Search Results

Search found 8019 results on 321 pages for 'loop'.

Page 157/321 | < Previous Page | 153 154 155 156 157 158 159 160 161 162 163 164  | Next Page >

  • Combination of Operating Mode and Commit Strategy

    - by Kevin Yang
    If you want to populate a source into multiple targets, you may also want to ensure that every row from the source affects all targets uniformly (or separately). Let’s consider the Example Mapping below. If a row from SOURCE causes different changes in multiple targets (TARGET_1, TARGET_2 and TARGET_3), for example, it can be successfully inserted into TARGET_1 and TARGET_3, but failed to be inserted into TARGET_2, and the current Mapping Property TLO (target load order) is “TARGET_1 -> TARGET_2 -> TARGET_3”. What should Oracle Warehouse Builder do, in order to commit the appropriate data to all affected targets at the same time? If it doesn’t behave as you intended, the data could become inaccurate and possibly unusable.                                               Example Mapping In OWB, we can use Mapping Configuration Commit Strategies and Operating Modes together to achieve this kind of requirements. Below we will explore the combination of these two features and how they affect the results in the target tables Before going to the example, let’s review some of the terms we will be using (Details can be found in white paper Oracle® Warehouse Builder Data Modeling, ETL, and Data Quality Guide11g Release 2): Operating Modes: Set-Based Mode: Warehouse Builder generates a single SQL statement that processes all data and performs all operations. Row-Based Mode: Warehouse Builder generates statements that process data row by row. The select statement is in a SQL cursor. All subsequent statements are PL/SQL. Row-Based (Target Only) Mode: Warehouse Builder generates a cursor select statement and attempts to include as many operations as possible in the cursor. For each target, Warehouse Builder inserts each row into the target separately. Commit Strategies: Automatic: Warehouse Builder loads and then automatically commits data based on the mapping design. If the mapping has multiple targets, Warehouse Builder commits and rolls back each target separately and independently of other targets. Use the automatic commit when the consequences of multiple targets being loaded unequally are not great or are irrelevant. Automatic correlated: It is a specialized type of automatic commit that applies to PL/SQL mappings with multiple targets only. Warehouse Builder considers all targets collectively and commits or rolls back data uniformly across all targets. Use the correlated commit when it is important to ensure that every row in the source affects all affected targets uniformly. Manual: select manual commit control for PL/SQL mappings when you want to interject complex business logic, perform validations, or run other mappings before committing data. Combination of the commit strategy and operating mode To understand the effects of each combination of operating mode and commit strategy, I’ll illustrate using the following example Mapping. Firstly we insert 100 rows into the SOURCE table and make sure that the 99th row and 100th row have the same ID value. And then we create a unique key constraint on ID column for TARGET_2 table. So while running the example mapping, OWB tries to load all 100 rows to each of the targets. But the mapping should fail to load the 100th row to TARGET_2, because it will violate the unique key constraint of table TARGET_2. With different combinations of Commit Strategy and Operating Mode, here are the results ¦ Set-based/ Correlated Commit: Configuration of Example mapping:                                                     Result:                                                      What’s happening: A single error anywhere in the mapping triggers the rollback of all data. OWB encounters the error inserting into Target_2, it reports an error for the table and does not load the row. OWB rolls back all the rows inserted into Target_1 and does not attempt to load rows to Target_3. No rows are added to any of the target tables. ¦ Row-based/ Correlated Commit: Configuration of Example mapping:                                                   Result:                                                  What’s happening: OWB evaluates each row separately and loads it to all three targets. Loading continues in this way until OWB encounters an error loading row 100th to Target_2. OWB reports the error and does not load the row. It rolls back the row 100th previously inserted into Target_1 and does not attempt to load row 100 to Target_3. Then, if there are remaining rows, OWB will continue loading them, resuming with loading rows to Target_1. The mapping completes with 99 rows inserted into each target. ¦ Set-based/ Automatic Commit: Configuration of Example mapping: Result: What’s happening: When OWB encounters the error inserting into Target_2, it does not load any rows and reports an error for the table. It does, however, continue to insert rows into Target_3 and does not roll back the rows previously inserted into Target_1. The mapping completes with one error message for Target_2, no rows inserted into Target_2, and 100 rows inserted into Target_1 and Target_3 separately. ¦ Row-based/Automatic Commit: Configuration of Example mapping: Result: What’s happening: OWB evaluates each row separately for loading into the targets. Loading continues in this way until OWB encounters an error loading row 100 to Target_2 and reports the error. OWB does not roll back row 100th from Target_1, does insert it into Target_3. If there are remaining rows, it will continue to load them. The mapping completes with 99 rows inserted into Target_2 and 100 rows inserted into each of the other targets. Note: Automatic Correlated commit is not applicable for row-based (target only). If you design a mapping with the row-based (target only) and correlated commit combination, OWB runs the mapping but does not perform the correlated commit. In set-based mode, correlated commit may impact the size of your rollback segments. Space for rollback segments may be a concern when you merge data (insert/update or update/insert). Correlated commit operates transparently with PL/SQL bulk processing code. The correlated commit strategy is not available for mappings run in any mode that are configured for Partition Exchange Loading or that include a Queue, Match Merge, or Table Function operator. If you want to practice in your own environment, you can follow the steps: 1. Import the MDL file: commit_operating_mode.mdl 2. Fix the location for oracle module ORCL and deploy all tables under it. 3. Insert sample records into SOURCE table, using below plsql code: begin     for i in 1..99     loop         insert into source values(i, 'col_'||i);     end loop;     insert into source values(99, 'col_99'); end; 4. Configure MAPPING_1 to any combinations of operating mode and commit strategy you want to test. And make sure feature TLO of mapping is open. 5. Deploy Mapping “MAPPING_1”. 6. Run the mapping and check the result.

    Read the article

  • At most how many customized P3 attributes could be added into Agile?

    - by Jie Chen
    I have one customer/Oracle Partner Consultant asking me such question: how many customized attributes can be allowed to add to Agile's subclass Page Three? I never did research against this because Agile User Guide never says this and theoretically Agile supports unlimited amount of customized attributes, unless the browser itself cannot handle them in allocated memory. However my customers says when to add almost 1000 attributes, the browser (Web Client) will not show any Page Three attributes, including all the out-of-box attributes. Let's see why. Analysis It is horrible to add 1000 attributes manually. Let's do it by a batch SQL like below to add them to Item's subclass Page Three tab. Do not execute below SQL because it will not take effect due to your different node id. CREATE OR REPLACE PROCEDURE createP3Text(v_name IN VARCHAR2) IS v_nid NUMBER; v_pid NUMBER; BEGIN select SEQNODETABLE.nextval into v_nid from dual; Insert Into nodeTable ( id,parentID,description,objType,inherit,helpID,version,name ) values ( v_nid,2473003, v_name ,1,0,0,0, v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,925, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,1,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,2,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,2,0,1,3,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,5, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,1,6,'50'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,2,0,0,7,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,8,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,9,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,1,10,v_name); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,0,0,0,0,11,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,11743,1,14,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,30, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,2,1,0,1,38, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,59,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,60,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,724,0,61, null); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,232,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,233,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,12239,1,415,'13307'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,2,1,0,0,605,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,610,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,1,4,1,451,0,716,'1'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,795,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,2000008821,1,864,'2'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,1,923,'0'); Insert Into propertyTable ( ID,parentID,readOnly,attType,dataType,selection,visible,propertyID,value ) values ( SEQPROPERTYTABLE.nextval,v_nid,0,4,1,451,0,719,'0'); Insert Into tableInfo ( tabID,tableID,classID,att,ordering ) values ( 2473005,1501,2473002,v_nid,9999); commit; END createP3Text; / BEGIN FOR i in 1..1000 LOOP createP3Text('MyText' || i); END LOOP; END; / DROP PROCEDURE createP3Text; COMMIT; Now restart Agile Server and check the Server's log, we noticed below: ***** Node Created : 85625 ***** Property Created : 184579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ However the previously log before batch SQL is ***** Node Created : 84625 ***** Property Created : 157579 +++++++++++++++++++++++++++++++++++++ + Agile PLM Server Starting Up... + +++++++++++++++++++++++++++++++++++++ Obviously we successfully imported 1000 (85625-84625) attributes. Now go to JavaClient and confirm if we have them or not. Theoretically we are able to open such item object and see all these 1000 attributes and their values, but we get below error. We have no error tips in server log. But never mind we have the Java Console for JavaClient. If to open the same item in JavaClient we get a clear error and detailed trace in Java Console. ORA-01795: maximum number of expressions in a list is 1000 java.sql.SQLException: ORA-01795: maximum number of expressions in a list is 1000 at oracle.jdbc.driver.DatabaseError.throwSqlException(DatabaseError.java:125) ... ... at weblogic.jdbc.wrapper.PreparedStatement.executeQuery(PreparedStatement.java:128) at com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable(AgileFlexUtil.java:1104) at com.agile.pc.cmserver.base.BaseFlexTableDAO.loadExtraFlexAttValues(BaseFlexTableDAO.java:111) at com.agile.pc.cmserver.base.BasePageThreeDAO.loadTable(BasePageThreeDAO.java:108) If you are interested in the background of the problem, you may de-compile the class com.agile.pc.cmserver.base.AgileFlexUtil.setFlexValuesForOneRowTable and find the root cause that Agile happens to hit Oracle Database's limitation that more than 1000 values in the "IN" clause. Check here http://ora-01795.ora-code.com If you need Oracle Agile's final solution, please contact Oracle Agile Support. Performance Below two screenshot are jvm heap usage from before-SQL and after-SQL. We can see there is no big memory gap between two cases. So definitely there is no performance impact to Agile Application Server unless you have more than 1000 attributes for EACH of your dozens of  subclasses. And for client, 1000 attributes should not impact the browser's performance because in HTML we only use dt and dd for each attribute's pair: label and value. It is quite lightweight.

