Search Results

Search found 3921 results on 157 pages for 'from zero to ssis!'.

Page 156/157 | < Previous Page | 152 153 154 155 156 157  | Next Page >

  • Scala parser combinator runs out of memory

    - by user3217013
    I wrote the following parser in Scala using the parser combinators: import scala.util.parsing.combinator._ import scala.collection.Map import scala.io.StdIn object Keywords { val Define = "define" val True = "true" val False = "false" val If = "if" val Then = "then" val Else = "else" val Return = "return" val Pass = "pass" val Conj = ";" val OpenParen = "(" val CloseParen = ")" val OpenBrack = "{" val CloseBrack = "}" val Comma = "," val Plus = "+" val Minus = "-" val Times = "*" val Divide = "/" val Pow = "**" val And = "&&" val Or = "||" val Xor = "^^" val Not = "!" val Equals = "==" val NotEquals = "!=" val Assignment = "=" } //--------------------------------------------------------------------------------- sealed abstract class Op case object Plus extends Op case object Minus extends Op case object Times extends Op case object Divide extends Op case object Pow extends Op case object And extends Op case object Or extends Op case object Xor extends Op case object Not extends Op case object Equals extends Op case object NotEquals extends Op case object Assignment extends Op //--------------------------------------------------------------------------------- sealed abstract class Term case object TrueTerm extends Term case object FalseTerm extends Term case class FloatTerm(value : Float) extends Term case class StringTerm(value : String) extends Term case class Identifier(name : String) extends Term //--------------------------------------------------------------------------------- sealed abstract class Expression case class TermExp(term : Term) extends Expression case class UnaryOp(op : Op, exp : Expression) extends Expression case class BinaryOp(op : Op, left : Expression, right : Expression) extends Expression case class FuncApp(funcName : Term, args : List[Expression]) extends Expression //--------------------------------------------------------------------------------- sealed abstract class Statement case class ExpressionStatement(exp : Expression) extends Statement case class Pass() extends Statement case class Return(value : Expression) extends Statement case class AssignmentVar(variable : Term, exp : Expression) extends Statement case class IfThenElse(testBody : Expression, thenBody : Statement, elseBody : Statement) extends Statement case class Conjunction(left : Statement, right : Statement) extends Statement case class AssignmentFunc(functionName : Term, args : List[Term], body : Statement) extends Statement //--------------------------------------------------------------------------------- class myParser extends JavaTokenParsers { val keywordMap : Map[String, Op] = Map( Keywords.Plus -> Plus, Keywords.Minus -> Minus, Keywords.Times -> Times, Keywords.Divide -> Divide, Keywords.Pow -> Pow, Keywords.And -> And, Keywords.Or -> Or, Keywords.Xor -> Xor, Keywords.Not -> Not, Keywords.Equals -> Equals, Keywords.NotEquals -> NotEquals, Keywords.Assignment -> Assignment ) def floatTerm : Parser[Term] = decimalNumber ^^ { case x => FloatTerm( x.toFloat ) } def stringTerm : Parser[Term] = stringLiteral ^^ { case str => StringTerm(str) } def identifier : Parser[Term] = ident ^^ { case value => Identifier(value) } def boolTerm : Parser[Term] = (Keywords.True | Keywords.False) ^^ { case Keywords.True => TrueTerm case Keywords.False => FalseTerm } def simpleTerm : Parser[Expression] = (boolTerm | floatTerm | stringTerm) ^^ { case term => TermExp(term) } def argument = expression def arguments_aux : Parser[List[Expression]] = (argument <~ Keywords.Comma) ~ arguments ^^ { case arg ~ argList => arg :: argList } def arguments = arguments_aux | { argument ^^ { case arg => List(arg) } } def funcAppArgs : Parser[List[Expression]] = funcEmptyArgs | ( Keywords.OpenParen ~> arguments <~ Keywords.CloseParen ^^ { case args => args.foldRight(List[Expression]()) ( (a,b) => a :: b ) } ) def funcApp = identifier ~ funcAppArgs ^^ { case funcName ~ argList => FuncApp(funcName, argList) } def variableTerm : Parser[Expression] = identifier ^^ { case name => TermExp(name) } def atomic_expression = simpleTerm | funcApp | variableTerm def paren_expression : Parser[Expression] = Keywords.OpenParen ~> expression <~ Keywords.CloseParen def unary_operation : Parser[String] = Keywords.Not def unary_expression : Parser[Expression] = operation(0) ~ expression(0) ^^ { case op ~ exp => UnaryOp(keywordMap(op), exp) } def operation(precedence : Int) : Parser[String] = precedence match { case 0 => Keywords.Not case 1 => Keywords.Pow case 2 => Keywords.Times | Keywords.Divide | Keywords.And case 3 => Keywords.Plus | Keywords.Minus | Keywords.Or | Keywords.Xor case 4 => Keywords.Equals | Keywords.NotEquals case _ => throw new Exception("No operations with this precedence.") } def binary_expression(precedence : Int) : Parser[Expression] = precedence match { case 0 => throw new Exception("No operation with zero precedence.") case n => (expression (n-1)) ~ operation(n) ~ (expression (n)) ^^ { case left ~ op ~ right => BinaryOp(keywordMap(op), left, right) } } def expression(precedence : Int) : Parser[Expression] = precedence match { case 0 => unary_expression | paren_expression | atomic_expression case n => binary_expression(n) | expression(n-1) } def expression : Parser[Expression] = expression(4) def expressionStmt : Parser[Statement] = expression ^^ { case exp => ExpressionStatement(exp) } def assignment : Parser[Statement] = (identifier <~ Keywords.Assignment) ~ expression ^^ { case varName ~ exp => AssignmentVar(varName, exp) } def ifthen : Parser[Statement] = ((Keywords.If ~ Keywords.OpenParen) ~> expression <~ Keywords.CloseParen) ~ ((Keywords.Then ~ Keywords.OpenBrack) ~> statements <~ Keywords.CloseBrack) ^^ { case ifBody ~ thenBody => IfThenElse(ifBody, thenBody, Pass()) } def ifthenelse : Parser[Statement] = ((Keywords.If ~ Keywords.OpenParen) ~> expression <~ Keywords.CloseParen) ~ ((Keywords.Then ~ Keywords.OpenBrack) ~> statements <~ Keywords.CloseBrack) ~ ((Keywords.Else ~ Keywords.OpenBrack) ~> statements <~ Keywords.CloseBrack) ^^ { case ifBody ~ thenBody ~ elseBody => IfThenElse(ifBody, thenBody, elseBody) } def pass : Parser[Statement] = Keywords.Pass ^^^ { Pass() } def returnStmt : Parser[Statement] = Keywords.Return ~> expression ^^ { case exp => Return(exp) } def statement : Parser[Statement] = ((pass | returnStmt | assignment | expressionStmt) <~ Keywords.Conj) | ifthenelse | ifthen def statements_aux : Parser[Statement] = statement ~ statements ^^ { case st ~ sts => Conjunction(st, sts) } def statements : Parser[Statement] = statements_aux | statement def funcDefBody : Parser[Statement] = Keywords.OpenBrack ~> statements <~ Keywords.CloseBrack def funcEmptyArgs = Keywords.OpenParen ~ Keywords.CloseParen ^^^ { List() } def funcDefArgs : Parser[List[Term]] = funcEmptyArgs | Keywords.OpenParen ~> repsep(identifier, Keywords.Comma) <~ Keywords.CloseParen ^^ { case args => args.foldRight(List[Term]()) ( (a,b) => a :: b ) } def funcDef : Parser[Statement] = (Keywords.Define ~> identifier) ~ funcDefArgs ~ funcDefBody ^^ { case funcName ~ funcArgs ~ body => AssignmentFunc(funcName, funcArgs, body) } def funcDefAndStatement : Parser[Statement] = funcDef | statement def funcDefAndStatements_aux : Parser[Statement] = funcDefAndStatement ~ funcDefAndStatements ^^ { case stmt ~ stmts => Conjunction(stmt, stmts) } def funcDefAndStatements : Parser[Statement] = funcDefAndStatements_aux | funcDefAndStatement def parseProgram : Parser[Statement] = funcDefAndStatements def eval(input : String) = { parseAll(parseProgram, input) match { case Success(result, _) => result case Failure(m, _) => println(m) case _ => println("") } } } object Parser { def main(args : Array[String]) { val x : myParser = new myParser() println(args(0)) val lines = scala.io.Source.fromFile(args(0)).mkString println(x.eval(lines)) } } The problem is, when I run the parser on the following example it works fine: define foo(a) { if (!h(IM) && a) then { return 0; } if (a() && !h()) then { return 0; } } But when I add threes characters in the first if statement, it runs out of memory. This is absolutely blowing my mind. Can anyone help? (I suspect it has to do with repsep, but I am not sure.) define foo(a) { if (!h(IM) && a(1)) then { return 0; } if (a() && !h()) then { return 0; } } EDIT: Any constructive comments about my Scala style is also appreciated.

    Read the article

  • PE Header Requirements

    - by Pindatjuh
    What are the requirements of a PE file (PE/COFF)? What fields should be set, which value, at a bare minimum for enabling it to "run" on Windows (i.e. executing "ret" instruction and then close, without error). The library I am building first is the linker: Now, the problem I have is the PE file (PE/COFF). I don't know what is "required" for a PE file before it can actually execute on my platform. My testing platform is Vista. I get an error message, saying "This is not a valid Win32 executable." when I execute it by double-clicking, and I get an "Access Denied." when executing it with CLI cmd. I have two sections, .text and .data. I've implemented the PE headers as provided by several online documents, i.e. MSDN and some other thirdparty documentation. If I use a hex-editor, it looks almost like a regular PE file. I don't use any imports, nor IAT, nor any directories in the PE header. Edit: I've added an import table, still not a valid .exe-file, says my Windows. I've tried to use values which are also mentioned at the smallest PE-file guide. No luck. Really the only thing I can't seem to figure out is what is required and what isn't. Some guides tell me everything is required, whilst others say about deprications: and it can be zero. I hope this is enough information. Thank you, in advance. Raw data (as requested) of current PE header: 4D 5A 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 00 50 45 00 00 4C 01 02 00 C8 7A 55 4B 00 00 00 00 00 00 00 00 E0 00 82 01 0B 01 0D 25 00 10 00 00 00 10 00 00 00 00 00 00 00 10 00 00 00 10 00 00 00 20 00 00 00 00 40 00 00 10 00 00 00 02 00 00 01 00 0B 00 00 00 00 00 03 00 0A 00 00 00 00 00 00 22 00 00 38 01 00 00 00 00 00 00 03 00 00 00 00 40 00 00 00 40 00 00 00 40 00 00 00 40 00 00 00 00 00 00 0E 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 24 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 2E 74 65 78 74 00 00 00 00 00 00 00 00 10 00 00 00 02 00 00 00 02 00 00 00 00 00 00 00 00 00 00 00 00 00 00 20 00 00 60 2E 69 64 61 74 61 00 00 00 00 00 00 00 20 00 00 00 02 00 00 00 04 00 00 00 00 00 00 00 00 00 00 00 00 00 00 40 00 00 C0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 3C 20 00 00 00 00 00 00 00 00 00 00 24 20 00 00 34 20 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 4B 45 52 4E 45 4C 33 32 2E 64 6C 6C 00 00 00 00 01 00 00 80 00 00 00 00 01 00 00 80 00 00 00 00

    Read the article

  • Autocorrelation returns random results with mic input (using a high pass filter)

    - by Niall
    Hello, Sorry to ask a similar question to the one i asked before (FFT Problem (Returns random results)), but i've looked up pitch detection and autocorrelation and have found some code for pitch detection using autocorrelation. Im trying to do pitch detection of a users singing. Problem is, it keeps returning random results. I've got some code from http://code.google.com/p/yaalp/ which i've converted to C++ and modified (below). My sample rate is 2048, and data size is 1024. I'm detecting pitch of both a sine wave and mic input. The frequency of the sine wave is 726.0, and its detecting it to be 722.950820 (which im ok with), but its detecting the pitch of the mic as a random number from around 100 to around 1050. I'm now using a High pass filter to remove the DC offset, but it's not working. Am i doing it right, and if so, what else can i do to fix it? Any help would be greatly appreciated! double* doHighPassFilter(short *buffer) { // Do FFT: int bufferLength = 1024; float *real = malloc(bufferLength*sizeof(float)); float *real2 = malloc(bufferLength*sizeof(float)); for(int x=0;x<bufferLength;x++) { real[x] = buffer[x]; } fft(real, bufferLength); for(int x=0;x<bufferLength;x+=2) { real2[x] = real[x]; } for (int i=0; i < 30; i++) //Set freqs lower than 30hz to zero to attenuate the low frequencies real2[i] = 0; // Do inverse FFT: inversefft(real2,bufferLength); double* real3 = (double*)real2; return real3; } double DetectPitch(short* data) { int sampleRate = 2048; //Create sine wave double *buffer = malloc(1024*sizeof(short)); double amplitude = 0.25 * 32768; //0.25 * max length of short double frequency = 726.0; for (int n = 0; n < 1024; n++) { buffer[n] = (short)(amplitude * sin((2 * 3.14159265 * n * frequency) / sampleRate)); } doHighPassFilter(data); printf("Pitch from sine wave: %f\n",detectPitchCalculation(buffer, 50.0, 1000.0, 1, 1)); printf("Pitch from mic: %f\n",detectPitchCalculation(data, 50.0, 1000.0, 1, 1)); return 0; } // These work by shifting the signal until it seems to correlate with itself. // In other words if the signal looks very similar to (signal shifted 200 data) than the fundamental period is probably 200 data // Note that the algorithm only works well when there's only one prominent fundamental. // This could be optimized by looking at the rate of change to determine a maximum without testing all periods. double detectPitchCalculation(double* data, double minHz, double maxHz, int nCandidates, int nResolution) { //-------------------------1-------------------------// // note that higher frequency means lower period int nLowPeriodInSamples = hzToPeriodInSamples(maxHz, 2048); int nHiPeriodInSamples = hzToPeriodInSamples(minHz, 2048); if (nHiPeriodInSamples <= nLowPeriodInSamples) printf("Bad range for pitch detection."); if (1024 < nHiPeriodInSamples) printf("Not enough data."); double *results = new double[nHiPeriodInSamples - nLowPeriodInSamples]; //-------------------------2-------------------------// for (int period = nLowPeriodInSamples; period < nHiPeriodInSamples; period += nResolution) { double sum = 0; // for each sample, find correlation. (If they are far apart, small) for (int i = 0; i < 1024 - period; i++) sum += data[i] * data[i + period]; double mean = sum / 1024.0; results[period - nLowPeriodInSamples] = mean; } //-------------------------3-------------------------// // find the best indices int *bestIndices = findBestCandidates(nCandidates, results, nHiPeriodInSamples - nLowPeriodInSamples - 1); //note findBestCandidates modifies parameter // convert back to Hz double *res = new double[nCandidates]; for (int i=0; i < nCandidates;i++) res[i] = periodInSamplesToHz(bestIndices[i]+nLowPeriodInSamples, 2048); double pitch2 = res[0]; free(res); free(results); return pitch2; } /// Finds n "best" values from an array. Returns the indices of the best parts. /// (One way to do this would be to sort the array, but that could take too long. /// Warning: Changes the contents of the array!!! Do not use result array afterwards. int* findBestCandidates(int n, double* inputs,int length) { //int length = inputs.Length; if (length < n) printf("Length of inputs is not long enough."); int *res = new int[n]; double minValue = 0; for (int c = 0; c < n; c++) { // find the highest. double fBestValue = minValue; int nBestIndex = -1; for (int i = 0; i < length; i++) { if (inputs[i] > fBestValue) { nBestIndex = i; fBestValue = inputs[i]; } } // record this highest value res[c] = nBestIndex; // now blank out that index. if(nBestIndex!=-1) inputs[nBestIndex] = minValue; } return res; } int hzToPeriodInSamples(double hz, int sampleRate) { return (int)(1 / (hz / (double)sampleRate)); } double periodInSamplesToHz(int period, int sampleRate) { return 1 / (period / (double)sampleRate); } Thanks, Niall. Edit: Changed the code to implement a high pass filter with a cutoff of 30hz (from What Are High-Pass and Low-Pass Filters?, can anyone tell me how to convert the low-pass filter using convolution to a high-pass one?) but it's still returning random results. Plugging it into a VST host and using VST plugins to compare spectrums isn't an option to me unfortunately.

    Read the article

  • rotating bitmaps. In code.

    - by Marco van de Voort
    Is there a faster way to rotate a large bitmap by 90 or 270 degrees than simply doing a nested loop with inverted coordinates? The bitmaps are 8bpp and typically 2048*2400*8bpp Currently I do this by simply copying with argument inversion, roughly (pseudo code: for x = 0 to 2048-1 for y = 0 to 2048-1 dest[x][y]=src[y][x]; (In reality I do it with pointers, for a bit more speed, but that is roughly the same magnitude) GDI is quite slow with large images, and GPU load/store times for textures (GF7 cards) are in the same magnitude as the current CPU time. Any tips, pointers? An in-place algorithm would even be better, but speed is more important than being in-place. Target is Delphi, but it is more an algorithmic question. SSE(2) vectorization no problem, it is a big enough problem for me to code it in assembler Duplicates How do you rotate a two dimensional array?. Follow up to Nils' answer Image 2048x2700 - 2700x2048 Compiler Turbo Explorer 2006 with optimization on. Windows: Power scheme set to "Always on". (important!!!!) Machine: Core2 6600 (2.4 GHz) time with old routine: 32ms (step 1) time with stepsize 8 : 12ms time with stepsize 16 : 10ms time with stepsize 32+ : 9ms Meanwhile I also tested on a Athlon 64 X2 (5200+ iirc), and the speed up there was slightly more than a factor four (80 to 19 ms). The speed up is well worth it, thanks. Maybe that during the summer months I'll torture myself with a SSE(2) version. However I already thought about how to tackle that, and I think I'll run out of SSE2 registers for an straight implementation: for n:=0 to 7 do begin load r0, <source+n*rowsize> shift byte from r0 into r1 shift byte from r0 into r2 .. shift byte from r0 into r8 end; store r1, <target> store r2, <target+1*<rowsize> .. store r8, <target+7*<rowsize> So 8x8 needs 9 registers, but 32-bits SSE only has 8. Anyway that is something for the summer months :-) Note that the pointer thing is something that I do out of instinct, but it could be there is actually something to it, if your dimensions are not hardcoded, the compiler can't turn the mul into a shift. While muls an sich are cheap nowadays, they also generate more register pressure afaik. The code (validated by subtracting result from the "naieve" rotate1 implementation): const stepsize = 32; procedure rotatealign(Source: tbw8image; Target:tbw8image); var stepsx,stepsy,restx,resty : Integer; RowPitchSource, RowPitchTarget : Integer; pSource, pTarget,ps1,ps2 : pchar; x,y,i,j: integer; rpstep : integer; begin RowPitchSource := source.RowPitch; // bytes to jump to next line. Can be negative (includes alignment) RowPitchTarget := target.RowPitch; rpstep:=RowPitchTarget*stepsize; stepsx:=source.ImageWidth div stepsize; stepsy:=source.ImageHeight div stepsize; // check if mod 16=0 here for both dimensions, if so -> SSE2. for y := 0 to stepsy - 1 do begin psource:=source.GetImagePointer(0,y*stepsize); // gets pointer to pixel x,y ptarget:=Target.GetImagePointer(target.imagewidth-(y+1)*stepsize,0); for x := 0 to stepsx - 1 do begin for i := 0 to stepsize - 1 do begin ps1:=@psource[rowpitchsource*i]; // ( 0,i) ps2:=@ptarget[stepsize-1-i]; // (maxx-i,0); for j := 0 to stepsize - 1 do begin ps2[0]:=ps1[j]; inc(ps2,RowPitchTarget); end; end; inc(psource,stepsize); inc(ptarget,rpstep); end; end; // 3 more areas to do, with dimensions // - stepsy*stepsize * restx // right most column of restx width // - stepsx*stepsize * resty // bottom row with resty height // - restx*resty // bottom-right rectangle. restx:=source.ImageWidth mod stepsize; // typically zero because width is // typically 1024 or 2048 resty:=source.Imageheight mod stepsize; if restx>0 then begin // one loop less, since we know this fits in one line of "blocks" psource:=source.GetImagePointer(source.ImageWidth-restx,0); // gets pointer to pixel x,y ptarget:=Target.GetImagePointer(Target.imagewidth-stepsize,Target.imageheight-restx); for y := 0 to stepsy - 1 do begin for i := 0 to stepsize - 1 do begin ps1:=@psource[rowpitchsource*i]; // ( 0,i) ps2:=@ptarget[stepsize-1-i]; // (maxx-i,0); for j := 0 to restx - 1 do begin ps2[0]:=ps1[j]; inc(ps2,RowPitchTarget); end; end; inc(psource,stepsize*RowPitchSource); dec(ptarget,stepsize); end; end; if resty>0 then begin // one loop less, since we know this fits in one line of "blocks" psource:=source.GetImagePointer(0,source.ImageHeight-resty); // gets pointer to pixel x,y ptarget:=Target.GetImagePointer(0,0); for x := 0 to stepsx - 1 do begin for i := 0 to resty- 1 do begin ps1:=@psource[rowpitchsource*i]; // ( 0,i) ps2:=@ptarget[resty-1-i]; // (maxx-i,0); for j := 0 to stepsize - 1 do begin ps2[0]:=ps1[j]; inc(ps2,RowPitchTarget); end; end; inc(psource,stepsize); inc(ptarget,rpstep); end; end; if (resty>0) and (restx>0) then begin // another loop less, since only one block psource:=source.GetImagePointer(source.ImageWidth-restx,source.ImageHeight-resty); // gets pointer to pixel x,y ptarget:=Target.GetImagePointer(0,target.ImageHeight-restx); for i := 0 to resty- 1 do begin ps1:=@psource[rowpitchsource*i]; // ( 0,i) ps2:=@ptarget[resty-1-i]; // (maxx-i,0); for j := 0 to restx - 1 do begin ps2[0]:=ps1[j]; inc(ps2,RowPitchTarget); end; end; end; end;

    Read the article

  • Font serialization in vb.net

    - by jovany
    Hello all, as the title says , I need to serialize my font. I have tried the following approach unfortunately to no avail. This is what I have and what happens; I have a drawing application and certain variables and properties need to be serialized. (So , Xml.Serialization has been used.) Now this has already been done in a huge portion and I've created some other attributes which needed to be serialized and it works. There is one base class and classes such as drawablestar, drawableeclipse ,etc. all inherit from this class. As does my drawabletextboxclass. The base class is Serializable as can be seen in the sample below. It looks like this... Imports System.Xml.Serialization <Serializable()> _ Public MustInherit Class Drawable ' Drawing characteristics. 'Font characteristics <XmlIgnore()> Public FontFamily As String <XmlIgnore()> Public FontSize As Integer <XmlIgnore()> Public FontType As Integer <XmlIgnore()> Public ForeColor As Color <XmlIgnore()> Public FillColor As Color <XmlAttributeAttribute()> Public LineWidth As Integer = 0 <XmlAttributeAttribute()> Public X1 As Integer <XmlAttributeAttribute()> Public Y1 As Integer <XmlAttributeAttribute()> Public X2 As Integer <XmlAttributeAttribute()> Public Y2 As Integer ' attributes for size textbox <XmlAttributeAttribute()> Public widthLabel As Integer <XmlAttributeAttribute()> Public heightLabel As Integer '<XmlTextAttribute()> Public FontFamily As String '<XmlAttributeAttribute()> Public FontSize As Integer 'this should actually not be here.. <XmlAttributeAttribute()> Public s_InsertLabel As String ' Indicates whether we should draw as selected. <XmlIgnore()> Public IsSelected As Boolean = False ' Constructors. Public Sub New() ForeColor = Color.Black FillColor = Color.White 'FontFamily = "Impact" 'FontSize = 12 End Sub Friend WriteOnly Property _Label() As String Set(ByVal Value As String) s_InsertLabel = Value End Set End Property Public Sub New(ByVal fore_color As Color, ByVal fill_color As Color, Optional ByVal line_width As Integer = 0) LineWidth = line_width ForeColor = fore_color FillColor = fill_color ' FontFamily = Font_Family ' FontSize = Font_Size End Sub ' Property procedures to serialize and ' deserialize ForeColor and FillColor. <XmlAttributeAttribute("ForeColor")> _ Public Property ForeColorArgb() As Integer Get Return ForeColor.ToArgb() End Get Set(ByVal Value As Integer) ForeColor = Color.FromArgb(Value) End Set End Property <XmlAttributeAttribute("BackColor")> _ Public Property FillColorArgb() As Integer Get Return FillColor.ToArgb() End Get Set(ByVal Value As Integer) FillColor = Color.FromArgb(Value) End Set End Property 'Property procedures to serialize and 'deserialize Font <XmlAttributeAttribute("InsertLabel")> _ Public Property InsertLabel_() As String Get Return s_InsertLabel End Get Set(ByVal value As String) s_InsertLabel = value End Set End Property <XmlAttributeAttribute("FontSize")> _ Public Property FontSizeGet() As Integer Get Return FontSize End Get Set(ByVal value As Integer) FontSize = value End Set End Property <XmlAttributeAttribute("FontFamily")> _ Public Property FontFamilyGet() As String Get Return FontFamily End Get Set(ByVal value As String) FontFamily = value End Set End Property <XmlAttributeAttribute("FontType")> _ Public Property FontType_() As Integer Get Return FontType End Get Set(ByVal value As Integer) FontType = value End Set End Property #Region "Methods to override" Public MustOverride Sub Draw(ByVal gr As Graphics) ' Return the object's bounding rectangle. Public MustOverride Function GetBounds() As Rectangle ...... ........ ..... End Class [/code] My textbox class which looks like this , is the one that needs to save it's font. Imports System.Math Imports System.Xml.Serialization Imports System.Windows.Forms <Serializable()> _ Public Class DrawableTextBox Inherits Drawable Private i_StringLength As Integer Private i_StringWidth As Integer Private drawFont As Font = New Font(FontFamily, 12, FontStyle.Regular) Private brsTextColor As Brush = Brushes.Black Private s_insertLabelTextbox As String = "label" ' Constructors. Public Sub New() End Sub Public Sub New(ByVal objCanvas As PictureBox, ByVal fore_color As Color, ByVal fill_color As Color, Optional ByVal line_width As Integer = 0, Optional ByVal new_x1 As Integer = 0, Optional ByVal new_y1 As Integer = 0, Optional ByVal new_x2 As Integer = 1, Optional ByVal new_y2 As Integer = 1) MyBase.New(fore_color, fill_color, line_width) Dim objGraphics As Graphics = objCanvas.CreateGraphics() X1 = new_x1 Y1 = new_y1 'Only rectangles ,circles and stars can resize for now b_Movement b_Movement = True Dim frm As New frmTextbox frm.MyFont = drawFont frm.ShowDialog() If frm.DialogResult = DialogResult.OK Then FontFamily = frm.MyFont.FontFamily.Name FontSize = frm.MyFont.Size FontType = frm.MyFont.Style 'drawFont = frm.MyFont drawFont = New Font(FontFamily, FontSize) drawFont = FontAttributes() brsTextColor = New SolidBrush(frm.txtLabel.ForeColor) s_InsertLabel = frm.txtLabel.Text i_StringLength = s_InsertLabel.Length 'gefixtf Dim objSizeF As SizeF = objGraphics.MeasureString(s_InsertLabel, drawFont, New PointF(X2 - X1, Y2 - Y1), New StringFormat(StringFormatFlags.NoClip)) Dim objPoint As Point = objCanvas.PointToClient(New Point(X1 + objSizeF.Width, Y1 + objSizeF.Height)) widthLabel = objSizeF.Width heightLabel = objSizeF.Height X2 = X1 + widthLabel Y2 = Y1 + heightLabel Else Throw New ApplicationException() End If End Sub ' Draw the object on this Graphics surface. Public Overrides Sub Draw(ByVal gr As System.Drawing.Graphics) ' Make a Rectangle representing this rectangle. Dim rectString As Rectangle rectString = New Rectangle(X1, Y1, widthLabel, heightLabel) rectString = GetBounds() ' See if we're selected. If IsSelected Then gr.DrawString(s_InsertLabel, drawFont, brsTextColor, X1, Y1) 'gr.DrawRectangle(Pens.Black, rect) ' Pens.Transparent gr.DrawRectangle(Pens.Black, rectString) ' Draw grab handles. DrawGrabHandle(gr, X1, Y1) DrawGrabHandle(gr, X1, Y2) DrawGrabHandle(gr, X2, Y2) DrawGrabHandle(gr, X2, Y1) Else gr.DrawString(s_InsertLabel, drawFont, brsTextColor, X1, Y1) 'gr.DrawRectangle(Pens.Black, rect) ' Pens.Transparent gr.DrawRectangle(Pens.Black, rectString) End If End Sub 'get fontattributes Public Function FontAttributes() As Font Return New Font(FontFamily, 12, FontStyle.Regular) End Function ' Return the object's bounding rectangle. Public Overrides Function GetBounds() As System.Drawing.Rectangle Return New Rectangle( _ Min(X1, X1), _ Min(Y1, Y1), _ Abs(widthLabel), _ Abs(heightLabel)) End Function ' Return True if this point is on the object. Public Overrides Function IsAt(ByVal x As Integer, ByVal y As Integer) As Boolean Return (x >= Min(X1, X2)) AndAlso _ (x <= Max(X1, X2)) AndAlso _ (y >= Min(Y1, Y2)) AndAlso _ (y <= Max(Y1, Y2)) End Function ' Move the second point. Public Overrides Sub NewPoint(ByVal x As Integer, ByVal y As Integer) X2 = x Y2 = y End Sub ' Return True if the object is empty (e.g. a zero-length line). Public Overrides Function IsEmpty() As Boolean Return (X1 = X2) AndAlso (Y1 = Y2) End Function End Class The coordinates ( X1 ,X2,Y1, Y2 ) are needed to draw a circle , rectangle etc. ( in the other classes ).This all works. If I load my saved file it shows me the correct location and correct size of drawn objects. If I open my xml file I can see all values are correctly saved ( including my FontFamily ). Also the color which can be adjusted is saved and then properly displayed when I load a previously saved drawing. Of course because the coordinates work, if I insert a textField ,the location where it is being displayed is correct. However here comes the problem , my fontSize and fontfamily don't work. As you can see I created them in the base class, However this does not work. Is my approach completely off? What can I do ? Before saving img14.imageshack.us/i/beforeos.jpg/ After loading the Font jumps back to Sans serif and size 12. I could really use some help here.. Edit: I've been using the sample from this website http://www.vb-helper.com/howto_net_drawing_framework.html

    Read the article

  • Non recursive way to position a genogram in 2D points for x axis. Descendant are below

    - by Nassign
    I currently was tasked to make a genogram for a family consisting of siblings, parents with aunts and uncles with grandparents and greatgrandparents for only blood relatives. My current algorithm is using recursion. but I am wondering how to do it in non recursive way to make it more efficient. it is programmed in c# using graphics to draw on a bitmap. Current algorithm for calculating x position, the y position is by getting the generation number. public void StartCalculatePosition() { // Search the start node (The only node with targetFlg set to true) Person start = null; foreach (Person p in PersonDic.Values) { if (start == null) start = p; if (p.Targetflg) { start = p; break; } } CalcPositionRecurse(start); // Normalize the position (shift all values to positive value) // Get the minimum value (must be negative) // Then offset the position of all marriage and person with that to make it start from zero float minPosition = float.MaxValue; foreach (Person p in PersonDic.Values) { if (minPosition > p.Position) { minPosition = p.Position; } } if (minPosition < 0) { foreach (Person p in PersonDic.Values) { p.Position -= minPosition; } foreach (Marriage m in MarriageList) { m.ParentsPosition -= minPosition; m.ChildrenPosition -= minPosition; } } } /// <summary> /// Calculate position of genogram using recursion /// </summary> /// <param name="psn"></param> private void CalcPositionRecurse(Person psn) { // End the recursion if (psn.BirthMarriage == null || psn.BirthMarriage.Parents.Count == 0) { psn.Position = 0.0f; if (psn.BirthMarriage != null) { psn.BirthMarriage.ParentsPosition = 0.0f; psn.BirthMarriage.ChildrenPosition = 0.0f; } CalculateSiblingPosition(psn); return; } // Left recurse if (psn.Father != null) { CalcPositionRecurse(psn.Father); } // Right recurse if (psn.Mother != null) { CalcPositionRecurse(psn.Mother); } // Merge Position if (psn.Father != null && psn.Mother != null) { AdjustConflict(psn.Father, psn.Mother); // Position person in center of parent psn.Position = (psn.Father.Position + psn.Mother.Position) / 2; psn.BirthMarriage.ParentsPosition = psn.Position; psn.BirthMarriage.ChildrenPosition = psn.Position; } else { // Single mom or single dad if (psn.Father != null) { psn.Position = psn.Father.Position; psn.BirthMarriage.ParentsPosition = psn.Position; psn.BirthMarriage.ChildrenPosition = psn.Position; } else if (psn.Mother != null) { psn.Position = psn.Mother.Position; psn.BirthMarriage.ParentsPosition = psn.Position; psn.BirthMarriage.ChildrenPosition = psn.Position; } else { // Should not happen, checking in start of function } } // Arrange the siblings base on my position (left younger, right older) CalculateSiblingPosition(psn); } private float GetRightBoundaryAncestor(Person psn) { float rPos = psn.Position; // Get the rightmost position among siblings foreach (Person sibling in psn.Siblings) { if (sibling.Position > rPos) { rPos = sibling.Position; } } if (psn.Father != null) { float rFatherPos = GetRightBoundaryAncestor(psn.Father); if (rFatherPos > rPos) { rPos = rFatherPos; } } if (psn.Mother != null) { float rMotherPos = GetRightBoundaryAncestor(psn.Mother); if (rMotherPos > rPos) { rPos = rMotherPos; } } return rPos; } private float GetLeftBoundaryAncestor(Person psn) { float rPos = psn.Position; // Get the rightmost position among siblings foreach (Person sibling in psn.Siblings) { if (sibling.Position < rPos) { rPos = sibling.Position; } } if (psn.Father != null) { float rFatherPos = GetLeftBoundaryAncestor(psn.Father); if (rFatherPos < rPos) { rPos = rFatherPos; } } if (psn.Mother != null) { float rMotherPos = GetLeftBoundaryAncestor(psn.Mother); if (rMotherPos < rPos) { rPos = rMotherPos; } } return rPos; } /// <summary> /// Check if two parent group has conflict and compensate on the conflict /// </summary> /// <param name="leftGroup"></param> /// <param name="rightGroup"></param> public void AdjustConflict(Person leftGroup, Person rightGroup) { float leftMax = GetRightBoundaryAncestor(leftGroup); leftMax += 0.5f; float rightMin = GetLeftBoundaryAncestor(rightGroup); rightMin -= 0.5f; float diff = leftMax - rightMin; if (diff > 0.0f) { float moveHalf = Math.Abs(diff) / 2; RecurseMoveAncestor(leftGroup, 0 - moveHalf); RecurseMoveAncestor(rightGroup, moveHalf); } } /// <summary> /// Recursively move a person and all his/her ancestor /// </summary> /// <param name="psn"></param> /// <param name="moveUnit"></param> public void RecurseMoveAncestor(Person psn, float moveUnit) { psn.Position += moveUnit; foreach (Person siblings in psn.Siblings) { if (siblings.Id != psn.Id) { siblings.Position += moveUnit; } } if (psn.BirthMarriage != null) { psn.BirthMarriage.ChildrenPosition += moveUnit; psn.BirthMarriage.ParentsPosition += moveUnit; } if (psn.Father != null) { RecurseMoveAncestor(psn.Father, moveUnit); } if (psn.Mother != null) { RecurseMoveAncestor(psn.Mother, moveUnit); } } /// <summary> /// Calculate the position of the siblings /// </summary> /// <param name="psn"></param> /// <param name="anchor"></param> public void CalculateSiblingPosition(Person psn) { if (psn.Siblings.Count == 0) { return; } List<Person> sibling = psn.Siblings; int argidx; for (argidx = 0; argidx < sibling.Count; argidx++) { if (sibling[argidx].Id == psn.Id) { break; } } // Compute position for each brother that is younger that person int idx; for (idx = argidx - 1; idx >= 0; idx--) { sibling[idx].Position = sibling[idx + 1].Position - 1; } for (idx = argidx + 1; idx < sibling.Count; idx++) { sibling[idx].Position = sibling[idx - 1].Position + 1; } }

    Read the article

  • g++ SSE intrinsics dilemma - value from intrinsic "saturates"

    - by Sriram
    Hi, I wrote a simple program to implement SSE intrinsics for computing the inner product of two large (100000 or more elements) vectors. The program compares the execution time for both, inner product computed the conventional way and using intrinsics. Everything works out fine, until I insert (just for the fun of it) an inner loop before the statement that computes the inner product. Before I go further, here is the code: //this is a sample Intrinsics program to compute inner product of two vectors and compare Intrinsics with traditional method of doing things. #include <iostream> #include <iomanip> #include <xmmintrin.h> #include <stdio.h> #include <time.h> #include <stdlib.h> using namespace std; typedef float v4sf __attribute__ ((vector_size(16))); double innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume len1 = len2. float result = 0.0; for(int i = 0; i < len1; i++) { for(int j = 0; j < len1; j++) { result += (arr1[i] * arr2[i]); } } //float y = 1.23e+09; //cout << "y = " << y << endl; return result; } double sse_v4sf_innerProduct(float* arr1, int len1, float* arr2, int len2) { //assume that len1 = len2. if(len1 != len2) { cout << "Lengths not equal." << endl; exit(1); } /*steps: * 1. load a long-type (4 float) into a v4sf type data from both arrays. * 2. multiply the two. * 3. multiply the same and store result. * 4. add this to previous results. */ v4sf arr1Data, arr2Data, prevSums, multVal, xyz; //__builtin_ia32_xorps(prevSums, prevSums); //making it equal zero. //can explicitly load 0 into prevSums using loadps or storeps (Check). float temp[4] = {0.0, 0.0, 0.0, 0.0}; prevSums = __builtin_ia32_loadups(temp); float result = 0.0; for(int i = 0; i < (len1 - 3); i += 4) { for(int j = 0; j < len1; j++) { arr1Data = __builtin_ia32_loadups(&arr1[i]); arr2Data = __builtin_ia32_loadups(&arr2[i]); //store the contents of two arrays. multVal = __builtin_ia32_mulps(arr1Data, arr2Data); //multiply. xyz = __builtin_ia32_addps(multVal, prevSums); prevSums = xyz; } } //prevSums will hold the sums of 4 32-bit floating point values taken at a time. Individual entries in prevSums also need to be added. __builtin_ia32_storeups(temp, prevSums); //store prevSums into temp. cout << "Values of temp:" << endl; for(int i = 0; i < 4; i++) cout << temp[i] << endl; result += temp[0] + temp[1] + temp[2] + temp[3]; return result; } int main() { clock_t begin, end; int length = 100000; float *arr1, *arr2; double result_Conventional, result_Intrinsic; // printStats("Allocating memory."); arr1 = new float[length]; arr2 = new float[length]; // printStats("End allocation."); srand(time(NULL)); //init random seed. // printStats("Initializing array1 and array2"); begin = clock(); for(int i = 0; i < length; i++) { // for(int j = 0; j < length; j++) { // arr1[i] = rand() % 10 + 1; arr1[i] = 2.5; // arr2[i] = rand() % 10 - 1; arr2[i] = 2.5; // } } end = clock(); cout << "Time to initialize array1 and array2 = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("Finished initialization."); // printStats("Begin inner product conventionally."); begin = clock(); result_Conventional = innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product conventionally = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; // printStats("End inner product conventionally."); // printStats("Begin inner product using Intrinsics."); begin = clock(); result_Intrinsic = sse_v4sf_innerProduct(arr1, length, arr2, length); end = clock(); cout << "Time to compute inner product with intrinsics = " << ((double) (end - begin)) / CLOCKS_PER_SEC << endl; //printStats("End inner product using Intrinsics."); cout << "Results: " << endl; cout << " result_Conventional = " << result_Conventional << endl; cout << " result_Intrinsics = " << result_Intrinsic << endl; return 0; } I use the following g++ invocation to build this: g++ -W -Wall -O2 -pedantic -march=i386 -msse intrinsics_SSE_innerProduct.C -o innerProduct Each of the loops above, in both the functions, runs a total of N^2 times. However, given that arr1 and arr2 (the two floating point vectors) are loaded with a value 2.5, the length of the array is 100,000, the result in both cases should be 6.25e+10. The results I get are: Results: result_Conventional = 6.25e+10 result_Intrinsics = 5.36871e+08 This is not all. It seems that the value returned from the function that uses intrinsics "saturates" at the value above. I tried putting other values for the elements of the array and different sizes too. But it seems that any value above 1.0 for the array contents and any size above 1000 meets with the same value we see above. Initially, I thought it might be because all operations within SSE are in floating point, but floating point should be able to store a number that is of the order of e+08. I am trying to see where I could be going wrong but cannot seem to figure it out. I am using g++ version: g++ (GCC) 4.4.1 20090725 (Red Hat 4.4.1-2). Any help on this is most welcome. Thanks, Sriram.

