (msec): 2=0.01%, 4=0.02%, 10=0.01%, 20=0.01% Run status group 0 (all jobs): WRITE: io=20,480MB, aggrb=199MB/s, minb=204MB/s, maxb=204MB/s, mint=102698msec, maxt=102698msec Disk stats (read/write): sda: ios=0/655238, merge=0/0, ticks=0/79552, in_queue=78640, util=76.55% Run 2: test: (g=0): rw=write, bs=32K-32K/32K-32K, ioengine=sync, iodepth=1 Starting 1 process Jobs: 1 (f=1): [W] [100.0% done] [0K/0K /s] [0/0 iops] [eta 00m:00s] test: (groupid=0, jobs=1): err= 0: pid=4733 write: io=20,480MB, bw=91,265KB/s, iops=2,852, runt=229786msec clat (usec): min=16, max=127K, avg=349.53, stdev=4694.98 bw (KB/s) : min=56013, max=1390016, per=101.47%, avg=92607.31, stdev=167453.17 cpu : usr=0.41%, sys=6.93%, ctx=21128, majf=0, minf=33 IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0% submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% issued r/w: total=0/655360, short=0/0 lat (usec): 20=5.53%, 50=93.89%, 100=0.02%, 250=0.01%, 500=0.01% lat (msec): 2=0.01%, 4=0.01%, 10=0.01%, 20=0.01%, 50=0.12% lat (msec): 100=0.38%, 250=0.04% Run status group 0 (all jobs): WRITE: io=20,480MB, aggrb=91,265KB/s, minb=93,455KB/s, maxb=93,455KB/s, mint=229786msec, maxt=229786msec Disk stats (read/write): sda: ios=8/79811, merge=7/7721388, ticks=9/32418456, in_queue=32471983, util=98.98% I'm not knowledgeable enough with fio to interpret the results, but I don't expect the overall performance using the buffer cache to be 50% less than with O_DIRECT. Can someone help me interpret the fio output? Are there any kernel tunings that could fix/minimize the problem? Thanks a lot,

    Read the article

  • Where / how does Apache generate the HTML code used in the default directory listing?

    - by Ellen B
    I am looking to modify the HTML that apache generates for its default directory listing. I already know how to create a HEADER.html file that gets included for every directory listing. I am attempting to change the actual html that Apache generates for the file listing itself; right now my MacOS apache generates this for example: <table><tr><th><img src="/icons/blank.gif" alt="[ICO]"></th><th><a href="?C=N;O=D">Name</a></th><th><a href="?C=M;O=A">Last modified</a></th><th><a href="?C=S;O=A">Size</a></th><th><a href="?C=D;O=A">Description</a></th></tr><tr><th colspan="5"><hr></th></tr> <tr><td valign="top"><img src="/icons/folder.gif" alt="[DIR]"></td><td><a href="ios-prototype/">ios-prototype/</a> </td><td align="right">07-Dec-2012 16:47 </td><td align="right"> - </td><td>&nbsp;</td></tr> <tr><td valign="top"><img src="/icons/folder.gif" alt="[DIR]"></td><td><a href="magneto-git/">magneto-git/</a> </td><td align="right">07-Dec-2012 16:46 </td><td align="right"> - </td><td>&nbsp;</td></tr> <tr><th colspan="5"><hr></th></tr> </table> I want a different HTML structure (like, say, an OL) generated when my server spits back directory listings. (FYI I'm doing a bunch of mobile browser prototyping with my local webserver & need to make it not totally horrible to browse with fingers to the right test directory — the table structure sucks, and while I can mod a lot of it with CSS it's still going to be ganky.)

    Read the article

  • How can I move the Windows 8 on-screen keyboard?

    - by Vladimir Sinenko
    From the first look, it seems that the onscreen keyboard in Windows 8 cannot be moved from its default position at the bottom of the screen: However, sometimes it obstructs the input field and should be repositioned (see iOS 5's screenshots for examples) So the question is, can it actually move? If it can, how can I do that? If it cannot, is it possible to use the keyboard to fill an input field that is underneath it?

    Read the article

  • Linux buffer cache effect on IO writes?

    - by Patrick LeBoutillier
    Hi, I'm copying large files (3 x 30G) between 2 filesystems on a Linux server (kernel 2.6.37, 16 cores, 32G RAM) and I'm getting poor performance. I suspect that the usage of the buffer cache is killing the I/O performance. To try and narrow down the problem I used fio directly on the SAS disk to monitor the performance. Here is the output of 2 fio runs (the first with direct=1, the second one direct=0): Config: [test] rw=write blocksize=32k size=20G filename=/dev/sda # direct=1 Run 1: test: (g=0): rw=write, bs=32K-32K/32K-32K, ioengine=sync, iodepth=1 Starting 1 process Jobs: 1 (f=1): [W] [100.0% done] [0K/205M /s] [0/6K iops] [eta 00m:00s] test: (groupid=0, jobs=1): err= 0: pid=4667 write: io=20,480MB, bw=199MB/s, iops=6,381, runt=102698msec clat (usec): min=104, max=13,388, avg=152.06, stdev=72.43 bw (KB/s) : min=192448, max=213824, per=100.01%, avg=204232.82, stdev=4084.67 cpu : usr=3.37%, sys=16.55%, ctx=655410, majf=0, minf=29 IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0% submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% issued r/w: total=0/655360, short=0/0 lat (usec): 250=99.50%, 500=0.45%, 750=0.01%, 1000=0.01% lat (msec): 2=0.01%, 4=0.02%, 10=0.01%, 20=0.01% Run status group 0 (all jobs): WRITE: io=20,480MB, aggrb=199MB/s, minb=204MB/s, maxb=204MB/s, mint=102698msec, maxt=102698msec Disk stats (read/write): sda: ios=0/655238, merge=0/0, ticks=0/79552, in_queue=78640, util=76.55% Run 2: test: (g=0): rw=write, bs=32K-32K/32K-32K, ioengine=sync, iodepth=1 Starting 1 process Jobs: 1 (f=1): [W] [100.0% done] [0K/0K /s] [0/0 iops] [eta 00m:00s] test: (groupid=0, jobs=1): err= 0: pid=4733 write: io=20,480MB, bw=91,265KB/s, iops=2,852, runt=229786msec clat (usec): min=16, max=127K, avg=349.53, stdev=4694.98 bw (KB/s) : min=56013, max=1390016, per=101.47%, avg=92607.31, stdev=167453.17 cpu : usr=0.41%, sys=6.93%, ctx=21128, majf=0, minf=33 IO depths : 1=100.0%, 2=0.0%, 4=0.0%, 8=0.0%, 16=0.0%, 32=0.0%, >=64=0.0% submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0% issued r/w: total=0/655360, short=0/0 lat (usec): 20=5.53%, 50=93.89%, 100=0.02%, 250=0.01%, 500=0.01% lat (msec): 2=0.01%, 4=0.01%, 10=0.01%, 20=0.01%, 50=0.12% lat (msec): 100=0.38%, 250=0.04% Run status group 0 (all jobs): WRITE: io=20,480MB, aggrb=91,265KB/s, minb=93,455KB/s, maxb=93,455KB/s, mint=229786msec, maxt=229786msec Disk stats (read/write): sda: ios=8/79811, merge=7/7721388, ticks=9/32418456, in_queue=32471983, util=98.98% I'm not knowledgeable enough with fio to interpret the results, but I don't expect the overall performance using the buffer cache to be 50% less than with O_DIRECT. Can someone help me interpret the fio output? Are there any kernel tunings that could fix/minimize the problem? Thanks a lot,