    Read the article

  • More Fun With Math

    - by PointsToShare
    More Fun with Math   The runaway student – three different ways of solving one problem Here is a problem I read in a Russian site: A student is running away. He is moving at 1 mph. Pursuing him are a lion, a tiger and his math teacher. The lion is 40 miles behind and moving at 6 mph. The tiger is 28 miles behind and moving at 4 mph. His math teacher is 30 miles behind and moving at 5 mph. Who will catch him first? Analysis Obviously we have a set of three problems. They are all basically the same, but the details are different. The problems are of the same class. Here is a little excursion into computer science. One of the things we strive to do is to create solutions for classes of problems rather than individual problems. In your daily routine, you call it re-usability. Not all classes of problems have such solutions. If a class has a general (re-usable) solution, it is called computable. Otherwise it is unsolvable. Within unsolvable classes, we may still solve individual (some but not all) problems, albeit with different approaches to each. Luckily the vast majority of our daily problems are computable, and the 3 problems of our runaway student belong to a computable class. So, let’s solve for the catch-up time by the math teacher, after all she is the most frightening. She might even make the poor runaway solve this very problem – perish the thought! Method 1 – numerical analysis. At 30 miles and 5 mph, it’ll take her 6 hours to come to where the student was to begin with. But by then the student has advanced by 6 miles. 6 miles require 6/5 hours, but by then the student advanced by another 6/5 of a mile as well. And so on and so forth. So what are we to do? One way is to write code and iterate it until we have solved it. But this is an infinite process so we’ll end up with an infinite loop. So what to do? We’ll use the principles of numerical analysis. Any calculator – your computer included – has a limited number of digits. A double floating point number is good for about 14 digits. Nothing can be computed at a greater accuracy than that. This means that we will not iterate ad infinidum, but rather to the point where 2 consecutive iterations yield the same result. When we do financial computations, we don’t even have to go that far. We stop at the 10th of a penny.  It behooves us here to stop at a 10th of a second (100 milliseconds) and this will how we will avoid an infinite loop. Interestingly this alludes to the Zeno paradoxes of motion – in particular “Achilles and the Tortoise”. Zeno says exactly the same. To catch the tortoise, Achilles must always first come to where the tortoise was, but the tortoise keeps moving – hence Achilles will never catch the tortoise and our math teacher (or lion, or tiger) will never catch the student, or the policeman the thief. Here is my resolution to the paradox. The distance and time in each step are smaller and smaller, so the student will be caught. The only thing that is infinite is the iterative solution. The race is a convergent geometric process so the steps are diminishing, but each step in the solution takes the same amount of effort and time so with an infinite number of steps, we’ll spend an eternity solving it.  This BTW is an original thought that I have never seen before. But I digress. Let’s simply write the code to solve the problem. To make sure that it runs everywhere, I’ll do it in JavaScript. function LongCatchUpTime(D, PV, FV) // D is Distance; PV is Pursuers Velocity; FV is Fugitive’ Velocity {     var t = 0;     var T = 0;     var d = parseFloat(D);     var pv = parseFloat (PV);     var fv = parseFloat (FV);     t = d / pv;     while (t > 0.000001) //a 10th of a second is 1/36,000 of an hour, I used 1/100,000     {         T = T + t;         d = t * fv;         t = d / pv;     }     return T;     } By and large, the higher the Pursuer’s velocity relative to the fugitive, the faster the calculation. Solving this with the 10th of a second limit yields: 7.499999232000001 Method 2 – Geometric Series. Each step in the iteration above is smaller than the next. As you saw, we stopped iterating when the last step was small enough, small enough not to really matter.  When we have a sequence of numbers in which the ratio of each number to its predecessor is fixed we call the sequence geometric. When we are looking at the sum of sequence, we call the sequence of sums series.  Now let’s look at our student and teacher. The teacher runs 5 times faster than the student, so with each iteration the distance between them shrinks to a fifth of what it was before. This is a fixed ratio so we deal with a geometric series.  We normally designate this ratio as q and when q is less than 1 (0 < q < 1) the sum of  + … +  is  – 1) / (q – 1). When q is less than 1, it is easier to use ) / (1 - q). Now, the steps are 6 hours then 6/5 hours then 6/5*5 and so on, so q = 1/5. And the whole series is multiplied by 6. Also because q is less than 1 , 1/  diminishes to 0. So the sum is just  / (1 - q). or 1/ (1 – 1/5) = 1 / (4/5) = 5/4. This times 6 yields 7.5 hours. We can now continue with some algebra and take it back to a simpler formula. This is arduous and I am not going to do it here. Instead let’s do some simpler algebra. Method 3 – Simple Algebra. If the time to capture the fugitive is T and the fugitive travels at 1 mph, then by the time the pursuer catches him he travelled additional T miles. Time is distance divided by speed, so…. (D + T)/V = T  thus D + T = VT  and D = VT – T = (V – 1)T  and T = D/(V – 1) This “strangely” coincides with the solution we just got from the geometric sequence. This is simpler ad faster. Here is the corresponding code. function ShortCatchUpTime(D, PV, FV) {     var d = parseFloat(D);     var pv = parseFloat (PV);     var fv = parseFloat (FV);     return d / (pv - fv); } The code above, for both the iterative solution and the algebraic solution are actually for a larger class of problems.  In our original problem the student’s velocity (speed) is 1 mph. In the code it may be anything as long as it is less than the pursuer’s velocity. As long as PV > FV, the pursuer will catch up. Here is the really general formula: T = D / (PV – FV) Finally, let’s run the program for each of the pursuers.  It could not be worse. I know he’d rather be eaten alive than suffering through yet another math lesson. See the code run? Select  “Catch Up Time” in www.mgsltns.com/games.htm The host is running on Unix, so the link is case sensitive. That’s All Folks

    Read the article

  • More Fun with C# Iterators and Generators

    - by James Michael Hare
    In my last post, I talked quite a bit about iterators and how they can be really powerful tools for filtering a list of items down to a subset of items.  This had both pros and cons over returning a full collection, which, in summary, were:   Pros: If traversal is only partial, does not have to visit rest of collection. If evaluation method is costly, only incurs that cost on elements visited. Adds little to no garbage collection pressure.    Cons: Very slight performance impact if you know caller will always consume all items in collection. And as we saw in the last post, that con for the cost was very, very small and only really became evident on very tight loops consuming very large lists completely.    One of the key items to note, though, is the garbage!  In the traditional (return a new collection) method, if you have a 1,000,000 element collection, and wish to transform or filter it in some way, you have to allocate space for that copy of the collection.  That is, say you have a collection of 1,000,000 items and you want to double every item in the collection.  Well, that means you have to allocate a collection to hold those 1,000,000 items to return, which is a lot especially if you are just going to use it once and toss it.   Iterators, though, don't have this problem.  Each time you visit the node, it would return the doubled value of the node (in this example) and not allocate a second collection of 1,000,000 doubled items.  Do you see the distinction?  In both cases, we're consuming 1,000,000 items.  But in one case we pass back each doubled item which is just an int (for example's sake) on the stack and in the other case, we allocate a list containing 1,000,000 items which then must be garbage collected.   So iterators in C# are pretty cool, eh?  Well, here's one more thing a C# iterator can do that a traditional "return a new collection" transformation can't!   It can return **unbounded** collections!   I know, I know, that smells a lot like an infinite loop, eh?  Yes and no.  Basically, you're relying on the caller to put the bounds on the list, and as long as the caller doesn't you keep going.  Consider this example:   public static class Fibonacci {     // returns the infinite fibonacci sequence     public static IEnumerable<int> Sequence()     {         int iteration = 0;         int first = 1;         int second = 1;         int current = 0;         while (true)         {             if (iteration++ < 2)             {                 current = 1;             }             else             {                 current = first + second;                 second = first;                 first = current;             }             yield return current;         }     } }   Whoa, you say!  Yes, that's an infinite loop!  What the heck is going on there?  Yes, that was intentional.  Would it be better to have a fibonacci sequence that returns only a specific number of items?  Perhaps, but that wouldn't give you the power to defer the execution to the caller.   The beauty of this function is it is as infinite as the sequence itself!  The fibonacci sequence is unbounded, and so is this method.  It will continue to return fibonacci numbers for as long as you ask for them.  Now that's not something you can do with a traditional method that would return a collection of ints representing each number.  In that case you would eventually run out of memory as you got to higher and higher numbers.  This method, though, never runs out of memory.   Now, that said, you do have to know when you use it that it is an infinite collection and bound it appropriately.  Fortunately, Linq provides a lot of these extension methods for you!   Let's say you only want the first 10 fibonacci numbers:       foreach(var fib in Fibonacci.Sequence().Take(10))     {         Console.WriteLine(fib);     }   Or let's say you only want the fibonacci numbers that are less than 100:       foreach(var fib in Fibonacci.Sequence().TakeWhile(f => f < 100))     {         Console.WriteLine(fib);     }   So, you see, one of the nice things about iterators is their power to work with virtually any size (even infinite) collections without adding the garbage collection overhead of making new collections.    You can also do fun things like this to make a more "fluent" interface for for loops:   // A set of integer generator extension methods public static class IntExtensions {     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> Every(this int start)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; ++i)         {             yield return i;         }     }     // Begins counting to infinity by the given step value, use To() to     public static IEnumerable<int> Every(this int start, int byEvery)     {         // deliberately avoiding condition because keeps going         // to infinity for as long as values are pulled.         for (var i = start; ; i += byEvery)         {             yield return i;         }     }     // Begins counting to inifity, use To() to range this.     public static IEnumerable<int> To(this int start, int end)     {         for (var i = start; i <= end; ++i)         {             yield return i;         }     }     // Ranges the count by specifying the upper range of the count.     public static IEnumerable<int> To(this IEnumerable<int> collection, int end)     {         return collection.TakeWhile(item => item <= end);     } }   Note that there are two versions of each method.  One that starts with an int and one that starts with an IEnumerable<int>.  This is to allow more power in chaining from either an existing collection or from an int.  This lets you do things like:   // count from 1 to 30 foreach(var i in 1.To(30)) {     Console.WriteLine(i); }     // count from 1 to 10 by 2s foreach(var i in 0.Every(2).To(10)) {     Console.WriteLine(i); }     // or, if you want an infinite sequence counting by 5s until something inside breaks you out... foreach(var i in 0.Every(5)) {     if (someCondition)     {         break;     }     ... }     Yes, those are kinda play functions and not particularly useful, but they show some of the power of generators and extension methods to form a fluid interface.   So what do you think?  What are some of your favorite generators and iterators?

    Read the article

  • SQL University: What and why of database testing

    - by Mladen Prajdic
    This is a post for a great idea called SQL University started by Jorge Segarra also famously known as SqlChicken on Twitter. It’s a collection of blog posts on different database related topics contributed by several smart people all over the world. So this week is mine and we’ll be talking about database testing and refactoring. In 3 posts we’ll cover: SQLU part 1 - What and why of database testing SQLU part 2 - What and why of database refactoring SQLU part 2 – Tools of the trade With that out of the way let us sharpen our pencils and get going. Why test a database The sad state of the industry today is that there is very little emphasis on testing in general. Test driven development is still a small niche of the programming world while refactoring is even smaller. The cause of this is the inability of developers to convince themselves and their managers that writing tests is beneficial. At the moment they are mostly viewed as waste of time. This is because the average person (let’s not fool ourselves, we’re all average) is unable to think about lower future costs in relation to little more current work. It’s orders of magnitude easier to know about the current costs in relation to current amount of work. That’s why programmers convince themselves testing is a waste of time. However we have to ask ourselves what tests are really about? Maybe finding bugs? No, not really. If we introduce bugs, we’re likely to write test around those bugs too. But yes we can find some bugs with tests. The main point of tests is to have reproducible repeatability in our systems. By having a code base largely covered by tests we can know with better certainty what a small code change can break in other parts of the system. By having repeatability we can make code changes with confidence, since we know we’ll see what breaks in other tests. And here comes the inability to estimate future costs. By spending just a few more hours writing those tests we’d know instantly what broke where. Imagine we fix a reported bug. We check-in the code, deploy it and the users are happy. Until we get a call 2 weeks later about a certain monthly process has stopped working. What we don’t know is that this process was developed by a long gone coworker and for some reason it relied on that same bug we’ve happily fixed. There’s no way we could’ve known that. We say OK and go in and fix the monthly process. But what we have no clue about is that there’s this ETL job that relied on data from that monthly process. Now that we’ve fixed the process it’s giving unexpected (yet correct since we fixed it) data to the ETL job. So we have to fix that too. But there’s this part of the app we coded that relies on data from that exact ETL job. And just like that we enter the “Loop of maintenance horror”. With the loop eventually comes blame. Here’s a nice tip for all developers and DBAs out there: If you make a mistake man up and admit to it. All of the above is valid for any kind of software development. Keeping this in mind the database is nothing other than just a part of the application. But a big part! One reason why testing a database is even more important than testing an application is that one database is usually accessed from multiple applications and processes. This makes it the central and vital part of the enterprise software infrastructure. Knowing all this can we really afford not to have tests? What to test in a database Now that we’ve decided we’ll dive into this testing thing we have to ask ourselves what needs to be tested? The short answer is: everything. The long answer is: read on! There are 2 main ways of doing tests: Black box and White box testing. Black box testing means we have no idea how the system internals are built and we only have access to it’s inputs and outputs. With it we test that the internal changes to the system haven’t caused the input/output behavior of the system to change. The most important thing to test here are the edge conditions. It’s where most programs break. Having good edge condition tests we can be more confident that the systems changes won’t break. White box testing has the full knowledge of the system internals. With it we test the internal system changes, different states of the application, etc… White and Black box tests should be complementary to each other as they are very much interconnected. Testing database routines includes testing stored procedures, views, user defined functions and anything you use to access the data with. Database routines are your input/output interface to the database system. They count as black box testing. We test then for 2 things: Data and schema. When testing schema we only care about the columns and the data types they’re returning. After all the schema is the contract to the out side systems. If it changes we usually have to change the applications accessing it. One helpful T-SQL command when doing schema tests is SET FMTONLY ON. It tells the SQL Server to return only empty results sets. This speeds up tests because it doesn’t return any data to the client. After we’ve validated the schema we have to test the returned data. There no other way to do this but to have expected data known before the tests executes and comparing that data to the database routine output. Testing Authentication and Authorization helps us validate who has access to the SQL Server box (Authentication) and who has access to certain database objects (Authorization). For desktop applications and windows authentication this works well. But the biggest problem here are web apps. They usually connect to the database as a single user. Please ensure that that user is not SA or an account with admin privileges. That is just bad. Load testing ensures us that our database can handle peak loads. One often overlooked tool for load testing is Microsoft’s OSTRESS tool. It’s part of RML utilities (x86, x64) for SQL Server and can help determine if our database server can handle loads like 100 simultaneous users each doing 10 requests per second. SQL Profiler can also help us here by looking at why certain queries are slow and what to do to fix them.   One particular problem to think about is how to begin testing existing databases. First thing we have to do is to get to know those databases. We can’t test something when we don’t know how it works. To do this we have to talk to the users of the applications accessing the database, run SQL Profiler to see what queries are being run, use existing documentation to decipher all the object relationships, etc… The way to approach this is to choose one part of the database (say a logical grouping of tables that go together) and filter our traces accordingly. Once we’ve done that we move on to the next grouping and so on until we’ve covered the whole database. Then we move on to the next one. Database Testing is a topic that we can spent many hours discussing but let this be a nice intro to the world of database testing. See you in the next post.