    Read the article

  • SQL error - Cannot convert nvarchar to decimal

    - by jakesankey
    I have a C# application that simply parses all of the txt documents within a given network directory and imports the data to a SQL server db. Everything was cruising along just fine until about the 1800th file when it happend to have a few blanks in columns that are called out as DBType.Decimal (and the value is usually zero in the files, not blank). So I got this error, "cannot convert nvarchar to decimal". I am wondering how I could tell the app to simply skip the lines that have this issue?? Perhaps I could even just change the column type to varchar even tho values are numbers (what problems could this create?) Thanks for any help! using System; using System.Data; using System.Data.SQLite; using System.IO; using System.Text.RegularExpressions; using System.Threading; using System.Collections.Generic; using System.Linq; using System.Data.SqlClient; namespace JohnDeereCMMDataParser { internal class Program { public static List<string> GetImportedFileList() { List<string> ImportedFiles = new List<string>(); using (SqlConnection connect = new SqlConnection(@"Server=FRXSQLDEV;Database=RX_CMMData;Integrated Security=YES")) { connect.Open(); using (SqlCommand fmd = connect.CreateCommand()) { fmd.CommandText = @"SELECT FileName FROM CMMData;"; fmd.CommandType = CommandType.Text; SqlDataReader r = fmd.ExecuteReader(); while (r.Read()) { ImportedFiles.Add(Convert.ToString(r["FileName"])); } } } return ImportedFiles; } private static void Main(string[] args) { Console.Title = "John Deere CMM Data Parser"; Console.WriteLine("Preparing CMM Data Parser... done"); Console.WriteLine("Scanning for new CMM data..."); Console.ForegroundColor = ConsoleColor.Gray; using (SqlConnection con = new SqlConnection(@"Server=FRXSQLDEV;Database=RX_CMMData;Integrated Security=YES")) { con.Open(); using (SqlCommand insertCommand = con.CreateCommand()) { Console.WriteLine("Connecting to SQL server..."); SqlCommand cmdd = con.CreateCommand(); string[] files = Directory.GetFiles(@"C:\Documents and Settings\js91162\Desktop\CMM WENZEL\", "*_*_*.txt", SearchOption.AllDirectories); List<string> ImportedFiles = GetImportedFileList(); insertCommand.Parameters.Add(new SqlParameter("@FeatType", DbType.String)); insertCommand.Parameters.Add(new SqlParameter("@FeatName", DbType.String)); insertCommand.Parameters.Add(new SqlParameter("@Axis", DbType.String)); insertCommand.Parameters.Add(new SqlParameter("@Actual", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@Nominal", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@Dev", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@TolMin", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@TolPlus", DbType.Decimal)); insertCommand.Parameters.Add(new SqlParameter("@OutOfTol", DbType.Decimal)); foreach (string file in files.Except(ImportedFiles)) { var FileNameExt1 = Path.GetFileName(file); cmdd.Parameters.Clear(); cmdd.Parameters.Add(new SqlParameter("@FileExt", FileNameExt1)); cmdd.CommandText = @" IF (EXISTS (SELECT * FROM INFORMATION_SCHEMA.TABLES WHERE TABLE_SCHEMA = 'RX_CMMData' AND TABLE_NAME = 'CMMData')) BEGIN SELECT COUNT(*) FROM CMMData WHERE FileName = @FileExt; END"; int count = Convert.ToInt32(cmdd.ExecuteScalar()); con.Close(); con.Open(); if (count == 0) { Console.WriteLine("Preparing to parse CMM data for SQL import..."); if (file.Count(c => c == '_') > 5) continue; insertCommand.CommandText = @" INSERT INTO CMMData (FeatType, FeatName, Axis, Actual, Nominal, Dev, TolMin, TolPlus, OutOfTol, PartNumber, CMMNumber, Date, FileName) VALUES (@FeatType, @FeatName, @Axis, @Actual, @Nominal, @Dev, @TolMin, @TolPlus, @OutOfTol, @PartNumber, @CMMNumber, @Date, @FileName);"; string FileNameExt = Path.GetFullPath(file); string RNumber = Path.GetFileNameWithoutExtension(file); int index2 = RNumber.IndexOf("~"); Match RNumberE = Regex.Match(RNumber, @"^(R|L)\d{6}(COMP|CRIT|TEST|SU[1-9])(?=_)", RegexOptions.IgnoreCase); Match RNumberD = Regex.Match(RNumber, @"(?<=_)\d{3}[A-Z]\d{4}|\d{3}[A-Z]\d\w\w\d(?=_)", RegexOptions.IgnoreCase); Match RNumberDate = Regex.Match(RNumber, @"(?<=_)\d{8}(?=_)", RegexOptions.IgnoreCase); string RNumE = Convert.ToString(RNumberE); string RNumD = Convert.ToString(RNumberD); if (RNumberD.Value == @"") continue; if (RNumberE.Value == @"") continue; if (RNumberDate.Value == @"") continue; if (index2 != -1) continue; DateTime dateTime = DateTime.ParseExact(RNumberDate.Value, "yyyyMMdd", Thread.CurrentThread.CurrentCulture); string cmmDate = dateTime.ToString("dd-MMM-yyyy"); string[] lines = File.ReadAllLines(file); bool parse = false; foreach (string tmpLine in lines) { string line = tmpLine.Trim(); if (!parse && line.StartsWith("Feat. Type,")) { parse = true; continue; } if (!parse || string.IsNullOrEmpty(line)) { continue; } Console.WriteLine(tmpLine); foreach (SqlParameter parameter in insertCommand.Parameters) { parameter.Value = null; } string[] values = line.Split(new[] { ',' }); for (int i = 0; i < values.Length - 1; i++) { if (i = "" || i = null) continue; SqlParameter param = insertCommand.Parameters[i]; if (param.DbType == DbType.Decimal) { decimal value; param.Value = decimal.TryParse(values[i], out value) ? value : 0; } else { param.Value = values[i]; } } insertCommand.Parameters.Add(new SqlParameter("@PartNumber", RNumE)); insertCommand.Parameters.Add(new SqlParameter("@CMMNumber", RNumD)); insertCommand.Parameters.Add(new SqlParameter("@Date", cmmDate)); insertCommand.Parameters.Add(new SqlParameter("@FileName", FileNameExt)); insertCommand.ExecuteNonQuery(); insertCommand.Parameters.RemoveAt("@PartNumber"); insertCommand.Parameters.RemoveAt("@CMMNumber"); insertCommand.Parameters.RemoveAt("@Date"); insertCommand.Parameters.RemoveAt("@FileName"); } } } Console.WriteLine("CMM data successfully imported to SQL database..."); } con.Close(); } } } }

    Read the article

  • segmentation fault using BaseCode encryption

    - by Natasha Thapa
    i took the code from the links below to encrypt and decrypt a text but i get segmentation fault when trying to run this any ideas?? http://etutorials.org/Programming/secure+programming/Chapter+4.+Symmetric+Cryptography+Fundamentals/4.5+Performing+Base64+Encoding/ http://etutorials.org/Programming/secure+programming/Chapter+4.+Symmetric+Cryptography+Fundamentals/4.6+Performing+Base64+Decoding/ #include <stdlib.h> #include <string.h> #include <stdio.h> static char b64revtb[256] = { -3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*0-15*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*16-31*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, 62, -1, -1, -1, 63, /*32-47*/ 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, -1, -1, -1, -2, -1, -1, /*48-63*/ -1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, /*64-79*/ 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, -1, -1, -1, -1, -1, /*80-95*/ -1, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, /*96-111*/ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, -1, -1, -1, -1, -1, /*112-127*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*128-143*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*144-159*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*160-175*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*176-191*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*192-207*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*208-223*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, /*224-239*/ -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 /*240-255*/ }; unsigned char *spc_base64_encode( unsigned char *input , size_t len , int wrap ) ; unsigned char *spc_base64_decode(unsigned char *buf, size_t *len, int strict, int *err); static unsigned int raw_base64_decode(unsigned char *in, unsigned char *out, int strict, int *err); unsigned char *tmbuf = NULL; static char tmpbuffer[] ={0}; int main(void) { memset( tmpbuffer, NULL, sizeof( tmpbuffer ) ); sprintf( tmpbuffer, "%s:%s" , "username", "password" ); tmbuf = spc_base64_encode( (unsigned char *)tmpbuffer , strlen( tmpbuffer ), 0 ); printf(" The text %s has been encrytped to %s \n", tmpbuffer, tmbuf ); unsigned char *decrypt = NULL; int strict; int *err; decrypt = spc_base64_decode( tmbuf , strlen( tmbuf ), 0, err ); printf(" The text %s has been decrytped to %s \n", tmbuf , decrypt); } static char b64table[64] = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" "abcdefghijklmnopqrstuvwxyz" "0123456789+/"; /* Accepts a binary buffer with an associated size. * Returns a base64 encoded, NULL-terminated string. */ unsigned char *spc_base64_encode(unsigned char *input, size_t len, int wrap) { unsigned char *output, *p; size_t i = 0, mod = len % 3, toalloc; toalloc = (len / 3) * 4 + (3 - mod) % 3 + 1; if (wrap) { toalloc += len / 57; if (len % 57) toalloc++; } p = output = (unsigned char *)malloc(((len / 3) + (mod ? 1 : 0)) * 4 + 1); if (!p) return 0; while (i < len - mod) { *p++ = b64table[input[i++] >> 2]; *p++ = b64table[((input[i - 1] << 4) | (input[i] >> 4)) & 0x3f]; *p++ = b64table[((input[i] << 2) | (input[i + 1] >> 6)) & 0x3f]; *p++ = b64table[input[i + 1] & 0x3f]; i += 2; if (wrap && !(i % 57)) *p++ = '\n'; } if (!mod) { if (wrap && i % 57) *p++ = '\n'; *p = 0; return output; } else { *p++ = b64table[input[i++] >> 2]; *p++ = b64table[((input[i - 1] << 4) | (input[i] >> 4)) & 0x3f]; if (mod = = 1) { *p++ = '='; *p++ = '='; if (wrap) *p++ = '\n'; *p = 0; return output; } else { *p++ = b64table[(input[i] << 2) & 0x3f]; *p++ = '='; if (wrap) *p++ = '\n'; *p = 0; return output; } } } static unsigned int raw_base64_decode(unsigned char *in, unsigned char *out, int strict, int *err) { unsigned int result = 0, x; unsigned char buf[3], *p = in, pad = 0; *err = 0; while (!pad) { switch ((x = b64revtb[*p++])) { case -3: /* NULL TERMINATOR */ if (((p - 1) - in) % 4) *err = 1; return result; case -2: /* PADDING CHARACTER. INVALID HERE */ if (((p - 1) - in) % 4 < 2) { *err = 1; return result; } else if (((p - 1) - in) % 4 == 2) { /* Make sure there's appropriate padding */ if (*p != '=') { *err = 1; return result; } buf[2] = 0; pad = 2; result++; break; } else { pad = 1; result += 2; break; } case -1: if (strict) { *err = 2; return result; } break; default: switch (((p - 1) - in) % 4) { case 0: buf[0] = x << 2; break; case 1: buf[0] |= (x >> 4); buf[1] = x << 4; break; case 2: buf[1] |= (x >> 2); buf[2] = x << 6; break; case 3: buf[2] |= x; result += 3; for (x = 0; x < 3 - pad; x++) *out++ = buf[x]; break; } break; } } for (x = 0; x < 3 - pad; x++) *out++ = buf[x]; return result; } /* If err is non-zero on exit, then there was an incorrect padding error. We * allocate enough space for all circumstances, but when there is padding, or * there are characters outside the character set in the string (which we are * supposed to ignore), then we end up allocating too much space. You can * realloc() to the correct length if you wish. */ unsigned char *spc_base64_decode(unsigned char *buf, size_t *len, int strict, int *err) { unsigned char *outbuf; outbuf = (unsigned char *)malloc(3 * (strlen(buf) / 4 + 1)); if (!outbuf) { *err = -3; *len = 0; return 0; } *len = raw_base64_decode(buf, outbuf, strict, err); if (*err) { free(outbuf); *len = 0; outbuf = 0; } return outbuf; }

    Read the article

  • Flash AS3 Mysterious Blinking MovieClip

    - by Ben
    This is the strangest problem I've faced in flash so far. I have no idea what's causing it. I can provide a .swf if someone wants to actually see it, but I'll describe it as best I can. I'm creating bullets for a tank object to shoot. The tank is a child of the document class. The way I am creating the bullet is: var bullet:Bullet = new Bullet(); (parent as MovieClip).addChild(bullet); The bullet itself simply moves itself in a direction using code like this.x += 5; The problem is the bullets will trace for their creation and destruction at the correct times, however the bullet is sometimes not visible until half way across the screen, sometimes not at all, and sometimes for the whole traversal. Oddly removing the timer I have on bullet creation seems to solve this. The timer is implemented as such: if(shot_timer == 0) { shoot(); // This contains the aforementioned bullet creation method shot_timer = 10; My enter frame handler for the tank object controls the timer and decrements it every frame if it is greater than zero. Can anyone suggest why this could be happening? EDIT: As requested, full code: Bullet.as package { import flash.display.MovieClip; import flash.events.Event; public class Bullet extends MovieClip { public var facing:int; private var speed:int; public function Bullet():void { trace("created"); speed = 10; addEventListener(Event.ADDED_TO_STAGE,addedHandler); } private function addedHandler(e:Event):void { addEventListener(Event.ENTER_FRAME,enterFrameHandler); removeEventListener(Event.ADDED_TO_STAGE,addedHandler); } private function enterFrameHandler(e:Event):void { //0 - up, 1 - left, 2 - down, 3 - right if(this.x > 720 || this.x < 0 || this.y < 0 || this.y > 480) { removeEventListener(Event.ENTER_FRAME,enterFrameHandler); trace("destroyed"); (parent as MovieClip).removeChild(this); return; } switch(facing) { case 0: this.y -= speed; break; case 1: this.x -= speed; break; case 2: this.y += speed; break; case 3: this.x += speed; break; } } } } Tank.as: package { import flash.display.MovieClip; import flash.events.KeyboardEvent; import flash.events.Event; import flash.ui.Keyboard; public class Tank extends MovieClip { private var right:Boolean = false; private var left:Boolean = false; private var up:Boolean = false; private var down:Boolean = false; private var facing:int = 0; //0 - up, 1 - left, 2 - down, 3 - right private var horAllowed:Boolean = true; private var vertAllowed:Boolean = true; private const GRID_SIZE:int = 100; private var shooting:Boolean = false; private var shot_timer:int = 0; private var speed:int = 2; public function Tank():void { addEventListener(Event.ADDED_TO_STAGE,stageAddHandler); addEventListener(Event.ENTER_FRAME, enterFrameHandler); } private function stageAddHandler(e:Event):void { stage.addEventListener(KeyboardEvent.KEY_DOWN,checkKeys); stage.addEventListener(KeyboardEvent.KEY_UP,keyUps); removeEventListener(Event.ADDED_TO_STAGE,stageAddHandler); } public function checkKeys(event:KeyboardEvent):void { if(event.keyCode == 32) { //trace("Spacebar is down"); shooting = true; } if(event.keyCode == 39) { //trace("Right key is down"); right = true; } if(event.keyCode == 38) { //trace("Up key is down"); // lol up = true; } if(event.keyCode == 37) { //trace("Left key is down"); left = true; } if(event.keyCode == 40) { //trace("Down key is down"); down = true; } } public function keyUps(event:KeyboardEvent):void { if(event.keyCode == 32) { event.keyCode = 0; shooting = false; //trace("Spacebar is not down"); } if(event.keyCode == 39) { event.keyCode = 0; right = false; //trace("Right key is not down"); } if(event.keyCode == 38) { event.keyCode = 0; up = false; //trace("Up key is not down"); } if(event.keyCode == 37) { event.keyCode = 0; left = false; //trace("Left key is not down"); } if(event.keyCode == 40) { event.keyCode = 0; down = false; //trace("Down key is not down") // O.o } } public function checkDirectionPermissions(): void { if(this.y % GRID_SIZE < 5 || GRID_SIZE - this.y % GRID_SIZE < 5) { horAllowed = true; } else { horAllowed = false; } if(this.x % GRID_SIZE < 5 || GRID_SIZE - this.x % GRID_SIZE < 5) { vertAllowed = true; } else { vertAllowed = false; } if(!horAllowed && !vertAllowed) { realign(); } } public function realign():void { if(!horAllowed) { if(this.x % GRID_SIZE < GRID_SIZE / 2) { this.x -= this.x % GRID_SIZE; } else { this.x += (GRID_SIZE - this.x % GRID_SIZE); } } if(!vertAllowed) { if(this.y % GRID_SIZE < GRID_SIZE / 2) { this.y -= this.y % GRID_SIZE; } else { this.y += (GRID_SIZE - this.y % GRID_SIZE); } } } public function enterFrameHandler(Event):void { //trace(shot_timer); if(shot_timer > 0) { shot_timer--; } movement(); firing(); } public function firing():void { if(shooting) { if(shot_timer == 0) { shoot(); shot_timer = 10; } } } public function shoot():void { var bullet = new Bullet(); bullet.facing = facing; //0 - up, 1 - left, 2 - down, 3 - right switch(facing) { case 0: bullet.x = this.x; bullet.y = this.y - this.height / 2; break; case 1: bullet.x = this.x - this.width / 2; bullet.y = this.y; break; case 2: bullet.x = this.x; bullet.y = this.y + this.height / 2; break; case 3: bullet.x = this.x + this.width / 2; bullet.y = this.y; break; } (parent as MovieClip).addChild(bullet); } public function movement():void { //0 - up, 1 - left, 2 - down, 3 - right checkDirectionPermissions(); if(horAllowed) { if(right) { orient(3); realign(); this.x += speed; } if(left) { orient(1); realign(); this.x -= speed; } } if(vertAllowed) { if(up) { orient(0); realign(); this.y -= speed; } if(down) { orient(2); realign(); this.y += speed; } } } public function orient(dest:int):void { //trace("facing: " + facing); //trace("dest: " + dest); var angle = facing - dest; this.rotation += (90 * angle); facing = dest; } } }

    Read the article

  • File using .net sockets, transferring problem

    - by Sergei
    I have a client and server, client sending file to server. When i transfer files on my computer(in local) everything is ok(try to sen file over 700mb). When i try to sent file use Internet to my friend in the end of sending appears error on server "Input string is not in correct format".This error appears in this expression fSize = Convert::ToUInt64(tokenes[0]); - and i don't mind wht it's appear. File should be transfered and wait other transferring ps: sorry for too much code, but i want to find solution private: void CreateServer() { try{ IPAddress ^ipAddres = IPAddress::Parse(ipAdress); listener = gcnew System::Net::Sockets::TcpListener(ipAddres, port); listener->Start(); clientsocket =listener->AcceptSocket(); bool keepalive = true; array<wchar_t,1> ^split = gcnew array<wchar_t>(1){ '\0' }; array<wchar_t,1> ^split2 = gcnew array<wchar_t>(1){ '|' }; statusBar1->Text = "Connected" ; // while (keepalive) { array<Byte>^ size1 = gcnew array<Byte>(1024); clientsocket->Receive(size1); System::String ^notSplited = System::Text::Encoding::GetEncoding(1251)->GetString(size1); array<String^> ^ tokenes = notSplited->Split(split2); System::String ^fileName = tokenes[1]->ToString(); statusBar1->Text = "Receiving file" ; unsigned long fSize = 0; //IN THIS EXPRESSIN APPEARS ERROR fSize = Convert::ToUInt64(tokenes[0]); if (!Directory::Exists("Received")) Directory::CreateDirectory("Received"); System::String ^path = "Received\\"+ fileName; while (File::Exists(path)) { int dotPos = path->LastIndexOf('.'); if (dotPos == -1) { path += "[1]"; } else { path = path->Insert(dotPos, "[1]"); } } FileStream ^fs = gcnew FileStream(path, FileMode::CreateNew, FileAccess::Write); BinaryWriter ^f = gcnew BinaryWriter(fs); //bytes received unsigned long processed = 0; pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; // Set the initial value of the ProgressBar. pBarFilesTr->Value = 0; pBarFilesTr->Step = 1024; //loop for receive file array<Byte>^ buffer = gcnew array<Byte>(1024); while (processed < fSize) { if ((fSize - processed) < 1024) { int bytes ; array<Byte>^ buf = gcnew array<Byte>(1024); bytes = clientsocket->Receive(buf); if (bytes != 0) { f->Write(buf, 0, bytes); processed = processed + (unsigned long)bytes; pBarFilesTr->PerformStep(); } break; } else { int bytes = clientsocket->Receive(buffer); if (bytes != 0) { f->Write(buffer, 0, 1024); processed = processed + 1024; pBarFilesTr->PerformStep(); } else break; } } statusBar1->Text = "File was received" ; array<Byte>^ buf = gcnew array<Byte>(1); clientsocket->Send(buf,buf->Length,SocketFlags::None); f->Close(); fs->Close(); SystemSounds::Beep->Play(); } }catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } catch(System::Exception ^es) { MessageBox::Show(es->ToString()); } } private: void CreateClient() { clientsock = gcnew System::Net::Sockets::TcpClient(ipAdress, port); ns = clientsock->GetStream(); sr = gcnew StreamReader(ns); statusBar1->Text = "Connected" ; } private:void Send() { try{ OpenFileDialog ^openFileDialog1 = gcnew OpenFileDialog(); System::String ^filePath = ""; System::String ^fileName = ""; //file choose dialog if (openFileDialog1->ShowDialog() == System::Windows::Forms::DialogResult::OK) { filePath = openFileDialog1->FileName; fileName = openFileDialog1->SafeFileName; } else { MessageBox::Show("You must select a file", "Error", MessageBoxButtons::OK, MessageBoxIcon::Exclamation); return; } statusBar1->Text = "Sending file" ; NetworkStream ^writerStream = clientsock->GetStream(); System::Runtime::Serialization::Formatters::Binary::BinaryFormatter ^format = gcnew System::Runtime::Serialization::Formatters::Binary::BinaryFormatter(); array<Byte>^ buffer = gcnew array<Byte>(1024); FileStream ^fs = gcnew FileStream(filePath, FileMode::Open); BinaryReader ^br = gcnew BinaryReader(fs); //file size unsigned long fSize = (unsigned long)fs->Length; //transfer file size + name bFSize = Encoding::GetEncoding(1251)->GetBytes(Convert::ToString(fs->Length+"|"+fileName+"|")); writerStream->Write(bFSize, 0, bFSize->Length); //status bar pBarFilesTr->Visible = true; pBarFilesTr->Minimum = 0; pBarFilesTr->Maximum = (int)fSize; pBarFilesTr->Value = 0; // Set the initial value of the ProgressBar. pBarFilesTr->Step = 1024; //bytes transfered unsigned long processed = 0; int bytes = 1024; //loop for transfer while (processed < fSize) { if ((fSize - processed) < 1024) { bytes = (int)(fSize - processed); array<Byte>^ buf = gcnew array<Byte>(bytes); br->Read(buf, 0, bytes); writerStream->Write(buf, 0, buf->Length); pBarFilesTr->PerformStep(); processed = processed + (unsigned long)bytes; break; } else { br->Read(buffer, 0, 1024); writerStream->Write(buffer, 0, buffer->Length); pBarFilesTr->PerformStep(); processed = processed + 1024; } } array<Byte>^ bufsss = gcnew array<Byte>(100); writerStream->Read(bufsss,0,bufsss->Length); statusBar1->Text = "File was sent" ; btnSend->Enabled = true; fs->Close(); br->Close(); SystemSounds::Beep->Play(); newThread->Abort(); } catch(System::Net::Sockets::SocketException ^es) { MessageBox::Show(es->ToString()); } } UPDATE: ok, i can add checking if clientsocket->Receive(size1); equal zero, but why he begin receiving data again , in the ending of receiving. UPDATE:After adding this checking problem remains. AND WIN RAR SAY TO OPENING ARCHIVE - unexpected end of file! UPDATE:http://img153.imageshack.us/img153/3760/erorr.gif I think it continue receiving some bytes from client(that remains in the stream), but why existes cicle while (processed < fSize)

    Read the article

  • questions regarding the use of A* with the 15-square puzzle

    - by Cheeso
    I'm trying to build an A* solver for a 15-square puzzle. The goal is to re-arrange the tiles so that they appear in their natural positions. You can only slide one tile at a time. Each possible state of the puzzle is a node in the search graph. For the h(x) function, I am using an aggregate sum, across all tiles, of the tile's dislocation from the goal state. In the above image, the 5 is at location 0,0, and it belongs at location 1,0, therefore it contributes 1 to the h(x) function. The next tile is the 11, located at 0,1, and belongs at 2,2, therefore it contributes 3 to h(x). And so on. EDIT: I now understand this is what they call "Manhattan distance", or "taxicab distance". I have been using a step count for g(x). In my implementation, for any node in the state graph, g is just +1 from the prior node's g. To find successive nodes, I just examine where I can possibly move the "hole" in the puzzle. There are 3 neighbors for the puzzle state (aka node) that is displayed: the hole can move north, west, or east. My A* search sometimes converges to a solution in 20s, sometimes 180s, and sometimes doesn't converge at all (waited 10 mins or more). I think h is reasonable. I'm wondering if I've modeled g properly. In other words, is it possible that my A* function is reaching a node in the graph via a path that is not the shortest path? Maybe have I not waited long enough? Maybe 10 minutes is not long enough? For a fully random arrangement, (assuming no parity problems), What is the average number of permutations an A* solution will examine? (please show the math) I'm going to look for logic errors in my code, but in the meantime, Any tips? (ps: it's done in Javascript). Also, no, this isn't CompSci homework. It's just a personal exploration thing. I'm just trying to learn Javascript. EDIT: I've found that the run-time is highly depend upon the heuristic. I saw the 10x factor applied to the heuristic from the article someone mentioned, and it made me wonder - why 10x? Why linear? Because this is done in javascript, I could modify the code to dynamically update an html table with the node currently being considered. This allowd me to peek at the algorithm as it was progressing. With a regular taxicab distance heuristic, I watched as it failed to converge. There were 5's and 12's in the top row, and they kept hanging around. I'd see 1,2,3,4 creep into the top row, but then they'd drop out, and other numbers would move up there. What I was hoping to see was 1,2,3,4 sort of creeping up to the top, and then staying there. I thought to myself - this is not the way I solve this personally. Doing this manually, I solve the top row, then the 2ne row, then the 3rd and 4th rows sort of concurrently. So I tweaked the h(x) function to more heavily weight the higher rows and the "lefter" columns. The result was that the A* converged much more quickly. It now runs in 3 minutes instead of "indefinitely". With the "peek" I talked about, I can see the smaller numbers creep up to the higher rows and stay there. Not only does this seem like the right thing, it runs much faster. I'm in the process of trying a bunch of variations. It seems pretty clear that A* runtime is very sensitive to the heuristic. Currently the best heuristic I've found uses the summation of dislocation * ((4-i) + (4-j)) where i and j are the row and column, and dislocation is the taxicab distance. One interesting part of the result I got: with a particular heuristic I find a path very quickly, but it is obviously not the shortest path. I think this is because I am weighting the heuristic. In one case I got a path of 178 steps in 10s. My own manual effort produce a solution in 87 moves. (much more than 10s). More investigation warranted. So the result is I am seeing it converge must faster, and the path is definitely not the shortest. I have to think about this more. Code: var stop = false; function Astar(start, goal, callback) { // start and goal are nodes in the graph, represented by // an array of 16 ints. The goal is: [1,2,3,...14,15,0] // Zero represents the hole. // callback is a method to call when finished. This runs a long time, // therefore we need to use setTimeout() to break it up, to avoid // the browser warning like "Stop running this script?" // g is the actual distance traveled from initial node to current node. // h is the heuristic estimate of distance from current to goal. stop = false; start.g = start.dontgo = 0; // calcHeuristic inserts an .h member into the array calcHeuristicDistance(start); // start the stack with one element var closed = []; // set of nodes already evaluated. var open = [ start ]; // set of nodes to evaluate (start with initial node) var iteration = function() { if (open.length==0) { // no more nodes. Fail. callback(null); return; } var current = open.shift(); // get highest priority node // update the browser with a table representation of the // node being evaluated $("#solution").html(stateToString(current)); // check solution returns true if current == goal if (checkSolution(current,goal)) { // reconstructPath just records the position of the hole // through each node var path= reconstructPath(start,current); callback(path); return; } closed.push(current); // get the set of neighbors. This is 3 or fewer nodes. // (nextStates is optimized to NOT turn directly back on itself) var neighbors = nextStates(current, goal); for (var i=0; i<neighbors.length; i++) { var n = neighbors[i]; // skip this one if we've already visited it if (closed.containsNode(n)) continue; // .g, .h, and .previous get assigned implicitly when // calculating neighbors. n.g is nothing more than // current.g+1 ; // add to the open list if (!open.containsNode(n)) { // slot into the list, in priority order (minimum f first) open.priorityPush(n); n.previous = current; } } if (stop) { callback(null); return; } setTimeout(iteration, 1); }; // kick off the first iteration iteration(); return null; }