    Read the article

  • Convert C++Builder AnsiString to std::string via boost::lexical_cast

    - by David Klein
    For a school assignment I have to implement a project in C++ using Borland C++ Builder. As the VCL uses AnsiString for all GUI Components I have to convert all of my std::strings to AnsiString for the sake of displaying. std::string inp = "Hello world!"; AnsiString outp(inp.c_str()); works of course but is a bit tedious to write and code duplication I want to avoid. As we use Boost in other contexts I decided to provide some helper functions go get boost::lexical_cast to work with AnsiString. Here is my implementation so far: std::istream& operator>>(std::istream& istr, AnsiString& str) { istr.exceptions(std::ios::badbit | std::ios::failbit | std::ios::eofbit); std::string s; std::getline(istr,s); str = AnsiString(s.c_str()); return istr; } In the beginning I got Access Violation after Access Violation but since I added the .exceptions() stuff the picture gets clearer. When the conversion is performed I get the following Exception: ios_base::eofbit set [Runtime Error/std::ios_base::failure] Does anyone have an idea how to fix it and can explain why the error occurs? My C++ experience is very limited. The conversion routine the other way round would be: std::ostream& operator<<(std::ostream& ostr,const AnsiString& str) { ostr << (str.c_str()); return ostr; } Maybe someone will spot an error here too :) With best regards! Edit: At the moment I'm using the edited version of Jem, it works in the beginning. After a while of using the programm the Borland Codeguard mentions some pointer arithmetic in already freed regions. Any ideas how this could be related? The Codeguard log (I'm using the german version, translations marked with stars): ------------------------------------------ Fehler 00080. 0x104230 (r) (Thread 0x07A4): Zeigerarithmetik in freigegebenem Speicher: 0x0241A238-0x0241A258. **(pointer arithmetic in freed region)** | d:\program files\borland\bds\4.0\include\dinkumware\sstream Zeile 126: | { // not first growth, adjust pointers | _Seekhigh = _Seekhigh - _Mysb::eback() + _Ptr; |> _Mysb::setp(_Mysb::pbase() - _Mysb::eback() + _Ptr, | _Mysb::pptr() - _Mysb::eback() + _Ptr, _Ptr + _Newsize); | if (_Mystate & _Noread) Aufrufhierarchie: **(stack-trace)** 0x00411731(=FOSChampion.exe:0x01:010731) d:\program files\borland\bds\4.0\include\dinkumware\sstream#126 0x00411183(=FOSChampion.exe:0x01:010183) d:\program files\borland\bds\4.0\include\dinkumware\streambuf#465 0x0040933D(=FOSChampion.exe:0x01:00833D) d:\program files\borland\bds\4.0\include\dinkumware\streambuf#151 0x00405988(=FOSChampion.exe:0x01:004988) d:\program files\borland\bds\4.0\include\dinkumware\ostream#679 0x00405759(=FOSChampion.exe:0x01:004759) D:\Projekte\Schule\foschamp\src\Server\Ansistringkonverter.h#31 0x004080C9(=FOSChampion.exe:0x01:0070C9) D:\Projekte\Schule\foschamp\lib\boost_1_34_1\boost/lexical_cast.hpp#151 Objekt (0x0241A238) [Größe: 32 Byte] war erstellt mit new **(Object was created with new)** | d:\program files\borland\bds\4.0\include\dinkumware\xmemory Zeile 28: | _Ty _FARQ *_Allocate(_SIZT _Count, _Ty _FARQ *) | { // allocate storage for _Count elements of type _Ty |> return ((_Ty _FARQ *)::operator new(_Count * sizeof (_Ty))); | } | Aufrufhierarchie: **(stack-trace)** 0x0040ED90(=FOSChampion.exe:0x01:00DD90) d:\program files\borland\bds\4.0\include\dinkumware\xmemory#28 0x0040E194(=FOSChampion.exe:0x01:00D194) d:\program files\borland\bds\4.0\include\dinkumware\xmemory#143 0x004115CF(=FOSChampion.exe:0x01:0105CF) d:\program files\borland\bds\4.0\include\dinkumware\sstream#105 0x00411183(=FOSChampion.exe:0x01:010183) d:\program files\borland\bds\4.0\include\dinkumware\streambuf#465 0x0040933D(=FOSChampion.exe:0x01:00833D) d:\program files\borland\bds\4.0\include\dinkumware\streambuf#151 0x00405988(=FOSChampion.exe:0x01:004988) d:\program files\borland\bds\4.0\include\dinkumware\ostream#679 Objekt (0x0241A238) war Gelöscht mit delete **(Object was deleted with delete)** | d:\program files\borland\bds\4.0\include\dinkumware\xmemory Zeile 138: | void deallocate(pointer _Ptr, size_type) | { // deallocate object at _Ptr, ignore size |> ::operator delete(_Ptr); | } | Aufrufhierarchie: **(stack-trace)** 0x004044C6(=FOSChampion.exe:0x01:0034C6) d:\program files\borland\bds\4.0\include\dinkumware\xmemory#138 0x00411628(=FOSChampion.exe:0x01:010628) d:\program files\borland\bds\4.0\include\dinkumware\sstream#111 0x00411183(=FOSChampion.exe:0x01:010183) d:\program files\borland\bds\4.0\include\dinkumware\streambuf#465 0x0040933D(=FOSChampion.exe:0x01:00833D) d:\program files\borland\bds\4.0\include\dinkumware\streambuf#151 0x00405988(=FOSChampion.exe:0x01:004988) d:\program files\borland\bds\4.0\include\dinkumware\ostream#679 0x00405759(=FOSChampion.exe:0x01:004759) D:\Projekte\Schule\foschamp\src\Server\Ansistringkonverter.h#31 ------------------------------------------ Ansistringkonverter.h is the file with the posted operators and line 31 is: std::ostream& operator<<(std::ostream& ostr,const AnsiString& str) { ostr << (str.c_str()); **(31)** return ostr; } Thanks for your help :)