    Read the article

  • Full-text Indexing Books Online

    - by Most Valuable Yak (Rob Volk)
    While preparing for a recent SQL Saturday presentation, I was struck by a crazy idea (shocking, I know): Could someone import the content of SQL Server Books Online into a database and apply full-text indexing to it?  The answer is yes, and it's really quite easy to do. The first step is finding the installed help files.  If you have SQL Server 2012, BOL is installed under the Microsoft Help Library.  You can find the install location by opening SQL Server Books Online and clicking the gear icon for the Help Library Manager.  When the new window pops up click the Settings link, you'll get the following: You'll see the path under Library Location. Once you navigate to that path you'll have to drill down a little further, to C:\ProgramData\Microsoft\HelpLibrary\content\Microsoft\store.  This is where the help file content is kept if you downloaded it for offline use. Depending on which products you've downloaded help for, you may see a few hundred files.  Fortunately they're named well and you can easily find the "SQL_Server_Denali_Books_Online_" files.  We are interested in the .MSHC files only, and can skip the Installation and Developer Reference files. Despite the .MHSC extension, these files are compressed with the standard Zip format, so your favorite archive utility (WinZip, 7Zip, WinRar, etc.) can open them.  When you do, you'll see a few thousand files in the archive.  We are only interested in the .htm files, but there's no harm in extracting all of them to a folder.  7zip provides a command-line utility and the following will extract to a D:\SQLHelp folder previously created: 7z e –oD:\SQLHelp "C:\ProgramData\Microsoft\HelpLibrary\content\Microsoft\store\SQL_Server_Denali_Books_Online_B780_SQL_110_en-us_1.2.mshc" *.htm Well that's great Rob, but how do I put all those files into a full-text index? I'll tell you in a second, but first we have to set up a few things on the database side.  I'll be using a database named Explore (you can certainly change that) and the following setup is a fragment of the script I used in my presentation: USE Explore; GO CREATE SCHEMA help AUTHORIZATION dbo; GO -- Create default fulltext catalog for later FT indexes CREATE FULLTEXT CATALOG FTC AS DEFAULT; GO CREATE TABLE help.files(file_id int not null IDENTITY(1,1) CONSTRAINT PK_help_files PRIMARY KEY, path varchar(256) not null CONSTRAINT UNQ_help_files_path UNIQUE, doc_type varchar(6) DEFAULT('.xml'), content varbinary(max) not null); CREATE FULLTEXT INDEX ON help.files(content TYPE COLUMN doc_type LANGUAGE 1033) KEY INDEX PK_help_files; This will give you a table, default full-text catalog, and full-text index on that table for the content you're going to insert.  I'll be using the command line again for this, it's the easiest method I know: for %a in (D:\SQLHelp\*.htm) do sqlcmd -S. -E -d Explore -Q"set nocount on;insert help.files(path,content) select '%a', cast(c as varbinary(max)) from openrowset(bulk '%a', SINGLE_CLOB) as c(c)" You'll need to copy and run that as one line in a command prompt.  I'll explain what this does while you run it and watch several thousand files get imported: The "for" command allows you to loop over a collection of items.  In this case we want all the .htm files in the D:\SQLHelp folder.  For each file it finds, it will assign the full path and file name to the %a variable.  In the "do" clause, we'll specify another command to be run for each iteration of the loop.  I make a call to "sqlcmd" in order to run a SQL statement.  I pass in the name of the server (-S.), where "." represents the local default instance. I specify -d Explore as the database, and -E for trusted connection.  I then use -Q to run a query that I enclose in double quotes. The query uses OPENROWSET(BULK…SINGLE_CLOB) to open the file as a data source, and to treat it as a single character large object.  In order for full-text indexing to work properly, I have to convert the text content to varbinary. I then INSERT these contents along with the full path of the file into the help.files table created earlier.  This process continues for each file in the folder, creating one new row in the table. And that's it! 5 SQL Statements and 2 command line statements to unzip and import SQL Server Books Online!  In case you're wondering why I didn't use FILESTREAM or FILETABLE, it's simply because I haven't learned them…yet. I may return to this blog after I figure that out and update it with the steps to do so.  I believe that will make it even easier. In the spirit of exploration, I'll leave you to work on some fulltext queries of this content.  I also recommend playing around with the sys.dm_fts_xxxx DMVs (I particularly like sys.dm_fts_index_keywords, it's pretty interesting).  There are additional example queries in the download material for my presentation linked above. Many thanks to Kevin Boles (t) for his advice on (re)checking the content of the help files.  Don't let that .htm extension fool you! The 2012 help files are actually XML, and you'd need to specify '.xml' in your document type column in order to extract the full-text keywords.  (You probably noticed this in the default definition for the doc_type column.)  You can query sys.fulltext_document_types to get a complete list of the types that can be full-text indexed. I also need to thank Hilary Cotter for giving me the original idea. I believe he used MSDN content in a full-text index for an article from waaaaaaaaaaay back, that I can't find now, and had forgotten about until just a few days ago.  He is also co-author of Pro Full-Text Search in SQL Server 2008, which I highly recommend.  He also has some FTS articles on Simple Talk: http://www.simple-talk.com/sql/learn-sql-server/sql-server-full-text-search-language-features/ http://www.simple-talk.com/sql/learn-sql-server/sql-server-full-text-search-language-features,-part-2/

    Read the article

  • How-to delete a tree node using the context menu

    - by frank.nimphius
    Hierarchical trees in Oracle ADF make use of View Accessors, which means that only the top level node needs to be exposed as a View Object instance on the ADF Business Components Data Model. This also means that only the top level node has a representation in the PageDef file as a tree binding and iterator binding reference. Detail nodes are accessed through tree rule definitions that use the accessor mentioned above (or nested collections in the case of POJO or EJB business services). The tree component is configured for single node selection, which however can be declaratively changed for users to press the ctrl key and selecting multiple nodes. In the following, I explain how to create a context menu on the tree for users to delete the selected tree nodes. For this, the context menu item will access a managed bean, which then determines the selected node(s), the internal ADF node bindings and the rows they represent. As mentioned, the ADF Business Components Data Model only needs to expose the top level node data sources, which in this example is an instance of the Locations View Object. For the tree to work, you need to have associations defined between entities, which usually is done for you by Oracle JDeveloper if the database tables have foreign keys defined Note: As a general hint of best practices and to simplify your life: Make sure your database schema is well defined and designed before starting your development project. Don't treat the database as something organic that grows and changes with the requirements as you proceed in your project. Business service refactoring in response to database changes is possible, but should be treated as an exception, not the rule. Good database design is a necessity – even for application developers – and nothing evil. To create the tree component, expand the Data Controls panel and drag the View Object collection to the view. From the context menu, select the tree component entry and continue with defining the tree rules that make up the hierarchical structure. As you see, when pressing the green plus icon  in the Edit Tree Binding  dialog, the data structure, Locations -  Departments – Employees in my sample, shows without you having created a View Object instance for each of the nodes in the ADF Business Components Data Model. After you configured the tree structure in the Edit Tree Binding dialog, you press OK and the tree is created. Select the tree in the page editor and open the Structure Window (ctrl+shift+S). In the Structure window, expand the tree node to access the conextMenu facet. Use the right mouse button to insert a Popup  into the facet. Repeat the same steps to insert a Menu and a Menu Item into the Popup you created. The Menu item text should be changed to something meaningful like "Delete". Note that the custom menu item later is added to the context menu together with the default context menu options like expand and expand all. To define the action that is executed when the menu item is clicked on, you select the Action Listener property in the Property Inspector and click the arrow icon followed by the Edit menu option. Create or select a managed bean and define a method name for the action handler. Next, select the tree component and browse to its binding property in the Property Inspector. Again, use the arrow icon | Edit option to create a component binding in the same managed bean that has the action listener defined. The tree handle is used in the action listener code, which is shown below: public void onTreeNodeDelete(ActionEvent actionEvent) {   //access the tree from the JSF component reference created   //using the af:tree "binding" property. The "binding" property   //creates a pair of set/get methods to access the RichTree instance   RichTree tree = this.getTreeHandler();   //get the list of selected row keys   RowKeySet rks = tree.getSelectedRowKeys();   //access the iterator to loop over selected nodes   Iterator rksIterator = rks.iterator();          //The CollectionModel represents the tree model and is   //accessed from the tree "value" property   CollectionModel model = (CollectionModel) tree.getValue();   //The CollectionModel is a wrapper for the ADF tree binding   //class, which is JUCtrlHierBinding   JUCtrlHierBinding treeBinding =                  (JUCtrlHierBinding) model.getWrappedData();          //loop over the selected nodes and delete the rows they   //represent   while(rksIterator.hasNext()){     List nodeKey = (List) rksIterator.next();     //find the ADF node binding using the node key     JUCtrlHierNodeBinding node =                       treeBinding.findNodeByKeyPath(nodeKey);     //delete the row.     Row rw = node.getRow();       rw.remove();   }          //only refresh the tree if tree nodes have been selected   if(rks.size() > 0){     AdfFacesContext adfFacesContext =                          AdfFacesContext.getCurrentInstance();     adfFacesContext.addPartialTarget(tree);   } } Note: To enable multi node selection for a tree, select the tree and change the row selection setting from "single" to "multiple". Note: a fully pictured version of this post will become available at the end of the month in a PDF summary on ADF Code Corner : http://www.oracle.com/technetwork/developer-tools/adf/learnmore/index-101235.html 

    Read the article

  • Agile Testing Days 2012 – Day 3 – Agile or agile?