    Read the article

  • MPM Prefork Apache Uses Absurd Amount of Memory

    - by Charlie JM
    Help! My apache processes are all using 115MB of memory on startup. Relevant information: Linux version (uname -a) Linux 2.6.31-14-generic-pae #48-Ubuntu SMP Fri Oct 16 15:22:42 UTC 2009 i686 GNU/Linux Apache version (/usr/sbin/apache2 -v) Server version: Apache/2.2.8 (Ubuntu) Server built: Mar 9 2010 20:45:36 Top display (top -u www-data) PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND 23377 www-data 20 0 115m 94m 3908 S 28 1.6 0:04.59 apache2 23375 www-data 20 0 119m 99m 5892 S 9 1.6 0:05.04 apache2 23324 www-data 20 0 116m 96m 5144 S 2 1.6 0:04.73 apache2 23283 www-data 20 0 115m 95m 4480 S 1 1.6 0:04.89 apache2 23259 www-data 20 0 116m 96m 5380 S 0 1.6 0:05.55 apache2 23370 www-data 20 0 115m 94m 4396 S 0 1.6 0:04.75 apache2 23229 www-data 20 0 116m 96m 6096 S 0 1.6 0:05.43 apache2 ... and so on ... Memory map (pmap $(pidof apache2)) (actually, just one apache2 process) Most of the memory is [anon], see line 5 23324: /usr/sbin/apache2 -k start 08048000 332K r-x-- /usr/sbin/apache2 0809b000 8K rw--- /usr/sbin/apache2 0809d000 12K rw--- [ anon ] 093a0000 92812K rw--- [ anon ] b5b6c000 4K rw--- [ anon ] b5b6d000 512K rw-s- [ shmid=0x13528003 ] b5fa8000 16K r-x-- /lib/tls/i686/cmov/libnss_dns-2.7.so b5fac000 8K rw--- /lib/tls/i686/cmov/libnss_dns-2.7.so b5fae000 120K r-x-- /usr/lib/php5/20060613+lfs/suhosin.so b5fcc000 16K rw--- /usr/lib/php5/20060613+lfs/suhosin.so b5fd0000 4K rw--- [ anon ] b5fd1000 76K r-x-- /usr/lib/php5/20060613+lfs/pdo.so b5fe4000 8K rw--- /usr/lib/php5/20060613+lfs/pdo.so b5fe6000 92K r-x-- /usr/lib/php5/20060613+lfs/mysqli.so b5ffd000 8K rw--- /usr/lib/php5/20060613+lfs/mysqli.so b5fff000 1648K r-x-- /usr/lib/libmysqlclient.so.15.0.0 b619b000 268K rw--- /usr/lib/libmysqlclient.so.15.0.0 b61de000 4K rw--- [ anon ] b61f0000 92K r-x-- /usr/lib/libxcb.so.1.0.0 b6207000 4K rw--- /usr/lib/libxcb.so.1.0.0 b6208000 164K r-x-- /usr/lib/libfontconfig.so.1.3.0 b6231000 4K rw--- /usr/lib/libfontconfig.so.1.3.0 b6232000 124K r-x-- /usr/lib/libjpeg.so.62.0.0 b6251000 4K rw--- /usr/lib/libjpeg.so.62.0.0 b6252000 136K r-x-- /usr/lib/libpng12.so.0.15.0 b6274000 4K rw--- /usr/lib/libpng12.so.0.15.0 b6275000 60K r-x-- /usr/lib/libXpm.so.4.11.0 b6284000 4K rw--- /usr/lib/libXpm.so.4.11.0 b6285000 912K r-x-- /usr/lib/libX11.so.6.2.0 b6369000 12K rw--- /usr/lib/libX11.so.6.2.0 b636c000 424K r-x-- /usr/lib/libfreetype.so.6.3.16 b63d6000 12K rw--- /usr/lib/libfreetype.so.6.3.16 b63d9000 236K r-x-- /usr/lib/libt1.so.5.1.1 b6414000 12K rw--- /usr/lib/libt1.so.5.1.1 b6417000 84K rw--- [ anon ] b642c000 116K r-x-- /usr/lib/libgd.so.2.0.0 b6449000 128K rw--- /usr/lib/libgd.so.2.0.0 b6469000 16K rw--- [ anon ] b646d000 88K r-x-- /usr/lib/php5/20060613+lfs/gd.so b6483000 16K rw--- /usr/lib/php5/20060613+lfs/gd.so b6487000 192K r-x-- /usr/lib/libidn.so.11.5.30 b64b7000 4K rw--- /usr/lib/libidn.so.11.5.30 b64b8000 232K r-x-- /usr/lib/libcurl.so.4.0.1 b64f2000 4K rw--- /usr/lib/libcurl.so.4.0.1 b64f8000 44K r-x-- /usr/lib/php5/20060613+lfs/mysql.so b6503000 4K rw--- /usr/lib/php5/20060613+lfs/mysql.so b6504000 268K r-x-- /usr/lib/libgmp.so.3.4.2 b6547000 4K rw--- /usr/lib/libgmp.so.3.4.2 b6548000 648K r-x-- /usr/lib/libclamav.so.5.0.4 b65ea000 44K rw--- /usr/lib/libclamav.so.5.0.4 b65f8000 52K r-x-- /usr/lib/php5/20060613+lfs/curl.so b6605000 4K rw--- /usr/lib/php5/20060613+lfs/curl.so b6606000 148K r-x-- /usr/lib/libmcrypt.so.4.4.7 b662b000 8K rw--- /usr/lib/libmcrypt.so.4.4.7 b662d000 28K rw--- [ anon ] b6634000 24K r-x-- /usr/lib/php5/20060613+lfs/pdo_mysql.so b663a000 4K rw--- /usr/lib/php5/20060613+lfs/pdo_mysql.so b663b000 16K r-x-- /usr/lib/libXdmcp.so.6.0.0 b663f000 4K rw--- /usr/lib/libXdmcp.so.6.0.0 b6640000 12K r-x-- /usr/lib/php5/20060613+lfs/clamav.so b6643000 4K rw--- /usr/lib/php5/20060613+lfs/clamav.so b6644000 1036K r-x-- /usr/lib/libc-client.so.2007.0 b6747000 28K rw--- /usr/lib/libc-client.so.2007.0 b674e000 4K rw--- [ anon ] b6750000 24K r-x-- /usr/lib/libltdl.so.3.1.6 b6756000 4K rw--- /usr/lib/libltdl.so.3.1.6 b6757000 32K r-x-- /usr/lib/php5/20060613+lfs/mcrypt.so b675f000 4K rw--- /usr/lib/php5/20060613+lfs/mcrypt.so b6760000 88K r-x-- /usr/lib/php5/20060613+lfs/imap.so b6776000 4K rw--- /usr/lib/php5/20060613+lfs/imap.so b6777000 104K r-x-- /usr/local/lib/libssh2.so b6791000 4K rw--- /usr/local/lib/libssh2.so b6792000 1324K r-x-- /usr/lib/ZendOptimizer.so b68dd000 68K rw--- /usr/lib/ZendOptimizer.so b68ee000 20K rw--- [ anon ] b68f3000 8K r-x-- /usr/lib/libXau.so.6.0.0 b68f5000 4K rw--- /usr/lib/libXau.so.6.0.0 b68f6000 52K r-x-- /usr/lib/php5/20060613+lfs/ssh2.so b6903000 4K rw--- /usr/lib/php5/20060613+lfs/ssh2.so b6904000 252K r---- /usr/lib/locale/en_US.utf8/LC_CTYPE b6974000 64K rw-s- /dev/zero (deleted) b6984000 36K r-x-- /lib/tls/i686/cmov/libnss_files-2.7.so b698d000 8K rw--- /lib/tls/i686/cmov/libnss_files-2.7.so b698f000 32K r-x-- /lib/tls/i686/cmov/libnss_nis-2.7.so b6997000 8K rw--- /lib/tls/i686/cmov/libnss_nis-2.7.so b6999000 28K r-x-- /lib/tls/i686/cmov/libnss_compat-2.7.so b69a0000 8K rw--- /lib/tls/i686/cmov/libnss_compat-2.7.so b69a2000 36K r-x-- /lib/libpam.so.0.81.6 b69ab000 4K rw--- /lib/libpam.so.0.81.6 b69ac000 28K r--s- /usr/lib/gconv/gconv-modules.cache b69b3000 8K r-x-- /usr/lib/apache2/modules/mod_userdir.so b69b5000 4K rw--- /usr/lib/apache2/modules/mod_userdir.so b69b6000 148K r-x-- /usr/lib/apache2/modules/mod_ssl.so b69db000 8K rw--- /usr/lib/apache2/modules/mod_ssl.so b69dd000 8K rw--- [ anon ] b69df000 8K r-x-- /usr/lib/apache2/modules/mod_setenvif.so b69e1000 4K rw--- /usr/lib/apache2/modules/mod_setenvif.so b69e2000 1128K r-x-- /usr/lib/libxml2.so.2.6.31 b6afc000 20K rw--- /usr/lib/libxml2.so.2.6.31 b6b01000 4K rw--- [ anon ] b6b02000 80K r-x-- /lib/tls/i686/cmov/libnsl-2.7.so b6b16000 8K rw--- /lib/tls/i686/cmov/libnsl-2.7.so b6b18000 8K rw--- [ anon ] b6b1a000 140K r-x-- /lib/tls/i686/cmov/libm-2.7.so b6b3d000 8K rw--- /lib/tls/i686/cmov/libm-2.7.so b6b3f000 60K r-x-- /lib/libbz2.so.1.0.4 b6b4e000 4K rw--- /lib/libbz2.so.1.0.4 b6b4f000 4K r-x-- /usr/lib/libxcb-xlib.so.0.0.0 b6b50000 4K rw--- /usr/lib/libxcb-xlib.so.0.0.0 b6b51000 56K r-x-- /usr/lib/apache2/modules/mod_rewrite.so b6b5f000 4K rw--- /usr/lib/apache2/modules/mod_rewrite.so b6b60000 5060K r-x-- /usr/lib/apache2/modules/libphp5.so b7051000 208K rw--- /usr/lib/apache2/modules/libphp5.so b7085000 20K rw--- [ anon ] b708a000 28K r-x-- /usr/lib/apache2/modules/mod_negotiation.so b7091000 4K rw--- /usr/lib/apache2/modules/mod_negotiation.so b7092000 12K r-x-- /usr/lib/apache2/modules/mod_mime.so b7095000 4K rw--- /usr/lib/apache2/modules/mod_mime.so b7096000 36K r-x-- /usr/lib/apache2/modules/mod_include.so b709f000 4K rw--- /usr/lib/apache2/modules/mod_include.so b70a0000 4K r-x-- /usr/lib/apache2/modules/mod_env.so b70a1000 4K rw--- /usr/lib/apache2/modules/mod_env.so b70a2000 4K r-x-- /usr/lib/apache2/modules/mod_dir.so b70a3000 4K rw--- /usr/lib/apache2/modules/mod_dir.so b70a4000 20K r-x-- /usr/lib/apache2/modules/mod_cgi.so b70a9000 4K rw--- /usr/lib/apache2/modules/mod_cgi.so b70aa000 28K r-x-- /usr/lib/apache2/modules/mod_autoindex.so b70b1000 4K rw--- /usr/lib/apache2/modules/mod_autoindex.so b70b2000 4K r-x-- /usr/lib/apache2/modules/mod_authz_user.so b70b3000 4K rw--- /usr/lib/apache2/modules/mod_authz_user.so b70b4000 8K r-x-- /usr/lib/apache2/modules/mod_authz_host.so b70b6000 4K rw--- /usr/lib/apache2/modules/mod_authz_host.so b70b7000 8K r-x-- /usr/lib/apache2/modules/mod_authz_groupfile.so b70b9000 4K rw--- /usr/lib/apache2/modules/mod_authz_groupfile.so b70ba000 8K rw--- [ anon ] b70bc000 12K r-x-- /lib/libgpg-error.so.0.3.0 b70bf000 4K rw--- /lib/libgpg-error.so.0.3.0 b70c0000 4K rw--- [ anon ] b70c1000 8K r-x-- /lib/libkeyutils-1.2.so b70c3000 4K rw--- /lib/libkeyutils-1.2.so b70c4000 28K r-x-- /usr/lib/libkrb5support.so.0.1 b70cb000 4K rw--- /usr/lib/libkrb5support.so.0.1 b70cc000 136K r-x-- /usr/lib/libk5crypto.so.3.1 b70ee000 4K rw--- /usr/lib/libk5crypto.so.3.1 b70ef000 300K r-x-- /lib/libgcrypt.so.11.2.3 b713a000 8K rw--- /lib/libgcrypt.so.11.2.3 b713c000 80K r-x-- /usr/lib/libz.so.1.2.3.3 b7150000 4K rw--- /usr/lib/libz.so.1.2.3.3 b7151000 4K rw--- [ anon ] b7152000 60K r-x-- /usr/lib/libtasn1.so.3.0.12 b7161000 4K rw--- /usr/lib/libtasn1.so.3.0.12 b7162000 160K r-x-- /usr/lib/libgssapi_krb5.so.2.2 b718a000 4K rw--- /usr/lib/libgssapi_krb5.so.2.2 b718b000 8K r-x-- /lib/libcom_err.so.2.1 b718d000 4K rw--- /lib/libcom_err.so.2.1 b718e000 556K r-x-- /usr/lib/libkrb5.so.3.3 b7219000 8K rw--- /usr/lib/libkrb5.so.3.3 b721b000 1192K r-x-- /usr/lib/i686/cmov/libcrypto.so.0.9.8 b7345000 84K rw--- /usr/lib/i686/cmov/libcrypto.so.0.9.8 b735a000 16K rw--- [ anon ] b735e000 248K r-x-- /usr/lib/i686/cmov/libssl.so.0.9.8 b739c000 16K rw--- /usr/lib/i686/cmov/libssl.so.0.9.8 b73a0000 452K r-x-- /usr/lib/libgnutls.so.13.9.1 b7411000 20K rw--- /usr/lib/libgnutls.so.13.9.1 b7416000 88K r-x-- /usr/lib/libsasl2.so.2.0.22 b742c000 4K rw--- /usr/lib/libsasl2.so.2.0.22 b742d000 60K r-x-- /lib/tls/i686/cmov/libresolv-2.7.so b743c000 8K rw--- /lib/tls/i686/cmov/libresolv-2.7.so b743e000 8K rw--- [ anon ] b7440000 8K r-x-- /lib/tls/i686/cmov/libdl-2.7.so b7442000 8K rw--- /lib/tls/i686/cmov/libdl-2.7.so b7444000 36K r-x-- /lib/tls/i686/cmov/libcrypt-2.7.so b744d000 8K rw--- /lib/tls/i686/cmov/libcrypt-2.7.so b744f000 160K rw--- [ anon ] b7477000 28K r-x-- /lib/tls/i686/cmov/librt-2.7.so b747e000 8K rw--- /lib/tls/i686/cmov/librt-2.7.so b7480000 12K r-x-- /lib/libuuid.so.1.2 b7483000 4K rw--- /lib/libuuid.so.1.2 b7484000 124K r-x-- /usr/lib/libexpat.so.1.5.2 b74a3000 8K rw--- /usr/lib/libexpat.so.1.5.2 b74a5000 396K r-x-- /usr/lib/libsqlite3.so.0.8.6 b7508000 8K rw--- /usr/lib/libsqlite3.so.0.8.6 b750a000 120K r-x-- /usr/lib/libpq.so.5.1 b7528000 4K rw--- /usr/lib/libpq.so.5.1 b7529000 1172K r-x-- /usr/lib/libdb-4.6.so b764e000 8K rw--- /usr/lib/libdb-4.6.so b7650000 4K rw--- [ anon ] b7651000 48K r-x-- /usr/lib/liblber-2.4.so.2.0.5 b765d000 4K rw--- /usr/lib/liblber-2.4.so.2.0.5 b765e000 244K r-x-- /usr/lib/libldap_r-2.4.so.2.0.5 b769b000 4K rw--- /usr/lib/libldap_r-2.4.so.2.0.5 b769c000 8K rw--- [ anon ] b769e000 1316K r-x-- /lib/tls/i686/cmov/libc-2.7.so b77e7000 4K r---- /lib/tls/i686/cmov/libc-2.7.so b77e8000 8K rw--- /lib/tls/i686/cmov/libc-2.7.so b77ea000 12K rw--- [ anon ] b77ed000 80K r-x-- /lib/tls/i686/cmov/libpthread-2.7.so b7801000 8K rw--- /lib/tls/i686/cmov/libpthread-2.7.so b7803000 8K rw--- [ anon ] b7805000 136K r-x-- /usr/lib/libapr-1.so.0.2.11 b7827000 4K rw--- /usr/lib/libapr-1.so.0.2.11 b7828000 4K rw--- [ anon ] b7829000 100K r-x-- /usr/lib/libaprutil-1.so.0.2.11 b7842000 4K rw--- /usr/lib/libaprutil-1.so.0.2.11 b7843000 152K r-x-- /usr/lib/libpcre.so.3.12.1 b7869000 4K rw--- /usr/lib/libpcre.so.3.12.1 b786a000 4K r-x-- /usr/lib/apache2/modules/mod_authz_default.so b786b000 4K rw--- /usr/lib/apache2/modules/mod_authz_default.so b786c000 4K r-x-- /usr/lib/apache2/modules/mod_authn_file.so b786d000 4K rw--- /usr/lib/apache2/modules/mod_authn_file.so b786e000 24K r-x-- /usr/lib/apache2/modules/mod_auth_digest.so b7874000 4K rw--- /usr/lib/apache2/modules/mod_auth_digest.so b7875000 8K r-x-- /usr/lib/apache2/modules/mod_auth_basic.so b7877000 4K rw--- /usr/lib/apache2/modules/mod_auth_basic.so b7878000 8K r-x-- /usr/lib/apache2/modules/mod_alias.so b787a000 4K rw--- /usr/lib/apache2/modules/mod_alias.so b787b000 8K rw--- [ anon ] b787d000 4K r-x-- [ anon ] b787e000 104K r-x-- /lib/ld-2.7.so b7898000 8K rw--- /lib/ld-2.7.so bfd68000 76K rwx-- [ stack ] bfd7b000 8K rw--- [ anon ] total 119008K I have no idea what's going on. I've tried adjusting the usual parameters (MaxClients, MaxRequestsPerClient, etc, but those don't do anything.) Note, also, that this is memory usage on startup - it doesn't grow, it just starts like this and then stays more or less constant. Ideas?

    Read the article

  • FreeBSD 8.1 unstable network connection

    - by frankcheong
    I have three FreeBSD 8.1 running on three different hardware and therefore consist of different network adapter as well (bce, bge and igb). I found that the network connection is kind of unstable which I have tried to scp some 10MB file and found that I cannot always get the files completed successfully. I have further checked with my network admin and he claim that the problem is being caused by the network driver which cannot support the load whereby he tried to ping using huge packet size (around 15k) and my server will drop packet consistently at a regular interval. I found that this statement may not be valid since the three server is using three different network drive and it would be quite impossible that the same problem is being caused by three different network adapter and thus different network driver. Since then I have tried to tune up the performance by playing around with the /etc/sysctl.conf figures with no luck. kern.ipc.somaxconn=1024 kern.ipc.shmall=3276800 kern.ipc.shmmax=1638400000 # Security net.inet.ip.redirect=0 net.inet.ip.sourceroute=0 net.inet.ip.accept_sourceroute=0 net.inet.icmp.maskrepl=0 net.inet.icmp.log_redirect=0 net.inet.icmp.drop_redirect=1 net.inet.tcp.drop_synfin=1 # Security net.inet.udp.blackhole=1 net.inet.tcp.blackhole=2 # Required by pf net.inet.ip.forwarding=1 #Network Performance Tuning kern.ipc.maxsockbuf=16777216 net.inet.tcp.rfc1323=1 net.inet.tcp.sendbuf_max=16777216 net.inet.tcp.recvbuf_max=16777216 # Setting specifically for 1 or even 10Gbps network net.local.stream.sendspace=262144 net.local.stream.recvspace=262144 net.inet.tcp.local_slowstart_flightsize=10 net.inet.tcp.nolocaltimewait=1 net.inet.tcp.mssdflt=1460 net.inet.tcp.sendbuf_auto=1 net.inet.tcp.sendbuf_inc=16384 net.inet.tcp.recvbuf_auto=1 net.inet.tcp.recvbuf_inc=524288 net.inet.tcp.sendspace=262144 net.inet.tcp.recvspace=262144 net.inet.udp.recvspace=262144 kern.ipc.maxsockbuf=16777216 kern.ipc.nmbclusters=32768 net.inet.tcp.delayed_ack=1 net.inet.tcp.delacktime=100 net.inet.tcp.slowstart_flightsize=179 net.inet.tcp.inflight.enable=1 net.inet.tcp.inflight.min=6144 # Reduce the cache size of slow start connection net.inet.tcp.hostcache.expire=1 Our network admin also claim that they see quite a lot of network up and down from their cisco switch log while I cannot find any up down message inside the dmesg. Have further checked the netstat -s but dont have concrete idea. tcp: 133695291 packets sent 39408539 data packets (3358837321 bytes) 61868 data packets (89472844 bytes) retransmitted 24 data packets unnecessarily retransmitted 0 resends initiated by MTU discovery 50756141 ack-only packets (2148 delayed) 0 URG only packets 0 window probe packets 4372385 window update packets 39781869 control packets 134898031 packets received 72339403 acks (for 3357601899 bytes) 190712 duplicate acks 0 acks for unsent data 59339201 packets (3647021974 bytes) received in-sequence 114 completely duplicate packets (135202 bytes) 27 old duplicate packets 0 packets with some dup. data (0 bytes duped) 42090 out-of-order packets (60817889 bytes) 0 packets (0 bytes) of data after window 0 window probes 3953896 window update packets 64181 packets received after close 0 discarded for bad checksums 0 discarded for bad header offset fields 0 discarded because packet too short 45192 discarded due to memory problems 19945391 connection requests 1323420 connection accepts 0 bad connection attempts 0 listen queue overflows 0 ignored RSTs in the windows 21133581 connections established (including accepts) 21268724 connections closed (including 32737 drops) 207874 connections updated cached RTT on close 207874 connections updated cached RTT variance on close 132439 connections updated cached ssthresh on close 42392 embryonic connections dropped 72339338 segments updated rtt (of 69477829 attempts) 390871 retransmit timeouts 0 connections dropped by rexmit timeout 0 persist timeouts 0 connections dropped by persist timeout 0 Connections (fin_wait_2) dropped because of timeout 13990 keepalive timeouts 2 keepalive probes sent 13988 connections dropped by keepalive 173044 correct ACK header predictions 36947371 correct data packet header predictions 1323420 syncache entries added 0 retransmitted 0 dupsyn 0 dropped 1323420 completed 0 bucket overflow 0 cache overflow 0 reset 0 stale 0 aborted 0 badack 0 unreach 0 zone failures 1323420 cookies sent 0 cookies received 1864 SACK recovery episodes 18005 segment rexmits in SACK recovery episodes 26066896 byte rexmits in SACK recovery episodes 147327 SACK options (SACK blocks) received 87473 SACK options (SACK blocks) sent 0 SACK scoreboard overflow 0 packets with ECN CE bit set 0 packets with ECN ECT(0) bit set 0 packets with ECN ECT(1) bit set 0 successful ECN handshakes 0 times ECN reduced the congestion window udp: 5141258 datagrams received 0 with incomplete header 0 with bad data length field 0 with bad checksum 1 with no checksum 0 dropped due to no socket 129616 broadcast/multicast datagrams undelivered 0 dropped due to full socket buffers 0 not for hashed pcb 5011642 delivered 5016050 datagrams output 0 times multicast source filter matched sctp: 0 input packets 0 datagrams 0 packets that had data 0 input SACK chunks 0 input DATA chunks 0 duplicate DATA chunks 0 input HB chunks 0 HB-ACK chunks 0 input ECNE chunks 0 input AUTH chunks 0 chunks missing AUTH 0 invalid HMAC ids received 0 invalid secret ids received 0 auth failed 0 fast path receives all one chunk 0 fast path multi-part data 0 output packets 0 output SACKs 0 output DATA chunks 0 retransmitted DATA chunks 0 fast retransmitted DATA chunks 0 FR's that happened more than once to same chunk 0 intput HB chunks 0 output ECNE chunks 0 output AUTH chunks 0 ip_output error counter Packet drop statistics: 0 from middle box 0 from end host 0 with data 0 non-data, non-endhost 0 non-endhost, bandwidth rep only 0 not enough for chunk header 0 not enough data to confirm 0 where process_chunk_drop said break 0 failed to find TSN 0 attempt reverse TSN lookup 0 e-host confirms zero-rwnd 0 midbox confirms no space 0 data did not match TSN 0 TSN's marked for Fast Retran Timeouts: 0 iterator timers fired 0 T3 data time outs 0 window probe (T3) timers fired 0 INIT timers fired 0 sack timers fired 0 shutdown timers fired 0 heartbeat timers fired 0 a cookie timeout fired 0 an endpoint changed its cookiesecret 0 PMTU timers fired 0 shutdown ack timers fired 0 shutdown guard timers fired 0 stream reset timers fired 0 early FR timers fired 0 an asconf timer fired 0 auto close timer fired 0 asoc free timers expired 0 inp free timers expired 0 packet shorter than header 0 checksum error 0 no endpoint for port 0 bad v-tag 0 bad SID 0 no memory 0 number of multiple FR in a RTT window 0 RFC813 allowed sending 0 RFC813 does not allow sending 0 times max burst prohibited sending 0 look ahead tells us no memory in interface 0 numbers of window probes sent 0 times an output error to clamp down on next user send 0 times sctp_senderrors were caused from a user 0 number of in data drops due to chunk limit reached 0 number of in data drops due to rwnd limit reached 0 times a ECN reduced the cwnd 0 used express lookup via vtag 0 collision in express lookup 0 times the sender ran dry of user data on primary 0 same for above 0 sacks the slow way 0 window update only sacks sent 0 sends with sinfo_flags !=0 0 unordered sends 0 sends with EOF flag set 0 sends with ABORT flag set 0 times protocol drain called 0 times we did a protocol drain 0 times recv was called with peek 0 cached chunks used 0 cached stream oq's used 0 unread messages abandonded by close 0 send burst avoidance, already max burst inflight to net 0 send cwnd full avoidance, already max burst inflight to net 0 number of map array over-runs via fwd-tsn's ip: 137814085 total packets received 0 bad header checksums 0 with size smaller than minimum 0 with data size < data length 0 with ip length > max ip packet size 0 with header length < data size 0 with data length < header length 0 with bad options 0 with incorrect version number 1200 fragments received 0 fragments dropped (dup or out of space) 0 fragments dropped after timeout 300 packets reassembled ok 137813009 packets for this host 530 packets for unknown/unsupported protocol 0 packets forwarded (0 packets fast forwarded) 61 packets not forwardable 0 packets received for unknown multicast group 0 redirects sent 137234598 packets sent from this host 0 packets sent with fabricated ip header 685307 output packets dropped due to no bufs, etc. 52 output packets discarded due to no route 300 output datagrams fragmented 1200 fragments created 0 datagrams that can't be fragmented 0 tunneling packets that can't find gif 0 datagrams with bad address in header icmp: 0 calls to icmp_error 0 errors not generated in response to an icmp message Output histogram: echo reply: 305 0 messages with bad code fields 0 messages less than the minimum length 0 messages with bad checksum 0 messages with bad length 0 multicast echo requests ignored 0 multicast timestamp requests ignored Input histogram: destination unreachable: 530 echo: 305 305 message responses generated 0 invalid return addresses 0 no return routes ICMP address mask responses are disabled igmp: 0 messages received 0 messages received with too few bytes 0 messages received with wrong TTL 0 messages received with bad checksum 0 V1/V2 membership queries received 0 V3 membership queries received 0 membership queries received with invalid field(s) 0 general queries received 0 group queries received 0 group-source queries received 0 group-source queries dropped 0 membership reports received 0 membership reports received with invalid field(s) 0 membership reports received for groups to which we belong 0 V3 reports received without Router Alert 0 membership reports sent arp: 376748 ARP requests sent 3207 ARP replies sent 245245 ARP requests received 80845 ARP replies received 326090 ARP packets received 267712 total packets dropped due to no ARP entry 108876 ARP entrys timed out 0 Duplicate IPs seen ip6: 2226633 total packets received 0 with size smaller than minimum 0 with data size < data length 0 with bad options 0 with incorrect version number 0 fragments received 0 fragments dropped (dup or out of space) 0 fragments dropped after timeout 0 fragments that exceeded limit 0 packets reassembled ok 2226633 packets for this host 0 packets forwarded 0 packets not forwardable 0 redirects sent 2226633 packets sent from this host 0 packets sent with fabricated ip header 0 output packets dropped due to no bufs, etc. 8 output packets discarded due to no route 0 output datagrams fragmented 0 fragments created 0 datagrams that can't be fragmented 0 packets that violated scope rules 0 multicast packets which we don't join Input histogram: UDP: 2226633 Mbuf statistics: 962679 one mbuf 1263954 one ext mbuf 0 two or more ext mbuf 0 packets whose headers are not continuous 0 tunneling packets that can't find gif 0 packets discarded because of too many headers 0 failures of source address selection Source addresses selection rule applied: icmp6: 0 calls to icmp6_error 0 errors not generated in response to an icmp6 message 0 errors not generated because of rate limitation 0 messages with bad code fields 0 messages < minimum length 0 bad checksums 0 messages with bad length Histogram of error messages to be generated: 0 no route 0 administratively prohibited 0 beyond scope 0 address unreachable 0 port unreachable 0 packet too big 0 time exceed transit 0 time exceed reassembly 0 erroneous header field 0 unrecognized next header 0 unrecognized option 0 redirect 0 unknown 0 message responses generated 0 messages with too many ND options 0 messages with bad ND options 0 bad neighbor solicitation messages 0 bad neighbor advertisement messages 0 bad router solicitation messages 0 bad router advertisement messages 0 bad redirect messages 0 path MTU changes rip6: 0 messages received 0 checksum calculations on inbound 0 messages with bad checksum 0 messages dropped due to no socket 0 multicast messages dropped due to no socket 0 messages dropped due to full socket buffers 0 delivered 0 datagrams output netstat -m 516/5124/5640 mbufs in use (current/cache/total) 512/1634/2146/32768 mbuf clusters in use (current/cache/total/max) 512/1536 mbuf+clusters out of packet secondary zone in use (current/cache) 0/1303/1303/12800 4k (page size) jumbo clusters in use (current/cache/total/max) 0/0/0/6400 9k jumbo clusters in use (current/cache/total/max) 0/0/0/3200 16k jumbo clusters in use (current/cache/total/max) 1153K/9761K/10914K bytes allocated to network (current/cache/total) 0/0/0 requests for mbufs denied (mbufs/clusters/mbuf+clusters) 0/0/0 requests for jumbo clusters denied (4k/9k/16k) 0/8/6656 sfbufs in use (current/peak/max) 0 requests for sfbufs denied 0 requests for sfbufs delayed 0 requests for I/O initiated by sendfile 0 calls to protocol drain routines Anyone got an idea what might be the possible cause?

    Read the article

  • Command does not execute in crontab while command itself works just fine

    - by fuzzybee
    I have this script from Colin Johnson on Github - https://github.com/colinbjohnson/aws-missing-tools/tree/master/ec2-automate-backup It seems great. I have modified it to send email to myself every time an EBS snapshot is created or deleted. The following works like a charm ec2-automate-backup.sh -v "vol-myvolumeid" -k 3 However, it does not execute at all as part of my crontab (I didn't receive any emails) #some command that got commented out */5 * * * * ec2-automate-backup.sh -v "vol-fb2fbcdf" -k 3; * * * * * date /root/logs/crontab.log; */5 * * * * date /root/logs/crontab2.log Please note that the 2nd and 3rd execute just fines as I can see the date and time in log files. What could I have missed here? The full ec2-automate-backup.sh is as follows: #!/bin/bash - # Author: Colin Johnson / [email protected] # Date: 2012-09-24 # Version 0.1 # License Type: GNU GENERAL PUBLIC LICENSE, Version 3 # #confirms that executables required for succesful script execution are available prerequisite_check() { for prerequisite in basename ec2-create-snapshot ec2-create-tags ec2-describe-snapshots ec2-delete-snapshot date do #use of "hash" chosen as it is a shell builtin and will add programs to hash table, possibly speeding execution. Use of type also considered - open to suggestions. hash $prerequisite &> /dev/null if [[ $? == 1 ]] #has exits with exit status of 70, executable was not found then echo "In order to use `basename $0`, the executable \"$prerequisite\" must be installed." 1>&2 | mailx -s "Error happened 0" [email protected] ; exit 70 fi done } #get_EBS_List gets a list of available EBS instances depending upon the selection_method of EBS selection that is provided by user input get_EBS_List() { case $selection_method in volumeid) if [[ -z $volumeid ]] then echo "The selection method \"volumeid\" (which is $app_name's default selection_method of operation or requested by using the -s volumeid parameter) requires a volumeid (-v volumeid) for operation. Correct usage is as follows: \"-v vol-6d6a0527\",\"-s volumeid -v vol-6d6a0527\" or \"-v \"vol-6d6a0527 vol-636a0112\"\" if multiple volumes are to be selected." 1>&2 | mailx -s "Error happened 1" [email protected] ; exit 64 fi ebs_selection_string="$volumeid" ;; tag) if [[ -z $tag ]] then echo "The selected selection_method \"tag\" (-s tag) requires a valid tag (-t key=value) for operation. Correct usage is as follows: \"-s tag -t backup=true\" or \"-s tag -t Name=my_tag.\"" 1>&2 | mailx -s "Error happened 2" [email protected] ; exit 64 fi ebs_selection_string="--filter tag:$tag" ;; *) echo "If you specify a selection_method (-s selection_method) for selecting EBS volumes you must select either \"volumeid\" (-s volumeid) or \"tag\" (-s tag)." 1>&2 | mailx -s "Error happened 3" [email protected] ; exit 64 ;; esac #creates a list of all ebs volumes that match the selection string from above ebs_backup_list_complete=`ec2-describe-volumes --show-empty-fields --region $region $ebs_selection_string 2>&1` #takes the output of the previous command ebs_backup_list_result=`echo $?` if [[ $ebs_backup_list_result -gt 0 ]] then echo -e "An error occured when running ec2-describe-volumes. The error returned is below:\n$ebs_backup_list_complete" 1>&2 | mailx -s "Error happened 4" [email protected] ; exit 70 fi ebs_backup_list=`echo "$ebs_backup_list_complete" | grep ^VOLUME | cut -f 2` #code to right will output list of EBS volumes to be backed up: echo -e "Now outputting ebs_backup_list:\n$ebs_backup_list" } create_EBS_Snapshot_Tags() { #snapshot tags holds all tags that need to be applied to a given snapshot - by aggregating tags we ensure that ec2-create-tags is called only onece snapshot_tags="" #if $name_tag_create is true then append ec2ab_${ebs_selected}_$date_current to the variable $snapshot_tags if $name_tag_create then ec2_snapshot_resource_id=`echo "$ec2_create_snapshot_result" | cut -f 2` snapshot_tags="$snapshot_tags --tag Name=ec2ab_${ebs_selected}_$date_current" fi #if $purge_after_days is true, then append $purge_after_date to the variable $snapshot_tags if [[ -n $purge_after_days ]] then snapshot_tags="$snapshot_tags --tag PurgeAfter=$purge_after_date --tag PurgeAllow=true" fi #if $snapshot_tags is not zero length then set the tag on the snapshot using ec2-create-tags if [[ -n $snapshot_tags ]] then echo "Tagging Snapshot $ec2_snapshot_resource_id with the following Tags:" ec2-create-tags $ec2_snapshot_resource_id --region $region $snapshot_tags #echo "Snapshot tags successfully created" | mailx -s "Snapshot tags successfully created" [email protected] fi } date_command_get() { #finds full path to date binary date_binary_full_path=`which date` #command below is used to determine if date binary is gnu, macosx or other date_binary_file_result=`file -b $date_binary_full_path` case $date_binary_file_result in "Mach-O 64-bit executable x86_64") date_binary="macosx" ;; "ELF 64-bit LSB executable, x86-64, version 1 (SYSV)"*) date_binary="gnu" ;; *) date_binary="unknown" ;; esac #based on the installed date binary the case statement below will determine the method to use to determine "purge_after_days" in the future case $date_binary in gnu) date_command="date -d +${purge_after_days}days -u +%Y-%m-%d" ;; macosx) date_command="date -v+${purge_after_days}d -u +%Y-%m-%d" ;; unknown) date_command="date -d +${purge_after_days}days -u +%Y-%m-%d" ;; *) date_command="date -d +${purge_after_days}days -u +%Y-%m-%d" ;; esac } purge_EBS_Snapshots() { #snapshot_tag_list is a string that contains all snapshots with either the key PurgeAllow or PurgeAfter set snapshot_tag_list=`ec2-describe-tags --show-empty-fields --region $region --filter resource-type=snapshot --filter key=PurgeAllow,PurgeAfter` #snapshot_purge_allowed is a list of all snapshot_ids with PurgeAllow=true snapshot_purge_allowed=`echo "$snapshot_tag_list" | grep .*PurgeAllow'\t'true | cut -f 3` for snapshot_id_evaluated in $snapshot_purge_allowed do #gets the "PurgeAfter" date which is in UTC with YYYY-MM-DD format (or %Y-%m-%d) purge_after_date=`echo "$snapshot_tag_list" | grep .*$snapshot_id_evaluated'\t'PurgeAfter.* | cut -f 5` #if purge_after_date is not set then we have a problem. Need to alter user. if [[ -z $purge_after_date ]] #Alerts user to the fact that a Snapshot was found with PurgeAllow=true but with no PurgeAfter date. then echo "A Snapshot with the Snapshot ID $snapshot_id_evaluated has the tag \"PurgeAllow=true\" but does not have a \"PurgeAfter=YYYY-MM-DD\" date. $app_name is unable to determine if $snapshot_id_evaluated should be purged." 1>&2 | mailx -s "Error happened 5" [email protected] else #convert both the date_current and purge_after_date into epoch time to allow for comparison date_current_epoch=`date -j -f "%Y-%m-%d" "$date_current" "+%s"` purge_after_date_epoch=`date -j -f "%Y-%m-%d" "$purge_after_date" "+%s"` #perform compparison - if $purge_after_date_epoch is a lower number than $date_current_epoch than the PurgeAfter date is earlier than the current date - and the snapshot can be safely removed if [[ $purge_after_date_epoch < $date_current_epoch ]] then echo "The snapshot \"$snapshot_id_evaluated\" with the Purge After date of $purge_after_date will be deleted." ec2-delete-snapshot --region $region $snapshot_id_evaluated echo "Old snapshots successfully deleted for $volumeid" | mailx -s "Old snapshots successfully deleted for $volumeid" [email protected] fi fi done } #calls prerequisitecheck function to ensure that all executables required for script execution are available prerequisite_check app_name=`basename $0` #sets defaults selection_method="volumeid" region="ap-southeast-1" #date_binary allows a user to set the "date" binary that is installed on their system and, therefore, the options that will be given to the date binary to perform date calculations date_binary="" #sets the "Name" tag set for a snapshot to false - using "Name" requires that ec2-create-tags be called in addition to ec2-create-snapshot name_tag_create=false #sets the Purge Snapshot feature to false - this feature will eventually allow the removal of snapshots that have a "PurgeAfter" tag that is earlier than current date purge_snapshots=false #handles options processing while getopts :s:r:v:t:k:pn opt do case $opt in s) selection_method="$OPTARG";; r) region="$OPTARG";; v) volumeid="$OPTARG";; t) tag="$OPTARG";; k) purge_after_days="$OPTARG";; n) name_tag_create=true;; p) purge_snapshots=true;; *) echo "Error with Options Input. Cause of failure is most likely that an unsupported parameter was passed or a parameter was passed without a corresponding option." 1>&2 ; exit 64;; esac done #sets date variable date_current=`date -u +%Y-%m-%d` #sets the PurgeAfter tag to the number of days that a snapshot should be retained if [[ -n $purge_after_days ]] then #if the date_binary is not set, call the date_command_get function if [[ -z $date_binary ]] then date_command_get fi purge_after_date=`$date_command` echo "Snapshots taken by $app_name will be eligible for purging after the following date: $purge_after_date." fi #get_EBS_List gets a list of EBS instances for which a snapshot is desired. The list of EBS instances depends upon the selection_method that is provided by user input get_EBS_List #the loop below is called once for each volume in $ebs_backup_list - the currently selected EBS volume is passed in as "ebs_selected" for ebs_selected in $ebs_backup_list do ec2_snapshot_description="ec2ab_${ebs_selected}_$date_current" ec2_create_snapshot_result=`ec2-create-snapshot --region $region -d $ec2_snapshot_description $ebs_selected 2>&1` if [[ $? != 0 ]] then echo -e "An error occured when running ec2-create-snapshot. The error returned is below:\n$ec2_create_snapshot_result" 1>&2 ; exit 70 else ec2_snapshot_resource_id=`echo "$ec2_create_snapshot_result" | cut -f 2` echo "Snapshots successfully created for volume $volumeid" | mailx -s "Snapshots successfully created for $volumeid" [email protected] fi create_EBS_Snapshot_Tags done #if purge_snapshots is true, then run purge_EBS_Snapshots function if $purge_snapshots then echo "Snapshot Purging is Starting Now." purge_EBS_Snapshots fi cron log Oct 23 10:24:01 ip-10-130-153-227 CROND[28214]: (root) CMD (root (ec2-automate-backup.sh -v "vol-fb2fbcdf" -k 3;)) Oct 23 10:24:01 ip-10-130-153-227 CROND[28215]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:25:01 ip-10-130-153-227 CROND[28228]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:25:01 ip-10-130-153-227 CROND[28229]: (root) CMD (date >> /root/logs/crontab2.log) Oct 23 10:26:01 ip-10-130-153-227 CROND[28239]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:27:01 ip-10-130-153-227 CROND[28247]: (root) CMD (root (ec2-automate-backup.sh -v "vol-fb2fbcdf" -k 3;)) Oct 23 10:27:01 ip-10-130-153-227 CROND[28248]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:28:01 ip-10-130-153-227 CROND[28263]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:29:01 ip-10-130-153-227 CROND[28275]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:30:01 ip-10-130-153-227 CROND[28292]: (root) CMD (root (ec2-automate-backup.sh -v "vol-fb2fbcdf" -k 3;)) Oct 23 10:30:01 ip-10-130-153-227 CROND[28293]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:30:01 ip-10-130-153-227 CROND[28294]: (root) CMD (date >> /root/logs/crontab2.log) Oct 23 10:31:01 ip-10-130-153-227 CROND[28312]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:32:01 ip-10-130-153-227 CROND[28319]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:33:01 ip-10-130-153-227 CROND[28325]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:33:01 ip-10-130-153-227 CROND[28324]: (root) CMD (root (ec2-automate-backup.sh -v "vol-fb2fbcdf" -k 3;)) Oct 23 10:34:01 ip-10-130-153-227 CROND[28345]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:35:01 ip-10-130-153-227 CROND[28362]: (root) CMD (date >> /root/logs/crontab.log;) Oct 23 10:35:01 ip-10-130-153-227 CROND[28363]: (root) CMD (date >> /root/logs/crontab2.log) Mails to root From [email protected] Tue Oct 23 06:00:01 2012 Return-Path: <[email protected]> Date: Tue, 23 Oct 2012 06:00:01 GMT From: [email protected] (Cron Daemon) To: [email protected] Subject: Cron <root@ip-10-130-153-227> root ec2-automate-backup.sh -v "vol-fb2fbcdf" -k 3 Content-Type: text/plain; charset=UTF-8 Auto-Submitted: auto-generated X-Cron-Env: <SHELL=/bin/sh> X-Cron-Env: <HOME=/root> X-Cron-Env: <PATH=/usr/bin:/bin> X-Cron-Env: <LOGNAME=root> X-Cron-Env: <USER=root> Status: R /bin/sh: root: command not found