    Read the article

  • Linux not picking up new partition correctly on emc pseudo device

    - by James
    Hi We have a database server running oracle rac. We were recently running out of space on the main LUN that it is attached to. I created a new 100GB LUN and concatenated this onto the existing LUN creating a new MetaLUN. After some messing I managed to get linux to recognise the new space. I then created a new partition in on the pseudo device, to use the new space. Previously when I have done this on other system the next step is to create an ASM disk on the new partition and add this disk to the oracle disk group. This however fails. I am aware of various issues with ASM and powerpath, but I don't think this is the issue here. As on while investigating the issue I discovered that one of the underlying logical device is not reflecting the size change. See below; Powermt displays all of the underlying logical units [root@XXXXX~]# powermt display dev=emcpowerd Pseudo name=emcpowerd CLARiiON ID=CKM00091500009 [VFRAC2] Logical device ID=6006016030312200787502866C65DE11 [LUN 30] state=alive; policy=CLAROpt; priority=0; queued-IOs=0 Owner: default=SP A, current=SP A Array failover mode: 1 ============================================================================== ---------------- Host --------------- - Stor - -- I/O Path - -- Stats --- ### HW Path I/O Paths Interf. Mode State Q-IOs Errors ============================================================================== 3 qla2xxx sde SP A0 active alive 0 0 3 qla2xxx sdj SP B0 active alive 0 0 4 qla2xxx sdo SP A1 active alive 0 0 4 qla2xxx sdt SP B1 active alive 0 0 Fdisk on the pseudo device shows correct space. [root@XXXXX ~]# fdisk -l /dev/emcpowerd Disk /dev/emcpowerd: 429.4 GB, 429496729600 bytes 255 heads, 63 sectors/track, 52216 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/emcpowerd1 1 39162 314568733+ 83 Linux /dev/emcpowerd2 39163 52216 104856255 83 Linux fdisk on one of the logical units is wrong [root@XXXXX~]# fdisk -l /dev/sde Disk /dev/sde: 322.1 GB, 322122547200 bytes 255 heads, 63 sectors/track, 39162 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sde1 1 39162 314568733+ 83 Linux /dev/sde2 39163 52216 104856255 83 Linux fdisk on the rest of the units is fine [root@XXXXX ~]# fdisk -l /dev/sdj Disk /dev/sdj: 429.4 GB, 429496729600 bytes 255 heads, 63 sectors/track, 52216 cylinders Units = cylinders of 16065 * 512 = 8225280 bytes Device Boot Start End Blocks Id System /dev/sdj1 1 39162 314568733+ 83 Linux /dev/sdj2 39163 52216 104856255 83 Linux Also when I created the the partition linux did not create the any entries in the /dev directory for the second partition so I created these manually [root@XXXXX dev]# mknod sde2 b 8 66 [root@XXXXX dev]# ls -al sd[ejot]? brw-r----- 1 root disk 8, 65 Dec 29 14:20 sde1 brw-r--r-- 1 root disk 8, 66 Apr 8 20:31 sde2 brw-r----- 1 root disk 8, 145 Dec 29 14:19 sdj1 brw-r--r-- 1 root disk 8, 146 Apr 8 20:33 sdj2 brw-r----- 1 root disk 8, 225 Apr 6 23:12 sdo1 brw-r--r-- 1 root disk 8, 226 Apr 8 20:33 sdo2 brw-r----- 1 root disk 65, 49 Dec 29 14:19 sdt1 brw-r--r-- 1 root disk 65, 50 Apr 8 20:33 sdt2 This is a production server that we cannot easily reboot. Any ideas would be much appreciated. J

    Read the article

  • Privoxy causes problem for iPod Touch Youtube App

    - by piyo
    Whenever I use my iPod Touch G4 (iOS 4.1) at home, I cannot play Youtube videos using the Youtube app. The lists of videos shows correctly, but when I tap to play a video and the video toolbar shows up, a dialog box shows "The server is not correctly configured" and the video is not played. When I turn off my Privoxy (v3.0.15) proxy, the video plays correctly. How can I use Privoxy as the global default proxy while still retaining Youtube App functionality?