    - by Chris George
    Another early start for my last Lean Coffee of the conference, and again it was not wasted. We had some really interesting discussions around how to determine what test automation is useful, if agile is not faster, why do it? and a rather existential discussion on whether unicorns exist! First keynote of the day was entitled “Fast Feedback Teams” by Ola Ellnestam. Again this relates nicely to the releasing faster talk on day 2, and something that we are looking at and some teams are actively trying. Introducing the notion of feedback, Ola describes a game he wrote for his eldest child. It was a simple game where every time he clicked a button, it displayed “You’ve Won!”. He then changed it to be a Win-Lose-Win-Lose pattern and watched the feedback from his son who then twigged the pattern and got his younger brother to play, alternating turns… genius! (must do that with my children). The idea behind this was that you need that feedback loop to learn and progress. If you are not getting the feedback you need to close that loop. An interesting point Ola made was to solve problems BEFORE writing software. It may be that you don’t have to write anything at all, perhaps it’s a communication/training issue? Perhaps the problem can be solved another way. Writing software, although it’s the business we are in, is expensive, and this should be taken into account. He again mentions frequent releases, and how they should be made as soon as stuff is ready to be released, don’t leave stuff on the shelf cause it’s not earning you anything, money or data. I totally agree with this and it’s something that we will be aiming for moving forwards. “Exceptions, Assumptions and Ambiguity: Finding the truth behind the story” by David Evans started off very promising by making references to ‘Grim up North’ referring to the north of England. Not sure it was appreciated by most of the audience, but it made me laugh! David explained how there are always risks associated with exceptions, giving the example of a one-way road near where he lives, with an exception sign giving rights to coaches to go the wrong way. Therefore you could merrily swing around the corner of the one way road straight into a coach! David showed the danger in making assumptions with lyrical quotes from Lola by The Kinks “I’m glad I’m a man, and so is Lola” and with a picture of a toilet flush that needed instructions to operate the full and half flush. With this particular flush, you pulled the handle all the way down to half flush, and half way down to full flush! hmmm, a bit of a crappy user experience methinks! Then through a clever use of a passage from the Jabberwocky, David then went onto show how mis-translation/ambiguity is the can completely distort the original meaning of something, and this is a real enemy of software development. This was all helping to demonstrate that the term Story is often heavily overloaded in the Agile world, and should really be stripped back to what it is really for, stating a business problem, and offering a technical solution. Therefore a story could be worded as “In order to {make some improvement}, we will { do something}”. The first ‘in order to’ statement is stakeholder neutral, and states the problem through requesting an improvement to the software/process etc. The second part of the story is the verb, the doing bit. So to achieve the ‘improvement’ which is not currently true, we will do something to make this true in the future. My PM is very interested in this, and he’s observed some of the problems of overloading stories so I’m hoping between us we can use some of David’s suggestions to help clarify our stories better. The second keynote of the day (and our last) proved to be the most entertaining and exhausting of the conference for me. “The ongoing evolution of testing in agile development” by Scott Barber. I’ve never had the pleasure of seeing Scott before… OMG I would love to have even half of the energy he has! What struck me during this presentation was Scott’s explanation of how testing has become the role/job that it is (largely) today, and how this has led to the need for ‘methodologies’ to make dev and test work! The argument that we should be trying to converge the roles again is a very valid one, and one that a couple of the teams at work are actively doing with great results. Making developers as responsible for quality as testers is something that has been lost over the years, but something that we are now striving to achieve. The idea that we (testers) should be testing experts/specialists, not testing ‘union members’, supports this idea so the entire team works on all aspects of a feature/product, with the ‘specialists’ taking the lead and advising/coaching the others. This leads to better propagation of information around the team, a greater holistic understanding of the project and it allows the team to continue functioning if some of it’s members are off sick, for example. Feeling somewhat drained from Scott’s keynote (but at the same time excited that alot of the points he raised supported actions we are taking at work), I headed into my last presentation for Agile Testing Days 2012 before having to make my way to Tegel to catch the flight home. “Thinking and working agile in an unbending world” with Pete Walen was a talk I was not going to miss! Having spoken to Pete several times during the past few days, I was looking forward to hearing what he was going to say, and I was not disappointed. Pete started off by trying to separate the definitions of ‘Agile’ as in the methodology, and ‘agile’ as in the adjective by pronouncing them the ‘english’ and ‘american’ ways. So Agile pronounced (Ajyle) and agile pronounced (ajul). There was much confusion around what the hell he was talking about, although I thought it was quite clear. Agile – Software development methodology agile – Marked by ready ability to move with quick easy grace; Having a quick resourceful and adaptable character. Anyway, that aside (although it provided a few laughs during the presentation), the point was that many teams that claim to be ‘Agile’ but are not, in fact, ‘agile’ by nature. Implementing ‘Agile’ methodologies that are so prescriptive actually goes against the very nature of Agile development where a team should anticipate, adapt and explore. Pete made a valid point that very few companies intentionally put up roadblocks to impede work, so if work is being blocked/delayed, why? This is where being agile as a team pays off because the team can inspect what’s going on, explore options and adapt their processes. It is through experimentation (and that means trying and failing as well as trying and succeeding) that a team will improve and grow leading to focussing on what really needs to be done to achieve X. So, that was it, the last talk of our conference. I was gutted that we had to miss the closing keynote from Matt Heusser, as Matt was another person I had spoken too a few times during the conference, but the flight would not wait, and just as well we left when we did because the traffic was a nightmare! My Takeaway Triple from Day 3: Release often and release small – don’t leave stuff on the shelf Keep the meaning of the word ‘agile’ in mind when working in ‘Agile Look at testing as more of a skill than a role  

    Read the article

  • External File Upload Optimizations for Windows Azure

    - by rgillen
    [Cross posted from here: http://rob.gillenfamily.net/post/External-File-Upload-Optimizations-for-Windows-Azure.aspx] I’m wrapping up a bit of the work we’ve been doing on data movement optimizations for cloud computing and the latest set of data yielded some interesting points I thought I’d share. The work done here is not really rocket science but may, in some ways, be slightly counter-intuitive and therefore seemed worthy of posting. Summary: for those who don’t like to read detailed posts or don’t have time, the synopsis is that if you are uploading data to Azure, block your data (even down to 1MB) and upload in parallel. Set your block size based on your source file size, but if you must choose a fixed value, use 1MB. Following the above will result in significant performance gains… upwards of 10x-24x and a reduction in overall file transfer time of upwards of 90% (eg, uploading a 1GB file averaged 46.37 minutes prior to optimizations and averaged 1.86 minutes afterwards). Detail: For those of you who want more detail, or think that the claims at the end of the preceding paragraph are over-reaching, what follows is information and code supporting these claims. As the title would indicate, these tests were run from our research facility pointing to the Azure cloud (specifically US North Central as it is physically closest to us) and do not represent intra-cloud results… we have performed intra-cloud tests and the overall results are similar in notion but the data rates are significantly different as well as the tipping points for the various block sizes… this will be detailed separately). We started by building a very simple console application that would loop through a directory and upload each file to Azure storage. This application used the shipping storage client library from the 1.1 version of the azure tools. The only real variation from the client library is that we added code to collect and record the duration (in ms) and size (in bytes) for each file transferred. The code is available here. We then created a directory that had a collection of files for the following sizes: 2KB, 32KB, 64KB, 128KB, 512KB, 1MB, 5MB, 10MB, 25MB, 50MB, 100MB, 250MB, 500MB, 750MB, and 1GB (50 files for each size listed). These files contained randomly-generated binary data and do not benefit from compression (a separate discussion topic). Our file generation tool is available here. The baseline was established by running the application described above against the directory containing all of the data files. This application uploads the files in a random order so as to avoid transferring all of the files of a given size sequentially and thereby spreading the affects of periodic Internet delays across the collection of results.  We then ran some scripts to split the resulting data and generate some reports. The raw data collected for our non-optimized tests is available via the links in the Related Resources section at the bottom of this post. For each file size, we calculated the average upload time (and standard deviation) and the average transfer rate (and standard deviation). As you likely are aware, transferring data across the Internet is susceptible to many transient delays which can cause anomalies in the resulting data. It is for this reason that we randomized the order of source file processing as well as executed the tests 50x for each file size. We expect that these steps will yield a sufficiently balanced set of results. Once the baseline was collected and analyzed, we updated the test harness application with some methods to split the source file into user-defined block sizes and then to upload those blocks in parallel (using the PutBlock() method of Azure storage). The parallelization was handled by simply relying on the Parallel Extensions to .NET to provide a Parallel.For loop (see linked source for specific implementation details in Program.cs, line 173 and following… less than 100 lines total). Once all of the blocks were uploaded, we called PutBlockList() to assemble/commit the file in Azure storage. For each block transferred, the MD5 was calculated and sent ensuring that the bits that arrived matched was was intended. The timer for the blocked/parallelized transfer method wraps the entire process (source file splitting, block transfer, MD5 validation, file committal). A diagram of the process is as follows: We then tested the affects of blocking & parallelizing the transfers by running the updated application against the same source set and did a parameter sweep on the block size including 256KB, 512KB, 1MB, 2MB, and 4MB (our assumption was that anything lower than 256KB wasn’t worth the trouble and 4MB is the maximum size of a block supported by Azure). The raw data for the parallel tests is available via the links in the Related Resources section at the bottom of this post. This data was processed and then compared against the single-threaded / non-optimized transfer numbers and the results were encouraging. The Excel version of the results is available here. Two semi-obvious points need to be made prior to reviewing the data. The first is that if the block size is larger than the source file size you will end up with a “negative optimization” due to the overhead of attempting to block and parallelize. The second is that as the files get smaller, the clock-time cost of blocking and parallelizing (overhead) is more apparent and can tend towards negative optimizations. For this reason (and is supported in the raw data provided in the linked worksheet) the charts and dialog below ignore source file sizes less than 1MB. (click chart for full size image) The chart above illustrates some interesting points about the results: When the block size is smaller than the source file, performance increases but as the block size approaches and then passes the source file size, you see decreasing benefit to the point of negative gains (see the values for the 1MB file size) For some of the moderately-sized source files, small blocks (256KB) are best As the size of the source file gets larger (see values for 50MB and up), the smallest block size is not the most efficient (presumably due, at least in part, to the increased number of blocks, increased number of individual transfer requests, and reassembly/committal costs). Once you pass the 250MB source file size, the difference in rate for 1MB to 4MB blocks is more-or-less constant The 1MB block size gives the best average improvement (~16x) but the optimal approach would be to vary the block size based on the size of the source file.    (click chart for full size image) The above is another view of the same data as the prior chart just with the axis changed (x-axis represents file size and plotted data shows improvement by block size). It again highlights the fact that the 1MB block size is probably the best overall size but highlights the benefits of some of the other block sizes at different source file sizes. This last chart shows the change in total duration of the file uploads based on different block sizes for the source file sizes. Nothing really new here other than this view of the data highlights the negative affects of poorly choosing a block size for smaller files.   Summary What we have found so far is that blocking your file uploads and uploading them in parallel results in significant performance improvements. Further, utilizing extension methods and the Task Parallel Library (.NET 4.0) make short work of altering the shipping client library to provide this functionality while minimizing the amount of change to existing applications that might be using the client library for other interactions.   Related Resources Source code for upload test application Source code for random file generator ODatas feed of raw data from non-optimized transfer tests Experiment Metadata Experiment Datasets 2KB Uploads 32KB Uploads 64KB Uploads 128KB Uploads 256KB Uploads 512KB Uploads 1MB Uploads 5MB Uploads 10MB Uploads 25MB Uploads 50MB Uploads 100MB Uploads 250MB Uploads 500MB Uploads 750MB Uploads 1GB Uploads Raw Data OData feeds of raw data from blocked/parallelized transfer tests Experiment Metadata Experiment Datasets Raw Data 256KB Blocks 512KB Blocks 1MB Blocks 2MB Blocks 4MB Blocks Excel worksheet showing summarizations and comparisons

    Read the article

  • Partner Blog Series: PwC Perspectives Part 2 - Jumpstarting your IAM program with R2