    Read the article

  • What's New in ASP.NET 4

    - by Navaneeth
    The .NET Framework version 4 includes enhancements for ASP.NET 4 in targeted areas. Visual Studio 2010 and Microsoft Visual Web Developer Express also include enhancements and new features for improved Web development. This document provides an overview of many of the new features that are included in the upcoming release. This topic contains the following sections: ASP.NET Core Services ASP.NET Web Forms ASP.NET MVC Dynamic Data ASP.NET Chart Control Visual Web Developer Enhancements Web Application Deployment with Visual Studio 2010 Enhancements to ASP.NET Multi-Targeting ASP.NET Core Services ASP.NET 4 introduces many features that improve core ASP.NET services such as output caching and session state storage. Extensible Output Caching Since the time that ASP.NET 1.0 was released, output caching has enabled developers to store the generated output of pages, controls, and HTTP responses in memory. On subsequent Web requests, ASP.NET can serve content more quickly by retrieving the generated output from memory instead of regenerating the output from scratch. However, this approach has a limitation — generated content always has to be stored in memory. On servers that experience heavy traffic, the memory requirements for output caching can compete with memory requirements for other parts of a Web application. ASP.NET 4 adds extensibility to output caching that enables you to configure one or more custom output-cache providers. Output-cache providers can use any storage mechanism to persist HTML content. These storage options can include local or remote disks, cloud storage, and distributed cache engines. Output-cache provider extensibility in ASP.NET 4 lets you design more aggressive and more intelligent output-caching strategies for Web sites. For example, you can create an output-cache provider that caches the "Top 10" pages of a site in memory, while caching pages that get lower traffic on disk. Alternatively, you can cache every vary-by combination for a rendered page, but use a distributed cache so that the memory consumption is offloaded from front-end Web servers. You create a custom output-cache provider as a class that derives from the OutputCacheProvider type. You can then configure the provider in the Web.config file by using the new providers subsection of the outputCache element For more information and for examples that show how to configure the output cache, see outputCache Element for caching (ASP.NET Settings Schema). For more information about the classes that support caching, see the documentation for the OutputCache and OutputCacheProvider classes. By default, in ASP.NET 4, all HTTP responses, rendered pages, and controls use the in-memory output cache. The defaultProvider attribute for ASP.NET is AspNetInternalProvider. You can change the default output-cache provider used for a Web application by specifying a different provider name for defaultProvider attribute. In addition, you can select different output-cache providers for individual control and for individual requests and programmatically specify which provider to use. For more information, see the HttpApplication.GetOutputCacheProviderName(HttpContext) method. The easiest way to choose a different output-cache provider for different Web user controls is to do so declaratively by using the new providerName attribute in a page or control directive, as shown in the following example: <%@ OutputCache Duration="60" VaryByParam="None" providerName="DiskCache" %> Preloading Web Applications Some Web applications must load large amounts of data or must perform expensive initialization processing before serving the first request. In earlier versions of ASP.NET, for these situations you had to devise custom approaches to "wake up" an ASP.NET application and then run initialization code during the Application_Load method in the Global.asax file. To address this scenario, a new application preload manager (autostart feature) is available when ASP.NET 4 runs on IIS 7.5 on Windows Server 2008 R2. The preload feature provides a controlled approach for starting up an application pool, initializing an ASP.NET application, and then accepting HTTP requests. It lets you perform expensive application initialization prior to processing the first HTTP request. For example, you can use the application preload manager to initialize an application and then signal a load-balancer that the application was initialized and ready to accept HTTP traffic. To use the application preload manager, an IIS administrator sets an application pool in IIS 7.5 to be automatically started by using the following configuration in the applicationHost.config file: <applicationPools> <add name="MyApplicationPool" startMode="AlwaysRunning" /> </applicationPools> Because a single application pool can contain multiple applications, you specify individual applications to be automatically started by using the following configuration in the applicationHost.config file: <sites> <site name="MySite" id="1"> <application path="/" serviceAutoStartEnabled="true" serviceAutoStartProvider="PrewarmMyCache" > <!-- Additional content --> </application> </site> </sites> <!-- Additional content --> <serviceAutoStartProviders> <add name="PrewarmMyCache" type="MyNamespace.CustomInitialization, MyLibrary" /> </serviceAutoStartProviders> When an IIS 7.5 server is cold-started or when an individual application pool is recycled, IIS 7.5 uses the information in the applicationHost.config file to determine which Web applications have to be automatically started. For each application that is marked for preload, IIS7.5 sends a request to ASP.NET 4 to start the application in a state during which the application temporarily does not accept HTTP requests. When it is in this state, ASP.NET instantiates the type defined by the serviceAutoStartProvider attribute (as shown in the previous example) and calls into its public entry point. You create a managed preload type that has the required entry point by implementing the IProcessHostPreloadClient interface, as shown in the following example: public class CustomInitialization : System.Web.Hosting.IProcessHostPreloadClient { public void Preload(string[] parameters) { // Perform initialization. } } After your initialization code runs in the Preload method and after the method returns, the ASP.NET application is ready to process requests. Permanently Redirecting a Page Content in Web applications is often moved over the lifetime of the application. This can lead to links to be out of date, such as the links that are returned by search engines. In ASP.NET, developers have traditionally handled requests to old URLs by using the Redirect method to forward a request to the new URL. However, the Redirect method issues an HTTP 302 (Found) response (which is used for a temporary redirect). This results in an extra HTTP round trip. ASP.NET 4 adds a RedirectPermanent helper method that makes it easy to issue HTTP 301 (Moved Permanently) responses, as in the following example: RedirectPermanent("/newpath/foroldcontent.aspx"); Search engines and other user agents that recognize permanent redirects will store the new URL that is associated with the content, which eliminates the unnecessary round trip made by the browser for temporary redirects. Session State Compression By default, ASP.NET provides two options for storing session state across a Web farm. The first option is a session state provider that invokes an out-of-process session state server. The second option is a session state provider that stores data in a Microsoft SQL Server database. Because both options store state information outside a Web application's worker process, session state has to be serialized before it is sent to remote storage. If a large amount of data is saved in session state, the size of the serialized data can become very large. ASP.NET 4 introduces a new compression option for both kinds of out-of-process session state providers. By using this option, applications that have spare CPU cycles on Web servers can achieve substantial reductions in the size of serialized session state data. You can set this option using the new compressionEnabled attribute of the sessionState element in the configuration file. When the compressionEnabled configuration option is set to true, ASP.NET compresses (and decompresses) serialized session state by using the .NET Framework GZipStreamclass. The following example shows how to set this attribute. <sessionState mode="SqlServer" sqlConnectionString="data source=dbserver;Initial Catalog=aspnetstate" allowCustomSqlDatabase="true" compressionEnabled="true" /> ASP.NET Web Forms Web Forms has been a core feature in ASP.NET since the release of ASP.NET 1.0. Many enhancements have been in this area for ASP.NET 4, such as the following: The ability to set meta tags. More control over view state. Support for recently introduced browsers and devices. Easier ways to work with browser capabilities. Support for using ASP.NET routing with Web Forms. More control over generated IDs. The ability to persist selected rows in data controls. More control over rendered HTML in the FormView and ListView controls. Filtering support for data source controls. Enhanced support for Web standards and accessibility Setting Meta Tags with the Page.MetaKeywords and Page.MetaDescription Properties Two properties have been added to the Page class: MetaKeywords and MetaDescription. These two properties represent corresponding meta tags in the HTML rendered for a page, as shown in the following example: <head id="Head1" runat="server"> <title>Untitled Page</title> <meta name="keywords" content="keyword1, keyword2' /> <meta name="description" content="Description of my page" /> </head> These two properties work like the Title property does, and they can be set in the @ Page directive. For more information, see Page.MetaKeywords and Page.MetaDescription. Enabling View State for Individual Controls A new property has been added to the Control class: ViewStateMode. You can use this property to disable view state for all controls on a page except those for which you explicitly enable view state. View state data is included in a page's HTML and increases the amount of time it takes to send a page to the client and post it back. Storing more view state than is necessary can cause significant decrease in performance. In earlier versions of ASP.NET, you could reduce the impact of view state on a page's performance by disabling view state for specific controls. But sometimes it is easier to enable view state for a few controls that need it instead of disabling it for many that do not need it. For more information, see Control.ViewStateMode. Support for Recently Introduced Browsers and Devices ASP.NET includes a feature that is named browser capabilities that lets you determine the capabilities of the browser that a user is using. Browser capabilities are represented by the HttpBrowserCapabilities object which is stored in the HttpRequest.Browser property. Information about a particular browser's capabilities is defined by a browser definition file. In ASP.NET 4, these browser definition files have been updated to contain information about recently introduced browsers and devices such as Google Chrome, Research in Motion BlackBerry smart phones, and Apple iPhone. Existing browser definition files have also been updated. For more information, see How to: Upgrade an ASP.NET Web Application to ASP.NET 4 and ASP.NET Web Server Controls and Browser Capabilities. The browser definition files that are included with ASP.NET 4 are shown in the following list: •blackberry.browser •chrome.browser •Default.browser •firefox.browser •gateway.browser •generic.browser •ie.browser •iemobile.browser •iphone.browser •opera.browser •safari.browser A New Way to Define Browser Capabilities ASP.NET 4 includes a new feature referred to as browser capabilities providers. As the name suggests, this lets you build a provider that in turn lets you write custom code to determine browser capabilities. In ASP.NET version 3.5 Service Pack 1, you define browser capabilities in an XML file. This file resides in a machine-level folder or an application-level folder. Most developers do not need to customize these files, but for those who do, the provider approach can be easier than dealing with complex XML syntax. The provider approach makes it possible to simplify the process by implementing a common browser definition syntax, or a database that contains up-to-date browser definitions, or even a Web service for such a database. For more information about the new browser capabilities provider, see the What's New for ASP.NET 4 White Paper. Routing in ASP.NET 4 ASP.NET 4 adds built-in support for routing with Web Forms. Routing is a feature that was introduced with ASP.NET 3.5 SP1 and lets you configure an application to use URLs that are meaningful to users and to search engines because they do not have to specify physical file names. This can make your site more user-friendly and your site content more discoverable by search engines. For example, the URL for a page that displays product categories in your application might look like the following example: http://website/products.aspx?categoryid=12 By using routing, you can use the following URL to render the same information: http://website/products/software The second URL lets the user know what to expect and can result in significantly improved rankings in search engine results. the new features include the following: The PageRouteHandler class is a simple HTTP handler that you use when you define routes. You no longer have to write a custom route handler. The HttpRequest.RequestContext and Page.RouteData properties make it easier to access information that is passed in URL parameters. The RouteUrl expression provides a simple way to create a routed URL in markup. The RouteValue expression provides a simple way to extract URL parameter values in markup. The RouteParameter class makes it easier to pass URL parameter values to a query for a data source control (similar to FormParameter). You no longer have to change the Web.config file to enable routing. For more information about routing, see the following topics: ASP.NET Routing Walkthrough: Using ASP.NET Routing in a Web Forms Application How to: Define Routes for Web Forms Applications How to: Construct URLs from Routes How to: Access URL Parameters in a Routed Page Setting Client IDs The new ClientIDMode property makes it easier to write client script that references HTML elements rendered for server controls. Increasing use of Microsoft Ajax makes the need to do this more common. For example, you may have a data control that renders a long list of products with prices and you want to use client script to make a Web service call and update individual prices in the list as they change without refreshing the entire page. Typically you get a reference to an HTML element in client script by using the document.GetElementById method. You pass to this method the value of the id attribute of the HTML element you want to reference. In the case of elements that are rendered for ASP.NET server controls earlier versions of ASP.NET could make this difficult or impossible. You were not always able to predict what id values ASP.NET would generate, or ASP.NET could generate very long id values. The problem was especially difficult for data controls that would generate multiple rows for a single instance of the control in your markup. ASP.NET 4 adds two new algorithms for generating id attributes. These algorithms can generate id attributes that are easier to work with in client script because they are more predictable and that are easier to work with because they are simpler. For more information about how to use the new algorithms, see the following topics: ASP.NET Web Server Control Identification Walkthrough: Making Data-Bound Controls Easier to Access from JavaScript Walkthrough: Making Controls Located in Web User Controls Easier to Access from JavaScript How to: Access Controls from JavaScript by ID Persisting Row Selection in Data Controls The GridView and ListView controls enable users to select a row. In previous versions of ASP.NET, row selection was based on the row index on the page. For example, if you select the third item on page 1 and then move to page 2, the third item on page 2 is selected. In most cases, is more desirable not to select any rows on page 2. ASP.NET 4 supports Persisted Selection, a new feature that was initially supported only in Dynamic Data projects in the .NET Framework 3.5 SP1. When this feature is enabled, the selected item is based on the row data key. This means that if you select the third row on page 1 and move to page 2, nothing is selected on page 2. When you move back to page 1, the third row is still selected. This is a much more natural behavior than the behavior in earlier versions of ASP.NET. Persisted selection is now supported for the GridView and ListView controls in all projects. You can enable this feature in the GridView control, for example, by setting the EnablePersistedSelection property, as shown in the following example: <asp:GridView id="GridView2" runat="server" PersistedSelection="true"> </asp:GridView> FormView Control Enhancements The FormView control is enhanced to make it easier to style the content of the control with CSS. In previous versions of ASP.NET, the FormView control rendered it contents using an item template. This made styling more difficult in the markup because unexpected table row and table cell tags were rendered by the control. The FormView control supports RenderOuterTable, a property in ASP.NET 4. When this property is set to false, as show in the following example, the table tags are not rendered. This makes it easier to apply CSS style to the contents of the control. <asp:FormView ID="FormView1" runat="server" RenderTable="false"> For more information, see FormView Web Server Control Overview. ListView Control Enhancements The ListView control, which was introduced in ASP.NET 3.5, has all the functionality of the GridView control while giving you complete control over the output. This control has been made easier to use in ASP.NET 4. The earlier version of the control required that you specify a layout template that contained a server control with a known ID. The following markup shows a typical example of how to use the ListView control in ASP.NET 3.5. <asp:ListView ID="ListView1" runat="server"> <LayoutTemplate> <asp:PlaceHolder ID="ItemPlaceHolder" runat="server"></asp:PlaceHolder> </LayoutTemplate> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> In ASP.NET 4, the ListView control does not require a layout template. The markup shown in the previous example can be replaced with the following markup: <asp:ListView ID="ListView1" runat="server"> <ItemTemplate> <% Eval("LastName")%> </ItemTemplate> </asp:ListView> For more information, see ListView Web Server Control Overview. Filtering Data with the QueryExtender Control A very common task for developers who create data-driven Web pages is to filter data. This traditionally has been performed by building Where clauses in data source controls. This approach can be complicated, and in some cases the Where syntax does not let you take advantage of the full functionality of the underlying database. To make filtering easier, a new QueryExtender control has been added in ASP.NET 4. This control can be added to EntityDataSource or LinqDataSource controls in order to filter the data returned by these controls. Because the QueryExtender control relies on LINQ, but you do not to need to know how to write LINQ queries to use the query extender. The QueryExtender control supports a variety of filter options. The following lists QueryExtender filter options. Term Definition SearchExpression Searches a field or fields for string values and compares them to a specified string value. RangeExpression Searches a field or fields for values in a range specified by a pair of values. PropertyExpression Compares a specified value to a property value in a field. If the expression evaluates to true, the data that is being examined is returned. OrderByExpression Sorts data by a specified column and sort direction. CustomExpression Calls a function that defines custom filter in the page. For more information, see QueryExtenderQueryExtender Web Server Control Overview. Enhanced Support for Web Standards and Accessibility Earlier versions of ASP.NET controls sometimes render markup that does not conform to HTML, XHTML, or accessibility standards. ASP.NET 4 eliminates most of these exceptions. For details about how the HTML that is rendered by each control meets accessibility standards, see ASP.NET Controls and Accessibility. CSS for Controls that Can be Disabled In ASP.NET 3.5, when a control is disabled (see WebControl.Enabled), a disabled attribute is added to the rendered HTML element. For example, the following markup creates a Label control that is disabled: <asp:Label id="Label1" runat="server"   Text="Test" Enabled="false" /> In ASP.NET 3.5, the previous control settings generate the following HTML: <span id="Label1" disabled="disabled">Test</span> In HTML 4.01, the disabled attribute is not considered valid on span elements. It is valid only on input elements because it specifies that they cannot be accessed. On display-only elements such as span elements, browsers typically support rendering for a disabled appearance, but a Web page that relies on this non-standard behavior is not robust according to accessibility standards. For display-only elements, you should use CSS to indicate a disabled visual appearance. Therefore, by default ASP.NET 4 generates the following HTML for the control settings shown previously: <span id="Label1" class="aspNetDisabled">Test</span> You can change the value of the class attribute that is rendered by default when a control is disabled by setting the DisabledCssClass property. CSS for Validation Controls In ASP.NET 3.5, validation controls render a default color of red as an inline style. For example, the following markup creates a RequiredFieldValidator control: <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"   ErrorMessage="Required Field" ControlToValidate="RadioButtonList1" /> ASP.NET 3.5 renders the following HTML for the validator control: <span id="RequiredFieldValidator1"   style="color:Red;visibility:hidden;">RequiredFieldValidator</span> By default, ASP.NET 4 does not render an inline style to set the color to red. An inline style is used only to hide or show the validator, as shown in the following example: <span id="RequiredFieldValidator1"   style"visibility:hidden;">RequiredFieldValidator</span> Therefore, ASP.NET 4 does not automatically show error messages in red. For information about how to use CSS to specify a visual style for a validation control, see Validating User Input in ASP.NET Web Pages. CSS for the Hidden Fields Div Element ASP.NET uses hidden fields to store state information such as view state and control state. These hidden fields are contained by a div element. In ASP.NET 3.5, this div element does not have a class attribute or an id attribute. Therefore, CSS rules that affect all div elements could unintentionally cause this div to be visible. To avoid this problem, ASP.NET 4 renders the div element for hidden fields with a CSS class that you can use to differentiate the hidden fields div from others. The new classvalue is shown in the following example: <div class="aspNetHidden"> CSS for the Table, Image, and ImageButton Controls By default, in ASP.NET 3.5, some controls set the border attribute of rendered HTML to zero (0). The following example shows HTML that is generated by the Table control in ASP.NET 3.5: <table id="Table2" border="0"> The Image control and the ImageButton control also do this. Because this is not necessary and provides visual formatting information that should be provided by using CSS, the attribute is not generated in ASP.NET 4. CSS for the UpdatePanel and UpdateProgress Controls In ASP.NET 3.5, the UpdatePanel and UpdateProgress controls do not support expando attributes. This makes it impossible to set a CSS class on the HTMLelements that they render. In ASP.NET 4 these controls have been changed to accept expando attributes, as shown in the following example: <asp:UpdatePanel runat="server" class="myStyle"> </asp:UpdatePanel> The following HTML is rendered for this markup: <div id="ctl00_MainContent_UpdatePanel1" class="expandoclass"> </div> Eliminating Unnecessary Outer Tables In ASP.NET 3.5, the HTML that is rendered for the following controls is wrapped in a table element whose purpose is to apply inline styles to the entire control: FormView Login PasswordRecovery ChangePassword If you use templates to customize the appearance of these controls, you can specify CSS styles in the markup that you provide in the templates. In that case, no extra outer table is required. In ASP.NET 4, you can prevent the table from being rendered by setting the new RenderOuterTable property to false. Layout Templates for Wizard Controls In ASP.NET 3.5, the Wizard and CreateUserWizard controls generate an HTML table element that is used for visual formatting. In ASP.NET 4 you can use a LayoutTemplate element to specify the layout. If you do this, the HTML table element is not generated. In the template, you create placeholder controls to indicate where items should be dynamically inserted into the control. (This is similar to how the template model for the ListView control works.) For more information, see the Wizard.LayoutTemplate property. New HTML Formatting Options for the CheckBoxList and RadioButtonList Controls ASP.NET 3.5 uses HTML table elements to format the output for the CheckBoxList and RadioButtonList controls. To provide an alternative that does not use tables for visual formatting, ASP.NET 4 adds two new options to the RepeatLayout enumeration: UnorderedList. This option causes the HTML output to be formatted by using ul and li elements instead of a table. OrderedList. This option causes the HTML output to be formatted by using ol and li elements instead of a table. For examples of HTML that is rendered for the new options, see the RepeatLayout enumeration. Header and Footer Elements for the Table Control In ASP.NET 3.5, the Table control can be configured to render thead and tfoot elements by setting the TableSection property of the TableHeaderRow class and the TableFooterRow class. In ASP.NET 4 these properties are set to the appropriate values by default. CSS and ARIA Support for the Menu Control In ASP.NET 3.5, the Menu control uses HTML table elements for visual formatting, and in some configurations it is not keyboard-accessible. ASP.NET 4 addresses these problems and improves accessibility in the following ways: The generated HTML is structured as an unordered list (ul and li elements). CSS is used for visual formatting. The menu behaves in accordance with ARIA standards for keyboard access. You can use arrow keys to navigate menu items. (For information about ARIA, see Accessibility in Visual Studio and ASP.NET.) ARIA role and property attributes are added to the generated HTML. (Attributes are added by using JavaScript instead of included in the HTML, to avoid generating HTML that would cause markup validation errors.) Styles for the Menu control are rendered in a style block at the top of the page, instead of inline with the rendered HTML elements. If you want to use a separate CSS file so that you can modify the menu styles, you can set the Menu control's new IncludeStyleBlock property to false, in which case the style block is not generated. Valid XHTML for the HtmlForm Control In ASP.NET 3.5, the HtmlForm control (which is created implicitly by the <form runat="server"> tag) renders an HTML form element that has both name and id attributes. The name attribute is deprecated in XHTML 1.1. Therefore, this control does not render the name attribute in ASP.NET 4. Maintaining Backward Compatibility in Control Rendering An existing ASP.NET Web site might have code in it that assumes that controls are rendering HTML the way they do in ASP.NET 3.5. To avoid causing backward compatibility problems when you upgrade the site to ASP.NET 4, you can have ASP.NET continue to generate HTML the way it does in ASP.NET 3.5 after you upgrade the site. To do so, you can set the controlRenderingCompatibilityVersion attribute of the pages element to "3.5" in the Web.config file of an ASP.NET 4 Web site, as shown in the following example: <system.web>   <pages controlRenderingCompatibilityVersion="3.5"/> </system.web> If this setting is omitted, the default value is the same as the version of ASP.NET that the Web site targets. (For information about multi-targeting in ASP.NET, see .NET Framework Multi-Targeting for ASP.NET Web Projects.) ASP.NET MVC ASP.NET MVC helps Web developers build compelling standards-based Web sites that are easy to maintain because it decreases the dependency among application layers by using the Model-View-Controller (MVC) pattern. MVC provides complete control over the page markup. It also improves testability by inherently supporting Test Driven Development (TDD). Web sites created using ASP.NET MVC have a modular architecture. This allows members of a team to work independently on the various modules and can be used to improve collaboration. For example, developers can work on the model and controller layers (data and logic), while the designer work on the view (presentation). For tutorials, walkthroughs, conceptual content, code samples, and a complete API reference, see ASP.NET MVC 2. Dynamic Data Dynamic Data was introduced in the .NET Framework 3.5 SP1 release in mid-2008. This feature provides many enhancements for creating data-driven applications, such as the following: A RAD experience for quickly building a data-driven Web site. Automatic validation that is based on constraints defined in the data model. The ability to easily change the markup that is generated for fields in the GridView and DetailsView controls by using field templates that are part of your Dynamic Data project. For ASP.NET 4, Dynamic Data has been enhanced to give developers even more power for quickly building data-driven Web sites. For more information, see ASP.NET Dynamic Data Content Map. Enabling Dynamic Data for Individual Data-Bound Controls in Existing Web Applications You can use Dynamic Data features in existing ASP.NET Web applications that do not use scaffolding by enabling Dynamic Data for individual data-bound controls. Dynamic Data provides the presentation and data layer support for rendering these controls. When you enable Dynamic Data for data-bound controls, you get the following benefits: Setting default values for data fields. Dynamic Data enables you to provide default values at run time for fields in a data control. Interacting with the database without creating and registering a data model. Automatically validating the data that is entered by the user without writing any code. For more information, see Walkthrough: Enabling Dynamic Data in ASP.NET Data-Bound Controls. New Field Templates for URLs and E-mail Addresses ASP.NET 4 introduces two new built-in field templates, EmailAddress.ascx and Url.ascx. These templates are used for fields that are marked as EmailAddress or Url using the DataTypeAttribute attribute. For EmailAddress objects, the field is displayed as a hyperlink that is created by using the mailto: protocol. When users click the link, it opens the user's e-mail client and creates a skeleton message. Objects typed as Url are displayed as ordinary hyperlinks. The following example shows how to mark fields. [DataType(DataType.EmailAddress)] public object HomeEmail { get; set; } [DataType(DataType.Url)] public object Website { get; set; } Creating Links with the DynamicHyperLink Control Dynamic Data uses the new routing feature that was added in the .NET Framework 3.5 SP1 to control the URLs that users see when they access the Web site. The new DynamicHyperLink control makes it easy to build links to pages in a Dynamic Data site. For information, see How to: Create Table Action Links in Dynamic Data Support for Inheritance in the Data Model Both the ADO.NET Entity Framework and LINQ to SQL support inheritance in their data models. An example of this might be a database that has an InsurancePolicy table. It might also contain CarPolicy and HousePolicy tables that have the same fields as InsurancePolicy and then add more fields. Dynamic Data has been modified to understand inherited objects in the data model and to support scaffolding for the inherited tables. For more information, see Walkthrough: Mapping Table-per-Hierarchy Inheritance in Dynamic Data. Support for Many-to-Many Relationships (Entity Framework Only) The Entity Framework has rich support for many-to-many relationships between tables, which is implemented by exposing the relationship as a collection on an Entity object. New field templates (ManyToMany.ascx and ManyToMany_Edit.ascx) have been added to provide support for displaying and editing data that is involved in many-to-many relationships. For more information, see Working with Many-to-Many Data Relationships in Dynamic Data. New Attributes to Control Display and Support Enumerations The DisplayAttribute has been added to give you additional control over how fields are displayed. The DisplayNameAttribute attribute in earlier versions of Dynamic Data enabled you to change the name that is used as a caption for a field. The new DisplayAttribute class lets you specify more options for displaying a field, such as the order in which a field is displayed and whether a field will be used as a filter. The attribute also provides independent control of the name that is used for the labels in a GridView control, the name that is used in a DetailsView control, the help text for the field, and the watermark used for the field (if the field accepts text input). The EnumDataTypeAttribute class has been added to let you map fields to enumerations. When you apply this attribute to a field, you specify an enumeration type. Dynamic Data uses the new Enumeration.ascx field template to create UI for displaying and editing enumeration values. The template maps the values from the database to the names in the enumeration. Enhanced Support for Filters Dynamic Data 1.0 had built-in filters for Boolean columns and foreign-key columns. The filters did not let you specify the order in which they were displayed. The new DisplayAttribute attribute addresses this by giving you control over whether a column appears as a filter and in what order it will be displayed. An additional enhancement is that filtering support has been rewritten to use the new QueryExtender feature of Web Forms. This lets you create filters without requiring knowledge of the data source control that the filters will be used with. Along with these extensions, filters have also been turned into template controls, which lets you add new ones. Finally, the DisplayAttribute class mentioned earlier allows the default filter to be overridden, in the same way that UIHint allows the default field template for a column to be overridden. For more information, see Walkthrough: Filtering Rows in Tables That Have a Parent-Child Relationship and QueryableFilterRepeater. ASP.NET Chart Control The ASP.NET chart server control enables you to create ASP.NET pages applications that have simple, intuitive charts for complex statistical or financial analysis. The chart control supports the following features: Data series, chart areas, axes, legends, labels, titles, and more. Data binding. Data manipulation, such as copying, splitting, merging, alignment, grouping, sorting, searching, and filtering. Statistical formulas and financial formulas. Advanced chart appearance, such as 3-D, anti-aliasing, lighting, and perspective. Events and customizations. Interactivity and Microsoft Ajax. Support for the Ajax Content Delivery Network (CDN), which provides an optimized way for you to add Microsoft Ajax Library and jQuery scripts to your Web applications. For more information, see Chart Web Server Control Overview. Visual Web Developer Enhancements The following sections provide information about enhancements and new features in Visual Studio 2010 and Visual Web Developer Express. The Web page designer in Visual Studio 2010 has been enhanced for better CSS compatibility, includes additional support for HTML and ASP.NET markup snippets, and features a redesigned version of IntelliSense for JScript. Improved CSS Compatibility The Visual Web Developer designer in Visual Studio 2010 has been updated to improve CSS 2.1 standards compliance. The designer better preserves HTML source code and is more robust than in previous versions of Visual Studio. HTML and JScript Snippets In the HTML editor, IntelliSense auto-completes tag names. The IntelliSense Snippets feature auto-completes whole tags and more. In Visual Studio 2010, IntelliSense snippets are supported for JScript, alongside C# and Visual Basic, which were supported in earlier versions of Visual Studio. Visual Studio 2010 includes over 200 snippets that help you auto-complete common ASP.NET and HTML tags, including required attributes (such as runat="server") and common attributes specific to a tag (such as ID, DataSourceID, ControlToValidate, and Text). You can download additional snippets, or you can write your own snippets that encapsulate the blocks of markup that you or your team use for common tasks. For more information on HTML snippets, see Walkthrough: Using HTML Snippets. JScript IntelliSense Enhancements In Visual 2010, JScript IntelliSense has been redesigned to provide an even richer editing experience. IntelliSense now recognizes objects that have been dynamically generated by methods such as registerNamespace and by similar techniques used by other JavaScript frameworks. Performance has been improved to analyze large libraries of script and to display IntelliSense with little or no processing delay. Compatibility has been significantly increased to support almost all third-party libraries and to support diverse coding styles. Documentation comments are now parsed as you type and are immediately leveraged by IntelliSense. Web Application Deployment with Visual Studio 2010 For Web application projects, Visual Studio now provides tools that work with the IIS Web Deployment Tool (Web Deploy) to automate many processes that had to be done manually in earlier versions of ASP.NET. For example, the following tasks can now be automated: Creating an IIS application on the destination computer and configuring IIS settings. Copying files to the destination computer. Changing Web.config settings that must be different in the destination environment. Propagating changes to data or data structures in SQL Server databases that are used by the Web application. For more information about Web application deployment, see ASP.NET Deployment Content Map. Enhancements to ASP.NET Multi-Targeting ASP.NET 4 adds new features to the multi-targeting feature to make it easier to work with projects that target earlier versions of the .NET Framework. Multi-targeting was introduced in ASP.NET 3.5 to enable you to use the latest version of Visual Studio without having to upgrade existing Web sites or Web services to the latest version of the .NET Framework. In Visual Studio 2008, when you work with a project targeted for an earlier version of the .NET Framework, most features of the development environment adapt to the targeted version. However, IntelliSense displays language features that are available in the current version, and property windows display properties available in the current version. In Visual Studio 2010, only language features and properties available in the targeted version of the .NET Framework are shown. For more information about multi-targeting, see the following topics: .NET Framework Multi-Targeting for ASP.NET Web Projects ASP.NET Side-by-Side Execution Overview How to: Host Web Applications That Use Different Versions of the .NET Framework on the Same Server How to: Deploy Web Site Projects Targeted for Earlier Versions of the .NET Framework

    Read the article

  • Design by Contract with Microsoft .Net Code Contract

    - by Fredrik N
    I have done some talks on different events and summits about Defensive Programming and Design by Contract, last time was at Cornerstone’s Developer Summit 2010. Next time will be at SweNug (Sweden .Net User Group). I decided to write a blog post about of some stuffs I was talking about. Users are a terrible thing! Protect your self from them ”Human users have a gift for doing the worst possible thing at the worst possible time.” – Michael T. Nygard, Release It! The kind of users Michael T. Nygard are talking about is the users of a system. We also have users that uses our code, the users I’m going to focus on is the users of our code. Me and you and another developers. “Any fool can write code that a computer can understand. Good programmers write code that humans can understand.” – Martin Fowler Good programmers also writes code that humans know how to use, good programmers also make sure software behave in a predictable manner despise inputs or user actions. Design by Contract   Design by Contract (DbC) is a way for us to make a contract between us (the code writer) and the users of our code. It’s about “If you give me this, I promise to give you this”. It’s not about business validations, that is something completely different that should be part of the domain model. DbC is to make sure the users of our code uses it in a correct way, and that we can rely on the contract and write code in a way where we know that the users will follow the contract. It will make it much easier for us to write code with a contract specified. Something like the following code is something we may see often: public void DoSomething(Object value) { value.DoIKnowThatICanDoThis(); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Where “value” can be uses directly or passed to other methods and later be used. What some of us can easily forget here is that the “value” can be “null”. We will probably not passing a null value, but someone else that uses our code maybe will do it. I think most of you (including me) have passed “null” into a method because you don’t know if the argument need to be specified to a valid value etc. I bet most of you also have got the “Null reference exception”. Sometimes this “Null reference exception” can be hard and take time to fix, because we need to search among our code to see where the “null” value was passed in etc. Wouldn’t it be much better if we can as early as possible specify that the value can’t not be null, so the users of our code also know it when the users starts to use our code, and before run time execution of the code? This is where DbC comes into the picture. We can use DbC to specify what we need, and by doing so we can rely on the contract when we write our code. So the code above can actually use the DoIKnowThatICanDoThis() method on the value object without being worried that the “value” can be null. The contract between the users of the code and us writing the code, says that the “value” can’t be null.   Pre- and Postconditions   When working with DbC we are specifying pre- and postconditions.  Precondition is a condition that should be met before a query or command is executed. An example of a precondition is: “The Value argument of the method can’t be null”, and we make sure the “value” isn’t null before the method is called. Postcondition is a condition that should be met when a command or query is completed, a postcondition will make sure the result is correct. An example of a postconditon is “The method will return a list with at least 1 item”. Commands an Quires When using DbC, we need to know what a Command and a Query is, because some principles that can be good to follow are based on commands and queries. A Command is something that will not return anything, like the SQL’s CREATE, UPDATE and DELETE. There are two kinds of Commands when using DbC, the Creation commands (for example a Constructor), and Others. Others can for example be a Command to add a value to a list, remove or update a value etc. //Creation commands public Stack(int size) //Other commands public void Push(object value); public void Remove(); .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   A Query, is something that will return something, for example an Attribute, Property or a Function, like the SQL’s SELECT.   There are two kinds of Queries, the Basic Queries  (Quires that aren’t based on another queries), and the Derived Queries, queries that is based on another queries. Here is an example of queries of a Stack: //Basic Queries public int Count; public object this[int index] { get; } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } To understand about some principles that are good to follow when using DbC, we need to know about the Commands and different Queries. The 6 Principles When working with DbC, it’s advisable to follow some principles to make it easier to define and use contracts. The following DbC principles are: Separate commands and queries. Separate basic queries from derived queries. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries. For each command, write a postcondition that specifies the value of every basic query. For every query and command, decide on a suitable precondition. Write invariants to define unchanging properties of objects. Before I will write about each of them I want you to now that I’m going to use .Net 4.0 Code Contract. I will in the rest of the post uses a simple Stack (Yes I know, .Net already have a Stack class) to give you the basic understanding about using DbC. A Stack is a data structure where the first item in, will be the first item out. Here is a basic implementation of a Stack where not contract is specified yet: public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } //Is related to Count and this[] Query public object Top() { return this[Count]; } //Creation commands public Stack(uint size) { Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { this[++Count] = value; } public void Remove() { this[Count] = null; Count--; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The Stack is implemented in a way to demonstrate the use of Code Contract in a simple way, the implementation may not look like how you would implement it, so don’t think this is the perfect Stack implementation, only used for demonstration.   Before I will go deeper into the principles I will simply mention how we can use the .Net Code Contract. I mention before about pre- and postcondition, is about “Require” something and to “Ensure” something. When using Code Contract, we will use a static class called “Contract” and is located in he “System.Diagnostics.Contracts” namespace. The contract must be specified at the top or our member statement block. To specify a precondition with Code Contract we uses the Contract.Requires method, and to specify a postcondition, we uses the Contract.Ensure method. Here is an example where both a pre- and postcondition are used: public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The contract above requires that the Count is greater than 0, if not we can’t get the item at the Top of a Stack. We also Ensures that the results (By using the Contract.Result method, we can specify a postcondition that will check if the value returned from a method is correct) of the Top query is equal to this[Count].   1. Separate Commands and Queries   When working with DbC, it’s important to separate Command and Quires. A method should either be a command that performs an Action, or returning information to the caller, not both. By asking a question the answer shouldn’t be changed. The following is an example of a Command and a Query of a Stack: public void Push(object value) public object Top() .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   The Push is a command and will not return anything, just add a value to the Stack, the Top is a query to get the item at the top of the stack.   2. Separate basic queries from derived queries There are two different kinds of queries,  the basic queries that doesn’t rely on another queries, and derived queries that uses a basic query. The “Separate basic queries from derived queries” principle is about about that derived queries can be specified in terms of basic queries. So this principles is more about recognizing that a query is a derived query or a basic query. It will then make is much easier to follow the other principles. The following code shows a basic query and a derived query: //Basic Queries public uint Count; //Derived Queries //Is related to Count Query public bool IsEmpty() { return Count == 0; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   We can see that IsEmpty will use the Count query, and that makes the IsEmpty a Derived query.   3. For each derived query, write a postcondition that specifies what result will be returned, in terms of one or more basic queries.   When the derived query is recognize we can follow the 3ed principle. For each derived query, we can create a postcondition that specifies what result our derived query will return in terms of one or more basic queries. Remember that DbC is about contracts between the users of the code and us writing the code. So we can’t use demand that the users will pass in a valid value, we must also ensure that we will give the users what the users wants, when the user is following our contract. The IsEmpty query of the Stack will use a Count query and that will make the IsEmpty a Derived query, so we should now write a postcondition that specified what results will be returned, in terms of using a basic query and in this case the Count query, //Basic Queries public uint Count; //Derived Queries public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } The Contract.Ensures is used to create a postcondition. The above code will make sure that the results of the IsEmpty (by using the Contract.Result to get the result of the IsEmpty method) is correct, that will say that the IsEmpty will be either true or false based on Count is equal to 0 or not. The postcondition are using a basic query, so the IsEmpty is now following the 3ed principle. We also have another Derived Query, the Top query, it will also need a postcondition and it uses all basic queries. The Result of the Top method must be the same value as the this[] query returns. //Basic Queries public uint Count; public object this[uint index] { get { return _array[index]; } set { _array[index] = value; } } //Derived Queries //Is related to Count and this[] Query public object Top() { Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   4. For each command, write a postcondition that specifies the value of every basic query.   For each command we will create a postconditon that specifies the value of basic queries. If we look at the Stack implementation we will have three Commands, one Creation command, the Constructor, and two others commands, Push and Remove. Those commands need a postcondition and they should include basic query to follow the 4th principle. //Creation commands public Stack(uint size) { Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   As you can see the Create command will Ensures that Count will be 0 when the Stack is created, when a Stack is created there shouldn’t be any items in the stack. The Push command will take a value and put it into the Stack, when an item is pushed into the Stack, the Count need to be increased to know the number of items added to the Stack, and we must also make sure the item is really added to the Stack. The postconditon of the Push method will make sure the that old value of the Count (by using the Contract.OldValue we can get the value a Query has before the method is called)  plus 1 will be equal to the Count query, this is the way we can ensure that the Push will increase the Count with one. We also make sure the this[] query will now contain the item we pushed into the Stack. The Remove method must make sure the Count is decreased by one when the top item is removed from the Stack. The Commands is now following the 4th principle, where each command now have a postcondition that used the value of basic queries. Note: The principle says every basic Query, the Remove only used one Query the Count, it’s because this command can’t use the this[] query because an item is removed, so the only way to make sure an item is removed is to just use the Count query, so the Remove will still follow the principle.   5. For every query and command, decide on a suitable precondition.   We have now focused only on postcondition, now time for some preconditons. The 5th principle is about deciding a suitable preconditon for every query and command. If we starts to look at one of our basic queries (will not go through all Queries and commands here, just some of them) the this[] query, we can’t pass an index that is lower then 1 (.Net arrays and list are zero based, but not the stack in this blog post ;)) and the index can’t be lesser than the number of items in the stack. So here we will need a preconditon. public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Think about the Contract as an documentation about how to use the code in a correct way, so if the contract could be specified elsewhere (not part of the method body), we could simply write “return _array[index]” and there is no need to check if index is greater or lesser than Count, because that is specified in a “contract”. The implementation of Code Contract, requires that the contract is specified in the code. As a developer I would rather have this contract elsewhere (Like Spec#) or implemented in a way Eiffel uses it as part of the language. Now when we have looked at one Query, we can also look at one command, the Remove command (You can see the whole implementation of the Stack at the end of this blog post, where precondition is added to more queries and commands then what I’m going to show in this section). We can only Remove an item if the Count is greater than 0. So we can write a precondition that will require that Count must be greater than 0. public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   6. Write invariants to define unchanging properties of objects.   The last principle is about making sure the object are feeling great! This is done by using invariants. When using Code Contract we can specify invariants by adding a method with the attribute ContractInvariantMethod, the method must be private or public and can only contains calls to Contract.Invariant. To make sure the Stack feels great, the Stack must have 0 or more items, the Count can’t never be a negative value to make sure each command and queries can be used of the Stack. Here is our invariant for the Stack object: [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Note: The ObjectInvariant method will be called every time after a Query or Commands is called. Here is the full example using Code Contract:   public class Stack { private object[] _array; //Basic Queries public uint Count; public object this[uint index] { get { Contract.Requires(index >= 1); Contract.Requires(index <= Count); return _array[index]; } set { Contract.Requires(index >= 1); Contract.Requires(index <= Count); _array[index] = value; } } //Derived Queries //Is related to Count Query public bool IsEmpty() { Contract.Ensures(Contract.Result<bool>() == (Count == 0)); return Count == 0; } //Is related to Count and this[] Query public object Top() { Contract.Requires(Count > 0, "Stack is empty"); Contract.Ensures(Contract.Result<object>() == this[Count]); return this[Count]; } //Creation commands public Stack(uint size) { Contract.Requires(size > 0); Contract.Ensures(Count == 0); Count = 0; _array = new object[size]; } //Other commands public void Push(object value) { Contract.Requires(value != null); Contract.Ensures(Count == Contract.OldValue<uint>(Count) + 1); Contract.Ensures(this[Count] == value); this[++Count] = value; } public void Remove() { Contract.Requires(Count > 0); Contract.Ensures(Count == Contract.OldValue<uint>(Count) - 1); this[Count] = null; Count--; } [ContractInvariantMethod] private void ObjectInvariant() { Contract.Invariant(Count >= 0); } } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Summary By using Design By Contract we can make sure the users are using our code in a correct way, and we must also make sure the users will get the expected results when they uses our code. This can be done by specifying contracts. To make it easy to use Design By Contract, some principles may be good to follow like the separation of commands an queries. With .Net 4.0 we can use the Code Contract feature to specify contracts.