    Read the article

  • Adaptec 5805 not recognized after reboot

    - by Rakedko ShotGuns
    After rebooting the system, the controller is not recognized. It only works if the computer is shut down and turned off. I have recently updated the firmware to "Adaptec RAID 5805 Firmware Build 18948". How do I fix the problem? Configuration summary --------------------------- 1. Server name.....................raid_test Adaptec Storage Manager agent...7.31.00 (18856) Adaptec Storage Manager console.7.31.00 (18856) Number of controllers...........1 Operating system................Windows Configuration information for controller 1 ------------------------------------------------------- Type............................Controller Model...........................Adaptec 5805 Controller number...............1 Physical slot...................2 Installed memory size...........512 MB Serial number...................8C4510C6C9E Boot ROM........................5.2-0 (18948) Firmware........................5.2-0 (18948) Device driver...................5.2-0 (16119) Controller status...............Optimal Battery status..................Charging Battery temperature.............Normal Battery charge amount (%).......37 Estimated charge remaining......0 days, 16 hours, 12 minutes Background consistency check....Disabled Copy back.......................Disabled Controller temperature..........Normal (40C / 104F) Default logical drive task priority High Performance mode................Dynamic Number of logical devices.......1 Number of hot-spare drives......0 Number of ready drives..........0 Number of drive(s) assigned to MaxCache cache0 Maximum drives allowed for MaxCache cache8 MaxCache Read Cache Pool Size...0 GB NCQ status......................Enabled Stay awake status...............Disabled Internal drive spinup limit.....0 External drive spinup limit.....0 Phy 0...........................No device attached Phy 1...........................No device attached Phy 2...........................No device attached Phy 3...........................1.50 Gb/s Phy 4...........................No device attached Phy 5...........................No device attached Phy 6...........................No device attached Phy 7...........................No device attached Statistics version..............2.0 SSD Cache size..................0 Pages on fetch list.............0 Fetch list candidates...........0 Candidate replacements..........0 69319...........................31293 Logical device..................0 Logical device name............. RAID level......................Simple volume Data space......................148,916 GB Date created....................09/19/2012 Interface type..................Serial ATA State...........................Optimal Read-cache mode.................Enabled Preferred MaxCache read cache settingEnabled Actual MaxCache read cache setting Disabled Write-cache mode................Enabled (write-back) Write-cache setting.............Enabled (write-back) Partitioned.....................Yes Protected by hot spare..........No Bootable........................Yes Bad stripes.....................No Power Status....................Disabled Power State.....................Active Reduce RPM timer................Never Power off timer.................Never Verify timer....................Never Segment 0.......................Present: controller 1, connector 0, device 0, S/N 9RX3KZMT Overall host IOs................99075 Overall MB......................4411203 DRAM cache hits.................71929 SSD cache hits..................0 Uncached IOs....................29239 Overall disk failures...........0 DRAM cache full hits............71929 DRAM cache fetch / flush wait...0 DRAM cache hybrid reads.........3476 DRAM cache flushes..............-- Read hits.......................0 Write hits......................0 Valid Pages.....................0 Updates on writes...............0 Invalidations by large writes...0 Invalidations by R/W balance....0 Invalidations by replacement....0 Invalidations by other..........0 Page Fetches....................0 0...............................0 73..............................10822 8...............................3 46138...........................4916 27184...........................15226 20875...........................323 16982...........................1771 1563............................5317 1948............................2969 Serial attached SCSI ----------------------- Type............................Disk drive Vendor..........................Unknown Model...........................ST3160815AS Serial Number...................9RX3KZMT Firmware level..................3.AAD Reported channel................0 Reported SCSI device ID.........0 Interface type..................Serial ATA Size............................149,05 GB Negotiated transfer speed.......1.50 Gb/s State...........................Optimal S.M.A.R.T. error................No Write-cache mode................Write back Hardware errors.................0 Medium errors...................0 Parity errors...................0 Link failures...................0 Aborted commands................0 S.M.A.R.T. warnings.............0 Solid-state disk (non-spinning).false MaxCache cache capable..........false MaxCache cache assigned.........false NCQ status......................Enabled Phy 0...........................1.50 Gb/s Power State.....................Full rpm Supported power states..........Full rpm, Powered off 0x01............................113 0x03............................98 0x04............................99 0x05............................100 0x07............................83 0x09............................75 0x0A............................100 0x0C............................99 0xBB............................100 0xBD............................100 0xBE............................61 0xC2............................39 0xC3............................69 0xC5............................100 0xC6............................100 0xC7............................200 0xC8............................100 0xCA............................100 Aborted commands................0 Link failures...................0 Medium errors...................0 Parity errors...................0 Hardware errors.................0 SMART errors....................0 End of the configuration information for controller 1

    Read the article

  • Software to Stream Media Content from Dedicated Server [closed]

    - by Christian
    We have Windows 2008 R2 Servers and we want to stream content (avi, wmv, mpeg etc) to Windows/Mac OS X/iOS etc devices. The visitor must be able to select the file (s)he want to view withing the library. We tried to accomplish this using: VLC Windows Media Service (WMS) Mediaportal VLC: We didnt find a solution to publish the content in a library WMS: only supports WMV/WMA, needs MediaPlayer MediaPortal: it is not supported on W2k8R2 Server Any suggestions? /chris

    Read the article

  • Move Windows 8 onscreen keyboard?

    - by Vladimir Sinenko
    From the first look, it seems that the onscreen keyboard in Windows 8 cannot be moved from its default position at the bottom of the screen: However, sometimes it obstructs the input field and should be repositioned (see iOS 5's screenshots for examples) So the question is, can it actually move? If it can, how can I do that? If it cannot, is it possible to use the keyboard to fill an input field that is underneath it?

    Read the article

  • Enterprise Wireless Authentication without Active Directory

    - by ank
    We are in the process of redoing our wireless access network and would like to know if there is any method to get Windows clients/users access to the network using 802.1x WITHOUT having an Active Directory server for authentication and WITHOUT installing additional software on each and every client. Note that we already use Radius servers, LDAP servers (all on CentOS). Users employ a variety of clients including Windows, Mac, Linux, Android, iOS.

    Read the article

  • I have a collection of dead consumer grade routers, should I buy a real one?

    - by Ex Networking Guy
    Am I crazy for considering purchasing a Cisco 2621 for the house? I am familiar enough with IOS to set up a simple gateway router, I don't really need the experience. At this point, I'm a developer so my days of crawling through CO's and under desks are long past me. But I am really sick of crappy consumer grade networking gear. Maybe I have lousy luck and this stack of WRTG54s is just because I have lousy power, or whatever.