    - by Tanu Sood
    Identity and access management (IAM) isn’t a new concept. Over the past decade, companies have begun to address identity management through a variety of solutions that have primarily focused on provisioning. . The new age workforce is converging at a rapid pace with ever increasing demand to use diverse portfolio of applications and systems to interact and interface with their peers in the industry and customers alike. Oracle has taken a significant leap with their release of Identity and Access Management 11gR2 towards enabling this global workforce to conduct their business in a secure, efficient and effective manner. As companies deal with IAM business drivers, it becomes immediately apparent that holistic, rather than piecemeal, approaches better address their needs. When planning an enterprise-wide IAM solution, the first step is to create a common framework that serves as the foundation on which to build the cost, compliance and business process efficiencies. As a leading industry practice, IAM should be established on a foundation of accurate data for identity management, making this data available in a uniform manner to downstream applications and processes. Mature organizations are looking beyond IAM’s basic benefits to harness more advanced capabilities in user lifecycle management. For any organization looking to embark on an IAM initiative, consider the following use cases in managing and administering user access. Expanding the Enterprise Provisioning Footprint Almost all organizations have some helpdesk resources tied up in handling access requests from users, a distraction from their core job of handling problem tickets. This dependency has mushroomed from the traditional acceptance of provisioning solutions integrating and addressing only a portion of applications in the heterogeneous landscape Oracle Identity Manager (OIM) 11gR2 solves this problem by offering integration with third party ticketing systems as “disconnected applications”. It allows for the existing business processes to be seamlessly integrated into the system and tracked throughout its lifecycle. With minimal effort and analysis, an organization can begin integrating OIM with groups or applications that are involved with manually intensive access provisioning and de-provisioning activities. This aspect of OIM allows organizations to on-board applications and associated business processes quickly using out of box templates and frameworks. This is especially important for organizations looking to fold in users and resources from mergers and acquisitions. Simplifying Access Requests Organizations looking to implement access request solutions often find it challenging to get their users to accept and adopt the new processes.. So, how do we improve the user experience, make it intuitive and personalized and yet simplify the user access process? With R2, OIM helps organizations alleviate the challenge by placing the most used functionality front and centre in the new user request interface. Roles, application accounts, and entitlements can all be found in the same interface as catalog items, giving business users a single location to go to whenever they need to initiate, approve or track a request. Furthermore, if a particular item is not relevant to a user’s job function or area inside the organization, it can be hidden so as to not overwhelm or confuse the user with superfluous options. The ability to customize the user interface to suit your needs helps in exercising the business rules effectively and avoiding access proliferation within the organization. Saving Time with Templates A typical use case that is most beneficial to business users is flexibility to place, edit, and withdraw requests based on changing circumstances and business needs. With OIM R2, multiple catalog items can now be added and removed from the shopping cart, an ecommerce paradigm that many users are already familiar with. This feature can be especially useful when setting up a large number of new employees or granting existing department or group access to a newly integrated application. Additionally, users can create their own shopping cart templates in order to complete subsequent requests more quickly. This feature saves the user from having to search for and select items all over again if a request is similar to a previous one. Advanced Delegated Administration A key feature of any provisioning solution should be to empower each business unit in managing their own access requests. By bringing administration closer to the user, you improve user productivity, enable efficiency and alleviate the administration overhead. To do so requires a federated services model so that the business units capable of shouldering the onus of user life cycle management of their business users can be enabled to do so. OIM 11gR2 offers advanced administrative options for creating, managing and controlling business logic and workflows through easy to use administrative interface and tools that can be exposed to delegated business administrators. For example, these business administrators can establish or modify how certain requests and operations should be handled within their business unit based on a number of attributes ranging from the type of request or the risk level of the individual items requested. Closed-Loop Remediation Security continues to be a major concern for most organizations. Identity management solutions bolster security by ensuring only the right users have the right access to the right resources. To prevent unauthorized access and where it already exists, the ability to detect and remediate it, are key requirements of an enterprise-grade proven solution. But the challenge with most solutions today is that some of this information still exists in silos. And when changes are made to systems directly, not all information is captured. With R2, oracle is offering a comprehensive Identity Governance solution that our customer organizations are leveraging for closed loop remediation that allows for an automated way for administrators to revoke unauthorized access. The change is automatically captured and the action noted for continued management. Conclusion While implementing provisioning solutions, it is important to keep the near term and the long term goals in mind. The provisioning solution should always be a part of a larger security and identity management program but with the ability to seamlessly integrate not only with the company’s infrastructure but also have the ability to leverage the information, business models compiled and used by the other identity management solutions. This allows organizations to reduce the cost of ownership, close security gaps and leverage the existing infrastructure. And having done so a multiple clients’ sites, this is the approach we recommend. In our next post, we will take a journey through our experiences of advising clients looking to upgrade to R2 from a previous version or migrating from a different solution. Meet the Writers:   Praveen Krishna is a Manager in the Advisory Security practice within PwC.  Over the last decade Praveen has helped clients plan, architect and implement Oracle identity solutions across diverse industries.  His experience includes delivering security across diverse topics like network, infrastructure, application and data where he brings a holistic point of view to problem solving. Dharma Padala is a Director in the Advisory Security practice within PwC.  He has been implementing medium to large scale Identity Management solutions across multiple industries including utility, health care, entertainment, retail and financial sectors.   Dharma has 14 years of experience in delivering IT solutions out of which he has been implementing Identity Management solutions for the past 8 years. Scott MacDonald is a Director in the Advisory Security practice within PwC.  He has consulted for several clients across multiple industries including financial services, health care, automotive and retail.   Scott has 10 years of experience in delivering Identity Management solutions. John Misczak is a member of the Advisory Security practice within PwC.  He has experience implementing multiple Identity and Access Management solutions, specializing in Oracle Identity Manager and Business Process Engineering Language (BPEL). Jenny (Xiao) Zhang is a member of the Advisory Security practice within PwC.  She has consulted across multiple industries including financial services, entertainment and retail. Jenny has three years of experience in delivering IT solutions out of which she has been implementing Identity Management solutions for the past one and a half years.

    Read the article

  • Recursion in the form of a Recursive Func&lt;T, T&gt;

    - by ToStringTheory
    I gotta admit, I am kind of surprised that I didn’t realize I could do this sooner.  I recently had a problem which required a recursive function call to come up with the answer.  After some time messing around with a recursive method, and creating an API that I was not happy with, I was able to create an API that I enjoy, and seems intuitive. Introduction To bring it to a simple example, consider the summation to n: A mathematically identical formula is: In a .NET function, this can be represented by a function: Func<int, int> summation = x => x*(x+1)/2 Calling summation with an input integer will yield the summation to that number: var sum10 = summation(4); //sum10 would be equal to 10 But what if I wanted to get a second level summation…  First some to n, and then use that argument as the input to the same function, to find the second level summation: So as an easy example, calculate the summation to 3, which yields 6.  Then calculate the summation to 6 which yields 21. Represented as a mathematical formula - So what if I wanted to represent this as .NET functions.  I can always do: //using the summation formula from above var sum3 = summation(3); //sets sum3 to 6 var sum3_2 = summation(sum3); //sets sum3 to 21 I could always create a while loop to perform the calculations too: Func<int, int> summation = x => x*(x+1)/2; //for the interests of a smaller example, using shorthand int sumResultTo = 3; int level = 2; while(level-- > 0) { sumResultTo = summation(sumResultTo); } //sumResultTo is equal to 21 now. Or express it as a for-loop, method calls, etc…  I really didn’t like any of the options that I tried.  Then it dawned on me – since I was using a Func<T, T> anyways, why not use the Func’s output from one call as the input as another directly. Some Code So, I decided that I wanted a recursion class.  Something that I would be generic and reusable in case I ever wanted to do something like this again. It is limited to only the Func<T1, T2> level of Func, and T1 must be the same as T2. The first thing in this class is a private field for the function: private readonly Func<T, T> _functionToRecurse; So, I since I want the function to be unchangeable, I have defined it as readonly.  Therefore my constructor looks like: public Recursion(Func<T, T> functionToRecurse) { if (functionToRecurse == null) { throw new ArgumentNullException("functionToRecurse", "The function to recurse can not be null"); } _functionToRecurse = functionToRecurse; } Simple enough.  If you have any questions, feel free to post them in the comments, and I will be sure to answer them. Next, I want enough. If be able to get the result of a function dependent on how many levels of recursion: private Func<T, T> GetXLevel(int level) { if (level < 1) { throw new ArgumentOutOfRangeException("level", level, "The level of recursion must be greater than 0"); } if (level == 1) return _functionToRecurse; return _GetXLevel(level - 1, _functionToRecurse); } So, if you pass in 1 for the level, you get just the Func<T,T> back.  If you say that you want to go deeper down the rabbit hole, it calls a method which accepts the level it is at, and the function which it needs to use to recurse further: private Func<T, T> _GetXLevel(int level, Func<T, T> prevFunc) { if (level == 1) return y => prevFunc(_functionToRecurse(y)); return _GetXLevel(level - 1, y => prevFunc(_functionToRecurse(y))); } That is really all that is needed for this class. If I exposed the GetXLevel function publicly, I could use that to get the function for a level, and pass in the argument..  But I wanted something better.  So, I used the ‘this’ array operator for the class: public Func<T,T> this[int level] { get { if (level < 1) { throw new ArgumentOutOfRangeException("level", level, "The level of recursion must be greater than 0"); } return this.GetXLevel(level); } } So, using the same example above of finding the second recursion of the summation of 3: var summator = new Recursion<int>(x => (x * (x + 1)) / 2); var sum_3_level2 = summator[2](3); //yields 21 You can even find just store the delegate to the second level summation, and use it multiple times: var summator = new Recursion<int>(x => (x * (x + 1)) / 2); var sum_level2 = summator[2]; var sum_3_level2 = sum_level2(3); //yields 21 var sum_4_level2 = sum_level2(4); //yields 55 var sum_5_level2 = sum_level2(5); //yields 120 Full Code Don’t think I was just going to hold off on the full file together and make you do the hard work…  Copy this into a new class file: public class Recursion<T> { private readonly Func<T, T> _functionToRecurse; public Recursion(Func<T, T> functionToRecurse) { if (functionToRecurse == null) { throw new ArgumentNullException("functionToRecurse", "The function to recurse can not be null"); } _functionToRecurse = functionToRecurse; } public Func<T,T> this[int level] { get { if (level < 1) { throw new ArgumentOutOfRangeException("level", level, "The level of recursion must be greater than 0"); } return this.GetXLevel(level); } } private Func<T, T> GetXLevel(int level) { if (level < 1) { throw new ArgumentOutOfRangeException("level", level, "The level of recursion must be greater than 0"); } if (level == 1) return _functionToRecurse; return _GetXLevel(level - 1, _functionToRecurse); } private Func<T, T> _GetXLevel(int level, Func<T, T> prevFunc) { if (level == 1) return y => prevFunc(_functionToRecurse(y)); return _GetXLevel(level - 1, y => prevFunc(_functionToRecurse(y))); } } Conclusion The great thing about this class, is that it can be used with any function with same input/output parameters.  I strived to find an implementation that I found clean and useful, and I finally settled on this.  If you have feedback – good or bad, I would love to hear it!

    Read the article

  • Struct Method for Loops Problem

    - by Annalyne
    I have tried numerous times how to make a do-while loop using the float constructor for my code but it seems it does not work properly as I wanted. For summary, I am making a TBRPG in C++ and I encountered few problems. But before that, let me post my code. #include <iostream> #include <string> #include <ctime> #include <cstdlib> using namespace std; int char_level = 1; //the starting level of the character. string town; //town string town_name; //the name of the town the character is in. string charname; //holds the character's name upon the start of the game int gems = 0; //holds the value of the games the character has. const int MAX_ITEMS = 15; //max items the character can carry string inventory [MAX_ITEMS]; //the inventory of the character in game int itemnum = 0; //number of items that the character has. bool GameOver = false; //boolean intended for the game over scr. string monsterTroop [] = {"Slime", "Zombie", "Imp", "Sahaguin, Hounds, Vampire"}; //monster name float monsterTroopHealth [] = {5.0f, 10.0f, 15.0f, 20.0f, 25.0f}; // the health of the monsters int monLifeBox; //life carrier of the game's enemy troops int enemNumber; //enemy number //inventory[itemnum++] = "Sword"; class RPG_Game_Enemy { public: void enemyAppear () { srand(time(0)); enemNumber = 1+(rand()%3); if (enemNumber == 1) cout << monsterTroop[1]; //monster troop 1 else if (enemNumber == 2) cout << monsterTroop[2]; //monster troop 2 else if (enemNumber == 3) cout << monsterTroop[3]; //monster troop 3 else if (enemNumber == 4) cout << monsterTroop[4]; //monster troop 4 } void enemDefeat () { cout << "The foe has been defeated. You are victorious." << endl; } void enemyDies() { //if the enemy dies: //collapse declaration cout << "The foe vanished and you are victorious!" << endl; } }; class RPG_Scene_Battle { public: RPG_Scene_Battle(float ini_health) : health (ini_health){}; float getHealth() { return health; } void setHealth(float rpg_val){ health = rpg_val;}; private: float health; }; //---------------------------------------------------------------// // Conduct Damage for the Scene Battle's Damage //---------------------------------------------------------------// float conductDamage(RPG_Scene_Battle rpg_tr, float damage) { rpg_tr.setHealth(rpg_tr.getHealth() - damage); return rpg_tr.getHealth(); }; // ------------------------------------------------------------- // void RPG_Scene_DisplayItem () { cout << "Items: \n"; for (int i=0; i < itemnum; ++i) cout << inventory[i] <<endl; }; In this code I have so far, the problem I have is the battle scene. For example, the player battles a Ghost with 10 HP, when I use a do while loop to subtract the HP of the character and the enemy, it only deducts once in the do while. Some people said I should use a struct, but I have no idea how to make it. Is there a way someone can display a code how to implement it on my game? Edit: I made the do-while by far like this: do RPG_Scene_Battle (player, 20.0f); RPG_Scene_Battle (enemy, 10.0f); cout << "Battle starts!" <<endl; cout << "You used a blade skill and deducted 2 hit points to the enemy!" conductDamage (enemy, 2.0f); while (enemy!=0) also, I made something like this: #include <iostream> using namespace std; int gems = 0; class Entity { public: Entity(float startingHealth) : health(startingHealth){}; // initialize health float getHealth(){return health;} void setHealth(float value){ health = value;}; private: float health; }; float subtractHealthFrom(Entity& ent, float damage) { ent.setHealth(ent.getHealth() - damage); return ent.getHealth(); }; int main () { Entity character(10.0f); Entity enemy(10.0f); cout << "Hero Life: "; cout << subtractHealthFrom(character, 2.0f) <<endl; cout << "Monster Life: "; cout << subtractHealthFrom(enemy, 2.0f) <<endl; cout << "Hero Life: "; cout << subtractHealthFrom(character, 2.0f) <<endl; cout << "Monster Life: "; cout << subtractHealthFrom(enemy, 2.0f) <<endl; }; Struct method, they say, should solve this problem. How can I continously deduct hp from the enemy? Whenever I deduct something, it would return to its original value -_-