    Read the article

  • Red Gate Coder interviews: Alex Davies

    - by Michael Williamson
    Alex Davies has been a software engineer at Red Gate since graduating from university, and is currently busy working on .NET Demon. We talked about tackling parallel programming with his actors framework, a scientific approach to debugging, and how JavaScript is going to affect the programming languages we use in years to come. So, if we start at the start, how did you get started in programming? When I was seven or eight, I was given a BBC Micro for Christmas. I had asked for a Game Boy, but my dad thought it would be better to give me a proper computer. For a year or so, I only played games on it, but then I found the user guide for writing programs in it. I gradually started doing more stuff on it and found it fun. I liked creating. As I went into senior school I continued to write stuff on there, trying to write games that weren’t very good. I got a real computer when I was fourteen and found ways to write BASIC on it. Visual Basic to start with, and then something more interesting than that. How did you learn to program? Was there someone helping you out? Absolutely not! I learnt out of a book, or by experimenting. I remember the first time I found a loop, I was like “Oh my God! I don’t have to write out the same line over and over and over again any more. It’s amazing!” When did you think this might be something that you actually wanted to do as a career? For a long time, I thought it wasn’t something that you would do as a career, because it was too much fun to be a career. I thought I’d do chemistry at university and some kind of career based on chemical engineering. And then I went to a careers fair at school when I was seventeen or eighteen, and it just didn’t interest me whatsoever. I thought “I could be a programmer, and there’s loads of money there, and I’m good at it, and it’s fun”, but also that I shouldn’t spoil my hobby. Now I don’t really program in my spare time any more, which is a bit of a shame, but I program all the rest of the time, so I can live with it. Do you think you learnt much about programming at university? Yes, definitely! I went into university knowing how to make computers do anything I wanted them to do. However, I didn’t have the language to talk about algorithms, so the algorithms course in my first year was massively important. Learning other language paradigms like functional programming was really good for breadth of understanding. Functional programming influences normal programming through design rather than actually using it all the time. I draw inspiration from it to write imperative programs which I think is actually becoming really fashionable now, but I’ve been doing it for ages. I did it first! There were also some courses on really odd programming languages, a bit of Prolog, a little bit of C. Having a little bit of each of those is something that I would have never done on my own, so it was important. And then there are knowledge-based courses which are about not programming itself but things that have been programmed like TCP. Those are really important for examples for how to approach things. Did you do any internships while you were at university? Yeah, I spent both of my summers at the same company. I thought I could code well before I went there. Looking back at the crap that I produced, it was only surpassed in its crappiness by all of the other code already in that company. I’m so much better at writing nice code now than I used to be back then. Was there just not a culture of looking after your code? There was, they just didn’t hire people for their abilities in that area. They hired people for raw IQ. The first indicator of it going wrong was that they didn’t have any computer scientists, which is a bit odd in a programming company. But even beyond that they didn’t have people who learnt architecture from anyone else. Most of them had started straight out of university, so never really had experience or mentors to learn from. There wasn’t the experience to draw from to teach each other. In the second half of my second internship, I was being given tasks like looking at new technologies and teaching people stuff. Interns shouldn’t be teaching people how to do their jobs! All interns are going to have little nuggets of things that you don’t know about, but they shouldn’t consistently be the ones who know the most. It’s not a good environment to learn. I was going to ask how you found working with people who were more experienced than you… When I reached Red Gate, I found some people who were more experienced programmers than me, and that was difficult. I’ve been coding since I was tiny. At university there were people who were cleverer than me, but there weren’t very many who were more experienced programmers than me. During my internship, I didn’t find anyone who I classed as being a noticeably more experienced programmer than me. So, it was a shock to the system to have valid criticisms rather than just formatting criticisms. However, Red Gate’s not so big on the actual code review, at least it wasn’t when I started. We did an entire product release and then somebody looked over all of the UI of that product which I’d written and say what they didn’t like. By that point, it was way too late and I’d disagree with them. Do you think the lack of code reviews was a bad thing? I think if there’s going to be any oversight of new people, then it should be continuous rather than chunky. For me I don’t mind too much, I could go out and get oversight if I wanted it, and in those situations I felt comfortable without it. If I was managing the new person, then maybe I’d be keener on oversight and then the right way to do it is continuously and in very, very small chunks. Have you had any significant projects you’ve worked on outside of a job? When I was a teenager I wrote all sorts of stuff. I used to write games, I derived how to do isomorphic projections myself once. I didn’t know what the word was so I couldn’t Google for it, so I worked it out myself. It was horrifically complicated. But it sort of tailed off when I started at university, and is now basically zero. If I do side-projects now, they tend to be work-related side projects like my actors framework, NAct, which I started in a down tools week. Could you explain a little more about NAct? It is a little C# framework for writing parallel code more easily. Parallel programming is difficult when you need to write to shared data. Sometimes parallel programming is easy because you don’t need to write to shared data. When you do need to access shared data, you could just have your threads pile in and do their work, but then you would screw up the data because the threads would trample on each other’s toes. You could lock, but locks are really dangerous if you’re using more than one of them. You get interactions like deadlocks, and that’s just nasty. Actors instead allows you to say this piece of data belongs to this thread of execution, and nobody else can read it. If you want to read it, then ask that thread of execution for a piece of it by sending a message, and it will send the data back by a message. And that avoids deadlocks as long as you follow some obvious rules about not making your actors sit around waiting for other actors to do something. There are lots of ways to write actors, NAct allows you to do it as if it was method calls on other objects, which means you get all the strong type-safety that C# programmers like. Do you think that this is suitable for the majority of parallel programming, or do you think it’s only suitable for specific cases? It’s suitable for most difficult parallel programming. If you’ve just got a hundred web requests which are all independent of each other, then I wouldn’t bother because it’s easier to just spin them up in separate threads and they can proceed independently of each other. But where you’ve got difficult parallel programming, where you’ve got multiple threads accessing multiple bits of data in multiple ways at different times, then actors is at least as good as all other ways, and is, I reckon, easier to think about. When you’re using actors, you presumably still have to write your code in a different way from you would otherwise using single-threaded code. You can’t use actors with any methods that have return types, because you’re not allowed to call into another actor and wait for it. If you want to get a piece of data out of another actor, then you’ve got to use tasks so that you can use “async” and “await” to await asynchronously for it. But other than that, you can still stick things in classes so it’s not too different really. Rather than having thousands of objects with mutable state, you can use component-orientated design, where there are only a few mutable classes which each have a small number of instances. Then there can be thousands of immutable objects. If you tend to do that anyway, then actors isn’t much of a jump. If I’ve already built my system without any parallelism, how hard is it to add actors to exploit all eight cores on my desktop? Usually pretty easy. If you can identify even one boundary where things look like messages and you have components where some objects live on one side and these other objects live on the other side, then you can have a granddaddy object on one side be an actor and it will parallelise as it goes across that boundary. Not too difficult. If we do get 1000-core desktop PCs, do you think actors will scale up? It’s hard. There are always in the order of twenty to fifty actors in my whole program because I tend to write each component as actors, and I tend to have one instance of each component. So this won’t scale to a thousand cores. What you can do is write data structures out of actors. I use dictionaries all over the place, and if you need a dictionary that is going to be accessed concurrently, then you could build one of those out of actors in no time. You can use queuing to marshal requests between different slices of the dictionary which are living on different threads. So it’s like a distributed hash table but all of the chunks of it are on the same machine. That means that each of these thousand processors has cached one small piece of the dictionary. I reckon it wouldn’t be too big a leap to start doing proper parallelism. Do you think it helps if actors get baked into the language, similarly to Erlang? Erlang is excellent in that it has thread-local garbage collection. C# doesn’t, so there’s a limit to how well C# actors can possibly scale because there’s a single garbage collected heap shared between all of them. When you do a global garbage collection, you’ve got to stop all of the actors, which is seriously expensive, whereas in Erlang garbage collections happen per-actor, so they’re insanely cheap. However, Erlang deviated from all the sensible language design that people have used recently and has just come up with crazy stuff. You can definitely retrofit thread-local garbage collection to .NET, and then it’s quite well-suited to support actors, even if it’s not baked into the language. Speaking of language design, do you have a favourite programming language? I’ll choose a language which I’ve never written before. I like the idea of Scala. It sounds like C#, only with some of the niggles gone. I enjoy writing static types. It means you don’t have to writing tests so much. When you say it doesn’t have some of the niggles? C# doesn’t allow the use of a property as a method group. It doesn’t have Scala case classes, or sum types, where you can do a switch statement and the compiler checks that you’ve checked all the cases, which is really useful in functional-style programming. Pattern-matching, in other words. That’s actually the major niggle. C# is pretty good, and I’m quite happy with C#. And what about going even further with the type system to remove the need for tests to something like Haskell? Or is that a step too far? I’m quite a pragmatist, I don’t think I could deal with trying to write big systems in languages with too few other users, especially when learning how to structure things. I just don’t know anyone who can teach me, and the Internet won’t teach me. That’s the main reason I wouldn’t use it. If I turned up at a company that writes big systems in Haskell, I would have no objection to that, but I wouldn’t instigate it. What about things in C#? For instance, there’s contracts in C#, so you can try to statically verify a bit more about your code. Do you think that’s useful, or just not worthwhile? I’ve not really tried it. My hunch is that it needs to be built into the language and be quite mathematical for it to work in real life, and that doesn’t seem to have ended up true for C# contracts. I don’t think anyone who’s tried them thinks they’re any good. I might be wrong. On a slightly different note, how do you like to debug code? I think I’m quite an odd debugger. I use guesswork extremely rarely, especially if something seems quite difficult to debug. I’ve been bitten spending hours and hours on guesswork and not being scientific about debugging in the past, so now I’m scientific to a fault. What I want is to see the bug happening in the debugger, to step through the bug happening. To watch the program going from a valid state to an invalid state. When there’s a bug and I can’t work out why it’s happening, I try to find some piece of evidence which places the bug in one section of the code. From that experiment, I binary chop on the possible causes of the bug. I suppose that means binary chopping on places in the code, or binary chopping on a stage through a processing cycle. Basically, I’m very stupid about how I debug. I won’t make any guesses, I won’t use any intuition, I will only identify the experiment that’s going to binary chop most effectively and repeat rather than trying to guess anything. I suppose it’s quite top-down. Is most of the time then spent in the debugger? Absolutely, if at all possible I will never debug using print statements or logs. I don’t really hold much stock in outputting logs. If there’s any bug which can be reproduced locally, I’d rather do it in the debugger than outputting logs. And with SmartAssembly error reporting, there’s not a lot that can’t be either observed in an error report and just fixed, or reproduced locally. And in those other situations, maybe I’ll use logs. But I hate using logs. You stare at the log, trying to guess what’s going on, and that’s exactly what I don’t like doing. You have to just look at it and see does this look right or wrong. We’ve covered how you get to grip with bugs. How do you get to grips with an entire codebase? I watch it in the debugger. I find little bugs and then try to fix them, and mostly do it by watching them in the debugger and gradually getting an understanding of how the code works using my process of binary chopping. I have to do a lot of reading and watching code to choose where my slicing-in-half experiment is going to be. The last time I did it was SmartAssembly. The old code was a complete mess, but at least it did things top to bottom. There wasn’t too much of some of the big abstractions where flow of control goes all over the place, into a base class and back again. Code’s really hard to understand when that happens. So I like to choose a little bug and try to fix it, and choose a bigger bug and try to fix it. Definitely learn by doing. I want to always have an aim so that I get a little achievement after every few hours of debugging. Once I’ve learnt the codebase I might be able to fix all the bugs in an hour, but I’d rather be using them as an aim while I’m learning the codebase. If I was a maintainer of a codebase, what should I do to make it as easy as possible for you to understand? Keep distinct concepts in different places. And name your stuff so that it’s obvious which concepts live there. You shouldn’t have some variable that gets set miles up the top of somewhere, and then is read miles down to choose some later behaviour. I’m talking from a very much SmartAssembly point of view because the old SmartAssembly codebase had tons and tons of these things, where it would read some property of the code and then deal with it later. Just thousands of variables in scope. Loads of things to think about. If you can keep concepts separate, then it aids me in my process of fixing bugs one at a time, because each bug is going to more or less be understandable in the one place where it is. And what about tests? Do you think they help at all? I’ve never had the opportunity to learn a codebase which has had tests, I don’t know what it’s like! What about when you’re actually developing? How useful do you find tests in finding bugs or regressions? Finding regressions, absolutely. Running bits of code that would be quite hard to run otherwise, definitely. It doesn’t happen very often that a test finds a bug in the first place. I don’t really buy nebulous promises like tests being a good way to think about the spec of the code. My thinking goes something like “This code works at the moment, great, ship it! Ah, there’s a way that this code doesn’t work. Okay, write a test, demonstrate that it doesn’t work, fix it, use the test to demonstrate that it’s now fixed, and keep the test for future regressions.” The most valuable tests are for bugs that have actually happened at some point, because bugs that have actually happened at some point, despite the fact that you think you’ve fixed them, are way more likely to appear again than new bugs are. Does that mean that when you write your code the first time, there are no tests? Often. The chance of there being a bug in a new feature is relatively unaffected by whether I’ve written a test for that new feature because I’m not good enough at writing tests to think of bugs that I would have written into the code. So not writing regression tests for all of your code hasn’t affected you too badly? There are different kinds of features. Some of them just always work, and are just not flaky, they just continue working whatever you throw at them. Maybe because the type-checker is particularly effective around them. Writing tests for those features which just tend to always work is a waste of time. And because it’s a waste of time I’ll tend to wait until a feature has demonstrated its flakiness by having bugs in it before I start trying to test it. You can get a feel for whether it’s going to be flaky code as you’re writing it. I try to write it to make it not flaky, but there are some things that are just inherently flaky. And very occasionally, I’ll think “this is going to be flaky” as I’m writing, and then maybe do a test, but not most of the time. How do you think your programming style has changed over time? I’ve got clearer about what the right way of doing things is. I used to flip-flop a lot between different ideas. Five years ago I came up with some really good ideas and some really terrible ideas. All of them seemed great when I thought of them, but they were quite diverse ideas, whereas now I have a smaller set of reliable ideas that are actually good for structuring code. So my code is probably more similar to itself than it used to be back in the day, when I was trying stuff out. I’ve got more disciplined about encapsulation, I think. There are operational things like I use actors more now than I used to, and that forces me to use immutability more than I used to. The first code that I wrote in Red Gate was the memory profiler UI, and that was an actor, I just didn’t know the name of it at the time. I don’t really use object-orientation. By object-orientation, I mean having n objects of the same type which are mutable. I want a constant number of objects that are mutable, and they should be different types. I stick stuff in dictionaries and then have one thing that owns the dictionary and puts stuff in and out of it. That’s definitely a pattern that I’ve seen recently. I think maybe I’m doing functional programming. Possibly. It’s plausible. If you had to summarise the essence of programming in a pithy sentence, how would you do it? Programming is the form of art that, without losing any of the beauty of architecture or fine art, allows you to produce things that people love and you make money from. So you think it’s an art rather than a science? It’s a little bit of engineering, a smidgeon of maths, but it’s not science. Like architecture, programming is on that boundary between art and engineering. If you want to do it really nicely, it’s mostly art. You can get away with doing architecture and programming entirely by having a good engineering mind, but you’re not going to produce anything nice. You’re not going to have joy doing it if you’re an engineering mind. Architects who are just engineering minds are not going to enjoy their job. I suppose engineering is the foundation on which you build the art. Exactly. How do you think programming is going to change over the next ten years? There will be an unfortunate shift towards dynamically-typed languages, because of JavaScript. JavaScript has an unfair advantage. JavaScript’s unfair advantage will cause more people to be exposed to dynamically-typed languages, which means other dynamically-typed languages crop up and the best features go into dynamically-typed languages. Then people conflate the good features with the fact that it’s dynamically-typed, and more investment goes into dynamically-typed languages. They end up better, so people use them. What about the idea of compiling other languages, possibly statically-typed, to JavaScript? It’s a reasonable idea. I would like to do it, but I don’t think enough people in the world are going to do it to make it pick up. The hordes of beginners are the lifeblood of a language community. They are what makes there be good tools and what makes there be vibrant community websites. And any particular thing which is the same as JavaScript only with extra stuff added to it, although it might be technically great, is not going to have the hordes of beginners. JavaScript is always to be quickest and easiest way for a beginner to start programming in the browser. And dynamically-typed languages are great for beginners. Compilers are pretty scary and beginners don’t write big code. And having your errors come up in the same place, whether they’re statically checkable errors or not, is quite nice for a beginner. If someone asked me to teach them some programming, I’d teach them JavaScript. If dynamically-typed languages are great for beginners, when do you think the benefits of static typing start to kick in? The value of having a statically typed program is in the tools that rely on the static types to produce a smooth IDE experience rather than actually telling me my compile errors. And only once you’re experienced enough a programmer that having a really smooth IDE experience makes a blind bit of difference, does static typing make a blind bit of difference. So it’s not really about size of codebase. If I go and write up a tiny program, I’m still going to get value out of writing it in C# using ReSharper because I’m experienced with C# and ReSharper enough to be able to write code five times faster if I have that help. Any other visions of the future? Nobody’s going to use actors. Because everyone’s going to be running on single-core VMs connected over network-ready protocols like JSON over HTTP. So, parallelism within one operating system is going to die. But until then, you should use actors. More Red Gater Coder interviews

    Read the article

  • A way of doing real-world test-driven development (and some thoughts about it)

    - by Thomas Weller
    Lately, I exchanged some arguments with Derick Bailey about some details of the red-green-refactor cycle of the Test-driven development process. In short, the issue revolved around the fact that it’s not enough to have a test red or green, but it’s also important to have it red or green for the right reasons. While for me, it’s sufficient to initially have a NotImplementedException in place, Derick argues that this is not totally correct (see these two posts: Red/Green/Refactor, For The Right Reasons and Red For The Right Reason: Fail By Assertion, Not By Anything Else). And he’s right. But on the other hand, I had no idea how his insights could have any practical consequence for my own individual interpretation of the red-green-refactor cycle (which is not really red-green-refactor, at least not in its pure sense, see the rest of this article). This made me think deeply for some days now. In the end I found out that the ‘right reason’ changes in my understanding depending on what development phase I’m in. To make this clear (at least I hope it becomes clear…) I started to describe my way of working in some detail, and then something strange happened: The scope of the article slightly shifted from focusing ‘only’ on the ‘right reason’ issue to something more general, which you might describe as something like  'Doing real-world TDD in .NET , with massive use of third-party add-ins’. This is because I feel that there is a more general statement about Test-driven development to make:  It’s high time to speak about the ‘How’ of TDD, not always only the ‘Why’. Much has been said about this, and me myself also contributed to that (see here: TDD is not about testing, it's about how we develop software). But always justifying what you do is very unsatisfying in the long run, it is inherently defensive, and it costs time and effort that could be used for better and more important things. And frankly: I’m somewhat sick and tired of repeating time and again that the test-driven way of software development is highly preferable for many reasons - I don’t want to spent my time exclusively on stating the obvious… So, again, let’s say it clearly: TDD is programming, and programming is TDD. Other ways of programming (code-first, sometimes called cowboy-coding) are exceptional and need justification. – I know that there are many people out there who will disagree with this radical statement, and I also know that it’s not a description of the real world but more of a mission statement or something. But nevertheless I’m absolutely sure that in some years this statement will be nothing but a platitude. Side note: Some parts of this post read as if I were paid by Jetbrains (the manufacturer of the ReSharper add-in – R#), but I swear I’m not. Rather I think that Visual Studio is just not production-complete without it, and I wouldn’t even consider to do professional work without having this add-in installed... The three parts of a software component Before I go into some details, I first should describe my understanding of what belongs to a software component (assembly, type, or method) during the production process (i.e. the coding phase). Roughly, I come up with the three parts shown below:   First, we need to have some initial sort of requirement. This can be a multi-page formal document, a vague idea in some programmer’s brain of what might be needed, or anything in between. In either way, there has to be some sort of requirement, be it explicit or not. – At the C# micro-level, the best way that I found to formulate that is to define interfaces for just about everything, even for internal classes, and to provide them with exhaustive xml comments. The next step then is to re-formulate these requirements in an executable form. This is specific to the respective programming language. - For C#/.NET, the Gallio framework (which includes MbUnit) in conjunction with the ReSharper add-in for Visual Studio is my toolset of choice. The third part then finally is the production code itself. It’s development is entirely driven by the requirements and their executable formulation. This is the delivery, the two other parts are ‘only’ there to make its production possible, to give it a decent quality and reliability, and to significantly reduce related costs down the maintenance timeline. So while the first two parts are not really relevant for the customer, they are very important for the developer. The customer (or in Scrum terms: the Product Owner) is not interested at all in how  the product is developed, he is only interested in the fact that it is developed as cost-effective as possible, and that it meets his functional and non-functional requirements. The rest is solely a matter of the developer’s craftsmanship, and this is what I want to talk about during the remainder of this article… An example To demonstrate my way of doing real-world TDD, I decided to show the development of a (very) simple Calculator component. The example is deliberately trivial and silly, as examples always are. I am totally aware of the fact that real life is never that simple, but I only want to show some development principles here… The requirement As already said above, I start with writing down some words on the initial requirement, and I normally use interfaces for that, even for internal classes - the typical question “intf or not” doesn’t even come to mind. I need them for my usual workflow and using them automatically produces high componentized and testable code anyway. To think about their usage in every single situation would slow down the production process unnecessarily. So this is what I begin with: namespace Calculator {     /// <summary>     /// Defines a very simple calculator component for demo purposes.     /// </summary>     public interface ICalculator     {         /// <summary>         /// Gets the result of the last successful operation.         /// </summary>         /// <value>The last result.</value>         /// <remarks>         /// Will be <see langword="null" /> before the first successful operation.         /// </remarks>         double? LastResult { get; }       } // interface ICalculator   } // namespace Calculator So, I’m not beginning with a test, but with a sort of code declaration - and still I insist on being 100% test-driven. There are three important things here: Starting this way gives me a method signature, which allows to use IntelliSense and AutoCompletion and thus eliminates the danger of typos - one of the most regular, annoying, time-consuming, and therefore expensive sources of error in the development process. In my understanding, the interface definition as a whole is more of a readable requirement document and technical documentation than anything else. So this is at least as much about documentation than about coding. The documentation must completely describe the behavior of the documented element. I normally use an IoC container or some sort of self-written provider-like model in my architecture. In either case, I need my components defined via service interfaces anyway. - I will use the LinFu IoC framework here, for no other reason as that is is very simple to use. The ‘Red’ (pt. 1)   First I create a folder for the project’s third-party libraries and put the LinFu.Core dll there. Then I set up a test project (via a Gallio project template), and add references to the Calculator project and the LinFu dll. Finally I’m ready to write the first test, which will look like the following: namespace Calculator.Test {     [TestFixture]     public class CalculatorTest     {         private readonly ServiceContainer container = new ServiceContainer();           [Test]         public void CalculatorLastResultIsInitiallyNull()         {             ICalculator calculator = container.GetService<ICalculator>();               Assert.IsNull(calculator.LastResult);         }       } // class CalculatorTest   } // namespace Calculator.Test       This is basically the executable formulation of what the interface definition states (part of). Side note: There’s one principle of TDD that is just plain wrong in my eyes: I’m talking about the Red is 'does not compile' thing. How could a compiler error ever be interpreted as a valid test outcome? I never understood that, it just makes no sense to me. (Or, in Derick’s terms: this reason is as wrong as a reason ever could be…) A compiler error tells me: Your code is incorrect, but nothing more.  Instead, the ‘Red’ part of the red-green-refactor cycle has a clearly defined meaning to me: It means that the test works as intended and fails only if its assumptions are not met for some reason. Back to our Calculator. When I execute the above test with R#, the Gallio plugin will give me this output: So this tells me that the test is red for the wrong reason: There’s no implementation that the IoC-container could load, of course. So let’s fix that. With R#, this is very easy: First, create an ICalculator - derived type:        Next, implement the interface members: And finally, move the new class to its own file: So far my ‘work’ was six mouse clicks long, the only thing that’s left to do manually here, is to add the Ioc-specific wiring-declaration and also to make the respective class non-public, which I regularly do to force my components to communicate exclusively via interfaces: This is what my Calculator class looks like as of now: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult         {             get             {                 throw new NotImplementedException();             }         }     } } Back to the test fixture, we have to put our IoC container to work: [TestFixture] public class CalculatorTest {     #region Fields       private readonly ServiceContainer container = new ServiceContainer();       #endregion // Fields       #region Setup/TearDown       [FixtureSetUp]     public void FixtureSetUp()     {        container.LoadFrom(AppDomain.CurrentDomain.BaseDirectory, "Calculator.dll");     }       ... Because I have a R# live template defined for the setup/teardown method skeleton as well, the only manual coding here again is the IoC-specific stuff: two lines, not more… The ‘Red’ (pt. 2) Now, the execution of the above test gives the following result: This time, the test outcome tells me that the method under test is called. And this is the point, where Derick and I seem to have somewhat different views on the subject: Of course, the test still is worthless regarding the red/green outcome (or: it’s still red for the wrong reasons, in that it gives a false negative). But as far as I am concerned, I’m not really interested in the test outcome at this point of the red-green-refactor cycle. Rather, I only want to assert that my test actually calls the right method. If that’s the case, I will happily go on to the ‘Green’ part… The ‘Green’ Making the test green is quite trivial. Just make LastResult an automatic property:     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         public double? LastResult { get; private set; }     }         One more round… Now on to something slightly more demanding (cough…). Let’s state that our Calculator exposes an Add() method:         ...   /// <summary>         /// Adds the specified operands.         /// </summary>         /// <param name="operand1">The operand1.</param>         /// <param name="operand2">The operand2.</param>         /// <returns>The result of the additon.</returns>         /// <exception cref="ArgumentException">         /// Argument <paramref name="operand1"/> is &lt; 0.<br/>         /// -- or --<br/>         /// Argument <paramref name="operand2"/> is &lt; 0.         /// </exception>         double Add(double operand1, double operand2);       } // interface ICalculator A remark: I sometimes hear the complaint that xml comment stuff like the above is hard to read. That’s certainly true, but irrelevant to me, because I read xml code comments with the CR_Documentor tool window. And using that, it looks like this:   Apart from that, I’m heavily using xml code comments (see e.g. here for a detailed guide) because there is the possibility of automating help generation with nightly CI builds (using MS Sandcastle and the Sandcastle Help File Builder), and then publishing the results to some intranet location.  This way, a team always has first class, up-to-date technical documentation at hand about the current codebase. (And, also very important for speeding up things and avoiding typos: You have IntelliSense/AutoCompletion and R# support, and the comments are subject to compiler checking…).     Back to our Calculator again: Two more R# – clicks implement the Add() skeleton:         ...           public double Add(double operand1, double operand2)         {             throw new NotImplementedException();         }       } // class Calculator As we have stated in the interface definition (which actually serves as our requirement document!), the operands are not allowed to be negative. So let’s start implementing that. Here’s the test: [Test] [Row(-0.5, 2)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); } As you can see, I’m using a data-driven unit test method here, mainly for these two reasons: Because I know that I will have to do the same test for the second operand in a few seconds, I save myself from implementing another test method for this purpose. Rather, I only will have to add another Row attribute to the existing one. From the test report below, you can see that the argument values are explicitly printed out. This can be a valuable documentation feature even when everything is green: One can quickly review what values were tested exactly - the complete Gallio HTML-report (as it will be produced by the Continuous Integration runs) shows these values in a quite clear format (see below for an example). Back to our Calculator development again, this is what the test result tells us at the moment: So we’re red again, because there is not yet an implementation… Next we go on and implement the necessary parameter verification to become green again, and then we do the same thing for the second operand. To make a long story short, here’s the test and the method implementation at the end of the second cycle: // in CalculatorTest:   [Test] [Row(-0.5, 2)] [Row(295, -123)] public void AddThrowsOnNegativeOperands(double operand1, double operand2) {     ICalculator calculator = container.GetService<ICalculator>();       Assert.Throws<ArgumentException>(() => calculator.Add(operand1, operand2)); }   // in Calculator: public double Add(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }     if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }     throw new NotImplementedException(); } So far, we have sheltered our method from unwanted input, and now we can safely operate on the parameters without further caring about their validity (this is my interpretation of the Fail Fast principle, which is regarded here in more detail). Now we can think about the method’s successful outcomes. First let’s write another test for that: [Test] [Row(1, 1, 2)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } Again, I’m regularly using row based test methods for these kinds of unit tests. The above shown pattern proved to be extremely helpful for my development work, I call it the Defined-Input/Expected-Output test idiom: You define your input arguments together with the expected method result. There are two major benefits from that way of testing: In the course of refining a method, it’s very likely to come up with additional test cases. In our case, we might add tests for some edge cases like ‘one of the operands is zero’ or ‘the sum of the two operands causes an overflow’, or maybe there’s an external test protocol that has to be fulfilled (e.g. an ISO norm for medical software), and this results in the need of testing against additional values. In all these scenarios we only have to add another Row attribute to the test. Remember that the argument values are written to the test report, so as a side-effect this produces valuable documentation. (This can become especially important if the fulfillment of some sort of external requirements has to be proven). So your test method might look something like that in the end: [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 2)] [Row(0, 999999999, 999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, double.MaxValue)] [Row(4, double.MaxValue - 2.5, double.MaxValue)] public void TestAdd(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Add(operand1, operand2);       Assert.AreEqual(expectedResult, result); } And this will produce the following HTML report (with Gallio):   Not bad for the amount of work we invested in it, huh? - There might be scenarios where reports like that can be useful for demonstration purposes during a Scrum sprint review… The last requirement to fulfill is that the LastResult property is expected to store the result of the last operation. I don’t show this here, it’s trivial enough and brings nothing new… And finally: Refactor (for the right reasons) To demonstrate my way of going through the refactoring portion of the red-green-refactor cycle, I added another method to our Calculator component, namely Subtract(). Here’s the code (tests and production): // CalculatorTest.cs:   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtract(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       double result = calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, result); }   [Test, Description("Arguments: operand1, operand2, expectedResult")] [Row(1, 1, 0)] [Row(0, 999999999, -999999999)] [Row(0, 0, 0)] [Row(0, double.MaxValue, -double.MaxValue)] [Row(4, double.MaxValue - 2.5, -double.MaxValue)] public void TestSubtractGivesExpectedLastResult(double operand1, double operand2, double expectedResult) {     ICalculator calculator = container.GetService<ICalculator>();       calculator.Subtract(operand1, operand2);       Assert.AreEqual(expectedResult, calculator.LastResult); }   ...   // ICalculator.cs: /// <summary> /// Subtracts the specified operands. /// </summary> /// <param name="operand1">The operand1.</param> /// <param name="operand2">The operand2.</param> /// <returns>The result of the subtraction.</returns> /// <exception cref="ArgumentException"> /// Argument <paramref name="operand1"/> is &lt; 0.<br/> /// -- or --<br/> /// Argument <paramref name="operand2"/> is &lt; 0. /// </exception> double Subtract(double operand1, double operand2);   ...   // Calculator.cs:   public double Subtract(double operand1, double operand2) {     if (operand1 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand1");     }       if (operand2 < 0.0)     {         throw new ArgumentException("Value must not be negative.", "operand2");     }       return (this.LastResult = operand1 - operand2).Value; }   Obviously, the argument validation stuff that was produced during the red-green part of our cycle duplicates the code from the previous Add() method. So, to avoid code duplication and minimize the number of code lines of the production code, we do an Extract Method refactoring. One more time, this is only a matter of a few mouse clicks (and giving the new method a name) with R#: Having done that, our production code finally looks like that: using System; using LinFu.IoC.Configuration;   namespace Calculator {     [Implements(typeof(ICalculator))]     internal class Calculator : ICalculator     {         #region ICalculator           public double? LastResult { get; private set; }           public double Add(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 + operand2).Value;         }           public double Subtract(double operand1, double operand2)         {             ThrowIfOneOperandIsInvalid(operand1, operand2);               return (this.LastResult = operand1 - operand2).Value;         }           #endregion // ICalculator           #region Implementation (Helper)           private static void ThrowIfOneOperandIsInvalid(double operand1, double operand2)         {             if (operand1 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand1");             }               if (operand2 < 0.0)             {                 throw new ArgumentException("Value must not be negative.", "operand2");             }         }           #endregion // Implementation (Helper)       } // class Calculator   } // namespace Calculator But is the above worth the effort at all? It’s obviously trivial and not very impressive. All our tests were green (for the right reasons), and refactoring the code did not change anything. It’s not immediately clear how this refactoring work adds value to the project. Derick puts it like this: STOP! Hold on a second… before you go any further and before you even think about refactoring what you just wrote to make your test pass, you need to understand something: if your done with your requirements after making the test green, you are not required to refactor the code. I know… I’m speaking heresy, here. Toss me to the wolves, I’ve gone over to the dark side! Seriously, though… if your test is passing for the right reasons, and you do not need to write any test or any more code for you class at this point, what value does refactoring add? Derick immediately answers his own question: So why should you follow the refactor portion of red/green/refactor? When you have added code that makes the system less readable, less understandable, less expressive of the domain or concern’s intentions, less architecturally sound, less DRY, etc, then you should refactor it. I couldn’t state it more precise. From my personal perspective, I’d add the following: You have to keep in mind that real-world software systems are usually quite large and there are dozens or even hundreds of occasions where micro-refactorings like the above can be applied. It’s the sum of them all that counts. And to have a good overall quality of the system (e.g. in terms of the Code Duplication Percentage metric) you have to be pedantic on the individual, seemingly trivial cases. My job regularly requires the reading and understanding of ‘foreign’ code. So code quality/readability really makes a HUGE difference for me – sometimes it can be even the difference between project success and failure… Conclusions The above described development process emerged over the years, and there were mainly two things that guided its evolution (you might call it eternal principles, personal beliefs, or anything in between): Test-driven development is the normal, natural way of writing software, code-first is exceptional. So ‘doing TDD or not’ is not a question. And good, stable code can only reliably be produced by doing TDD (yes, I know: many will strongly disagree here again, but I’ve never seen high-quality code – and high-quality code is code that stood the test of time and causes low maintenance costs – that was produced code-first…) It’s the production code that pays our bills in the end. (Though I have seen customers these days who demand an acceptance test battery as part of the final delivery. Things seem to go into the right direction…). The test code serves ‘only’ to make the production code work. But it’s the number of delivered features which solely counts at the end of the day - no matter how much test code you wrote or how good it is. With these two things in mind, I tried to optimize my coding process for coding speed – or, in business terms: productivity - without sacrificing the principles of TDD (more than I’d do either way…).  As a result, I consider a ratio of about 3-5/1 for test code vs. production code as normal and desirable. In other words: roughly 60-80% of my code is test code (This might sound heavy, but that is mainly due to the fact that software development standards only begin to evolve. The entire software development profession is very young, historically seen; only at the very beginning, and there are no viable standards yet. If you think about software development as a kind of casting process, where the test code is the mold and the resulting production code is the final product, then the above ratio sounds no longer extraordinary…) Although the above might look like very much unnecessary work at first sight, it’s not. With the aid of the mentioned add-ins, doing all the above is a matter of minutes, sometimes seconds (while writing this post took hours and days…). The most important thing is to have the right tools at hand. Slow developer machines or the lack of a tool or something like that - for ‘saving’ a few 100 bucks -  is just not acceptable and a very bad decision in business terms (though I quite some times have seen and heard that…). Production of high-quality products needs the usage of high-quality tools. This is a platitude that every craftsman knows… The here described round-trip will take me about five to ten minutes in my real-world development practice. I guess it’s about 30% more time compared to developing the ‘traditional’ (code-first) way. But the so manufactured ‘product’ is of much higher quality and massively reduces maintenance costs, which is by far the single biggest cost factor, as I showed in this previous post: It's the maintenance, stupid! (or: Something is rotten in developerland.). In the end, this is a highly cost-effective way of software development… But on the other hand, there clearly is a trade-off here: coding speed vs. code quality/later maintenance costs. The here described development method might be a perfect fit for the overwhelming majority of software projects, but there certainly are some scenarios where it’s not - e.g. if time-to-market is crucial for a software project. So this is a business decision in the end. It’s just that you have to know what you’re doing and what consequences this might have… Some last words First, I’d like to thank Derick Bailey again. His two aforementioned posts (which I strongly recommend for reading) inspired me to think deeply about my own personal way of doing TDD and to clarify my thoughts about it. I wouldn’t have done that without this inspiration. I really enjoy that kind of discussions… I agree with him in all respects. But I don’t know (yet?) how to bring his insights into the described production process without slowing things down. The above described method proved to be very “good enough” in my practical experience. But of course, I’m open to suggestions here… My rationale for now is: If the test is initially red during the red-green-refactor cycle, the ‘right reason’ is: it actually calls the right method, but this method is not yet operational. Later on, when the cycle is finished and the tests become part of the regular, automated Continuous Integration process, ‘red’ certainly must occur for the ‘right reason’: in this phase, ‘red’ MUST mean nothing but an unfulfilled assertion - Fail By Assertion, Not By Anything Else!