    Read the article

  • Cisco 861 Router forces one-to-one NAT

    - by Slurpee
    I have a cisco 861 router that only allows one-to-one NATs in order to access the Internet. I would like for computers to get an address via DHCP from this router, and be able to access the Internet without needing to set a static NAT to one of my public IPs. What is wrong with the configuration? I have a basic understanding of the IOS CLI, most of the configuration file (edited for content) was created by my company's long gone Senior Network Engineer.

    Read the article

  • Blogging: MacJournal & Windows Live Writer

    - by Jeff Julian
    One thing I have learned about using a Mac is that Apple does not produce very many free applications. The ones they do are typically not full featured and to get the full feature you need to buy their upgraded version. For example, when it comes to Photo editing and cataloging, iPhoto is not a solution for large files or RAW processing, you need Aperture which is a couple hundred dollars. I am not complaining because I like it when an application has a product team who generates revenue with it, because the chance of them being around longer seems to be higher. What is my point in all of this? Apple does not produce a product for blogging/journaling like Microsoft does with Windows Live Writer. I love Windows Live Writer. If you are on a Windows box, it is a required tool in your toolbox if you publish to a blog. The cleanness of the interface, integration with most blog APIs and ability to Save Local or Publish as a Draft make capturing your thoughts for publishing now or later a very easy task. My hope is that Microsoft will port it to the Mac, but I don’t believe that will ever happen as it is not a revenue generating product and Microsoft doesn’t often port to a Mac besides Remote Desktop Connection and MSN Messenger. For my configuration I used to use only Boot Camp on my two MacBook Pros I have owned in the past three years because I’m a PC, but after four different rebuilds (not typically due to Windows, but Boot Camp or Parallels) I decided to move off the Boot Camp platform and to VMWare Fusion. This is a complete separate blog post that I should spec out in MacJournal, but I now always boot into the Mac OS and use Fusion for my AJI Software VM or my client’s VMs. It just seems to work better for me and I have a very nice way to backup my Windows environments with VMWare.Needless to say, there was need in my new laptop configuration for a blogging tool that worked natively on a Mac. I don’t like to power up my machine for writing a document or working on an image and need to boot up a VM just so I can use Windows. Some would say why not just use a Windows laptop and put the MBP on eBay? It is just a preference and right now, I like the Mac OS for day to day work. So in comes MacJournal, part of the current MacHeist package for $19.95 (MacJournal is normally $39.95). This product is definitely not WLW, but WLW is missing some features I like in MacJournal. I hope the price point comes down on MacJournal cause I could see paying $19.95 for it, but it is always hard for me to buy a piece of software for $39.95 when I can use something else. But I am a cheapskate when it comes to software packages. I suggest if you are using a Mac to drop what you are doing pick up the MacHeist bundle today before it is over, but if you are reading this later, than download the trial and see if MacJournal is a solution for you. If you have any other suggestions that are as nice or cheaper, please comment.Product LinksMacJournal by Mariners Software $39.95 (part of MacHeist bundle for $19.95 with only one day left)Windows Live Writer by MicrosoftThis post was created using MacJournal.[Update: The joys of formatting. Make sure if you are a Geekswithblogs.net member that you use this configuration to setup the Metablog formatting of paragraphs correctly]

    Read the article

  • Mobile Development- Obtaining development hardware - best practices?

    - by Zoot
    I'm looking to get into smartphone development, but there a quite a few options out there for platforms right now. (iOS/Android/WebOS/Bada/Symbian/MeeGo/WindowsMobile/JavaME) I'd like to have development hardware to test my code and the overall functionality of the devices. What is the best way to obtain and/or borrow hardware for development and testing? Are there rules of thumb to follow which apply to all companies and platforms? In this situation, I'm a single developer. Does this process change for a startup? A hackerspace? A small business? A large business? Thanks.