    Read the article

  • Webcast Q&A: ING on How to Scale Role Management and Compliance

    - by Tanu Sood
    Thanks to all who attended the live webcast we hosted on ING: Scaling Role Management and Access Certifications to Thousands of Applications on Wed, April 11th. Those of you who couldn’t join us, the webcast replay is now available. Many thanks to our guest speaker, Mark Robison, Enterprise Architect at ING for walking us through ING’s drivers and rationale for the platform approach, the phased implementation strategy, results & metrics, roadmap and recommendations. We greatly appreciate the insight he shared with us all on the deployment synergies between Oracle Identity Manager (OIM) and Oracle Identity Analytics (OIA) to enforce streamlined user and role management and scalable compliance. Mark was also kind enough to walk us through specific solutions features that helped ING manage the problem of role explosion and implement closed loop remediation. Our host speaker, Neil Gandhi, Principal Product Manager, Oracle rounded off the presentation by discussing common use cases and deployment scenarios we see organizations implement to automate user/identity administration and enforce closed-loop scalable compliance. Neil also called out the specific features in Oracle Identity Analytics 11gR1 that cater to expediting and streamlining compliance processes such as access certifications. While we tackled a few questions during the webcast, we have captured the responses to those that we weren’t able to get to here; our sincere thanks to Mark Robison for taking the time to respond to questions specific to ING’s implementation and strategy. Q. Did you include business friendly entitlment descriptions, or is the business seeing application descriptors A. We include very business friendly descriptions.  The OIA tool has the facility to allow this. Q. When doing attestation on job change, who is in the workflow to review and confirm that the employee should continue to have access? Is that a best practice?   A. The new and old manager  are in the workflow.  The tool can check for any Separation of Duties (SOD) violations with both having similiar accesses.  It may not be a best practice, but it is a reality of doing your old and new job for a transition period on a transfer. Q. What versions of OIM and OIA are being used at ING?   A. OIM 11gR1 and OIA 11gR1; the very latest versions available. Q. Are you using an entitlements / role catalog?   A. Yes. We use both roles and entitlements. Q. What specific unexpected benefits did the Identity Warehouse provide ING?   A. The most unanticipated was to help Legal Hold identify user ID's in the various applications.   Other benefits included providing a one stop shop for all aggregated ID information. Q. How fine grained are your application and entitlements? Did OIA, OIM support that level of granularity?   A. We have some very fine grained entitlements, but we role this up into approved Roles to allow for easier management.   For managing very fine grained entitlements, Oracle offers the Oracle Entitlement Server.  We currently do not own this software but are considering it. Q. Do you allow any individual access or is everything truly role based?   A. We are a hybrid environment with roles and individual positive and negative entitlements Q. Did you use an Agile methodology like scrum to deliver functionality during your project? A. We started with waterfall, but used an agile approach to provide benefits after the initial implementation Q. How did you handle rolling out the standard ID format to existing users? A. We just used the standard IDs for new users.  We have not taken on a project to address the existing nonstandard IDs. Q. To avoid role explosion, how do you deal with apps that require more than a couple of entitlement TYPES? For example, an app may have different levels of access and it may need to know the user's country/state to associate them with particular customers.   A. We focus on the functional user and craft the role around their daily job requirements.  The role captures the required application entitlements.  To keep role explosion down, we use role mining in OIA and also meet and interview the business.  It is an iterative process to get role consensus. Q. Great presentation! How many rounds of Certifications has ING performed so far?  A. Around 7 quarters and constant certifications on transfer. Q. Did you have executive support from the top down   A. Yes  The executive support was key to our success. Q. For your cloud instance are you using OIA or OIM as SaaS?  A. No.  We are just provisioning and deprovisioning to various Cloud providers.  (Service Now is an example) Q. How do you ensure a role owner does not get more priviliges as are intended and thus violates another role, e,g, a DBA Roles should not get tor rigt to run somethings as root, as this would affect the root role? A. We have SOD  checks.  Also all Roles are initially approved by external audit and the role owners have to certify the roles and any changes Q. What is your ratio of employees to roles?   A. We are still in process going through our various lines of business, so I do not have a final ratio.  From what we have seen, the ratio varies greatly depending on the Line of Business and the diversity of Job Functions.  For standardized lines of business such as call centers, the ratio is very good where we can have a single role that covers many employees.  For specialized lines of business like treasury, it can be one or two people per role. Q. Is ING using Oracle On Demand service ?   A. No Q. Do you have to implement or migrate to OIM in order to get the Identity Warehouse, or can OIA provide the identity warehouse as well if you haven't reached OIM yet? A. No, OIM deployment is not required to implement OIA’s Identity Warehouse but as you heard during the webcast, there are tremendous deployment synergies in deploying both OIA and OIM together. Q. When is the Security Governor product coming out? A. Oracle Security Governor for Healthcare is available today. Hope you enjoyed the webcast and we look forward to having you join us for the next webcast in the Customers Talk: Identity as a Platform webcast series: Toyota: Putting Customers First – Identity Platform as a Business Enabler Wednesday, May 16th at 10 am PST/ 1 pm EST Register Today You can also register for a live event at a city near you where Aberdeen’s Derek Brink will discuss the survey results from the recently published report “Analyzing Platform vs. Point Solution Approach in Identity”. And, you can do a quick (& free)  online assessment of your identity programs by benchmarking it against the 160 organizations surveyed  in the Aberdeen report, compliments of Oracle. Here’s the slide deck from our ING webcast: ING webcast platform View more presentations from OracleIDM

    Read the article

  • LibGDX onTouch() method Array and flip method

    - by johnny-b
    How can I add this on my application. i want to use the onTouch() method from the implementation of the InputProcessor to kill the enemies on screen. how do i do that? do i have to do anything to the enemy class? also i am trying to add a Array of enemies and it keeps throwing exceptions or the bullet now is facing LEFT <--- again after I used the flip method in the bullet class. All the code is below so please anyone feel free to have a look thanks. please help Thank you M // This is the bullet class. public class Bullet extends Sprite { public static final float BULLET_HOMING = 6000; public static final float BULLET_SPEED = 300; private Vector2 velocity; private float lifetime; private Rectangle bul; public Bullet(float x, float y) { velocity = new Vector2(0, 0); setPosition(x, y); AssetLoader.bullet1.flip(true, false); AssetLoader.bullet2.flip(true, false); setSize(AssetLoader.bullet1.getWidth(), AssetLoader.bullet1.getHeight()); bul = new Rectangle(); } public void update(float delta) { float targetX = GameWorld.getBall().getX(); float targetY = GameWorld.getBall().getY(); float dx = targetX - getX(); float dy = targetY - getY(); float distToTarget = (float) Math.sqrt(dx * dx + dy * dy); dx /= distToTarget; dy /= distToTarget; dx *= BULLET_HOMING; dy *= BULLET_HOMING; velocity.x += dx * delta; velocity.y += dy * delta; float vMag = (float) Math.sqrt(velocity.x * velocity.x + velocity.y * velocity.y); velocity.x /= vMag; velocity.y /= vMag; velocity.x *= BULLET_SPEED; velocity.y *= BULLET_SPEED; bul.set(getX(), getY(), getOriginX(), getOriginY()); Vector2 v = velocity.cpy().scl(delta); setPosition(getX() + v.x, getY() + v.y); setOriginCenter(); setRotation(velocity.angle()); } public Rectangle getBounds() { return bul; } public Rectangle getBounds1() { return this.getBoundingRectangle(); } } // This is the class where i load all the images from public class AssetLoader { public static Texture texture; public static TextureRegion bg, ball1, ball2; public static Animation bulletAnimation, ballAnimation; public static Sprite bullet1, bullet2; public static void load() { texture = new Texture(Gdx.files.internal("SpriteN1.png")); texture.setFilter(TextureFilter.Nearest, TextureFilter.Nearest); bg = new TextureRegion(texture, 80, 421, 395, 30); bg.flip(false, true); ball1 = new TextureRegion(texture, 0, 321, 32, 32); ball1.flip(false, true); ball2 = new TextureRegion(texture, 32, 321, 32, 32); ball2.flip(false, true); bullet1 = new Sprite(texture, 380, 350, 45, 20); bullet1.flip(false, true); bullet2 = new Sprite(texture, 425, 350, 45, 20); bullet2.flip(false, true); TextureRegion[] balls = { ball1, ball2 }; ballAnimation = new Animation(0.16f, balls); ballAnimation.setPlayMode(Animation.PlayMode.LOOP); } Sprite[] bullets = { bullet1, bullet2 }; bulletAnimation = new Animation(0.06f, aims); bulletAnimation.setPlayMode(Animation.PlayMode.LOOP); } public static void dispose() { texture.dispose(); } // This is for the rendering or drawing onto the screen/canvas. public class GameRenderer { private Bullet bullet; private Ball ball; public GameRenderer(GameWorld world) { myWorld = world; cam = new OrthographicCamera(); cam.setToOrtho(true, 480, 320); batcher = new SpriteBatch(); // Attach batcher to camera batcher.setProjectionMatrix(cam.combined); shapeRenderer = new ShapeRenderer(); shapeRenderer.setProjectionMatrix(cam.combined); // Call helper methods to initialize instance variables initGameObjects(); initAssets(); } private void initGameObjects() { ball = GameWorld.getBall(); bullet = myWorld.getBullet(); scroller = myWorld.getScroller(); } private void initAssets() { ballAnimation = AssetLoader.ballAnimation; bulletAnimation = AssetLoader.bulletAnimation; } public void render(float runTime) { Gdx.gl.glClearColor(0, 0, 0, 1); Gdx.gl.glClear(GL30.GL_COLOR_BUFFER_BIT); batcher.begin(); batcher.disableBlending(); batcher.enableBlending(); batcher.draw(AssetLoader.ballAnimation.getKeyFrame(runTime), ball.getX(), ball.getY(), ball.getWidth(), ball.getHeight()); batcher.draw(AssetLoader.bulletAnimation.getKeyFrame(runTime), bullet.getX(), bullet.getY(), bullet.getOriginX(), bullet.getOriginY(), bullet.getWidth(), bullet.getHeight(), 1.0f, 1.0f, bullet.getRotation()); // End SpriteBatch batcher.end(); } } // this is to load the image etc on the screen i guess public class GameWorld { public static Ball ball; private Bullet bullet; private ScrollHandler scroller; public GameWorld() { ball = new Ball(480, 273, 32, 32); bullet = new Bullet(10, 10); scroller = new ScrollHandler(0); } public void update(float delta) { ball.update(delta); bullet.update(delta); scroller.update(delta); } public static Ball getBall() { return ball; } public ScrollHandler getScroller() { return scroller; } public Bullet getBullet() { return bullet; } } //This is the input handler class public class InputHandler implements InputProcessor { private Ball myBall; private Bullet bullet; private GameRenderer aims; // Ask for a reference to the Soldier when InputHandler is created. public InputHandler(Ball ball) { myBall = ball; } @Override public boolean touchDown(int screenX, int screenY, int pointer, int button) { return false; } @Override public boolean keyDown(int keycode) { return false; } @Override public boolean keyUp(int keycode) { return false; } @Override public boolean keyTyped(char character) { return false; } @Override public boolean touchUp(int screenX, int screenY, int pointer, int button) { return false; } @Override public boolean touchDragged(int screenX, int screenY, int pointer) { return false; } @Override public boolean mouseMoved(int screenX, int screenY) { return false; } @Override public boolean scrolled(int amount) { return false; } } i am rendering all graphics in a GameRender class and a gameworld class if you need more info please let me know I am trying to make the array work but keep finding that when an array is initialized then the bullet fips back to the original and ends up being backwards???? and if I create an array I keep getting Exceptions throw??? Thank you for any help given.