    Read the article

  • MySQL Syslog Audit Plugin

    - by jonathonc
    This post shows the construction process of the Syslog Audit plugin that was presented at MySQL Connect 2012. It is based on an environment that has the appropriate development tools enabled including gcc,g++ and cmake. It also assumes you have downloaded the MySQL source code (5.5.16 or higher) and have compiled and installed the system into the /usr/local/mysql directory ready for use.  The information provided below is designed to show the different components that make up a plugin, and specifically an audit type plugin, and how it comes together to be used within the MySQL service. The MySQL Reference Manual contains information regarding the plugin API and how it can be used, so please refer there for more detailed information. The code in this post is designed to give the simplest information necessary, so handling every return code, managing race conditions etc is not part of this example code. Let's start by looking at the most basic implementation of our plugin code as seen below: /*    Copyright (c) 2012, Oracle and/or its affiliates. All rights reserved.    Author:  Jonathon Coombes    Licence: GPL    Description: An auditing plugin that logs to syslog and                 can adjust the loglevel via the system variables. */ #include <stdio.h> #include <string.h> #include <mysql/plugin_audit.h> #include <syslog.h> There is a commented header detailing copyright/licencing and meta-data information and then the include headers. The two important include statements for our plugin are the syslog.h plugin, which gives us the structures for syslog, and the plugin_audit.h include which has details regarding the audit specific plugin api. Note that we do not need to include the general plugin header plugin.h, as this is done within the plugin_audit.h file already. To implement our plugin within the current implementation we need to add it into our source code and compile. > cd /usr/local/src/mysql-5.5.28/plugin > mkdir audit_syslog > cd audit_syslog A simple CMakeLists.txt file is created to manage the plugin compilation: MYSQL_ADD_PLUGIN(audit_syslog audit_syslog.cc MODULE_ONLY) Run the cmake  command at the top level of the source and then you can compile the plugin using the 'make' command. This results in a compiled audit_syslog.so library, but currently it is not much use to MySQL as there is no level of api defined to communicate with the MySQL service. Now we need to define the general plugin structure that enables MySQL to recognise the library as a plugin and be able to install/uninstall it and have it show up in the system. The structure is defined in the plugin.h file in the MySQL source code.  /*   Plugin library descriptor */ mysql_declare_plugin(audit_syslog) {   MYSQL_AUDIT_PLUGIN,           /* plugin type                    */   &audit_syslog_descriptor,     /* descriptor handle               */   "audit_syslog",               /* plugin name                     */   "Author Name",                /* author                          */   "Simple Syslog Audit",        /* description                     */   PLUGIN_LICENSE_GPL,           /* licence                         */   audit_syslog_init,            /* init function     */   audit_syslog_deinit,          /* deinit function */   0x0001,                       /* plugin version                  */   NULL,                         /* status variables        */   NULL,                         /* system variables                */   NULL,                         /* no reserves                     */   0,                            /* no flags                        */ } mysql_declare_plugin_end; The general plugin descriptor above is standard for all plugin types in MySQL. The plugin type is defined along with the init/deinit functions and interface methods into the system for sharing information, and various other metadata information. The descriptors have an internally recognised version number so that plugins can be matched against the api on the running server. The other details are usually related to the type-specific methods and structures to implement the plugin. Each plugin has a type-specific descriptor as well which details how the plugin is implemented for the specific purpose of that plugin type. /*   Plugin type-specific descriptor */ static struct st_mysql_audit audit_syslog_descriptor= {   MYSQL_AUDIT_INTERFACE_VERSION,                        /* interface version    */   NULL,                                                 /* release_thd function */   audit_syslog_notify,                                  /* notify function      */   { (unsigned long) MYSQL_AUDIT_GENERAL_CLASSMASK |                     MYSQL_AUDIT_CONNECTION_CLASSMASK }  /* class mask           */ }; In this particular case, the release_thd function has not been defined as it is not required. The important method for auditing is the notify function which is activated when an event occurs on the system. The notify function is designed to activate on an event and the implementation will determine how it is handled. For the audit_syslog plugin, the use of the syslog feature sends all events to the syslog for recording. The class mask allows us to determine what type of events are being seen by the notify function. There are currently two major types of event: 1. General Events: This includes general logging, errors, status and result type events. This is the main one for tracking the queries and operations on the database. 2. Connection Events: This group is based around user logins. It monitors connections and disconnections, but also if somebody changes user while connected. With most audit plugins, the principle behind the plugin is to track changes to the system over time and counters can be an important part of this process. The next step is to define and initialise the counters that are used to track the events in the service. There are 3 counters defined in total for our plugin - the # of general events, the # of connection events and the total number of events.  static volatile int total_number_of_calls; /* Count MYSQL_AUDIT_GENERAL_CLASS event instances */ static volatile int number_of_calls_general; /* Count MYSQL_AUDIT_CONNECTION_CLASS event instances */ static volatile int number_of_calls_connection; The init and deinit functions for the plugin are there to be called when the plugin is activated and when it is terminated. These offer the best option to initialise the counters for our plugin: /*  Initialize the plugin at server start or plugin installation. */ static int audit_syslog_init(void *arg __attribute__((unused))) {     openlog("mysql_audit:",LOG_PID|LOG_PERROR|LOG_CONS,LOG_USER);     total_number_of_calls= 0;     number_of_calls_general= 0;     number_of_calls_connection= 0;     return(0); } The init function does a call to openlog to initialise the syslog functionality. The parameters are the service to log under ("mysql_audit" in this case), the syslog flags and the facility for the logging. Then each of the counters are initialised to zero and a success is returned. If the init function is not defined, it will return success by default. /*  Terminate the plugin at server shutdown or plugin deinstallation. */ static int audit_syslog_deinit(void *arg __attribute__((unused))) {     closelog();     return(0); } The deinit function will simply close our syslog connection and return success. Note that the syslog functionality is part of the glibc libraries and does not require any external factors.  The function names are what we define in the general plugin structure, so these have to match otherwise there will be errors. The next step is to implement the event notifier function that was defined in the type specific descriptor (audit_syslog_descriptor) which is audit_syslog_notify. /* Event notifier function */ static void audit_syslog_notify(MYSQL_THD thd __attribute__((unused)), unsigned int event_class, const void *event) { total_number_of_calls++; if (event_class == MYSQL_AUDIT_GENERAL_CLASS) { const struct mysql_event_general *event_general= (const struct mysql_event_general *) event; number_of_calls_general++; syslog(audit_loglevel,"%lu: User: %s Command: %s Query: %s\n", event_general->general_thread_id, event_general->general_user, event_general->general_command, event_general->general_query ); } else if (event_class == MYSQL_AUDIT_CONNECTION_CLASS) { const struct mysql_event_connection *event_connection= (const struct mysql_event_connection *) event; number_of_calls_connection++; syslog(audit_loglevel,"%lu: User: %s@%s[%s] Event: %d Status: %d\n", event_connection->thread_id, event_connection->user, event_connection->host, event_connection->ip, event_connection->event_subclass, event_connection->status ); } }   In the case of an event, the notifier function is called. The first step is to increment the total number of events that have occurred in our database.The event argument is then cast into the appropriate event structure depending on the class type, of general event or connection event. The event type counters are incremented and details are sent via the syslog() function out to the system log. There are going to be different line formats and information returned since the general events have different data compared to the connection events, even though some of the details overlap, for example, user, thread id, host etc. On compiling the code now, there should be no errors and the resulting audit_syslog.so can be loaded into the server and ready to use. Log into the server and type: mysql> INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so'; This will install the plugin and will start updating the syslog immediately. Note that the audit plugin attaches to the immediate thread and cannot be uninstalled while that thread is active. This means that you cannot run the UNISTALL command until you log into a different connection (thread) on the server. Once the plugin is loaded, the system log will show output such as the following: Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:21 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: INSTALL PLUGIN audit_syslog SONAME 'audit_syslog.so' Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: show tables Oct  8 15:33:40 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: show tables Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: (null)  Query: select * from t1 Oct  8 15:33:43 machine mysql_audit:[8337]: 87: User: root[root] @ localhost []  Command: Query  Query: select * from t1 It appears that two of each event is being shown, but in actuality, these are two separate event types - the result event and the status event. This could be refined further by changing the audit_syslog_notify function to handle the different event sub-types in a different manner.  So far, it seems that the logging is working with events showing up in the syslog output. The issue now is that the counters created earlier to track the number of events by type are not accessible when the plugin is being run. Instead there needs to be a way to expose the plugin specific information to the service and vice versa. This could be done via the information_schema plugin api, but for something as simple as counters, the obvious choice is the system status variables. This is done using the standard structure and the declaration: /*  Plugin status variables for SHOW STATUS */ static struct st_mysql_show_var audit_syslog_status[]= {   { "Audit_syslog_total_calls",     (char *) &total_number_of_calls,     SHOW_INT },   { "Audit_syslog_general_events",     (char *) &number_of_calls_general,     SHOW_INT },   { "Audit_syslog_connection_events",     (char *) &number_of_calls_connection,     SHOW_INT },   { 0, 0, SHOW_INT } };   The structure is simply the name that will be displaying in the mysql service, the address of the associated variables, and the data type being used for the counter. It is finished with a blank structure to show that there are no more variables. Remember that status variables may have the same name for variables from other plugin, so it is considered appropriate to add the plugin name at the start of the status variable name to avoid confusion. Looking at the status variables in the mysql client shows something like the following: mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 2     | | Audit_syslog_total_calls       | 3     | +--------------------------------+-------+ 3 rows in set (0.00 sec) The final connectivity piece for the plugin is to allow the interactive change of the logging level between the plugin and the system. This requires the ability to send changes via the mysql service through to the plugin. This is done using the system variables interface and defining a single variable to keep track of the active logging level for the facility. /* Plugin system variables for SHOW VARIABLES */ static MYSQL_SYSVAR_STR(loglevel, audit_loglevel,                         PLUGIN_VAR_RQCMDARG,                         "User can specify the log level for auditing",                         audit_loglevel_check, audit_loglevel_update, "LOG_NOTICE"); static struct st_mysql_sys_var* audit_syslog_sysvars[] = {     MYSQL_SYSVAR(loglevel),     NULL }; So now the system variable 'loglevel' is defined for the plugin and associated to the global variable 'audit_loglevel'. The check or validation function is defined to make sure that no garbage values are attempted in the update of the variable. The update function is used to save the new value to the variable. Note that the audit_syslog_sysvars structure is defined in the general plugin descriptor to associate the link between the plugin and the system and how much they interact. Next comes the implementation of the validation function and the update function for the system variable. It is worth noting that if you have a simple numeric such as integers for the variable types, the validate function is often not required as MySQL will handle the automatic check and validation of simple types. /* longest valid value */ #define MAX_LOGLEVEL_SIZE 100 /* hold the valid values */ static const char *possible_modes[]= { "LOG_ERROR", "LOG_WARNING", "LOG_NOTICE", NULL };  static int audit_loglevel_check(     THD*                        thd,    /*!< in: thread handle */     struct st_mysql_sys_var*    var,    /*!< in: pointer to system                                         variable */     void*                       save,   /*!< out: immediate result                                         for update function */     struct st_mysql_value*      value)  /*!< in: incoming string */ {     char buff[MAX_LOGLEVEL_SIZE];     const char *str;     const char **found;     int length;     length= sizeof(buff);     if (!(str= value->val_str(value, buff, &length)))         return 1;     /*         We need to return a pointer to a locally allocated value in "save".         Here we pick to search for the supplied value in an global array of         constant strings and return a pointer to one of them.         The other possiblity is to use the thd_alloc() function to allocate         a thread local buffer instead of the global constants.     */     for (found= possible_modes; *found; found++)     {         if (!strcmp(*found, str))         {             *(const char**)save= *found;             return 0;         }     }     return 1; } The validation function is simply to take the value being passed in via the SET GLOBAL VARIABLE command and check if it is one of the pre-defined values allowed  in our possible_values array. If it is found to be valid, then the value is assigned to the save variable ready for passing through to the update function. static void audit_loglevel_update(     THD*                        thd,        /*!< in: thread handle */     struct st_mysql_sys_var*    var,        /*!< in: system variable                                             being altered */     void*                       var_ptr,    /*!< out: pointer to                                             dynamic variable */     const void*                 save)       /*!< in: pointer to                                             temporary storage */ {     /* assign the new value so that the server can read it */     *(char **) var_ptr= *(char **) save;     /* assign the new value to the internal variable */     audit_loglevel= *(char **) save; } Since all the validation has been done already, the update function is quite simple for this plugin. The first part is to update the system variable pointer so that the server can read the value. The second part is to update our own global plugin variable for tracking the value. Notice that the save variable is passed in as a void type to allow handling of various data types, so it must be cast to the appropriate data type when assigning it to the variables. Looking at how the latest changes affect the usage of the plugin and the interaction within the server shows: mysql> show global variables like "audit%"; +-----------------------+------------+ | Variable_name         | Value      | +-----------------------+------------+ | audit_syslog_loglevel | LOG_NOTICE | +-----------------------+------------+ 1 row in set (0.00 sec) mysql> set global audit_syslog_loglevel="LOG_ERROR"; Query OK, 0 rows affected (0.00 sec) mysql> show global status like "audit%"; +--------------------------------+-------+ | Variable_name                  | Value | +--------------------------------+-------+ | Audit_syslog_connection_events | 1     | | Audit_syslog_general_events    | 11    | | Audit_syslog_total_calls       | 12    | +--------------------------------+-------+ 3 rows in set (0.00 sec) mysql> show global variables like "audit%"; +-----------------------+-----------+ | Variable_name         | Value     | +-----------------------+-----------+ | audit_syslog_loglevel | LOG_ERROR | +-----------------------+-----------+ 1 row in set (0.00 sec)   So now we have a plugin that will audit the events on the system and log the details to the system log. It allows for interaction to see the number of different events within the server details and provides a mechanism to change the logging level interactively via the standard system methods of the SET command. A more complex auditing plugin may have more detailed code, but each of the above areas is what will be involved and simply expanded on to add more functionality. With the above skeleton code, it is now possible to create your own audit plugins to implement your own auditing requirements. If, however, you are not of the coding persuasion, then you could always consider the option of the MySQL Enterprise Audit plugin that is available to purchase.

    Read the article

  • Table sorting & pagination with jQuery and Razor in ASP.NET MVC

    - by hajan
    Introduction jQuery enjoys living inside pages which are built on top of ASP.NET MVC Framework. The ASP.NET MVC is a place where things are organized very well and it is quite hard to make them dirty, especially because the pattern enforces you on purity (you can still make it dirty if you want so ;) ). We all know how easy is to build a HTML table with a header row, footer row and table rows showing some data. With ASP.NET MVC we can do this pretty easy, but, the result will be pure HTML table which only shows data, but does not includes sorting, pagination or some other advanced features that we were used to have in the ASP.NET WebForms GridView. Ok, there is the WebGrid MVC Helper, but what if we want to make something from pure table in our own clean style? In one of my recent projects, I’ve been using the jQuery tablesorter and tablesorter.pager plugins that go along. You don’t need to know jQuery to make this work… You need to know little CSS to create nice design for your table, but of course you can use mine from the demo… So, what you will see in this blog is how to attach this plugin to your pure html table and a div for pagination and make your table with advanced sorting and pagination features.   Demo Project Resources The resources I’m using for this demo project are shown in the following solution explorer window print screen: Content/images – folder that contains all the up/down arrow images, pagination buttons etc. You can freely replace them with your own, but keep the names the same if you don’t want to change anything in the CSS we will built later. Content/Site.css – The main css theme, where we will add the theme for our table too Controllers/HomeController.cs – The controller I’m using for this project Models/Person.cs – For this demo, I’m using Person.cs class Scripts – jquery-1.4.4.min.js, jquery.tablesorter.js, jquery.tablesorter.pager.js – required script to make the magic happens Views/Home/Index.cshtml – Index view (razor view engine) the other items are not important for the demo. ASP.NET MVC 1. Model In this demo I use only one Person class which defines Person entity with several properties. You can use your own model, maybe one which will access data from database or any other resource. Person.cs public class Person {     public string Name { get; set; }     public string Surname { get; set; }     public string Email { get; set; }     public int? Phone { get; set; }     public DateTime? DateAdded { get; set; }     public int? Age { get; set; }     public Person(string name, string surname, string email,         int? phone, DateTime? dateadded, int? age)     {         Name = name;         Surname = surname;         Email = email;         Phone = phone;         DateAdded = dateadded;         Age = age;     } } 2. View In our example, we have only one Index.chtml page where Razor View engine is used. Razor view engine is my favorite for ASP.NET MVC because it’s very intuitive, fluid and keeps your code clean. 3. Controller Since this is simple example with one page, we use one HomeController.cs where we have two methods, one of ActionResult type (Index) and another GetPeople() used to create and return list of people. HomeController.cs public class HomeController : Controller {     //     // GET: /Home/     public ActionResult Index()     {         ViewBag.People = GetPeople();         return View();     }     public List<Person> GetPeople()     {         List<Person> listPeople = new List<Person>();                  listPeople.Add(new Person("Hajan", "Selmani", "[email protected]", 070070070,DateTime.Now, 25));                     listPeople.Add(new Person("Straight", "Dean", "[email protected]", 123456789, DateTime.Now.AddDays(-5), 35));         listPeople.Add(new Person("Karsen", "Livia", "[email protected]", 46874651, DateTime.Now.AddDays(-2), 31));         listPeople.Add(new Person("Ringer", "Anne", "[email protected]", null, DateTime.Now, null));         listPeople.Add(new Person("O'Leary", "Michael", "[email protected]", 32424344, DateTime.Now, 44));         listPeople.Add(new Person("Gringlesby", "Anne", "[email protected]", null, DateTime.Now.AddDays(-9), 18));         listPeople.Add(new Person("Locksley", "Stearns", "[email protected]", 2135345, DateTime.Now, null));         listPeople.Add(new Person("DeFrance", "Michel", "[email protected]", 235325352, DateTime.Now.AddDays(-18), null));         listPeople.Add(new Person("White", "Johnson", null, null, DateTime.Now.AddDays(-22), 55));         listPeople.Add(new Person("Panteley", "Sylvia", null, 23233223, DateTime.Now.AddDays(-1), 32));         listPeople.Add(new Person("Blotchet-Halls", "Reginald", null, 323243423, DateTime.Now, 26));         listPeople.Add(new Person("Merr", "South", "[email protected]", 3232442, DateTime.Now.AddDays(-5), 85));         listPeople.Add(new Person("MacFeather", "Stearns", "[email protected]", null, DateTime.Now, null));         return listPeople;     } }   TABLE CSS/HTML DESIGN Now, lets start with the implementation. First of all, lets create the table structure and the main CSS. 1. HTML Structure @{     Layout = null;     } <!DOCTYPE html> <html> <head>     <title>ASP.NET & jQuery</title>     <!-- referencing styles, scripts and writing custom js scripts will go here --> </head> <body>     <div>         <table class="tablesorter">             <thead>                 <tr>                     <th> value </th>                 </tr>             </thead>             <tbody>                 <tr>                     <td>value</td>                 </tr>             </tbody>             <tfoot>                 <tr>                     <th> value </th>                 </tr>             </tfoot>         </table>         <div id="pager">                      </div>     </div> </body> </html> So, this is the main structure you need to create for each of your tables where you want to apply the functionality we will create. Of course the scripts are referenced once ;). As you see, our table has class tablesorter and also we have a div with id pager. In the next steps we will use both these to create the needed functionalities. The complete Index.cshtml coded to get the data from controller and display in the page is: <body>     <div>         <table class="tablesorter">             <thead>                 <tr>                     <th>Name</th>                     <th>Surname</th>                     <th>Email</th>                     <th>Phone</th>                     <th>Date Added</th>                 </tr>             </thead>             <tbody>                 @{                     foreach (var p in ViewBag.People)                     {                                 <tr>                         <td>@p.Name</td>                         <td>@p.Surname</td>                         <td>@p.Email</td>                         <td>@p.Phone</td>                         <td>@p.DateAdded</td>                     </tr>                     }                 }             </tbody>             <tfoot>                 <tr>                     <th>Name</th>                     <th>Surname</th>                     <th>Email</th>                     <th>Phone</th>                     <th>Date Added</th>                 </tr>             </tfoot>         </table>         <div id="pager" style="position: none;">             <form>             <img src="@Url.Content("~/Content/images/first.png")" class="first" />             <img src="@Url.Content("~/Content/images/prev.png")" class="prev" />             <input type="text" class="pagedisplay" />             <img src="@Url.Content("~/Content/images/next.png")" class="next" />             <img src="@Url.Content("~/Content/images/last.png")" class="last" />             <select class="pagesize">                 <option selected="selected" value="5">5</option>                 <option value="10">10</option>                 <option value="20">20</option>                 <option value="30">30</option>                 <option value="40">40</option>             </select>             </form>         </div>     </div> </body> So, mainly the structure is the same. I have added @Razor code to create table with data retrieved from the ViewBag.People which has been filled with data in the home controller. 2. CSS Design The CSS code I’ve created is: /* DEMO TABLE */ body {     font-size: 75%;     font-family: Verdana, Tahoma, Arial, "Helvetica Neue", Helvetica, Sans-Serif;     color: #232323;     background-color: #fff; } table { border-spacing:0; border:1px solid gray;} table.tablesorter thead tr .header {     background-image: url(images/bg.png);     background-repeat: no-repeat;     background-position: center right;     cursor: pointer; } table.tablesorter tbody td {     color: #3D3D3D;     padding: 4px;     background-color: #FFF;     vertical-align: top; } table.tablesorter tbody tr.odd td {     background-color:#F0F0F6; } table.tablesorter thead tr .headerSortUp {     background-image: url(images/asc.png); } table.tablesorter thead tr .headerSortDown {     background-image: url(images/desc.png); } table th { width:150px;            border:1px outset gray;            background-color:#3C78B5;            color:White;            cursor:pointer; } table thead th:hover { background-color:Yellow; color:Black;} table td { width:150px; border:1px solid gray;} PAGINATION AND SORTING Now, when everything is ready and we have the data, lets make pagination and sorting functionalities 1. jQuery Scripts referencing <link href="@Url.Content("~/Content/Site.css")" rel="stylesheet" type="text/css" /> <script src="@Url.Content("~/Scripts/jquery-1.4.4.min.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.tablesorter.js")" type="text/javascript"></script> <script src="@Url.Content("~/Scripts/jquery.tablesorter.pager.js")" type="text/javascript"></script> 2. jQuery Sorting and Pagination script   <script type="text/javascript">     $(function () {         $("table.tablesorter").tablesorter({ widthFixed: true, sortList: [[0, 0]] })         .tablesorterPager({ container: $("#pager"), size: $(".pagesize option:selected").val() });     }); </script> So, with only two lines of code, I’m using both tablesorter and tablesorterPager plugins, giving some options to both these. Options added: tablesorter - widthFixed: true – gives fixed width of the columns tablesorter - sortList[[0,0]] – An array of instructions for per-column sorting and direction in the format: [[columnIndex, sortDirection], ... ] where columnIndex is a zero-based index for your columns left-to-right and sortDirection is 0 for Ascending and 1 for Descending. A valid argument that sorts ascending first by column 1 and then column 2 looks like: [[0,0],[1,0]] (source: http://tablesorter.com/docs/) tablesorterPager – container: $(“#pager”) – tells the pager container, the div with id pager in our case. tablesorterPager – size: the default size of each page, where I get the default value selected, so if you put selected to any other of the options in your select list, you will have this number of rows as default per page for the table too. END RESULTS 1. Table once the page is loaded (default results per page is 5 and is automatically sorted by 1st column as sortList is specified) 2. Sorted by Phone Descending 3. Changed pagination to 10 items per page 4. Sorted by Phone and Name (use SHIFT to sort on multiple columns) 5. Sorted by Date Added 6. Page 3, 5 items per page   ADDITIONAL ENHANCEMENTS We can do additional enhancements to the table. We can make search for each column. I will cover this in one of my next blogs. Stay tuned. DEMO PROJECT You can download demo project source code from HERE.CONCLUSION Once you finish with the demo, run your page and open the source code. You will be amazed of the purity of your code.Working with pagination in client side can be very useful. One of the benefits is performance, but if you have thousands of rows in your tables, you will get opposite result when talking about performance. Hence, sometimes it is nice idea to make pagination on back-end. So, the compromise between both approaches would be best to combine both of them. I use at most up to 500 rows on client-side and once the user reach the last page, we can trigger ajax postback which can get the next 500 rows using server-side pagination of the same data. I would like to recommend the following blog post http://weblogs.asp.net/gunnarpeipman/archive/2010/09/14/returning-paged-results-from-repositories-using-pagedresult-lt-t-gt.aspx, which will help you understand how to return page results from repository. I hope this was helpful post for you. Wait for my next posts ;). Please do let me know your feedback. Best Regards, Hajan