    Read the article

  • Improving Partitioned Table Join Performance

    - by Paul White
    The query optimizer does not always choose an optimal strategy when joining partitioned tables. This post looks at an example, showing how a manual rewrite of the query can almost double performance, while reducing the memory grant to almost nothing. Test Data The two tables in this example use a common partitioning partition scheme. The partition function uses 41 equal-size partitions: CREATE PARTITION FUNCTION PFT (integer) AS RANGE RIGHT FOR VALUES ( 125000, 250000, 375000, 500000, 625000, 750000, 875000, 1000000, 1125000, 1250000, 1375000, 1500000, 1625000, 1750000, 1875000, 2000000, 2125000, 2250000, 2375000, 2500000, 2625000, 2750000, 2875000, 3000000, 3125000, 3250000, 3375000, 3500000, 3625000, 3750000, 3875000, 4000000, 4125000, 4250000, 4375000, 4500000, 4625000, 4750000, 4875000, 5000000 ); GO CREATE PARTITION SCHEME PST AS PARTITION PFT ALL TO ([PRIMARY]); There two tables are: CREATE TABLE dbo.T1 ( TID integer NOT NULL IDENTITY(0,1), Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T1 PRIMARY KEY CLUSTERED (TID) ON PST (TID) );   CREATE TABLE dbo.T2 ( TID integer NOT NULL, Column1 integer NOT NULL, Padding binary(100) NOT NULL DEFAULT 0x,   CONSTRAINT PK_T2 PRIMARY KEY CLUSTERED (TID, Column1) ON PST (TID) ); The next script loads 5 million rows into T1 with a pseudo-random value between 1 and 5 for Column1. The table is partitioned on the IDENTITY column TID: INSERT dbo.T1 WITH (TABLOCKX) (Column1) SELECT (ABS(CHECKSUM(NEWID())) % 5) + 1 FROM dbo.Numbers AS N WHERE n BETWEEN 1 AND 5000000; In case you don’t already have an auxiliary table of numbers lying around, here’s a script to create one with 10 million rows: CREATE TABLE dbo.Numbers (n bigint PRIMARY KEY);   WITH L0 AS(SELECT 1 AS c UNION ALL SELECT 1), L1 AS(SELECT 1 AS c FROM L0 AS A CROSS JOIN L0 AS B), L2 AS(SELECT 1 AS c FROM L1 AS A CROSS JOIN L1 AS B), L3 AS(SELECT 1 AS c FROM L2 AS A CROSS JOIN L2 AS B), L4 AS(SELECT 1 AS c FROM L3 AS A CROSS JOIN L3 AS B), L5 AS(SELECT 1 AS c FROM L4 AS A CROSS JOIN L4 AS B), Nums AS(SELECT ROW_NUMBER() OVER (ORDER BY (SELECT NULL)) AS n FROM L5) INSERT dbo.Numbers WITH (TABLOCKX) SELECT TOP (10000000) n FROM Nums ORDER BY n OPTION (MAXDOP 1); Table T1 contains data like this: Next we load data into table T2. The relationship between the two tables is that table 2 contains ‘n’ rows for each row in table 1, where ‘n’ is determined by the value in Column1 of table T1. There is nothing particularly special about the data or distribution, by the way. INSERT dbo.T2 WITH (TABLOCKX) (TID, Column1) SELECT T.TID, N.n FROM dbo.T1 AS T JOIN dbo.Numbers AS N ON N.n >= 1 AND N.n <= T.Column1; Table T2 ends up containing about 15 million rows: The primary key for table T2 is a combination of TID and Column1. The data is partitioned according to the value in column TID alone. Partition Distribution The following query shows the number of rows in each partition of table T1: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T1 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are 40 partitions containing 125,000 rows (40 * 125k = 5m rows). The rightmost partition remains empty. The next query shows the distribution for table 2: SELECT PartitionID = CA1.P, NumRows = COUNT_BIG(*) FROM dbo.T2 AS T CROSS APPLY (VALUES ($PARTITION.PFT(TID))) AS CA1 (P) GROUP BY CA1.P ORDER BY CA1.P; There are roughly 375,000 rows in each partition (the rightmost partition is also empty): Ok, that’s the test data done. Test Query and Execution Plan The task is to count the rows resulting from joining tables 1 and 2 on the TID column: SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; The optimizer chooses a plan using parallel hash join, and partial aggregation: The Plan Explorer plan tree view shows accurate cardinality estimates and an even distribution of rows across threads (click to enlarge the image): With a warm data cache, the STATISTICS IO output shows that no physical I/O was needed, and all 41 partitions were touched: Running the query without actual execution plan or STATISTICS IO information for maximum performance, the query returns in around 2600ms. Execution Plan Analysis The first step toward improving on the execution plan produced by the query optimizer is to understand how it works, at least in outline. The two parallel Clustered Index Scans use multiple threads to read rows from tables T1 and T2. Parallel scan uses a demand-based scheme where threads are given page(s) to scan from the table as needed. This arrangement has certain important advantages, but does result in an unpredictable distribution of rows amongst threads. The point is that multiple threads cooperate to scan the whole table, but it is impossible to predict which rows end up on which threads. For correct results from the parallel hash join, the execution plan has to ensure that rows from T1 and T2 that might join are processed on the same thread. For example, if a row from T1 with join key value ‘1234’ is placed in thread 5’s hash table, the execution plan must guarantee that any rows from T2 that also have join key value ‘1234’ probe thread 5’s hash table for matches. The way this guarantee is enforced in this parallel hash join plan is by repartitioning rows to threads after each parallel scan. The two repartitioning exchanges route rows to threads using a hash function over the hash join keys. The two repartitioning exchanges use the same hash function so rows from T1 and T2 with the same join key must end up on the same hash join thread. Expensive Exchanges This business of repartitioning rows between threads can be very expensive, especially if a large number of rows is involved. The execution plan selected by the optimizer moves 5 million rows through one repartitioning exchange and around 15 million across the other. As a first step toward removing these exchanges, consider the execution plan selected by the optimizer if we join just one partition from each table, disallowing parallelism: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = 1 AND $PARTITION.PFT(T2.TID) = 1 OPTION (MAXDOP 1); The optimizer has chosen a (one-to-many) merge join instead of a hash join. The single-partition query completes in around 100ms. If everything scaled linearly, we would expect that extending this strategy to all 40 populated partitions would result in an execution time around 4000ms. Using parallelism could reduce that further, perhaps to be competitive with the parallel hash join chosen by the optimizer. This raises a question. If the most efficient way to join one partition from each of the tables is to use a merge join, why does the optimizer not choose a merge join for the full query? Forcing a Merge Join Let’s force the optimizer to use a merge join on the test query using a hint: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN); This is the execution plan selected by the optimizer: This plan results in the same number of logical reads reported previously, but instead of 2600ms the query takes 5000ms. The natural explanation for this drop in performance is that the merge join plan is only using a single thread, whereas the parallel hash join plan could use multiple threads. Parallel Merge Join We can get a parallel merge join plan using the same query hint as before, and adding trace flag 8649: SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (MERGE JOIN, QUERYTRACEON 8649); The execution plan is: This looks promising. It uses a similar strategy to distribute work across threads as seen for the parallel hash join. In practice though, performance is disappointing. On a typical run, the parallel merge plan runs for around 8400ms; slower than the single-threaded merge join plan (5000ms) and much worse than the 2600ms for the parallel hash join. We seem to be going backwards! The logical reads for the parallel merge are still exactly the same as before, with no physical IOs. The cardinality estimates and thread distribution are