    Read the article

  • A* PathFinding Poor Performance

    - by RedShft
    After debugging for a few hours, the algorithm seems to be working. Right now to check if it works i'm checking the end node position to the currentNode position when the while loop quits. So far the values look correct. The problem is, the farther I get from the NPC, who is current stationary, the worse the performance gets. It gets to a point where the game is unplayable less than 10 fps. My current PathGraph is 2500 nodes, which I believe is pretty small, right? Any ideas on how to improve performance? struct Node { bool walkable; //Whether this node is blocked or open vect2 position; //The tile's position on the map in pixels int xIndex, yIndex; //The index values of the tile in the array Node*[4] connections; //An array of pointers to nodes this current node connects to Node* parent; int gScore; int hScore; int fScore; } class AStar { private: SList!Node openList; SList!Node closedList; //Node*[4] connections; //The connections of the current node; Node currentNode; //The current node being processed Node[] Path; //The path found; const int connectionCost = 10; Node start, end; ////////////////////////////////////////////////////////// void AddToList(ref SList!Node list, ref Node node ) { list.insert( node ); } void RemoveFrom(ref SList!Node list, ref Node node ) { foreach( elem; list ) { if( node.xIndex == elem.xIndex && node.yIndex == elem.yIndex ) { auto a = find( list[] , elem ); list.linearRemove( take(a, 1 ) ); } } } bool IsInList( SList!Node list, ref Node node ) { foreach( elem; list ) { if( node.xIndex == elem.xIndex && node.yIndex == elem.yIndex ) return true; } return false; } void ClearList( SList!Node list ) { list.clear; } void SetParentNode( ref Node parent, ref Node child ) { child.parent = &parent; } void SetStartAndEndNode( vect2 vStart, vect2 vEnd, Node[] PathGraph ) { int startXIndex, startYIndex; int endXIndex, endYIndex; startXIndex = cast(int)( vStart.x / 32 ); startYIndex = cast(int)( vStart.y / 32 ); endXIndex = cast(int)( vEnd.x / 32 ); endYIndex = cast(int)( vEnd.y / 32 ); foreach( node; PathGraph ) { if( node.xIndex == startXIndex && node.yIndex == startYIndex ) { start = node; } if( node.xIndex == endXIndex && node.yIndex == endYIndex ) { end = node; } } } void SetStartScores( ref Node start ) { start.gScore = 0; start.hScore = CalculateHScore( start, end ); start.fScore = CalculateFScore( start ); } Node GetLowestFScore() { Node lowest; lowest.fScore = 10000; foreach( elem; openList ) { if( elem.fScore < lowest.fScore ) lowest = elem; } return lowest; } //This function current sets the program into an infinite loop //I still need to debug to figure out why the parent nodes aren't correct void GeneratePath() { while( currentNode.position != start.position ) { Path ~= currentNode; currentNode = *currentNode.parent; } } void ReversePath() { Node[] temp; for(int i = Path.length - 1; i >= 0; i-- ) { temp ~= Path[i]; } Path = temp.dup; } public: //@FIXME It seems to find the path, but now performance is terrible void FindPath( vect2 vStart, vect2 vEnd, Node[] PathGraph ) { openList.clear; closedList.clear; SetStartAndEndNode( vStart, vEnd, PathGraph ); SetStartScores( start ); AddToList( openList, start ); while( currentNode.position != end.position ) { currentNode = GetLowestFScore(); if( currentNode.position == end.position ) break; else { RemoveFrom( openList, currentNode ); AddToList( closedList, currentNode ); for( int i = 0; i < currentNode.connections.length; i++ ) { if( currentNode.connections[i] is null ) continue; else { if( IsInList( closedList, *currentNode.connections[i] ) && currentNode.gScore < currentNode.connections[i].gScore ) { currentNode.connections[i].gScore = currentNode.gScore + connectionCost; currentNode.connections[i].hScore = abs( currentNode.connections[i].xIndex - end.xIndex ) + abs( currentNode.connections[i].yIndex - end.yIndex ); currentNode.connections[i].fScore = currentNode.connections[i].gScore + currentNode.connections[i].hScore; currentNode.connections[i].parent = &currentNode; } else if( IsInList( openList, *currentNode.connections[i] ) && currentNode.gScore < currentNode.connections[i].gScore ) { currentNode.connections[i].gScore = currentNode.gScore + connectionCost; currentNode.connections[i].hScore = abs( currentNode.connections[i].xIndex - end.xIndex ) + abs( currentNode.connections[i].yIndex - end.yIndex ); currentNode.connections[i].fScore = currentNode.connections[i].gScore + currentNode.connections[i].hScore; currentNode.connections[i].parent = &currentNode; } else { currentNode.connections[i].gScore = currentNode.gScore + connectionCost; currentNode.connections[i].hScore = abs( currentNode.connections[i].xIndex - end.xIndex ) + abs( currentNode.connections[i].yIndex - end.yIndex ); currentNode.connections[i].fScore = currentNode.connections[i].gScore + currentNode.connections[i].hScore; currentNode.connections[i].parent = &currentNode; AddToList( openList, *currentNode.connections[i] ); } } } } } writeln( "Current Node Position: ", currentNode.position ); writeln( "End Node Position: ", end.position ); if( currentNode.position == end.position ) { writeln( "Current Node Parent: ", currentNode.parent ); //GeneratePath(); //ReversePath(); } } Node[] GetPath() { return Path; } } This is my first attempt at A* so any help would be greatly appreciated.

    Read the article

  • ???Flashback Log???????Redo Log?

    - by Liu Maclean(???)
    ????????????????????redo log?   RVWR( Recovery Writer)?3s??flashback generate buffer??block before image?????????? ?????block change???RVWR??block before image ?flashback log? ?????????,Oracle???????????before image????????,????????flashback database logs?????   ???????????,????? ??????????????????,???????????before image?????shared pool??flashback log buffer?,RVWR??????flashback log buffer??????????? ?DBWR???????????????,DBWR?????buffer header??FBA(Flashback Byte Address)?flashback log buffer?????????? ???? ?????? ??? ????????????? , RVWR???????????(flashback markers)?flashback database logs?? ????(flashback markers)?????????????Oracle??flashback ??????????  ??????????, Oracle ??????(flashback markers)????????????flashback database log???????????block image; ??Oracle ???????(forward recovery)?????????????????SCN?????? flashback markers for example: **** Record at fba: (lno 1 thr 1 seq 1 bno 4 bof 8184) **** RECORD HEADER: Type: 3 (Skip) Size: 8132 RECORD DATA (Skip): **** Record at fba: (lno 1 thr 1 seq 1 bno 4 bof 52) **** RECORD HEADER: Type: 7 (Begin Crash Recovery Record) Size: 36 RECORD DATA (Begin Crash Recovery Record): Previous logical record fba: (lno 1 thr 1 seq 1 bno 3 bof 316) Record scn: 0x0000.00000000 [0.0] **** Record at fba: (lno 1 thr 1 seq 1 bno 3 bof 8184) **** RECORD HEADER: Type: 3 (Skip) Size: 7868 RECORD DATA (Skip): **** Record at fba: (lno 1 thr 1 seq 1 bno 3 bof 316) **** RECORD HEADER: Type: 2 (Marker) Size: 300 RECORD DATA (Marker): Previous logical record fba: (lno 0 thr 0 seq 0 bno 0 bof 0) Record scn: 0x0000.00000000 [0.0] Marker scn: 0x0000.0060e024 [0.6348836] 06/13/2012 15:56:35 Flag 0x0 Flashback threads: 1, Enabled redo threads 1 Recovery Start Checkpoint: scn: 0x0000.0060e024 [0.6348836] 06/13/2012 15:56:12 thread:1 rba:(0x80.180.10) Flashback thread Markers: Thread:1 status:0 fba: (lno 1 thr 1 seq 1 bno 2 bof 8184) Redo Thread Checkpoint Info: Thread:1 rba:(0x80.180.10) **** Record at fba: (lno 1 thr 1 seq 1 bno 2 bof 8184) **** RECORD HEADER: Type: 3 (Skip) Size: 8168 RECORD DATA (Skip): End-Of-Thread reached ????????????????block change ????before image????????flashback log?? ?????block change???flashback log record ????????? redo log???!????flashback log ???????before image ? redo log??? change vector ?  Oracle?????????????????????????????????????,??????I/O??????????????: ??hot block??,Oracle???????????block image?????; Oracle ?????????(flashback barriers)???????????????,flashback barriers???????(???15??),??????????(flashback barriers)????(flashback markers)????????? ????, ??????change?????, ???????????????????????????, ?15????????????????????flashback log????????before image?????????????,?????????????????????,?????????????? ????????,??????????????(flashback barriers), flashback barriers???????,?????15????? ?????flashback barriers????????(flashback markers)???????????????,???????????????????(????barriers?????)??????block image ,????????????????????????????????? ??????????flashback log????redo log????! ????,????????????????, ?????????? SQL> select * from v$version; BANNER -------------------------------------------------------------------------------- Oracle Database 11g Enterprise Edition Release 11.2.0.3.0 - 64bit Production PL/SQL Release 11.2.0.3.0 - Production CORE 11.2.0.3.0 Production TNS for Linux: Version 11.2.0.3.0 - Production NLSRTL Version 11.2.0.3.0 - Production SQL> select * from global_name; GLOBAL_NAME -------------------------------------------------------------------------------- www.oracledatabase12g.com SQL> create table flash_maclean (t1 varchar2(200)) tablespace users; Table created. SQL> insert into flash_maclean values('MACLEAN LOVE HANNA'); 1 row created. SQL> commit; Commit complete. SQL> startup force; ORACLE instance started. Total System Global Area 939495424 bytes Fixed Size 2233960 bytes Variable Size 713034136 bytes Database Buffers 218103808 bytes Redo Buffers 6123520 bytes Database mounted. Database opened. SQL> update flash_maclean set t1='HANNA LOVE MACLEAN'; 1 row updated. commit; Commit complete. SQL> alter system checkpoint; System altered. SQL> select dbms_rowid.rowid_block_number(rowid),dbms_rowid.rowid_relative_fno(rowid) from flash_maclean; DBMS_ROWID.ROWID_BLOCK_NUMBER(ROWID) DBMS_ROWID.ROWID_RELATIVE_FNO(ROWID) ------------------------------------ ------------------------------------ 140431 4 datafile 4 block 140431 ??RDBA rdba: 0x0102248f (4/140431) SQL> ! ps -ef|grep rvwr|grep -v grep oracle 26695 1 0 15:56 ? 00:00:00 ora_rvwr_G11R23 SQL> oradebug setospid 26695 Oracle pid: 20, Unix process pid: 26695, image: [email protected] (RVWR) SQL> ORADEBUG DUMP FBTAIL 1; Statement processed. To dump the last 2000 flashback records , ??ORADEBUG DUMP FBTAIL 1????????2000?????? SQL> oradebug tracefile_name /s01/orabase/diag/rdbms/g11r23/G11R23/trace/G11R23_rvwr_26695.trc ? TRACE?????????block? before image **** Record at fba: (lno 1 thr 1 seq 1 bno 55 bof 2564) **** RECORD HEADER: Type: 1 (Block Image) Size: 28 RECORD DATA (Block Image): file#: 4 rdba: 0x0102248f Next scn: 0x0000.00000000 [0.0] Flag: 0x0 Block Size: 8192 BLOCK IMAGE: buffer rdba: 0x0102248f scn: 0x0000.00609044 seq: 0x01 flg: 0x06 tail: 0x90440601 frmt: 0x02 chkval: 0xc626 type: 0x06=trans data Hex dump of block: st=0, typ_found=1 Dump of memory from 0x00002B1D94183C00 to 0x00002B1D94185C00 2B1D94183C00 0000A206 0102248F 00609044 06010000 [.....$..D.`.....] 2B1D94183C10 0000C626 00000001 00014AD4 0060903A [&........J..:.`.] 2B1D94183C20 00000000 00320002 01022488 00090006 [......2..$......] 2B1D94183C30 00000CC8 00C00340 000D0542 00008000 [[email protected].......] 2B1D94183C40 006040BC 000F000A 00000920 00C002E4 [.@`..... .......] 2B1D94183C50 0017048F 00002001 00609044 00000000 [..... ..D.`.....] 2B1D94183C60 00000000 00010100 0014FFFF 1F6E1F77 [............w.n.] 2B1D94183C70 00001F6E 1F770001 00000000 00000000 [n.....w.........] 2B1D94183C80 00000000 00000000 00000000 00000000 [................] Repeat 500 times 2B1D94185BD0 00000000 00000000 2C000000 4D120102 [...........,...M] 2B1D94185BE0 454C4341 4C204E41 2045564F 4E4E4148 [ACLEAN LOVE HANN] 2B1D94185BF0 01002C41 43414D07 4E41454C 90440601 [A,...MACLEAN..D.] Block header dump: 0x0102248f Object id on Block? Y seg/obj: 0x14ad4 csc: 0x00.60903a itc: 2 flg: E typ: 1 - DATA brn: 0 bdba: 0x1022488 ver: 0x01 opc: 0 inc: 0 exflg: 0 Itl Xid Uba Flag Lck Scn/Fsc 0x01 0x0006.009.00000cc8 0x00c00340.0542.0d C--- 0 scn 0x0000.006040bc 0x02 0x000a.00f.00000920 0x00c002e4.048f.17 --U- 1 fsc 0x0000.00609044 bdba: 0x0102248f data_block_dump,data header at 0x2b1d94183c64 =============== tsiz: 0x1f98 hsiz: 0x14 pbl: 0x2b1d94183c64 76543210 flag=-------- ntab=1 nrow=1 frre=-1 fsbo=0x14 fseo=0x1f77 avsp=0x1f6e tosp=0x1f6e 0xe:pti[0] nrow=1 offs=0 0x12:pri[0] offs=0x1f77 block_row_dump: tab 0, row 0, @0x1f77 tl: 22 fb: --H-FL-- lb: 0x2 cc: 1 col 0: [18] 4d 41 43 4c 45 41 4e 20 4c 4f 56 45 20 48 41 4e 4e 41 end_of_block_dump SQL> select dump('MACLEAN LOVE HANNA',16) from dual; DUMP('MACLEANLOVEHANNA',16) -------------------------------------------------------------------- Typ=96 Len=18: 4d,41,43,4c,45,41,4e,20,4c,4f,56,45,20,48,41,4e,4e,41 ???????????????????????,??flashback log??before image????????? create table flash_maclean1 (t1 int) tablespace users; SQL> select vs.name, ms.value 2 from v$mystat ms, v$sysstat vs 3 where vs.statistic# = ms.statistic# 4 and vs.name in ('redo size','db block changes'); NAME VALUE ---------------------------------------------------------------- ---------- db block changes 0 redo size 0 SQL> select name,value from v$sysstat where name like 'flashback log%'; NAME VALUE ---------------------------------------------------------------- ---------- flashback log writes 49 flashback log write bytes 9306112 SQL> begin 2 for i in 1..5000 loop 3 update flash_maclean1 set t1=t1+1; 4 commit; 5 end loop; 6 end; 7 / PL/SQL procedure successfully completed. SQL> select vs.name, ms.value 2 from v$mystat ms, v$sysstat vs 3 where vs.statistic# = ms.statistic# 4 and vs.name in ('redo size','db block changes'); NAME VALUE ---------------------------------------------------------------- ---------- db block changes 20006 redo size 3071288 SQL> select name,value from v$sysstat where name like 'flashback log%'; NAME VALUE ---------------------------------------------------------------- ---------- flashback log writes 52 flashback log write bytes 10338304 ??????????? ??hot block,???20006 ?block changes???? ??? 3000k ?redo log ? ??1000k? flashback log ?