    Read the article

  • SQL Server 2012 - AlwaysOn

    - by Claus Jandausch
    Ich war nicht nur irritiert, ich war sogar regelrecht schockiert - und für einen kurzen Moment sprachlos (was nur selten der Fall ist). Gerade eben hatte mich jemand gefragt "Wann Oracle denn etwas Vergleichbares wie AlwaysOn bieten würde - und ob überhaupt?" War ich hier im falschen Film gelandet? Ich konnte nicht anders, als meinen Unmut kundzutun und zu erklären, dass die Fragestellung normalerweise anders herum läuft. Zugegeben - es mag vielleicht strittige Punkte geben im Vergleich zwischen Oracle und SQL Server - bei denen nicht unbedingt immer Oracle die Nase vorn haben muss - aber das Thema Clustering für Hochverfügbarkeit (HA), Disaster Recovery (DR) und Skalierbarkeit gehört mit Sicherheit nicht dazu. Dieses Erlebnis hakte ich am Nachgang als Einzelfall ab, der so nie wieder vorkommen würde. Bis ich kurz darauf eines Besseren belehrt wurde und genau die selbe Frage erneut zu hören bekam. Diesmal sogar im Exadata-Umfeld und einem Oracle Stretch Cluster. Einmal ist keinmal, doch zweimal ist einmal zu viel... Getreu diesem alten Motto war mir klar, dass man das so nicht länger stehen lassen konnte. Ich habe keine Ahnung, wie die Microsoft Marketing Abteilung es geschafft hat, unter dem AlwaysOn Brading eine innovative Technologie vermuten zu lassen - aber sie hat ihren Job scheinbar gut gemacht. Doch abgesehen von einem guten Marketing, stellt sich natürlich die Frage, was wirklich dahinter steckt und wie sich das Ganze mit Oracle vergleichen lässt - und ob überhaupt? Damit wären wir wieder bei der ursprünglichen Frage angelangt.  So viel zum Hintergrund dieses Blogbeitrags - von meiner Antwort handelt der restliche Blog. "Windows was the God ..." Um den wahren Unterschied zwischen Oracle und Microsoft verstehen zu können, muss man zunächst das bedeutendste Microsoft Dogma kennen. Es lässt sich schlicht und einfach auf den Punkt bringen: "Alles muss auf Windows basieren." Die Überschrift dieses Absatzes ist kein von mir erfundener Ausspruch, sondern ein Zitat. Konkret stammt es aus einem längeren Artikel von Kurt Eichenwald in der Vanity Fair aus dem August 2012. Er lautet Microsoft's Lost Decade und sei jedem ans Herz gelegt, der die "Microsoft-Maschinerie" unter Steve Ballmer und einige ihrer Kuriositäten besser verstehen möchte. "YOU TALKING TO ME?" Microsoft C.E.O. Steve Ballmer bei seiner Keynote auf der 2012 International Consumer Electronics Show in Las Vegas am 9. Januar   Manche Dinge in diesem Artikel mögen überspitzt dargestellt erscheinen - sind sie aber nicht. Vieles davon kannte ich bereits aus eigener Erfahrung und kann es nur bestätigen. Anderes hat sich mir erst so richtig erschlossen. Insbesondere die folgenden Passagen führten zum Aha-Erlebnis: “Windows was the god—everything had to work with Windows,” said Stone... “Every little thing you want to write has to build off of Windows (or other existing roducts),” one software engineer said. “It can be very confusing, …” Ich habe immer schon darauf hingewiesen, dass in einem SQL Server Failover Cluster die Microsoft Datenbank eigentlich nichts Nenneswertes zum Geschehen beiträgt, sondern sich voll und ganz auf das Windows Betriebssystem verlässt. Deshalb muss man auch die Windows Server Enterprise Edition installieren, soll ein Failover Cluster für den SQL Server eingerichtet werden. Denn hier werden die Cluster Services geliefert - nicht mit dem SQL Server. Er ist nur lediglich ein weiteres Server Produkt, für das Windows in Ausfallszenarien genutzt werden kann - so wie Microsoft Exchange beispielsweise, oder Microsoft SharePoint, oder irgendein anderes Server Produkt das auf Windows gehostet wird. Auch Oracle kann damit genutzt werden. Das Stichwort lautet hier: Oracle Failsafe. Nur - warum sollte man das tun, wenn gleichzeitig eine überlegene Technologie wie die Oracle Real Application Clusters (RAC) zur Verfügung steht, die dann auch keine Windows Enterprise Edition voraussetzen, da Oracle die eigene Clusterware liefert. Welche darüber hinaus für kürzere Failover-Zeiten sorgt, da diese Cluster-Technologie Datenbank-integriert ist und sich nicht auf "Dritte" verlässt. Wenn man sich also schon keine technischen Vorteile mit einem SQL Server Failover Cluster erkauft, sondern zusätzlich noch versteckte Lizenzkosten durch die Lizenzierung der Windows Server Enterprise Edition einhandelt, warum hat Microsoft dann in den vergangenen Jahren seit SQL Server 2000 nicht ebenfalls an einer neuen und innovativen Lösung gearbeitet, die mit Oracle RAC mithalten kann? Entwickler hat Microsoft genügend? Am Geld kann es auch nicht liegen? Lesen Sie einfach noch einmal die beiden obenstehenden Zitate und sie werden den Grund verstehen. Anders lässt es sich ja auch gar nicht mehr erklären, dass AlwaysOn aus zwei unterschiedlichen Technologien besteht, die beide jedoch wiederum auf dem Windows Server Failover Clustering (WSFC) basieren. Denn daraus ergeben sich klare Nachteile - aber dazu später mehr. Um AlwaysOn zu verstehen, sollte man sich zunächst kurz in Erinnerung rufen, was Microsoft bisher an HA/DR (High Availability/Desaster Recovery) Lösungen für SQL Server zur Verfügung gestellt hat. Replikation Basiert auf logischer Replikation und Pubisher/Subscriber Architektur Transactional Replication Merge Replication Snapshot Replication Microsoft's Replikation ist vergleichbar mit Oracle GoldenGate. Oracle GoldenGate stellt jedoch die umfassendere Technologie dar und bietet High Performance. Log Shipping Microsoft's Log Shipping stellt eine einfache Technologie dar, die vergleichbar ist mit Oracle Managed Recovery in Oracle Version 7. Das Log Shipping besitzt folgende Merkmale: Transaction Log Backups werden von Primary nach Secondary/ies geschickt Einarbeitung (z.B. Restore) auf jedem Secondary individuell Optionale dritte Server Instanz (Monitor Server) für Überwachung und Alarm Log Restore Unterbrechung möglich für Read-Only Modus (Secondary) Keine Unterstützung von Automatic Failover Database Mirroring Microsoft's Database Mirroring wurde verfügbar mit SQL Server 2005, sah aus wie Oracle Data Guard in Oracle 9i, war funktional jedoch nicht so umfassend. Für ein HA/DR Paar besteht eine 1:1 Beziehung, um die produktive Datenbank (Principle DB) abzusichern. Auf der Standby Datenbank (Mirrored DB) werden alle Insert-, Update- und Delete-Operationen nachgezogen. Modi Synchron (High-Safety Modus) Asynchron (High-Performance Modus) Automatic Failover Unterstützt im High-Safety Modus (synchron) Witness Server vorausgesetzt     Zur Frage der Kontinuität Es stellt sich die Frage, wie es um diesen Technologien nun im Zusammenhang mit SQL Server 2012 bestellt ist. Unter Fanfaren seinerzeit eingeführt, war Database Mirroring das erklärte Mittel der Wahl. Ich bin kein Produkt Manager bei Microsoft und kann hierzu nur meine Meinung äußern, aber zieht man den SQL AlwaysOn Team Blog heran, so sieht es nicht gut aus für das Database Mirroring - zumindest nicht langfristig. "Does AlwaysOn Availability Group replace Database Mirroring going forward?” “The short answer is we recommend that you migrate from the mirroring configuration or even mirroring and log shipping configuration to using Availability Group. Database Mirroring will still be available in the Denali release but will be phased out over subsequent releases. Log Shipping will continue to be available in future releases.” Damit wären wir endlich beim eigentlichen Thema angelangt. Was ist eine sogenannte Availability Group und was genau hat es mit der vielversprechend klingenden Bezeichnung AlwaysOn auf sich?   SQL Server 2012 - AlwaysOn Zwei HA-Features verstekcne sich hinter dem “AlwaysOn”-Branding. Einmal das AlwaysOn Failover Clustering aka SQL Server Failover Cluster Instances (FCI) - zum Anderen die AlwaysOn Availability Groups. Failover Cluster Instances (FCI) Entspricht ungefähr dem Stretch Cluster Konzept von Oracle Setzt auf Windows Server Failover Clustering (WSFC) auf Bietet HA auf Instanz-Ebene AlwaysOn Availability Groups (Verfügbarkeitsgruppen) Ähnlich der Idee von Consistency Groups, wie in Storage-Level Replikations-Software von z.B. EMC SRDF Abhängigkeiten zu Windows Server Failover Clustering (WSFC) Bietet HA auf Datenbank-Ebene   Hinweis: Verwechseln Sie nicht eine SQL Server Datenbank mit einer Oracle Datenbank. Und auch nicht eine Oracle Instanz mit einer SQL Server Instanz. Die gleichen Begriffe haben hier eine andere Bedeutung - nicht selten ein Grund, weshalb Oracle- und Microsoft DBAs schnell aneinander vorbei reden. Denken Sie bei einer SQL Server Datenbank eher an ein Oracle Schema, das kommt der Sache näher. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema. Wenn Sie die genauen Unterschiede kennen möchten, finden Sie eine detaillierte Beschreibung in meinem Buch "Oracle10g Release 2 für Windows und .NET", erhältich bei Lehmanns, Amazon, etc.   Windows Server Failover Clustering (WSFC) Wie man sieht, basieren beide AlwaysOn Technologien wiederum auf dem Windows Server Failover Clustering (WSFC), um einerseits Hochverfügbarkeit auf Ebene der Instanz zu gewährleisten und andererseits auf der Datenbank-Ebene. Deshalb nun eine kurze Beschreibung der WSFC. Die WSFC sind ein mit dem Windows Betriebssystem geliefertes Infrastruktur-Feature, um HA für Server Anwendungen, wie Microsoft Exchange, SharePoint, SQL Server, etc. zu bieten. So wie jeder andere Cluster, besteht ein WSFC Cluster aus einer Gruppe unabhängiger Server, die zusammenarbeiten, um die Verfügbarkeit einer Applikation oder eines Service zu erhöhen. Falls ein Cluster-Knoten oder -Service ausfällt, kann der auf diesem Knoten bisher gehostete Service automatisch oder manuell auf einen anderen im Cluster verfügbaren Knoten transferriert werden - was allgemein als Failover bekannt ist. Unter SQL Server 2012 verwenden sowohl die AlwaysOn Avalability Groups, als auch die AlwaysOn Failover Cluster Instances die WSFC als Plattformtechnologie, um Komponenten als WSFC Cluster-Ressourcen zu registrieren. Verwandte Ressourcen werden in eine Ressource Group zusammengefasst, die in Abhängigkeit zu anderen WSFC Cluster-Ressourcen gebracht werden kann. Der WSFC Cluster Service kann jetzt die Notwendigkeit zum Neustart der SQL Server Instanz erfassen oder einen automatischen Failover zu einem anderen Server-Knoten im WSFC Cluster auslösen.   Failover Cluster Instances (FCI) Eine SQL Server Failover Cluster Instanz (FCI) ist eine einzelne SQL Server Instanz, die in einem Failover Cluster betrieben wird, der aus mehreren Windows Server Failover Clustering (WSFC) Knoten besteht und so HA (High Availability) auf Ebene der Instanz bietet. Unter Verwendung von Multi-Subnet FCI kann auch Remote DR (Disaster Recovery) unterstützt werden. Eine weitere Option für Remote DR besteht darin, eine unter FCI gehostete Datenbank in einer Availability Group zu betreiben. Hierzu später mehr. FCI und WSFC Basis FCI, das für lokale Hochverfügbarkeit der Instanzen genutzt wird, ähnelt der veralteten Architektur eines kalten Cluster (Aktiv-Passiv). Unter SQL Server 2008 wurde diese Technologie SQL Server 2008 Failover Clustering genannt. Sie nutzte den Windows Server Failover Cluster. In SQL Server 2012 hat Microsoft diese Basistechnologie unter der Bezeichnung AlwaysOn zusammengefasst. Es handelt sich aber nach wie vor um die klassische Aktiv-Passiv-Konfiguration. Der Ablauf im Failover-Fall ist wie folgt: Solange kein Hardware-oder System-Fehler auftritt, werden alle Dirty Pages im Buffer Cache auf Platte geschrieben Alle entsprechenden SQL Server Services (Dienste) in der Ressource Gruppe werden auf dem aktiven Knoten gestoppt Die Ownership der Ressource Gruppe wird auf einen anderen Knoten der FCI transferriert Der neue Owner (Besitzer) der Ressource Gruppe startet seine SQL Server Services (Dienste) Die Connection-Anforderungen einer Client-Applikation werden automatisch auf den neuen aktiven Knoten mit dem selben Virtuellen Network Namen (VNN) umgeleitet Abhängig vom Zeitpunkt des letzten Checkpoints, kann die Anzahl der Dirty Pages im Buffer Cache, die noch auf Platte geschrieben werden müssen, zu unvorhersehbar langen Failover-Zeiten führen. Um diese Anzahl zu drosseln, besitzt der SQL Server 2012 eine neue Fähigkeit, die Indirect Checkpoints genannt wird. Indirect Checkpoints ähnelt dem Fast-Start MTTR Target Feature der Oracle Datenbank, das bereits mit Oracle9i verfügbar war.   SQL Server Multi-Subnet Clustering Ein SQL Server Multi-Subnet Failover Cluster entspricht vom Konzept her einem Oracle RAC Stretch Cluster. Doch dies ist nur auf den ersten Blick der Fall. Im Gegensatz zu RAC ist in einem lokalen SQL Server Failover Cluster jeweils nur ein Knoten aktiv für eine Datenbank. Für die Datenreplikation zwischen geografisch entfernten Sites verlässt sich Microsoft auf 3rd Party Lösungen für das Storage Mirroring.     Die Verbesserung dieses Szenario mit einer SQL Server 2012 Implementierung besteht schlicht darin, dass eine VLAN-Konfiguration (Virtual Local Area Network) nun nicht mehr benötigt wird, so wie dies bisher der Fall war. Das folgende Diagramm stellt dar, wie der Ablauf mit SQL Server 2012 gehandhabt wird. In Site A und Site B wird HA jeweils durch einen lokalen Aktiv-Passiv-Cluster sichergestellt.     Besondere Aufmerksamkeit muss hier der Konfiguration und dem Tuning geschenkt werden, da ansonsten völlig inakzeptable Failover-Zeiten resultieren. Dies liegt darin begründet, weil die Downtime auf Client-Seite nun nicht mehr nur von der reinen Failover-Zeit abhängt, sondern zusätzlich von der Dauer der DNS Replikation zwischen den DNS Servern. (Rufen Sie sich in Erinnerung, dass wir gerade von Multi-Subnet Clustering sprechen). Außerdem ist zu berücksichtigen, wie schnell die Clients die aktualisierten DNS Informationen abfragen. Spezielle Konfigurationen für Node Heartbeat, HostRecordTTL (Host Record Time-to-Live) und Intersite Replication Frequeny für Active Directory Sites und Services werden notwendig. Default TTL für Windows Server 2008 R2: 20 Minuten Empfohlene Einstellung: 1 Minute DNS Update Replication Frequency in Windows Umgebung: 180 Minuten Empfohlene Einstellung: 15 Minuten (minimaler Wert)   Betrachtet man diese Werte, muss man feststellen, dass selbst eine optimale Konfiguration die rigiden SLAs (Service Level Agreements) heutiger geschäftskritischer Anwendungen für HA und DR nicht erfüllen kann. Denn dies impliziert eine auf der Client-Seite erlebte Failover-Zeit von insgesamt 16 Minuten. Hierzu ein Auszug aus der SQL Server 2012 Online Dokumentation: Cons: If a cross-subnet failover occurs, the client recovery time could be 15 minutes or longer, depending on your HostRecordTTL setting and the setting of your cross-site DNS/AD replication schedule.    Wir sind hier an einem Punkt unserer Überlegungen angelangt, an dem sich erklärt, weshalb ich zuvor das "Windows was the God ..." Zitat verwendet habe. Die unbedingte Abhängigkeit zu Windows wird zunehmend zum Problem, da sie die Komplexität einer Microsoft-basierenden Lösung erhöht, anstelle sie zu reduzieren. Und Komplexität ist das Letzte, was sich CIOs heutzutage wünschen.  Zur Ehrenrettung des SQL Server 2012 und AlwaysOn muss man sagen, dass derart lange Failover-Zeiten kein unbedingtes "Muss" darstellen, sondern ein "Kann". Doch auch ein "Kann" kann im unpassenden Moment unvorhersehbare und kostspielige Folgen haben. Die Unabsehbarkeit ist wiederum Ursache vieler an der Implementierung beteiligten Komponenten und deren Abhängigkeiten, wie beispielsweise drei Cluster-Lösungen (zwei von Microsoft, eine 3rd Party Lösung). Wie man die Sache auch dreht und wendet, kommt man an diesem Fakt also nicht vorbei - ganz unabhängig von der Dauer einer Downtime oder Failover-Zeiten. Im Gegensatz zu AlwaysOn und der hier vorgestellten Version eines Stretch-Clusters, vermeidet eine entsprechende Oracle Implementierung eine derartige Komplexität, hervorgerufen duch multiple Abhängigkeiten. Den Unterschied machen Datenbank-integrierte Mechanismen, wie Fast Application Notification (FAN) und Fast Connection Failover (FCF). Für Oracle MAA Konfigurationen (Maximum Availability Architecture) sind Inter-Site Failover-Zeiten im Bereich von Sekunden keine Seltenheit. Wenn Sie dem Link zur Oracle MAA folgen, finden Sie außerdem eine Reihe an Customer Case Studies. Auch dies ist ein wichtiges Unterscheidungsmerkmal zu AlwaysOn, denn die Oracle Technologie hat sich bereits zigfach in höchst kritischen Umgebungen bewährt.   Availability Groups (Verfügbarkeitsgruppen) Die sogenannten Availability Groups (Verfügbarkeitsgruppen) sind - neben FCI - der weitere Baustein von AlwaysOn.   Hinweis: Bevor wir uns näher damit beschäftigen, sollten Sie sich noch einmal ins Gedächtnis rufen, dass eine SQL Server Datenbank nicht die gleiche Bedeutung besitzt, wie eine Oracle Datenbank, sondern eher einem Oracle Schema entspricht. So etwas wie die SQL Server Northwind Datenbank ist vergleichbar mit dem Oracle Scott Schema.   Eine Verfügbarkeitsgruppe setzt sich zusammen aus einem Set mehrerer Benutzer-Datenbanken, die im Falle eines Failover gemeinsam als Gruppe behandelt werden. Eine Verfügbarkeitsgruppe unterstützt ein Set an primären Datenbanken (primäres Replikat) und einem bis vier Sets von entsprechenden sekundären Datenbanken (sekundäre Replikate).       Es können jedoch nicht alle SQL Server Datenbanken einer AlwaysOn Verfügbarkeitsgruppe zugeordnet werden. Der SQL Server Spezialist Michael Otey zählt in seinem SQL Server Pro Artikel folgende Anforderungen auf: Verfügbarkeitsgruppen müssen mit Benutzer-Datenbanken erstellt werden. System-Datenbanken können nicht verwendet werden Die Datenbanken müssen sich im Read-Write Modus befinden. Read-Only Datenbanken werden nicht unterstützt Die Datenbanken in einer Verfügbarkeitsgruppe müssen Multiuser Datenbanken sein Sie dürfen nicht das AUTO_CLOSE Feature verwenden Sie müssen das Full Recovery Modell nutzen und es muss ein vollständiges Backup vorhanden sein Eine gegebene Datenbank kann sich nur in einer einzigen Verfügbarkeitsgruppe befinden und diese Datenbank düerfen nicht für Database Mirroring konfiguriert sein Microsoft empfiehl außerdem, dass der Verzeichnispfad einer Datenbank auf dem primären und sekundären Server identisch sein sollte Wie man sieht, eignen sich Verfügbarkeitsgruppen nicht, um HA und DR vollständig abzubilden. Die Unterscheidung zwischen der Instanzen-Ebene (FCI) und Datenbank-Ebene (Availability Groups) ist von hoher Bedeutung. Vor kurzem wurde mir gesagt, dass man mit den Verfügbarkeitsgruppen auf Shared Storage verzichten könne und dadurch Kosten spart. So weit so gut ... Man kann natürlich eine Installation rein mit Verfügbarkeitsgruppen und ohne FCI durchführen - aber man sollte sich dann darüber bewusst sein, was man dadurch alles nicht abgesichert hat - und dies wiederum für Desaster Recovery (DR) und SLAs (Service Level Agreements) bedeutet. Kurzum, um die Kombination aus beiden AlwaysOn Produkten und der damit verbundene Komplexität kommt man wohl in der Praxis nicht herum.    Availability Groups und WSFC AlwaysOn hängt von Windows Server Failover Clustering (WSFC) ab, um die aktuellen Rollen der Verfügbarkeitsreplikate einer Verfügbarkeitsgruppe zu überwachen und zu verwalten, und darüber zu entscheiden, wie ein Failover-Ereignis die Verfügbarkeitsreplikate betrifft. Das folgende Diagramm zeigt de Beziehung zwischen Verfügbarkeitsgruppen und WSFC:   Der Verfügbarkeitsmodus ist eine Eigenschaft jedes Verfügbarkeitsreplikats. Synychron und Asynchron können also gemischt werden: Availability Modus (Verfügbarkeitsmodus) Asynchroner Commit-Modus Primäres replikat schließt Transaktionen ohne Warten auf Sekundäres Synchroner Commit-Modus Primäres Replikat wartet auf Commit von sekundärem Replikat Failover Typen Automatic Manual Forced (mit möglichem Datenverlust) Synchroner Commit-Modus Geplanter, manueller Failover ohne Datenverlust Automatischer Failover ohne Datenverlust Asynchroner Commit-Modus Nur Forced, manueller Failover mit möglichem Datenverlust   Der SQL Server kennt keinen separaten Switchover Begriff wie in Oracle Data Guard. Für SQL Server werden alle Role Transitions als Failover bezeichnet. Tatsächlich unterstützt der SQL Server keinen Switchover für asynchrone Verbindungen. Es gibt nur die Form des Forced Failover mit möglichem Datenverlust. Eine ähnliche Fähigkeit wie der Switchover unter Oracle Data Guard ist so nicht gegeben.   SQL Sever FCI mit Availability Groups (Verfügbarkeitsgruppen) Neben den Verfügbarkeitsgruppen kann eine zweite Failover-Ebene eingerichtet werden, indem SQL Server FCI (auf Shared Storage) mit WSFC implementiert wird. Ein Verfügbarkeitesreplikat kann dann auf einer Standalone Instanz gehostet werden, oder einer FCI Instanz. Zum Verständnis: Die Verfügbarkeitsgruppen selbst benötigen kein Shared Storage. Diese Kombination kann verwendet werden für lokale HA auf Ebene der Instanz und DR auf Datenbank-Ebene durch Verfügbarkeitsgruppen. Das folgende Diagramm zeigt dieses Szenario:   Achtung! Hier handelt es sich nicht um ein Pendant zu Oracle RAC plus Data Guard, auch wenn das Bild diesen Eindruck vielleicht vermitteln mag - denn alle sekundären Knoten im FCI sind rein passiv. Es existiert außerdem eine weitere und ernsthafte Einschränkung: SQL Server Failover Cluster Instanzen (FCI) unterstützen nicht das automatische AlwaysOn Failover für Verfügbarkeitsgruppen. Jedes unter FCI gehostete Verfügbarkeitsreplikat kann nur für manuelles Failover konfiguriert werden.   Lesbare Sekundäre Replikate Ein oder mehrere Verfügbarkeitsreplikate in einer Verfügbarkeitsgruppe können für den lesenden Zugriff konfiguriert werden, wenn sie als sekundäres Replikat laufen. Dies ähnelt Oracle Active Data Guard, jedoch gibt es Einschränkungen. Alle Abfragen gegen die sekundäre Datenbank werden automatisch auf das Snapshot Isolation Level abgebildet. Es handelt sich dabei um eine Versionierung der Rows. Microsoft versuchte hiermit die Oracle MVRC (Multi Version Read Consistency) nachzustellen. Tatsächlich muss man die SQL Server Snapshot Isolation eher mit Oracle Flashback vergleichen. Bei der Implementierung des Snapshot Isolation Levels handelt sich um ein nachträglich aufgesetztes Feature und nicht um einen inhärenten Teil des Datenbank-Kernels, wie im Falle Oracle. (Ich werde hierzu in Kürze einen weiteren Blogbeitrag verfassen, wenn ich mich mit der neuen SQL Server 2012 Core Lizenzierung beschäftige.) Für die Praxis entstehen aus der Abbildung auf das Snapshot Isolation Level ernsthafte Restriktionen, derer man sich für den Betrieb in der Praxis bereits vorab bewusst sein sollte: Sollte auf der primären Datenbank eine aktive Transaktion zu dem Zeitpunkt existieren, wenn ein lesbares sekundäres Replikat in die Verfügbarkeitsgruppe aufgenommen wird, werden die Row-Versionen auf der korrespondierenden sekundären Datenbank nicht sofort vollständig verfügbar sein. Eine aktive Transaktion auf dem primären Replikat muss zuerst abgeschlossen (Commit oder Rollback) und dieser Transaktions-Record auf dem sekundären Replikat verarbeitet werden. Bis dahin ist das Isolation Level Mapping auf der sekundären Datenbank unvollständig und Abfragen sind temporär geblockt. Microsoft sagt dazu: "This is needed to guarantee that row versions are available on the secondary replica before executing the query under snapshot isolation as all isolation levels are implicitly mapped to snapshot isolation." (SQL Storage Engine Blog: AlwaysOn: I just enabled Readable Secondary but my query is blocked?)  Grundlegend bedeutet dies, dass ein aktives lesbares Replikat nicht in die Verfügbarkeitsgruppe aufgenommen werden kann, ohne das primäre Replikat vorübergehend stillzulegen. Da Leseoperationen auf das Snapshot Isolation Transaction Level abgebildet werden, kann die Bereinigung von Ghost Records auf dem primären Replikat durch Transaktionen auf einem oder mehreren sekundären Replikaten geblockt werden - z.B. durch eine lang laufende Abfrage auf dem sekundären Replikat. Diese Bereinigung wird auch blockiert, wenn die Verbindung zum sekundären Replikat abbricht oder der Datenaustausch unterbrochen wird. Auch die Log Truncation wird in diesem Zustant verhindert. Wenn dieser Zustand längere Zeit anhält, empfiehlt Microsoft das sekundäre Replikat aus der Verfügbarkeitsgruppe herauszunehmen - was ein ernsthaftes Downtime-Problem darstellt. Die Read-Only Workload auf den sekundären Replikaten kann eingehende DDL Änderungen blockieren. Obwohl die Leseoperationen aufgrund der Row-Versionierung keine Shared Locks halten, führen diese Operatioen zu Sch-S Locks (Schemastabilitätssperren). DDL-Änderungen durch Redo-Operationen können dadurch blockiert werden. Falls DDL aufgrund konkurrierender Lese-Workload blockiert wird und der Schwellenwert für 'Recovery Interval' (eine SQL Server Konfigurationsoption) überschritten wird, generiert der SQL Server das Ereignis sqlserver.lock_redo_blocked, welches Microsoft zum Kill der blockierenden Leser empfiehlt. Auf die Verfügbarkeit der Anwendung wird hierbei keinerlei Rücksicht genommen.   Keine dieser Einschränkungen existiert mit Oracle Active Data Guard.   Backups auf sekundären Replikaten  Über die sekundären Replikate können Backups (BACKUP DATABASE via Transact-SQL) nur als copy-only Backups einer vollständigen Datenbank, Dateien und Dateigruppen erstellt werden. Das Erstellen inkrementeller Backups ist nicht unterstützt, was ein ernsthafter Rückstand ist gegenüber der Backup-Unterstützung physikalischer Standbys unter Oracle Data Guard. Hinweis: Ein möglicher Workaround via Snapshots, bleibt ein Workaround. Eine weitere Einschränkung dieses Features gegenüber Oracle Data Guard besteht darin, dass das Backup eines sekundären Replikats nicht ausgeführt werden kann, wenn es nicht mit dem primären Replikat kommunizieren kann. Darüber hinaus muss das sekundäre Replikat synchronisiert sein oder sich in der Synchronisation befinden, um das Beackup auf dem sekundären Replikat erstellen zu können.   Vergleich von Microsoft AlwaysOn mit der Oracle MAA Ich komme wieder zurück auf die Eingangs erwähnte, mehrfach an mich gestellte Frage "Wann denn - und ob überhaupt - Oracle etwas Vergleichbares wie AlwaysOn bieten würde?" und meine damit verbundene (kurze) Irritation. Wenn Sie diesen Blogbeitrag bis hierher gelesen haben, dann kennen Sie jetzt meine darauf gegebene Antwort. Der eine oder andere Punkt traf dabei nicht immer auf Jeden zu, was auch nicht der tiefere Sinn und Zweck meiner Antwort war. Wenn beispielsweise kein Multi-Subnet mit im Spiel ist, sind alle diesbezüglichen Kritikpunkte zunächst obsolet. Was aber nicht bedeutet, dass sie nicht bereits morgen schon wieder zum Thema werden könnten (Sag niemals "Nie"). In manch anderes Fettnäpfchen tritt man wiederum nicht unbedingt in einer Testumgebung, sondern erst im laufenden Betrieb. Erst recht nicht dann, wenn man sich potenzieller Probleme nicht bewusst ist und keine dedizierten Tests startet. Und wer AlwaysOn erfolgreich positionieren möchte, wird auch gar kein Interesse daran haben, auf mögliche Schwachstellen und den besagten Teufel im Detail aufmerksam zu machen. Das ist keine Unterstellung - es ist nur menschlich. Außerdem ist es verständlich, dass man sich in erster Linie darauf konzentriert "was geht" und "was gut läuft", anstelle auf das "was zu Problemen führen kann" oder "nicht funktioniert". Wer will schon der Miesepeter sein? Für mich selbst gesprochen, kann ich nur sagen, dass ich lieber vorab von allen möglichen Einschränkungen wissen möchte, anstelle sie dann nach einer kurzen Zeit der heilen Welt schmerzhaft am eigenen Leib erfahren zu müssen. Ich bin davon überzeugt, dass es Ihnen nicht anders geht. Nachfolgend deshalb eine Zusammenfassung all jener Punkte, die ich im Vergleich zur Oracle MAA (Maximum Availability Architecture) als unbedingt Erwähnenswert betrachte, falls man eine Evaluierung von Microsoft AlwaysOn in Betracht zieht. 1. AlwaysOn ist eine komplexe Technologie Der SQL Server AlwaysOn Stack ist zusammengesetzt aus drei verschiedenen Technlogien: Windows Server Failover Clustering (WSFC) SQL Server Failover Cluster Instances (FCI) SQL Server Availability Groups (Verfügbarkeitsgruppen) Man kann eine derartige Lösung nicht als nahtlos bezeichnen, wofür auch die vielen von Microsoft dargestellten Einschränkungen sprechen. Während sich frühere SQL Server Versionen in Richtung eigener HA/DR Technologien entwickelten (wie Database Mirroring), empfiehlt Microsoft nun die Migration. Doch weshalb dieser Schwenk? Er führt nicht zu einem konsisten und robusten Angebot an HA/DR Technologie für geschäftskritische Umgebungen.  Liegt die Antwort in meiner These begründet, nach der "Windows was the God ..." noch immer gilt und man die Nachteile der allzu engen Kopplung mit Windows nicht sehen möchte? Entscheiden Sie selbst ... 2. Failover Cluster Instanzen - Kein RAC-Pendant Die SQL Server und Windows Server Clustering Technologie basiert noch immer auf dem veralteten Aktiv-Passiv Modell und führt zu einer Verschwendung von Systemressourcen. In einer Betrachtung von lediglich zwei Knoten erschließt sich auf Anhieb noch nicht der volle Mehrwert eines Aktiv-Aktiv Clusters (wie den Real Application Clusters), wie er von Oracle bereits vor zehn Jahren entwickelt wurde. Doch kennt man die Vorzüge der Skalierbarkeit durch einfaches Hinzufügen weiterer Cluster-Knoten, die dann alle gemeinsam als ein einziges logisches System zusammenarbeiten, versteht man was hinter dem Motto "Pay-as-you-Grow" steckt. In einem Aktiv-Aktiv Cluster geht es zwar auch um Hochverfügbarkeit - und ein Failover erfolgt zudem schneller, als in einem Aktiv-Passiv Modell - aber es geht eben nicht nur darum. An dieser Stelle sei darauf hingewiesen, dass die Oracle 11g Standard Edition bereits die Nutzung von Oracle RAC bis zu vier Sockets kostenfrei beinhaltet. Möchten Sie dazu Windows nutzen, benötigen Sie keine Windows Server Enterprise Edition, da Oracle 11g die eigene Clusterware liefert. Sie kommen in den Genuss von Hochverfügbarkeit und Skalierbarkeit und können dazu die günstigere Windows Server Standard Edition nutzen. 3. SQL Server Multi-Subnet Clustering - Abhängigkeit zu 3rd Party Storage Mirroring  Die SQL Server Multi-Subnet Clustering Architektur unterstützt den Aufbau eines Stretch Clusters, basiert dabei aber auf dem Aktiv-Passiv Modell. Das eigentlich Problematische ist jedoch, dass man sich zur Absicherung der Datenbank auf 3rd Party Storage Mirroring Technologie verlässt, ohne Integration zwischen dem Windows Server Failover Clustering (WSFC) und der darunterliegenden Mirroring Technologie. Wenn nun im Cluster ein Failover auf Instanzen-Ebene erfolgt, existiert keine Koordination mit einem möglichen Failover auf Ebene des Storage-Array. 4. Availability Groups (Verfügbarkeitsgruppen) - Vier, oder doch nur Zwei? Ein primäres Replikat erlaubt bis zu vier sekundäre Replikate innerhalb einer Verfügbarkeitsgruppe, jedoch nur zwei im Synchronen Commit Modus. Während dies zwar einen Vorteil gegenüber dem stringenten 1:1 Modell unter Database Mirroring darstellt, fällt der SQL Server 2012 damit immer noch weiter zurück hinter Oracle Data Guard mit bis zu 30 direkten Stanbdy Zielen - und vielen weiteren durch kaskadierende Ziele möglichen. Damit eignet sich Oracle Active Data Guard auch für die Bereitstellung einer Reader-Farm Skalierbarkeit für Internet-basierende Unternehmen. Mit AwaysOn Verfügbarkeitsgruppen ist dies nicht möglich. 5. Availability Groups (Verfügbarkeitsgruppen) - kein asynchrones Switchover  Die Technologie der Verfügbarkeitsgruppen wird auch als geeignetes Mittel für administrative Aufgaben positioniert - wie Upgrades oder Wartungsarbeiten. Man muss sich jedoch einem gravierendem Defizit bewusst sein: Im asynchronen Verfügbarkeitsmodus besteht die einzige Möglichkeit für Role Transition im Forced Failover mit Datenverlust! Um den Verlust von Daten durch geplante Wartungsarbeiten zu vermeiden, muss man den synchronen Verfügbarkeitsmodus konfigurieren, was jedoch ernstzunehmende Auswirkungen auf WAN Deployments nach sich zieht. Spinnt man diesen Gedanken zu Ende, kommt man zu dem Schluss, dass die Technologie der Verfügbarkeitsgruppen für geplante Wartungsarbeiten in einem derartigen Umfeld nicht effektiv genutzt werden kann. 6. Automatisches Failover - Nicht immer möglich Sowohl die SQL Server FCI, als auch Verfügbarkeitsgruppen unterstützen automatisches Failover. Möchte man diese jedoch kombinieren, wird das Ergebnis kein automatisches Failover sein. Denn ihr Zusammentreffen im Failover-Fall führt zu Race Conditions (Wettlaufsituationen), weshalb diese Konfiguration nicht länger das automatische Failover zu einem Replikat in einer Verfügbarkeitsgruppe erlaubt. Auch hier bestätigt sich wieder die tiefere Problematik von AlwaysOn, mit einer Zusammensetzung aus unterschiedlichen Technologien und der Abhängigkeit zu Windows. 7. Problematische RTO (Recovery Time Objective) Microsoft postioniert die SQL Server Multi-Subnet Clustering Architektur als brauchbare HA/DR Architektur. Bedenkt man jedoch die Problematik im Zusammenhang mit DNS Replikation und den möglichen langen Wartezeiten auf Client-Seite von bis zu 16 Minuten, sind strenge RTO Anforderungen (Recovery Time Objectives) nicht erfüllbar. Im Gegensatz zu Oracle besitzt der SQL Server keine Datenbank-integrierten Technologien, wie Oracle Fast Application Notification (FAN) oder Oracle Fast Connection Failover (FCF). 8. Problematische RPO (Recovery Point Objective) SQL Server ermöglicht Forced Failover (erzwungenes Failover), bietet jedoch keine Möglichkeit zur automatischen Übertragung der letzten Datenbits von einem alten zu einem neuen primären Replikat, wenn der Verfügbarkeitsmodus asynchron war. Oracle Data Guard hingegen bietet diese Unterstützung durch das Flush Redo Feature. Dies sichert "Zero Data Loss" und beste RPO auch in erzwungenen Failover-Situationen. 9. Lesbare Sekundäre Replikate mit Einschränkungen Aufgrund des Snapshot Isolation Transaction Level für lesbare sekundäre Replikate, besitzen diese Einschränkungen mit Auswirkung auf die primäre Datenbank. Die Bereinigung von Ghost Records auf der primären Datenbank, wird beeinflusst von lang laufenden Abfragen auf der lesabaren sekundären Datenbank. Die lesbare sekundäre Datenbank kann nicht in die Verfügbarkeitsgruppe aufgenommen werden, wenn es aktive Transaktionen auf der primären Datenbank gibt. Zusätzlich können DLL Änderungen auf der primären Datenbank durch Abfragen auf der sekundären blockiert werden. Und imkrementelle Backups werden hier nicht unterstützt.   Keine dieser Restriktionen existiert unter Oracle Data Guard.

    Read the article

  • Why should you choose Oracle WebLogic 12c instead of JBoss EAP 6?

    - by Ricardo Ferreira
    In this post, I will cover some technical differences between Oracle WebLogic 12c and JBoss EAP 6, which was released a couple days ago from Red Hat. This article claims to help you in the evaluation of key points that you should consider when choosing for an Java EE application server. In the following sections, I will present to you some important aspects that most customers ask us when they are seriously evaluating for an middleware infrastructure, specially if you are considering JBoss for some reason. I would suggest that you keep the following question in mind while you are reading the points: "Why should I choose JBoss instead of WebLogic?" 1) Multi Datacenter Deployment and Clustering - D/R ("Disaster & Recovery") architecture support is embedded on the WebLogic Server 12c product. JBoss EAP 6 on the other hand has no direct D/R support included, Red Hat relies on third-part tools with higher prices. When you consider a middleware solution to host your business critical application, you should worry with every architectural aspect that are related with the solution. Fail-over support is one little aspect of a truly reliable solution. If you do not worry about D/R, your solution will not be reliable. Having said that, with Red Hat and JBoss EAP 6, you have this extra cost that will increase considerably the total cost of ownership of the solution. As we commonly hear from analysts, open-source are not so cheaper when you start seeing the big picture. - WebLogic Server 12c supports advanced LAN clustering, detection of death servers and have a common alert framework. JBoss EAP 6 on the other hand has limited LAN clustering support with no server death detection. They do not generate any alerts when servers goes down (only if you buy JBoss ON which is a separated technology, but until now does not support JBoss EAP 6) and manual intervention are required when servers goes down. In most cases, admin people must rely on "kill -9", "tail -f someFile.log" and "ps ax | grep java" commands to manage failures and clustering anomalies. - WebLogic Server 12c supports the concept of Node Manager, which is a separated process that runs on the physical | virtual servers that allows extend the administration of the cluster to WebLogic managed servers that are often distributed across multiple machines and geographic locations. JBoss EAP 6 on the other hand has no equivalent technology. Whole server instances must be managed individually. - WebLogic Server 12c Node Manager supports Coherence to boost performance when managing servers. JBoss EAP 6 on the other hand has no similar technology. There is no way to coordinate JBoss and infiniband instances provided by JBoss using high throughput and low latency protocols like InfiniBand. The Node Manager feature also allows another very important feature that JBoss EAP lacks: secure the administration. When using WebLogic Node Manager, all the administration tasks are sent to the managed servers in a secure tunel protected by a certificate, which means that the transport layer that separates the WebLogic administration console from the managed servers are secured by SSL. - WebLogic Server 12c are now integrated with OTD ("Oracle Traffic Director") which is a web server technology derived from the former Sun iPlanet Web Server. This software complements the web server support offered by OHS ("Oracle HTTP Server"). Using OTD, WebLogic instances are load-balanced by a high powerful software that knows how to handle SDP ("Socket Direct Protocol") over InfiniBand, which boost performance when used with engineered systems technologies like Oracle Exalogic Elastic Cloud. JBoss EAP 6 on the other hand only offers support to Apache Web Server with custom modules created to deal with JBoss clusters, but only across standard TCP/IP networks.  2) Application and Runtime Diagnostics - WebLogic Server 12c have diagnostics capabilities embedded on the server called WLDF ("WebLogic Diagnostic Framework") so there is no need to rely on third-part tools. JBoss EAP 6 on the other hand has no diagnostics capabilities. Their only diagnostics tool is the log generated by the application server. Admin people are encouraged to analyse thousands of log lines to find out what is going on. - WebLogic Server 12c complement WLDF with JRockit MC ("Mission Control"), which provides to administrators and developers a complete insight about the JVM performance, behavior and possible bottlenecks. WebLogic Server 12c also have an classloader analysis tool embedded, and even a log analyzer tool that enables administrators and developers to view logs of multiple servers at the same time. JBoss EAP 6 on the other hand relies on third-part tools to do something similar. Again, only log searching are offered to find out whats going on. - WebLogic Server 12c offers end-to-end traceability and monitoring available through Oracle EM ("Enterprise Manager"), including monitoring of business transactions that flows through web servers, ESBs, application servers and database servers, all of this with high deep JVM analysis and diagnostics. JBoss EAP 6 on the other hand, even using JBoss ON ("Operations Network"), which is a separated technology, does not support those features. Red Hat relies on third-part tools to provide direct Oracle database traceability across JVMs. One of those tools are Oracle EM for non-Oracle middleware that manage JBoss, Tomcat, Websphere and IIS transparently. - WebLogic Server 12c with their JRockit support offers a tool called JRockit Flight Recorder, which can give developers a complete visibility of a certain period of application production monitoring with zero extra overhead. This automatic recording allows you to deep analyse threads latency, memory leaks, thread contention, resource utilization, stack overflow damages and GC ("Garbage Collection") cycles, to observe in real time stop-the-world phenomenons, generational, reference count and parallel collects and mutator threads analysis. JBoss EAP 6 don't even dream to support something similar, even because they don't have their own JVM. 3) Application Server Administration - WebLogic Server 12c offers a complete administration console complemented with scripting and macro-like recording capabilities. A single WebLogic console can managed up to hundreds of WebLogic servers belonging to the same domain. JBoss EAP 6 on the other hand has a limited console and provides a XML centric administration. JBoss, after ten years, started the development of a rudimentary centralized administration that still leave a lot of administration tasks aside, so admin people and developers must touch scripts and XML configuration files for most advanced and even simple administration tasks. This lead applications to error prone and risky deployments. Even using JBoss ON, JBoss EAP are not able to offer decent administration features for admin people which must be high skilled in JBoss internal architecture and its managing capabilities. - Oracle EM is available to manage multiple domains, databases, application servers, operating systems and virtualization, with a complete end-to-end visibility. JBoss ON does not provide management capabilities across the complete architecture, only basic monitoring. Even deployment must be done aside JBoss ON which does no integrate well with others softwares than JBoss. Until now, JBoss ON does not supports JBoss EAP 6, so even their minimal support for JBoss are not available for JBoss EAP 6 leaving customers uncovered and subject to high skilled JBoss admin people. - WebLogic Server 12c has the same administration model whatever is the topology selected by the customer. JBoss EAP 6 on the other hand differentiates between two operational models: standalone-mode and domain-mode, that are not consistent with each other. Depending on the mode used, the administration skill is different. - WebLogic Server 12c has no point-of-failures processes, and it does not need to define any specialized server. Domain model in WebLogic is available for years (at least ten years or more) and is production proven. JBoss EAP 6 on the other hand needs special processes to garantee JBoss integrity, the PC ("Process-Controller") and the HC ("Host-Controller"). Different from WebLogic, the domain model in JBoss is quite new (one year at tops) of maturity, and need to mature considerably until start doing things like WebLogic domain model does. - WebLogic Server 12c supports parallel deployment model which enables some artifacts being deployed at the same time. JBoss EAP 6 on the other hand does not have any similar feature. Every deployment are done atomically in the containers. This means that if you have a huge EAR (an EAR of 120 MB of size for instance) and deploy onto JBoss EAP 6, this EAR will take some minutes in order to starting accept thread requests. The same EAR deployed onto WebLogic Server 12c will reduce the deployment time at least in 2X compared to JBoss. 4) Support and Upgrades - WebLogic Server 12c has patch management available. JBoss EAP 6 on the other hand has no patch management available, each JBoss EAP instance should be patched manually. To achieve such feature, you need to buy a separated technology called JBoss ON ("Operations Network") that manage this type of stuff. But until now, JBoss ON does not support JBoss EAP 6 so, in practice, JBoss EAP 6 does not have this feature. - WebLogic Server 12c supports previuous WebLogic domains without any reconfiguration since its kernel is robust and mature since its creation in 1995. JBoss EAP 6 on the other hand has a proven lack of supportability between JBoss AS 4, 5, 6 and 7. Different kernels and messaging engines were implemented in JBoss stack in the last five years reveling their incapacity to create a well architected and proven middleware technology. - WebLogic Server 12c has patch prescription based on customer configuration. JBoss EAP 6 on the other hand has no such capability. People need to create ticket supports and have their installations revised by Red Hat support guys to gain some patch prescription from them. - Oracle WebLogic Server independent of the version has 8 years of support of new patches and has lifetime release of existing patches beyond that. JBoss EAP 6 on the other hand provides patches for a specific application server version up to 5 years after the release date. JBoss EAP 4 and previous versions had only 4 years. A good question that Red Hat will argue to answer is: "what happens when you find issues after year 5"?  5) RAC ("Real Application Clusters") Support - WebLogic Server 12c ships with a specific JDBC driver to leverage Oracle RAC clustering capabilities (Fast-Application-Notification, Transaction Affinity, Fast-Connection-Failover, etc). Oracle JDBC thin driver are also available. JBoss EAP 6 on the other hand ships only the standard Oracle JDBC thin driver. Load balancing with Oracle RAC are not supported. Manual intervention in case of planned or unplanned RAC downtime are necessary. In JBoss EAP 6, situation does not reestablish automatically after downtime. - WebLogic Server 12c has a feature called Active GridLink for Oracle RAC which provides up to 3X performance on OLTP applications. This seamless integration between WebLogic and Oracle database enable more value added to critical business applications leveraging their investments in Oracle database technology and Oracle middleware. JBoss EAP 6 on the other hand has no performance gains at all, even when admin people implement some kind of connection-pooling tuning. - WebLogic Server 12c also supports transaction and web session affinity to the Oracle RAC, which provides aditional gains of performance. This is particularly interesting if you are creating a reliable solution that are distributed not only in an LAN cluster, but into a different data center. JBoss EAP 6 on the other hand has no such support. 6) Standards and Technology Support - WebLogic Server 12c is fully Java EE 6 compatible and production ready since december of 2011. JBoss EAP 6 on the other hand became fully compatible with Java EE 6 only in the community version after three months, and production ready only in a few days considering that this article was written in June of 2012. Red Hat says that they are the masters of innovation and technology proliferation, but compared with Oracle and even other proprietary vendors like IBM, they historically speaking are lazy to deliver the most newest technologies and standards adherence. - Oracle is the steward of Java, driving innovation into the platform from commercial and open-source vendors. Red Hat on the other hand does not have its own JVM and relies on third-part JVMs to complete their application server offer. 95% of Red Hat customers are using Oracle HotSpot as JVM, which means that without Oracle involvement, their support are limited exclusively to the application server layer and we all know that most problems are happens in the JVM layer. - WebLogic Server 12c supports natively JDK 7, which empower developers to explore the maximum of the Java platform productivity when writing code. This feature differentiate WebLogic from others application servers (except GlassFish that are also managed by Oracle) because the usage of JDK 7 introduce such remarkable productivity features like the "try-with-resources" enhancement, catching multiple exceptions with one try block, Strings in the switch statements, JVM improvements in terms of JDBC, I/O, networking, security, concurrency and of course, the most important feature of Java 7: native support for multiple non-Java languages. More features regarding JDK 7 can be found here. JBoss EAP 6 on the other hand does not support JDK 7 officially, they comment in their community version that "Java SE 7 can be used with JBoss 7" which does not gives you any guarantees of enterprise support for JDK 7. - Oracle WebLogic Server 12c supports integration with Spring framework allowing Spring applications to use WebLogic special transaction manager, exposing bean interfaces to WebLogic MBeans to take advantage of all WebLogic monitoring and administration advantages. JBoss EAP 6 on the other hand has no special integration with Spring. In fact, Red Hat offers a suspicious package called "JBoss Web Platform" that in theory supports Spring, but in practice this package does not offers any special integration. It is just a facility for Red Hat customers to have support from both JBoss and Spring technology using the same customer support. 7) Lightweight Development - Oracle WebLogic Server 12c and Oracle GlassFish are completely integrated and can share applications without any modifications. Starting with the 12c version, WebLogic now understands natively GlassFish deployment descriptors and specific configurations in order to offer you a truly and reliable migration path from a community Java EE application server to a enterprise middleware product like WebLogic. JBoss EAP 6 on the other hand has no support to natively reuse an existing (or still in development) application from JBoss AS community server. Users of JBoss suffer of critical issues during deployment time that includes: changing the libraries and dependencies of the application, patching the DTD or XSD deployment descriptors, refactoring of the application layers due classloading issues and anomalies, rebuilding of persistence, business and web layers due issues with "usage of the certified version of an certain dependency" or "frameworks that Red Hat potentially does not recommend" etc. If you have the culture or enterprise IT directive of developing Java EE applications using community middleware to in a certain future, transition to enterprise (supported by a vendor) middleware, Oracle WebLogic plus Oracle GlassFish offers you a more sustainable solution. - WebLogic Server 12c has a very light ZIP distribution (less than 165 MB). JBoss EAP 6 ZIP size is around 130 MB, together with JBoss ON you have more 100 MB resulting in a higher download footprint. This is particularly interesting if you plan to use automated setup of application server instances (for example, to rapidly setup a development or staging environment) using Maven or Hudson. - WebLogic Server 12c has a complete integration with Maven allowing developers to setup WebLogic domains with few commands. Tasks like downloading WebLogic, installation, domain creation, data sources deployment are completely integrated. JBoss EAP 6 on the other hand has a limited offer integration with those tools.  - WebLogic Server 12c has a startup mode called WLX that turns-off EJB, JMS and JCA containers leaving enabled only the web container with Java EE 6 web profile. JBoss EAP 6 on the other hand has no such feature, you need to disable manually the containers that you do not want to use. - WebLogic Server 12c supports fastswap, which enables you to change classes without redeployment. This is particularly interesting if you are developing patches for the application that is already deployed and you do not want to redeploy the entire application. This is the same behavior that most application servers offers to JSP pages, but with WebLogic Server 12c, you have the same feature for Java classes in general. JBoss EAP 6 on the other hand has no such support. Even JBoss EAP 5 does not support this until now. 8) JMS and Messaging - WebLogic Server 12c has a proven and high scalable JMS implementation since its initial release in 1995. JBoss EAP 6 on the other hand has a still immature technology called HornetQ, which was introduced in JBoss EAP 5 replacing everything that was implemented in the previous versions. Red Hat loves to introduce new technologies across JBoss versions, playing around with customers and their investments. And when they are asked about why they have changed the implementation and caused such a mess, their answer is always: "the previous implementation was inadequate and not aligned with the community strategy so we are creating a new a improved one". This Red Hat practice leads to uncomfortable investments that in a near future (sometimes less than a year) will be affected in someway. - WebLogic Server 12c has troubleshooting and monitoring features included on the WebLogic console and WLDF. JBoss EAP 6 on the other hand has no direct monitoring on the console, activity is reflected only on the logs, no debug logs available in case of JMS issues. - WebLogic Server 12c has extremely good performance and scalability. JBoss EAP 6 on the other hand has a JMS storage mechanism relying on Oracle database or MySQL. This means that if an issue in production happens and Red Hat affirms that an performance issue is happening due to database problems, they will not support you on the performance issue. They will orient you to call Oracle instead. - WebLogic Server 12c supports messaging enterprise features like SAF ("Store and Forward"), Distributed Queues/Topics and Foreign JMS providers support that leverage JMS implementations without compromise developer code making things completely transparent. JBoss EAP 6 on the other hand do not even dream to support such features. 9) Caching and Grid - Coherence, which is the leading and most mature data grid technology from Oracle, is available since early 2000 and was integrated with WebLogic in 2009. Coherence and WebLogic clusters can be both managed from WebLogic administrative console. Even Node Manager supports Coherence. JBoss on the other hand discontinued JBoss Cache, which was their caching implementation just like they did with the messaging implementation (JBossMQ) which was a issue for long term customers. JBoss EAP 6 ships InfiniSpan version 1.0 which is immature and lack a proven record of successful cases and reliability. - WebLogic Server 12c has a feature called ActiveCache which uses Coherence to, without any code changes, replicate HTTP sessions from both WebLogic and other application servers like JBoss, Tomcat, Websphere, GlassFish and even Microsoft IIS. JBoss EAP 6 on the other hand does have such support and even when they do in the future, they probably will support only their own application server. - Coherence can be used to manage both L1 and L2 cache levels, providing support to Oracle TopLink and others JPA compliant implementations, even Hibernate. JBoss EAP 6 and Infinispan on the other hand supports only Hibernate. And most important of all: Infinispan does not have any successful case of L1 or L2 caching level support using Hibernate, which lead us to reflect about its viability. 10) Performance - WebLogic Server 12c is certified with Oracle Exalogic Elastic Cloud and can run unchanged applications at this engineered system. This approach can benefit customers from Exalogic optimization's of both kernel and JVM layers to boost performance in terms of 10X for web, OLTP, JMS and grid applications. JBoss EAP 6 on the other hand has no investment on engineered systems: customers do not have the choice to deploy on a Java ultra fast system if their project becomes relevant and performance issues are detected. - WebLogic Server 12c maintains a performance gain across each new release: starting on WebLogic 5.1, the overall performance gain has been close to 4X, which close to a 20% gain release by release. JBoss on the other hand does not provide SPECJAppServer or SPECJEnterprise performance benchmarks. Their so called "performance gains" remains hidden in their customer environments, which lead us to think if it is true or not since we will never get access to those environments. - WebLogic Server 12c has industry performance benchmarks with submissions across platforms and configurations leading SPECJ. Oracle WebLogic leads SPECJAppServer performance in multiple categories, fitting all customer topologies like: dual-node, single-node, multi-node and multi-node with RAC. JBoss... again, does not provide any SPECJAppServer performance benchmarks. - WebLogic Server 12c has a feature called work manager which allows your application to embrace new performance levels based on critical resource utilization of the CPUs usage. Work managers prioritizes work and allocates threads based on an execution model that takes into account administrator-defined parameters and actual run-time performance and throughput. JBoss EAP 6 on the other hand has no compared feature and probably they never will. Not supporting such feature like work managers, JBoss EAP 6 forces admin people and specially developers to uncover performance gains in a intrusive way, rewriting the code and doing performance refactorings. 11) Professional Services Support - WebLogic Server 12c and any other technology sold by Oracle give customers the possibility of hire OCS ("Oracle Consulting Services") to manage critical scenarios, deployment assistance of new applications, high skilled consultancy of architecture, best practices and people allocation together with customer teams. All OCS services are available without any restrictions, having the customer bought software from Oracle or just starting their implementation before any acquisition. JBoss EAP 6 or Red Hat to be more specifically, only offers professional services if you buy subscriptions from them. If you are developing a new critical application for your business and need the help of Red Hat for a serious issue or architecture decision, they will probably say: "OK... I can help you but after you buy subscriptions from me". Red Hat also does not allows their professional services consultants to manage environments that uses community based software. They will probably force you to first buy a subscription, download their "enterprise" version and them, optionally hire their consultants. - Oracle provides you our university to educate your team into our technologies, including of course specialized trainings of WebLogic application server. At any time and location, you can hire Oracle to train your team so you get trustful knowledge according to your specific needs. Certifications for the products are also available if your technical people desire to differentiate themselves as professionals. Red Hat on the other hand have a limited pool of resources to train your team in their technologies. Basically they are selling training and certification for RHEL ("Red Hat Enterprise Linux") but if you demand more specialized training in JBoss middleware, they will probably connect you to some "certified" partner localized training since they are apparently discontinuing their education center, at least here in Brazil. They were not able to reproduce their success with RHEL education to their middleware division since they need first sell the subscriptions to after gives you specialized training. And again, they only offer you specialized training based on their enterprise version (EAP in the case of JBoss) which means that the courses will be a quite outdated. There are reports of developers that took official training's from Red Hat at this year (2012) and in a certain JBoss advanced course, Red Hat supposedly covered JBossMQ as the messaging subsystem, and even the printed material provided was based on JBossMQ since the training was created for JBoss EAP 4.3. 12) Encouraging Transparency without Ulterior Motives - WebLogic Server 12c like any other software from Oracle can be downloaded any time from anywhere, you should only possess an OTN ("Oracle Technology Network") credential and you can download any enterprise software how many times you want. And is not some kind of "trial" version. It is the official binaries that will be running for ever in your data center. Oracle does not encourages the usage of "specific versions" of our software. The binaries you buy from Oracle are the same binaries anyone in the world could download and use for testing and personal education. JBoss EAP 6 on the other hand are not available for download unless you buy a subscription and get access to the Red Hat enterprise repositories. If you need to test, learn or just start creating your application using Red Hat's middleware software, you should download it from the community website. You are not allowed to download the enterprise version that, according to Red Hat are more secure, reliable and robust. But no one of us want to start the development of a software with an unsecured, unreliable and not scalable middleware right? So what you do? You are "invited" by Red Hat to buy subscriptions from them to get access to the "cool" version of the software. - WebLogic Server 12c prices are publicly available in the Oracle website. If you want to know right now how much WebLogic will cost to your organization, just click here and get access to our price list. In the case of WebLogic, check out the "US Oracle Technology Commercial Price List". Oracle also encourages you to get in touch with a sales representative to discuss discounts that would make possible the investment into our technology. But you are not required to do this, only if you are interested in buying our technology or maybe you want to discuss some discount scenarios. JBoss EAP 6 on the other hand does not have its cost publicly available in Red Hat's website or in any other media, at least is not so easy to get such information. The only link you will possibly find in their website is a "Contact a Sales Representative" link. This is not a very good relationship between an customer and an vendor. This is not an example of transparency, mainly when the software are sold as open. In this situations, customers expects to see the software prices publicly available, so they can have the chance to decide, based on the existing features of the software, if the cost is fair or not. Conclusion Oracle WebLogic is the most mature, secure, reliable and scalable Java EE application server of the market, and have a proven record of success around the globe to prove it's majority. Don't lose the chance to discover today how WebLogic could fit your needs and sustain your global IT middleware strategy, no matter if your strategy are completely based on the Cloud or not.