also still very good (click to enlarge): A big clue to the reason for the poor performance is shown in the wait statistics (captured by Plan Explorer Pro): CXPACKET waits require careful interpretation, and are most often benign, but in this case excessive waiting occurs at the repartitioning exchanges. Unlike the parallel hash join, the repartitioning exchanges in this plan are order-preserving ‘merging’ exchanges (because merge join requires ordered inputs): Parallelism works best when threads can just grab any available unit of work and get on with processing it. Preserving order introduces inter-thread dependencies that can easily lead to significant waits occurring. In extreme cases, these dependencies can result in an intra-query deadlock, though the details of that will have to wait for another time to explore in detail. The potential for waits and deadlocks leads the query optimizer to cost parallel merge join relatively highly, especially as the degree of parallelism (DOP) increases. This high costing resulted in the optimizer choosing a serial merge join rather than parallel in this case. The test results certainly confirm its reasoning. Collocated Joins In SQL Server 2008 and later, the optimizer has another available strategy when joining tables that share a common partition scheme. This strategy is a collocated join, also known as as a per-partition join. It can be applied in both serial and parallel execution plans, though it is limited to 2-way joins in the current optimizer. Whether the optimizer chooses a collocated join or not depends on cost estimation. The primary benefits of a collocated join are that it eliminates an exchange and requires less memory, as we will see next. Costing and Plan Selection The query optimizer did consider a collocated join for our original query, but it was rejected on cost grounds. The parallel hash join with repartitioning exchanges appeared to be a cheaper option. There is no query hint to force a collocated join, so we have to mess with the costing framework to produce one for our test query. Pretending that IOs cost 50 times more than usual is enough to convince the optimizer to use collocated join with our test query: -- Pretend IOs are 50x cost temporarily DBCC SETIOWEIGHT(50);   -- Co-located hash join SELECT COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID OPTION (RECOMPILE);   -- Reset IO costing DBCC SETIOWEIGHT(1); Collocated Join Plan The estimated execution plan for the collocated join is: The Constant Scan contains one row for each partition of the shared partitioning scheme, from 1 to 41. The hash repartitioning exchanges seen previously are replaced by a single Distribute Streams exchange using Demand partitioning. Demand partitioning means that the next partition id is given to the next parallel thread that asks for one. My test machine has eight logical processors, and all are available for SQL Server to use. As a result, there are eight threads in the single parallel branch in this plan, each processing one partition from each table at a time. Once a thread finishes processing a partition, it grabs a new partition number from the Distribute Streams exchange…and so on until all partitions have been processed. It is important to understand that the parallel scans in this plan are different from the parallel hash join plan. Although the scans have the same parallelism icon, tables T1 and T2 are not being co-operatively scanned by multiple threads in the same way. Each thread reads a single partition of T1 and performs a hash match join with the same partition from table T2. The properties of the two Clustered Index Scans show a Seek Predicate (unusual for a scan!) limiting the rows to a single partition: The crucial point is that the join between T1 and T2 is on TID, and TID is the partitioning column for both tables. A thread that processes partition ‘n’ is guaranteed to see all rows that can possibly join on TID for that partition. In addition, no other thread will see rows from that partition, so this removes the need for repartitioning exchanges. CPU and Memory Efficiency Improvements The collocated join has removed two expensive repartitioning exchanges and added a single exchange processing 41 rows (one for each partition id). Remember, the parallel hash join plan exchanges had to process 5 million and 15 million rows. The amount of processor time spent on exchanges will be much lower in the collocated join plan. In addition, the collocated join plan has a maximum of 8 threads processing single partitions at any one time. The 41 partitions will all be processed eventually, but a new partition is not started until a thread asks for it. Threads can reuse hash table memory for the new partition. The parallel hash join plan also had 8 hash tables, but with all 5,000,000 build rows loaded at the same time. The collocated plan needs memory for only 8 * 125,000 = 1,000,000 rows at any one time. Collocated Hash Join Performance The collated join plan has disappointing performance in this case. The query runs for around 25,300ms despite the same IO statistics as usual. This is much the worst result so far, so what went wrong? It turns out that cardinality estimation for the single partition scans of table T1 is slightly low. The properties of the Clustered Index Scan of T1 (graphic immediately above) show the estimation was for 121,951 rows. This is a small shortfall compared with the 125,000 rows actually encountered, but it was enough to cause the hash join to spill to physical tempdb: A level 1 spill doesn’t sound too bad, until you realize that the spill to tempdb probably occurs for each of the 41 partitions. As a side note, the cardinality estimation error is a little surprising because the system tables accurately show there are 125,000 rows in every partition of T1. Unfortunately, the optimizer uses regular column and index statistics to derive cardinality estimates here rather than system table information (e.g. sys.partitions). Collocated Merge Join We will never know how well the collocated parallel hash join plan might have worked without the cardinality estimation error (and the resulting 41 spills to tempdb) but we do know: Merge join does not require a memory grant; and Merge join was the optimizer’s preferred join option for a single partition join Putting this all together, what we would really like to see is the same collocated join strategy, but using merge join instead of hash join. Unfortunately, the current query optimizer cannot produce a collocated merge join; it only knows how to do collocated hash join. So where does this leave us? CROSS APPLY sys.partitions We can try to write our own collocated join query. We can use sys.partitions to find the partition numbers, and CROSS APPLY to get a count per partition, with a final step to sum the partial counts. The following query implements this idea: SELECT row_count = SUM(Subtotals.cnt) FROM ( -- Partition numbers SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1 ) AS P CROSS APPLY ( -- Count per collocated join SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals; The estimated plan is: The cardinality estimates aren’t all that good here, especially the estimate for the scan of the system table underlying the sys.partitions view. Nevertheless, the plan shape is heading toward where we would like to be. Each partition number from the system table results in a per-partition scan of T1 and T2, a one-to-many Merge Join, and a Stream Aggregate to compute the partial counts. The final Stream Aggregate just sums the partial counts. Execution time for this query is around 3,500ms, with the same IO statistics as always. This compares favourably with 5,000ms for the serial plan produced by the optimizer with the OPTION (MERGE JOIN) hint. This is another case of the sum of the parts being less than the whole – summing 41 partial counts from 41 single-partition merge joins is faster than a single merge join and count over all partitions. Even so, this single-threaded collocated merge join is not as quick as the original parallel hash join plan, which executed in 2,600ms. On the positive side, our collocated merge join uses only one logical processor and requires no memory grant. The parallel hash join plan used 16 threads and reserved 569 MB of memory:   Using a Temporary Table Our collocated merge join plan should benefit from parallelism. The reason parallelism is not being used is that the query references a system table. We can work around that by writing the partition numbers to a temporary table (or table variable): SET STATISTICS IO ON; DECLARE @s datetime2 = SYSUTCDATETIME();   CREATE TABLE #P ( partition_number integer PRIMARY KEY);   INSERT #P (partition_number) SELECT p.partition_number FROM sys.partitions AS p WHERE p.