    Read the article

  • Windows Azure: Import/Export Hard Drives, VM ACLs, Web Sockets, Remote Debugging, Continuous Delivery, New Relic, Billing Alerts and More

    - by ScottGu
    Two weeks ago we released a giant set of improvements to Windows Azure, as well as a significant update of the Windows Azure SDK. This morning we released another massive set of enhancements to Windows Azure.  Today’s new capabilities include: Storage: Import/Export Hard Disk Drives to your Storage Accounts HDInsight: General Availability of our Hadoop Service in the cloud Virtual Machines: New VM Gallery, ACL support for VIPs Web Sites: WebSocket and Remote Debugging Support Notification Hubs: Segmented customer push notification support with tag expressions TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services Developer Analytics: New Relic support for Web Sites + Mobile Services Service Bus: Support for partitioned queues and topics Billing: New Billing Alert Service that sends emails notifications when your bill hits a threshold you define All of these improvements are now available to use immediately (note that some features are still in preview).  Below are more details about them. Storage: Import/Export Hard Disk Drives to Windows Azure I am excited to announce the preview of our new Windows Azure Import/Export Service! The Windows Azure Import/Export Service enables you to move large amounts of on-premises data into and out of your Windows Azure Storage accounts. It does this by enabling you to securely ship hard disk drives directly to our Windows Azure data centers. Once we receive the drives we’ll automatically transfer the data to or from your Windows Azure Storage account.  This enables you to import or export massive amounts of data more quickly and cost effectively (and not be constrained by available network bandwidth). Encrypted Transport Our Import/Export service provides built-in support for BitLocker disk encryption – which enables you to securely encrypt data on the hard drives before you send it, and not have to worry about it being compromised even if the disk is lost/stolen in transit (since the content on the transported hard drives is completely encrypted and you are the only one who has the key to it).  The drive preparation tool we are shipping today makes setting up bitlocker encryption on these hard drives easy. How to Import/Export your first Hard Drive of Data You can read our Getting Started Guide to learn more about how to begin using the import/export service.  You can create import and export jobs via the Windows Azure Management Portal as well as programmatically using our Server Management APIs. It is really easy to create a new import or export job using the Windows Azure Management Portal.  Simply navigate to a Windows Azure storage account, and then click the new Import/Export tab now available within it (note: if you don’t have this tab make sure to sign-up for the Import/Export preview): Then click the “Create Import Job” or “Create Export Job” commands at the bottom of it.  This will launch a wizard that easily walks you through the steps required: For more comprehensive information about Import/Export, refer to Windows Azure Storage team blog.  You can also send questions and comments to the [email protected] email address. We think you’ll find this new service makes it much easier to move data into and out of Windows Azure, and it will dramatically cut down the network bandwidth required when working on large data migration projects.  We hope you like it. HDInsight: 100% Compatible Hadoop Service in the Cloud Last week we announced the general availability release of Windows Azure HDInsight. HDInsight is a 100% compatible Hadoop service that allows you to easily provision and manage Hadoop clusters for big data processing in Windows Azure.  This release is now live in production, backed by an enterprise SLA, supported 24x7 by Microsoft Support, and is ready to use for production scenarios. HDInsight allows you to use Apache Hadoop tools, such as Pig and Hive, to process large amounts of data in Windows Azure Blob Storage. Because data is stored in Windows Azure Blob Storage, you can choose to dynamically create Hadoop clusters only when you need them, and then shut them down when they are no longer required (since you pay only for the time the Hadoop cluster instances are running this provides a super cost effective way to use them).  You can create Hadoop clusters using either the Windows Azure Management Portal (see below) or using our PowerShell and Cross Platform Command line tools: The import/export hard drive support that came out today is a perfect companion service to use with HDInsight – the combination allows you to easily ingest, process and optionally export a limitless amount of data.  We’ve also integrated HDInsight with our Business Intelligence tools, so users can leverage familiar tools like Excel in order to analyze the output of jobs.  You can find out more about how to get started with HDInsight here. Virtual Machines: VM Gallery Enhancements Today’s update of Windows Azure brings with it a new Virtual Machine gallery that you can use to create new VMs in the cloud.  You can launch the gallery by doing New->Compute->Virtual Machine->From Gallery within the Windows Azure Management Portal: The new Virtual Machine Gallery includes some nice enhancements that make it even easier to use: Search: You can now easily search and filter images using the search box in the top-right of the dialog.  For example, simply type “SQL” and we’ll filter to show those images in the gallery that contain that substring. Category Tree-view: Each month we add more built-in VM images to the gallery.  You can continue to browse these using the “All” view within the VM Gallery – or now quickly filter them using the category tree-view on the left-hand side of the dialog.  For example, by selecting “Oracle” in the tree-view you can now quickly filter to see the official Oracle supplied images. MSDN and Supported checkboxes: With today’s update we are also introducing filters that makes it easy to filter out types of images that you may not be interested in. The first checkbox is MSDN: using this filter you can exclude any image that is not part of the Windows Azure benefits for MSDN subscribers (which have highly discounted pricing - you can learn more about the MSDN pricing here). The second checkbox is Supported: this filter will exclude any image that contains prerelease software, so you can feel confident that the software you choose to deploy is fully supported by Windows Azure and our partners. Sort options: We sort gallery images by what we think customers are most interested in, but sometimes you might want to sort using different views. So we’re providing some additional sort options, like “Newest,” to customize the image list for what suits you best. Pricing information: We now provide additional pricing information about images and options on how to cost effectively run them directly within the VM Gallery. The above improvements make it even easier to use the VM Gallery and quickly create launch and run Virtual Machines in the cloud. Virtual Machines: ACL Support for VIPs A few months ago we exposed the ability to configure Access Control Lists (ACLs) for Virtual Machines using Windows PowerShell cmdlets and our Service Management API. With today’s release, you can now configure VM ACLs using the Windows Azure Management Portal as well. You can now do this by clicking the new Manage ACL command in the Endpoints tab of a virtual machine instance: This will enable you to configure an ordered list of permit and deny rules to scope the traffic that can access your VM’s network endpoints. For example, if you were on a virtual network, you could limit RDP access to a Windows Azure virtual machine to only a few computers attached to your enterprise. Or if you weren’t on a virtual network you could alternatively limit traffic from public IPs that can access your workloads: Here is the default behaviors for ACLs in Windows Azure: By default (i.e. no rules specified), all traffic is permitted. When using only Permit rules, all other traffic is denied. When using only Deny rules, all other traffic is permitted. When there is a combination of Permit and Deny rules, all other traffic is denied. Lastly, remember that configuring endpoints does not automatically configure them within the VM if it also has firewall rules enabled at the OS level.  So if you create an endpoint using the Windows Azure Management Portal, Windows PowerShell, or REST API, be sure to also configure your guest VM firewall appropriately as well. Web Sites: Web Sockets Support With today’s release you can now use Web Sockets with Windows Azure Web Sites.  This feature enables you to easily integrate real-time communication scenarios within your web based applications, and is available at no extra charge (it even works with the free tier).  Higher level programming libraries like SignalR and socket.io are also now supported with it. You can enable Web Sockets support on a web site by navigating to the Configure tab of a Web Site, and by toggling Web Sockets support to “on”: Once Web Sockets is enabled you can start to integrate some really cool scenarios into your web applications.  Check out the new SignalR documentation hub on www.asp.net to learn more about some of the awesome scenarios you can do with it. Web Sites: Remote Debugging Support The Windows Azure SDK 2.2 we released two weeks ago introduced remote debugging support for Windows Azure Cloud Services. With today’s Windows Azure release we are extending this remote debugging support to also work with Windows Azure Web Sites. With live, remote debugging support inside of Visual Studio, you are able to have more visibility than ever before into how your code is operating live in Windows Azure. It is now super easy to attach the debugger and quickly see what is going on with your application in the cloud. Remote Debugging of a Windows Azure Web Site using VS 2013 Enabling the remote debugging of a Windows Azure Web Site using VS 2013 is really easy.  Start by opening up your web application’s project within Visual Studio. Then navigate to the “Server Explorer” tab within Visual Studio, and click on the deployed web-site you want to debug that is running within Windows Azure using the Windows Azure->Web Sites node in the Server Explorer.  Then right-click and choose the “Attach Debugger” option on it: When you do this Visual Studio will remotely attach the debugger to the Web Site running within Windows Azure.  The debugger will then stop the web site’s execution when it hits any break points that you have set within your web application’s project inside Visual Studio.  For example, below I set a breakpoint on the “ViewBag.Message” assignment statement within the HomeController of the standard ASP.NET MVC project template.  When I hit refresh on the “About” page of the web site within the browser, the breakpoint was triggered and I am now able to debug the app remotely using Visual Studio: Note above how we can debug variables (including autos/watchlist/etc), as well as use the Immediate and Command Windows. In the debug session above I used the Immediate Window to explore some of the request object state, as well as to dynamically change the ViewBag.Message property.  When we click the the “Continue” button (or press F5) the app will continue execution and the Web Site will render the content back to the browser.  This makes it super easy to debug web apps remotely. Tips for Better Debugging To get the best experience while debugging, we recommend publishing your site using the Debug configuration within Visual Studio’s Web Publish dialog. This will ensure that debug symbol information is uploaded to the Web Site which will enable a richer debug experience within Visual Studio.  You can find this option on the Web Publish dialog on the Settings tab: When you ultimately deploy/run the application in production we recommend using the “Release” configuration setting – the release configuration is memory optimized and will provide the best production performance.  To learn more about diagnosing and debugging Windows Azure Web Sites read our new Troubleshooting Windows Azure Web Sites in Visual Studio guide. Notification Hubs: Segmented Push Notification support with tag expressions In August we announced the General Availability of Windows Azure Notification Hubs - a powerful Mobile Push Notifications service that makes it easy to send high volume push notifications with low latency from any mobile app back-end.  Notification hubs can be used with any mobile app back-end (including ones built using our Mobile Services capability) and can also be used with back-ends that run in the cloud as well as on-premises. Beginning with the initial release, Notification Hubs allowed developers to send personalized push notifications to both individual users as well as groups of users by interest, by associating their devices with tags representing the logical target of the notification. For example, by registering all devices of customers interested in a favorite MLB team with a corresponding tag, it is possible to broadcast one message to millions of Boston Red Sox fans and another message to millions of St. Louis Cardinals fans with a single API call respectively. New support for using tag expressions to enable advanced customer segmentation With today’s release we are adding support for even more advanced customer targeting.  You can now identify customers that you want to send push notifications to by defining rich tag expressions. With tag expressions, you can now not only broadcast notifications to Boston Red Sox fans, but take that segmenting a step farther and reach more granular segments. This opens up a variety of scenarios, for example: Offers based on multiple preferences—e.g. send a game day vegetarian special to users tagged as both a Boston Red Sox fan AND a vegetarian Push content to multiple segments in a single message—e.g. rain delay information only to users who are tagged as either a Boston Red Sox fan OR a St. Louis Cardinal fan Avoid presenting subsets of a segment with irrelevant content—e.g. season ticket availability reminder to users who are tagged as a Boston Red Sox fan but NOT also a season ticket holder To illustrate with code, consider a restaurant chain app that sends an offer related to a Red Sox vs Cardinals game for users in Boston. Devices can be tagged by your app with location tags (e.g. “Loc:Boston”) and interest tags (e.g. “Follows:RedSox”, “Follows:Cardinals”), and then a notification can be sent by your back-end to “(Follows:RedSox || Follows:Cardinals) && Loc:Boston” in order to deliver an offer to all devices in Boston that follow either the RedSox or the Cardinals. This can be done directly in your server backend send logic using the code below: var notification = new WindowsNotification(messagePayload); hub.SendNotificationAsync(notification, "(Follows:RedSox || Follows:Cardinals) && Loc:Boston"); In your expressions you can use all Boolean operators: AND (&&), OR (||), and NOT (!).  Some other cool use cases for tag expressions that are now supported include: Social: To “all my group except me” - group:id && !user:id Events: Touchdown event is sent to everybody following either team or any of the players involved in the action: Followteam:A || Followteam:B || followplayer:1 || followplayer:2 … Hours: Send notifications at specific times. E.g. Tag devices with time zone and when it is 12pm in Seattle send to: GMT8 && follows:thaifood Versions and platforms: Send a reminder to people still using your first version for Android - version:1.0 && platform:Android For help on getting started with Notification Hubs, visit the Notification Hub documentation center.  Then download the latest NuGet package (or use the Notification Hubs REST APIs directly) to start sending push notifications using tag expressions.  They are really powerful and enable a bunch of great new scenarios. TFS & GIT: Continuous Delivery Support for Web Sites + Cloud Services With today’s Windows Azure release we are making it really easy to enable continuous delivery support with Windows Azure and Team Foundation Services.  Team Foundation Services is a cloud based offering from Microsoft that provides integrated source control (with both TFS and Git support), build server, test execution, collaboration tools, and agile planning support.  It makes it really easy to setup a team project (complete with automated builds and test runners) in the cloud, and it has really rich integration with Visual Studio. With today’s Windows Azure release it is now really easy to enable continuous delivery support with both TFS and Git based repositories hosted using Team Foundation Services.  This enables a workflow where when code is checked in, built successfully on an automated build server, and all tests pass on it – I can automatically have the app deployed on Windows Azure with zero manual intervention or work required. The below screen-shots demonstrate how to quickly setup a continuous delivery workflow to Windows Azure with a Git-based ASP.NET MVC project hosted using Team Foundation Services. Enabling Continuous Delivery to Windows Azure with Team Foundation Services The project I’m going to enable continuous delivery with is a simple ASP.NET MVC project whose source code I’m hosting using Team Foundation Services.  I did this by creating a “SimpleContinuousDeploymentTest” repository there using Git – and then used the new built-in Git tooling support within Visual Studio 2013 to push the source code to it.  Below is a screen-shot of the Git repository hosted within Team Foundation Services: I can access the repository within Visual Studio 2013 and easily make commits with it (as well as branch, merge and do other tasks).  Using VS 2013 I can also setup automated builds to take place in the cloud using Team Foundation Services every time someone checks in code to the repository: The cool thing about this is that I don’t have to buy or rent my own build server – Team Foundation Services automatically maintains its own build server farm and can automatically queue up a build for me (for free) every time someone checks in code using the above settings.  This build server (and automated testing) support now works with both TFS and Git based source control repositories. Connecting a Team Foundation Services project to Windows Azure Once I have a source repository hosted in Team Foundation Services with Automated Builds and Testing set up, I can then go even further and set it up so that it will be automatically deployed to Windows Azure when a source code commit is made to the repository (assuming the Build + Tests pass).  Enabling this is now really easy.  To set this up with a Windows Azure Web Site simply use the New->Compute->Web Site->Custom Create command inside the Windows Azure Management Portal.  This will create a dialog like below.  I gave the web site a name and then made sure the “Publish from source control” checkbox was selected: When we click next we’ll be prompted for the location of the source repository.  We’ll select “Team Foundation Services”: Once we do this we’ll be prompted for our Team Foundation Services account that our source repository is hosted under (in this case my TFS account is “scottguthrie”): When we click the “Authorize Now” button we’ll be prompted to give Windows Azure permissions to connect to the Team Foundation Services account.  Once we do this we’ll be prompted to pick the source repository we want to connect to.  Starting with today’s Windows Azure release you can now connect to both TFS and Git based source repositories.  This new support allows me to connect to the “SimpleContinuousDeploymentTest” respository we created earlier: Clicking the finish button will then create the Web Site with the continuous delivery hooks setup with Team Foundation Services.  Now every time someone pushes source control to the repository in Team Foundation Services, it will kick off an automated build, run all of the unit tests in the solution , and if they pass the app will be automatically deployed to our Web Site in Windows Azure.  You can monitor the history and status of these automated deployments using the Deployments tab within the Web Site: This enables a really slick continuous delivery workflow, and enables you to build and deploy apps in a really nice way. Developer Analytics: New Relic support for Web Sites + Mobile Services With today’s Windows Azure release we are making it really easy to enable Developer Analytics and Monitoring support with both Windows Azure Web Site and Windows Azure Mobile Services.  We are partnering with New Relic, who provide a great dev analytics and app performance monitoring offering, to enable this - and we have updated the Windows Azure Management Portal to make it really easy to configure. Enabling New Relic with a Windows Azure Web Site Enabling New Relic support with a Windows Azure Web Site is now really easy.  Simply navigate to the Configure tab of a Web Site and scroll down to the “developer analytics” section that is now within it: Clicking the “add-on” button will display some additional UI.  If you don’t already have a New Relic subscription, you can click the “view windows azure store” button to obtain a subscription (note: New Relic has a perpetually free tier so you can enable it even without paying anything): Clicking the “view windows azure store” button will launch the integrated Windows Azure Store experience we have within the Windows Azure Management Portal.  You can use this to browse from a variety of great add-on services – including New Relic: Select “New Relic” within the dialog above, then click the next button, and you’ll be able to choose which type of New Relic subscription you wish to purchase.  For this demo we’ll simply select the “Free Standard Version” – which does not cost anything and can be used forever:  Once we’ve signed-up for our New Relic subscription and added it to our Windows Azure account, we can go back to the Web Site’s configuration tab and choose to use the New Relic add-on with our Windows Azure Web Site.  We can do this by simply selecting it from the “add-on” dropdown (it is automatically populated within it once we have a New Relic subscription in our account): Clicking the “Save” button will then cause the Windows Azure Management Portal to automatically populate all of the needed New Relic configuration settings to our Web Site: Deploying the New Relic Agent as part of a Web Site The final step to enable developer analytics using New Relic is to add the New Relic runtime agent to our web app.  We can do this within Visual Studio by right-clicking on our web project and selecting the “Manage NuGet Packages” context menu: This will bring up the NuGet package manager.  You can search for “New Relic” within it to find the New Relic agent.  Note that there is both a 32-bit and 64-bit edition of it – make sure to install the version that matches how your Web Site is running within Windows Azure (note: you can configure your Web Site to run in either 32-bit or 64-bit mode using the Web Site’s “Configuration” tab within the Windows Azure Management Portal): Once we install the NuGet package we are all set to go.  We’ll simply re-publish the web site again to Windows Azure and New Relic will now automatically start monitoring the application Monitoring a Web Site using New Relic Now that the application has developer analytics support with New Relic enabled, we can launch the New Relic monitoring portal to start monitoring the health of it.  We can do this by clicking on the “Add Ons” tab in the left-hand side of the Windows Azure Management Portal.  Then select the New Relic add-on we signed-up for within it.  The Windows Azure Management Portal will provide some default information about the add-on when we do this.  Clicking the “Manage” button in the tray at the bottom will launch a new browser tab and single-sign us into the New Relic monitoring portal associated with our account: When we do this a new browser tab will launch with the New Relic admin tool loaded within it: We can now see insights into how our app is performing – without having to have written a single line of monitoring code.  The New Relic service provides a ton of great built-in monitoring features allowing us to quickly see: Performance times (including browser rendering speed) for the overall site and individual pages.  You can optionally set alert thresholds to trigger if the speed does not meet a threshold you specify. Information about where in the world your customers are hitting the site from (and how performance varies by region) Details on the latency performance of external services your web apps are using (for example: SQL, Storage, Twitter, etc) Error information including call stack details for exceptions that have occurred at runtime SQL Server profiling information – including which queries executed against your database and what their performance was And a whole bunch more… The cool thing about New Relic is that you don’t need to write monitoring code within your application to get all of the above reports (plus a lot more).  The New Relic agent automatically enables the CLR profiler within applications and automatically captures the information necessary to identify these.  This makes it super easy to get started and immediately have a rich developer analytics view for your solutions with very little effort. If you haven’t tried New Relic out yet with Windows Azure I recommend you do so – I think you’ll find it helps you build even better cloud applications.  Following the above steps will help you get started and deliver you a really good application monitoring solution in only minutes. Service Bus: Support for partitioned queues and topics With today’s release, we are enabling support within Service Bus for partitioned queues and topics. Enabling partitioning enables you to achieve a higher message throughput and better availability from your queues and topics. Higher message throughput is achieved by implementing multiple message brokers for each partitioned queue and topic.  The  multiple messaging stores will also provide higher availability. You can create a partitioned queue or topic by simply checking the Enable Partitioning option in the custom create wizard for a Queue or Topic: Read this article to learn more about partitioned queues and topics and how to take advantage of them today. Billing: New Billing Alert Service Today’s Windows Azure update enables a new Billing Alert Service Preview that enables you to get proactive email notifications when your Windows Azure bill goes above a certain monetary threshold that you configure.  This makes it easier to manage your bill and avoid potential surprises at the end of the month. With the Billing Alert Service Preview, you can now create email alerts to monitor and manage your monetary credits or your current bill total.  To set up an alert first sign-up for the free Billing Alert Service Preview.  Then visit the account management page, click on a subscription you have setup, and then navigate to the new Alerts tab that is available: The alerts tab allows you to setup email alerts that will be sent automatically once a certain threshold is hit.  For example, by clicking the “add alert” button above I can setup a rule to send myself email anytime my Windows Azure bill goes above $100 for the month: The Billing Alert Service will evolve to support additional aspects of your bill as well as support multiple forms of alerts such as SMS.  Try out the new Billing Alert Service Preview today and give us feedback. Summary Today’s Windows Azure release enables a ton of great new scenarios, and makes building applications hosted in the cloud even easier. If you don’t already have a Windows Azure account, you can sign-up for a free trial and start using all of the above features today.  Then visit the Windows Azure Developer Center to learn more about how to build apps with it. Hope this helps, Scott P.S. In addition to blogging, I am also now using Twitter for quick updates and to share links. Follow me at: twitter.com/scottgu

    Read the article

  • iPhone SDK vs Windows Phone 7 Series SDK Challenge, Part 1: Hello World!

    In this series, I will be taking sample applications from the iPhone SDK and implementing them on Windows Phone 7 Series.  My goal is to do as much of an apples-to-apples comparison as I can.  This series will be written to not only compare and contrast how easy or difficult it is to complete tasks on either platform, how many lines of code, etc., but Id also like it to be a way for iPhone developers to either get started on Windows Phone 7 Series development, or for developers in general to learn the platform. Heres my methodology: Run the iPhone SDK app in the iPhone Simulator to get a feel for what it does and how it works, without looking at the implementation Implement the equivalent functionality on Windows Phone 7 Series using Silverlight. Compare the two implementations based on complexity, functionality, lines of code, number of files, etc. Add some functionality to the Windows Phone 7 Series app that shows off a way to make the scenario more interesting or leverages an aspect of the platform, or uses a better design pattern to implement the functionality. You can download Microsoft Visual Studio 2010 Express for Windows Phone CTP here, and the Expression Blend 4 Beta here. Hello World! Of course no first post would be allowed if it didnt focus on the hello world scenario.  The iPhone SDK follows that tradition with the Your First iPhone Application walkthrough.  I will say that the developer documentation for iPhone is pretty good.  There are plenty of walkthoughs and they break things down into nicely sized steps and do a good job of bringing the user along.  As expected, this application is quite simple.  It comprises of a text box, a label, and a button.  When you push the button, the label changes to Hello plus the  word you typed into the text box.  Makes perfect sense for a starter application.  Theres not much to this but it covers a few basic elements: Laying out basic UI Handling user input Hooking up events Formatting text     So, lets get started building a similar app for Windows Phone 7 Series! Implementing the UI: UI in Silverlight (and therefore Windows Phone 7) is defined in XAML, which is a declarative XML language also used by WPF on the desktop.  For anyone thats familiar with similar types of markup, its relatively straightforward to learn, but has a lot of power in it once you get it figured out.  Well talk more about that. This UI is very simple.  When I look at this, I note a couple of things: Elements are arranged vertically They are all centered So, lets create our Application and then start with the UI.  Once you have the the VS 2010 Express for Windows Phone tool running, create a new Windows Phone Project, and call it Hello World: Once created, youll see the designer on one side and your XAML on the other: Now, we can create our UI in one of three ways: Use the designer in Visual Studio to drag and drop the components Use the designer in Expression Blend 4 to drag and drop the components Enter the XAML by hand in either of the above Well start with (1), then kind of move to (3) just for instructional value. To develop this UI in the designer: First, delete all of the markup between inside of the Grid element (LayoutRoot).  You should be left with just this XAML for your MainPage.xaml (i shortened all the xmlns declarations below for brevity): 1: <phoneNavigation:PhoneApplicationPage 2: x:Class="HelloWorld.MainPage" 3: xmlns="...[snip]" 4: FontFamily="{StaticResource PhoneFontFamilyNormal}" 5: FontSize="{StaticResource PhoneFontSizeNormal}" 6: Foreground="{StaticResource PhoneForegroundBrush}"> 7:   8: <Grid x:Name="LayoutRoot" Background="{StaticResource PhoneBackgroundBrush}"> 9:   10: </Grid> 11:   12: </phoneNavigation:PhoneApplicationPage> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; }   Well be adding XAML at line 9, so thats the important part. Now, Click on the center area of the phone surface Open the Toolbox and double click StackPanel Double click TextBox Double click TextBlock Double click Button That will create the necessary UI elements but they wont be arranged quite right.  Well fix it in a second.    Heres the XAML that we end up with: 1: <StackPanel Height="100" HorizontalAlignment="Left" Margin="10,10,0,0" Name="stackPanel1" VerticalAlignment="Top" Width="200"> 2: <TextBox Height="32" Name="textBox1" Text="TextBox" Width="100" /> 3: <TextBlock Height="23" Name="textBlock1" Text="TextBlock" /> 4: <Button Content="Button" Height="70" Name="button1" Width="160" /> 5: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } The designer does its best at guessing what we want, but in this case we want things to be a bit simpler. So well just clean it up a bit.  We want the items to be centered and we want them to have a little bit of a margin on either side, so heres what we end up with.  Ive also made it match the values and style from the iPhone app: 1: <StackPanel Margin="10"> 2: <TextBox Name="textBox1" HorizontalAlignment="Stretch" Text="You" TextAlignment="Center"/> 3: <TextBlock Name="textBlock1" HorizontalAlignment="Center" Margin="0,100,0,0" Text="Hello You!" /> 4: <Button Name="button1" HorizontalAlignment="Center" Margin="0,150,0,0" Content="Hello"/> 5: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now lets take a look at what weve done there. Line 1: We removed all of the formatting from the StackPanel, except for Margin, as thats all we need.  Since our parent element is a Grid, by default the StackPanel will be sized to fit in that space.  The Margin says that we want to reserve 10 pixels on each side of the StackPanel. Line 2: Weve set the HorizontalAlignment of the TextBox to Stretch, which says that it should fill its parents size horizontally.  We want to do this so the TextBox is always full-width.  We also set TextAlignment to Center, to center the text. Line 3: In contrast to the TextBox above, we dont care how wide the TextBlock is, just so long as it is big enough for its text.  Thatll happen automatically, so we just set its Horizontal alignment to Center.  We also set a Margin above the TextBlock of 100 pixels to bump it down a bit, per the iPhone UI. Line 4: We do the same things here as in Line 3. Heres how the UI looks in the designer: Believe it or not, were almost done! Implementing the App Logic Now, we want the TextBlock to change its text when the Button is clicked.  In the designer, double click the Button to be taken to the Event Handler for the Buttons Click event.  In that event handler, we take the Text property from the TextBox, and format it into a string, then set it into the TextBlock.  Thats it! 1: private void button1_Click(object sender, RoutedEventArgs e) 2: { 3: string name = textBox1.Text; 4:   5: // if there isn't a name set, just use "World" 6: if (String.IsNullOrEmpty(name)) 7: { 8: name = "World"; 9: } 10:   11: // set the value into the TextBlock 12: textBlock1.Text = String.Format("Hello {0}!", name); 13:   14: } .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } We use the String.Format() method to handle the formatting for us.    Now all thats left is to test the app in the Windows Phone Emulator and verify it does what we think it does! And it does! Comparing against the iPhone Looking at the iPhone example, there are basically three things that you have to touch as the developer: 1) The UI in the Nib file 2) The app delegate 3) The view controller Counting lines is a bit tricky here, but to try to keep this even, Im going to only count lines of code that I could not have (or would not have) generated with the tooling.  Meaning, Im not counting XAML and Im not counting operations that happen in the Nib file with the XCode designer tool.  So in the case of the above, even though I modified the XAML, I could have done all of those operations using the visual designer tool.  And normally I would have, but the XAML is more instructive (and less steps!).  Im interested in things that I, as the developer have to figure out in code.  Im also not counting lines that just have a curly brace on them, or lines that are generated for me (e.g. method names that are generated for me when I make a connection, etc.) So, by that count, heres what I get from the code listing for the iPhone app found here: HelloWorldAppDelegate.h: 6 HelloWorldAppDelegate.m: 12 MyViewController.h: 8 MyViewController.m: 18 Which gives me a grand total of about 44 lines of code on iPhone.  I really do recommend looking at the iPhone code for a comparison to the above. Now, for the Windows Phone 7 Series application, the only code I typed was in the event handler above Main.Xaml.cs: 4 So a total of 4 lines of code on Windows Phone 7.  And more importantly, the process is just A LOT simpler.  For example, I was surprised that the User Interface Designer in XCode doesnt automatically create instance variables for me and wire them up to the corresponding elements.  I assumed I wouldnt have to write this code myself (and risk getting it wrong!).  I dont need to worry about view controllers or anything.  I just write my code.  This blog post up to this point has covered almost every aspect of this apps development in a few pages.  The iPhone tutorial has 5 top level steps with 2-3 sub sections of each. Now, its worth pointing out that the iPhone development model uses the Model View Controller (MVC) pattern, which is a very flexible and powerful pattern that enforces proper separation of concerns.  But its fairly complex and difficult to understand when you first walk up to it.  Here at Microsoft weve dabbled in MVC a bit, with frameworks like MFC on Visual C++ and with the ASP.NET MVC framework now.  Both are very powerful frameworks.  But one of the reasons weve stayed away from MVC with client UI frameworks is that its difficult to tool.  We havent seen the type of value that beats double click, write code! for the broad set of scenarios. Another thing to think about is how many of those lines of code were focused on my apps functionality?.  Or, the converse of How many lines of code were boilerplate plumbing?  In both examples, the actual number of functional code lines is similar.  I count most of them in MyViewController.m, in the changeGreeting method.  Its about 7 lines of code that do the work of taking the value from the TextBox and putting it into the label.  Versus 4 on the Windows Phone 7 side.  But, unfortunately, on iPhone I still have to write that other 37 lines of code, just to get there. 10% of the code, 1 file instead of 4, its just much simpler. Making Some Tweaks It turns out, I can actually do this application with ZERO  lines of code, if Im willing to change the spec a bit. The data binding functionality in Silverlight is incredibly powerful.  And what I can do is databind the TextBoxs value directly to the TextBlock.  Take some time looking at this XAML below.  Youll see that I have added another nested StackPanel and two more TextBlocks.  Why?  Because thats how I build that string, and the nested StackPanel will lay things out Horizontally for me, as specified by the Orientation property. 1: <StackPanel Margin="10"> 2: <TextBox Name="textBox1" HorizontalAlignment="Stretch" Text="You" TextAlignment="Center"/> 3: <StackPanel Orientation="Horizontal" HorizontalAlignment="Center" Margin="0,100,0,0" > 4: <TextBlock Text="Hello " /> 5: <TextBlock Name="textBlock1" Text="{Binding ElementName=textBox1, Path=Text}" /> 6: <TextBlock Text="!" /> 7: </StackPanel> 8: <Button Name="button1" HorizontalAlignment="Center" Margin="0,150,0,0" Content="Hello" Click="button1_Click" /> 9: </StackPanel> .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } Now, the real action is there in the bolded TextBlock.Text property: Text="{Binding ElementName=textBox1, Path=Text}" .csharpcode, .csharpcode pre { font-size: small; color: black; font-family: consolas, "Courier New", courier, monospace; background-color: #ffffff; /*white-space: pre;*/ } .csharpcode pre { margin: 0em; } .csharpcode .rem { color: #008000; } .csharpcode .kwrd { color: #0000ff; } .csharpcode .str { color: #006080; } .csharpcode .op { color: #0000c0; } .csharpcode .preproc { color: #cc6633; } .csharpcode .asp { background-color: #ffff00; } .csharpcode .html { color: #800000; } .csharpcode .attr { color: #ff0000; } .csharpcode .alt { background-color: #f4f4f4; width: 100%; margin: 0em; } .csharpcode .lnum { color: #606060; } That does all the heavy lifting.  It sets up a databinding between the TextBox.Text property on textBox1 and the TextBlock.Text property on textBlock1. As I change the text of the TextBox, the label updates automatically. In fact, I dont even need the button any more, so I could get rid of that altogether.  And no button means no event handler.  No event handler means no C# code at all.  Did you know that DotNetSlackers also publishes .net articles written by top known .net Authors? We already have over 80 articles in several categories including Silverlight. Take a look: here.

    Read the article

< Previous Page | 152 153 154 155 156 157  | Next Page >