[object_id] = OBJECT_ID(N'T1', N'U') AND p.index_id = 1;   SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals;   DROP TABLE #P;   SELECT DATEDIFF(Millisecond, @s, SYSUTCDATETIME()); SET STATISTICS IO OFF; Using the temporary table adds a few logical reads, but the overall execution time is still around 3500ms, indistinguishable from the same query without the temporary table. The problem is that the query optimizer still doesn’t choose a parallel plan for this query, though the removal of the system table reference means that it could if it chose to: In fact the optimizer did enter the parallel plan phase of query optimization (running search 1 for a second time): Unfortunately, the parallel plan found seemed to be more expensive than the serial plan. This is a crazy result, caused by the optimizer’s cost model not reducing operator CPU costs on the inner side of a nested loops join. Don’t get me started on that, we’ll be here all night. In this plan, everything expensive happens on the inner side of a nested loops join. Without a CPU cost reduction to compensate for the added cost of exchange operators, candidate parallel plans always look more expensive to the optimizer than the equivalent serial plan. Parallel Collocated Merge Join We can produce the desired parallel plan using trace flag 8649 again: SELECT row_count = SUM(Subtotals.cnt) FROM #P AS p CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: One difference between this plan and the collocated hash join plan is that a Repartition Streams exchange operator is used instead of Distribute Streams. The effect is similar, though not quite identical. The Repartition uses round-robin partitioning, meaning the next partition id is pushed to the next thread in sequence. The Distribute Streams exchange seen earlier used Demand partitioning, meaning the next partition id is pulled across the exchange by the next thread that is ready for more work. There are subtle performance implications for each partitioning option, but going into that would again take us too far off the main point of this post. Performance The important thing is the performance of this parallel collocated merge join – just 1350ms on a typical run. The list below shows all the alternatives from this post (all timings include creation, population, and deletion of the temporary table where appropriate) from quickest to slowest: Collocated parallel merge join: 1350ms Parallel hash join: 2600ms Collocated serial merge join: 3500ms Serial merge join: 5000ms Parallel merge join: 8400ms Collated parallel hash join: 25,300ms (hash spill per partition) The parallel collocated merge join requires no memory grant (aside from a paltry 1.2MB used for exchange buffers). This plan uses 16 threads at DOP 8; but 8 of those are (rather pointlessly) allocated to the parallel scan of the temporary table. These are minor concerns, but it turns out there is a way to address them if it bothers you. Parallel Collocated Merge Join with Demand Partitioning This final tweak replaces the temporary table with a hard-coded list of partition ids (dynamic SQL could be used to generate this query from sys.partitions): SELECT row_count = SUM(Subtotals.cnt) FROM ( VALUES (1),(2),(3),(4),(5),(6),(7),(8),(9),(10), (11),(12),(13),(14),(15),(16),(17),(18),(19),(20), (21),(22),(23),(24),(25),(26),(27),(28),(29),(30), (31),(32),(33),(34),(35),(36),(37),(38),(39),(40),(41) ) AS P (partition_number) CROSS APPLY ( SELECT cnt = COUNT_BIG(*) FROM dbo.T1 AS T1 JOIN dbo.T2 AS T2 ON T2.TID = T1.TID WHERE $PARTITION.PFT(T1.TID) = p.partition_number AND $PARTITION.PFT(T2.TID) = p.partition_number ) AS SubTotals OPTION (QUERYTRACEON 8649); The actual execution plan is: The parallel collocated hash join plan is reproduced below for comparison: The manual rewrite has another advantage that has not been mentioned so far: the partial counts (per partition) can be computed earlier than the partial counts (per thread) in the optimizer’s collocated join plan. The earlier aggregation is performed by the extra Stream Aggregate under the nested loops join. The performance of the parallel collocated merge join is unchanged at around 1350ms. Final Words It is a shame that the current query optimizer does not consider a collocated merge join (Connect item closed as Won’t Fix). The example used in this post showed an improvement in execution time from 2600ms to 1350ms using a modestly-sized data set and limited parallelism. In addition, the memory requirement for the query was almost completely eliminated  – down from 569MB to 1.2MB. The problem with the parallel hash join selected by the optimizer is that it attempts to process the full data set all at once (albeit using eight threads). It requires a large memory grant to hold all 5 million rows from table T1 across the eight hash tables, and does not take advantage of the divide-and-conquer opportunity offered by the common partitioning. The great thing about the collocated join strategies is that each parallel thread works on a single partition from both tables, reading rows, performing the join, and computing a per-partition subtotal, before moving on to a new partition. From a thread’s point of view… If you have trouble visualizing what is happening from just looking at the parallel collocated merge join execution plan, let’s look at it again, but from the point of view of just one thread operating between the two Parallelism (exchange) operators. Our thread picks up a single partition id from the Distribute Streams exchange, and starts a merge join using ordered rows from partition 1 of table T1 and partition 1 of table T2. By definition, this is all happening on a single thread. As rows join, they are added to a (per-partition) count in the Stream Aggregate immediately above the Merge Join. Eventually, either T1 (partition 1) or T2 (partition 1) runs out of rows and the merge join stops. The per-partition count from the aggregate passes on through the Nested Loops join to another Stream Aggregate, which is maintaining a per-thread subtotal. Our same thread now picks up a new partition id from the exchange (say it gets id 9 this time). The count in the per-partition aggregate is reset to zero, and the processing of partition 9 of both tables proceeds just as it did for partition 1, and on the same thread. Each thread picks up a single partition id and processes all the data for that partition, completely independently from other threads working on other partitions. One thread might eventually process partitions (1, 9, 17, 25, 33, 41) while another is concurrently processing partitions (2, 10, 18, 26, 34) and so on for the other six threads at DOP 8. The point is that all 8 threads can execute independently and concurrently, continuing to process new partitions until the wider job (of which the thread has no knowledge!) is done. This divide-and-conquer technique can be much more efficient than simply splitting the entire workload across eight threads all at once. Related Reading Understanding and Using Parallelism in SQL Server Parallel Execution Plans Suck © 2013 Paul White – All Rights Reserved Twitter: @SQL_Kiwi

    Read the article

< Previous Page | 152 153 154 155 156 157 158 159 160 161 162 163  | Next Page >