    Read the article

  • Mulitple full joins in Postgres is slow

    - by blast83
    I have a program to use the IMDB database and am having very slow performance on my query. It appears that it doesn't use my where condition until after it materializes everything. I looked around for hints to use but nothing seems to work. Here is my query: SELECT * FROM name as n1 FULL JOIN aka_name ON n1.id = aka_name.person_id FULL JOIN cast_info as t2 ON n1.id = t2.person_id FULL JOIN person_info as t3 ON n1.id = t3.person_id FULL JOIN char_name as t4 ON t2.person_role_id = t4.id FULL JOIN role_type as t5 ON t2.role_id = t5.id FULL JOIN title as t6 ON t2.movie_id = t6.id FULL JOIN aka_title as t7 ON t6.id = t7.movie_id FULL JOIN complete_cast as t8 ON t6.id = t8.movie_id FULL JOIN kind_type as t9 ON t6.kind_id = t9.id FULL JOIN movie_companies as t10 ON t6.id = t10.movie_id FULL JOIN movie_info as t11 ON t6.id = t11.movie_id FULL JOIN movie_info_idx as t19 ON t6.id = t19.movie_id FULL JOIN movie_keyword as t12 ON t6.id = t12.movie_id FULL JOIN movie_link as t13 ON t6.id = t13.linked_movie_id FULL JOIN link_type as t14 ON t13.link_type_id = t14.id FULL JOIN keyword as t15 ON t12.keyword_id = t15.id FULL JOIN company_name as t16 ON t10.company_id = t16.id FULL JOIN company_type as t17 ON t10.company_type_id = t17.id FULL JOIN comp_cast_type as t18 ON t8.status_id = t18.id WHERE n1.id = 2003 Very table is related to each other on the join via foreign-key constraints and have indexes for all the mentioned columns. The query plan details: "Hash Left Join (cost=5838187.01..13756845.07 rows=15579622 width=835) (actual time=146879.213..146891.861 rows=20 loops=1)" " Hash Cond: (t8.status_id = t18.id)" " -> Hash Left Join (cost=5838185.92..13542624.18 rows=15579622 width=822) (actual time=146879.199..146891.833 rows=20 loops=1)" " Hash Cond: (t10.company_type_id = t17.id)" " -> Hash Left Join (cost=5838184.83..13328403.29 rows=15579622 width=797) (actual time=146879.165..146891.781 rows=20 loops=1)" " Hash Cond: (t10.company_id = t16.id)" " -> Hash Left Join (cost=5828372.95..10061752.03 rows=15579622 width=755) (actual time=146426.483..146429.756 rows=20 loops=1)" " Hash Cond: (t12.keyword_id = t15.id)" " -> Hash Left Join (cost=5825164.23..6914088.45 rows=15579622 width=731) (actual time=146372.411..146372.529 rows=20 loops=1)" " Hash Cond: (t13.link_type_id = t14.id)" " -> Merge Left Join (cost=5825162.82..6699867.24 rows=15579622 width=715) (actual time=146372.366..146372.472 rows=20 loops=1)" " Merge Cond: (t6.id = t13.linked_movie_id)" " -> Merge Left Join (cost=5684009.29..6378956.77 rows=15579622 width=699) (actual time=144019.620..144019.711 rows=20 loops=1)" " Merge Cond: (t6.id = t12.movie_id)" " -> Merge Left Join (cost=5182403.90..5622400.75 rows=8502523 width=687) (actual time=136849.731..136849.809 rows=20 loops=1)" " Merge Cond: (t6.id = t19.movie_id)" " -> Merge Left Join (cost=4974472.00..5315778.48 rows=8502523 width=637) (actual time=134972.032..134972.099 rows=20 loops=1)" " Merge Cond: (t6.id = t11.movie_id)" " -> Merge Left Join (cost=1830064.81..2033131.89 rows=1341632 width=561) (actual time=63784.035..63784.062 rows=2 loops=1)" " Merge Cond: (t6.id = t10.movie_id)" " -> Nested Loop Left Join (cost=1417360.29..1594294.02 rows=1044480 width=521) (actual time=59279.246..59279.264 rows=1 loops=1)" " Join Filter: (t6.kind_id = t9.id)" " -> Merge Left Join (cost=1417359.22..1429787.34 rows=1044480 width=507) (actual time=59279.222..59279.224 rows=1 loops=1)" " Merge Cond: (t6.id = t8.movie_id)" " -> Merge Left Join (cost=1405731.84..1414378.65 rows=1044480 width=491) (actual time=59121.773..59121.775 rows=1 loops=1)" " Merge Cond: (t6.id = t7.movie_id)" " -> Sort (cost=1346206.04..1348817.24 rows=1044480 width=416) (actual time=58095.230..58095.231 rows=1 loops=1)" " Sort Key: t6.id" " Sort Method: quicksort Memory: 17kB" " -> Hash Left Join (cost=172406.29..456387.53 rows=1044480 width=416) (actual time=57969.371..58095.208 rows=1 loops=1)" " Hash Cond: (t2.movie_id = t6.id)" " -> Hash Left Join (cost=104700.38..256885.82 rows=1044480 width=358) (actual time=49981.493..50006.303 rows=1 loops=1)" " Hash Cond: (t2.role_id = t5.id)" " -> Hash Left Join (cost=104699.11..242522.95 rows=1044480 width=343) (actual time=49981.441..50006.250 rows=1 loops=1)" " Hash Cond: (t2.person_role_id = t4.id)" " -> Hash Left Join (cost=464.96..12283.95 rows=1044480 width=269) (actual time=0.071..0.087 rows=1 loops=1)" " Hash Cond: (n1.id = t3.person_id)" " -> Nested Loop Left Join (cost=0.00..49.39 rows=7680 width=160) (actual time=0.051..0.066 rows=1 loops=1)" " -> Nested Loop Left Join (cost=0.00..17.04 rows=3 width=119) (actual time=0.038..0.041 rows=1 loops=1)" " -> Index Scan using name_pkey on name n1 (cost=0.00..8.68 rows=1 width=39) (actual time=0.022..0.024 rows=1 loops=1)" " Index Cond: (id = 2003)" " -> Index Scan using aka_name_idx_person on aka_name (cost=0.00..8.34 rows=1 width=80) (actual time=0.010..0.010 rows=0 loops=1)" " Index Cond: ((aka_name.person_id = 2003) AND (n1.id = aka_name.person_id))" " -> Index Scan using cast_info_idx_pid on cast_info t2 (cost=0.00..10.77 rows=1 width=41) (actual time=0.011..0.020 rows=1 loops=1)" " Index Cond: ((t2.person_id = 2003) AND (n1.id = t2.person_id))" " -> Hash (cost=463.26..463.26 rows=136 width=109) (actual time=0.010..0.010 rows=0 loops=1)" " -> Index Scan using person_info_idx_pid on person_info t3 (cost=0.00..463.26 rows=136 width=109) (actual time=0.009..0.009 rows=0 loops=1)" " Index Cond: (person_id = 2003)" " -> Hash (cost=42697.62..42697.62 rows=2442362 width=74) (actual time=49305.872..49305.872 rows=2442362 loops=1)" " -> Seq Scan on char_name t4 (cost=0.00..42697.62 rows=2442362 width=74) (actual time=14.066..22775.087 rows=2442362 loops=1)" " -> Hash (cost=1.12..1.12 rows=12 width=15) (actual time=0.024..0.024 rows=12 loops=1)" " -> Seq Scan on role_type t5 (cost=0.00..1.12 rows=12 width=15) (actual time=0.012..0.014 rows=12 loops=1)" " -> Hash (cost=31134.07..31134.07 rows=1573507 width=58) (actual time=7841.225..7841.225 rows=1573507 loops=1)" " -> Seq Scan on title t6 (cost=0.00..31134.07 rows=1573507 width=58) (actual time=21.507..2799.443 rows=1573507 loops=1)" " -> Materialize (cost=59525.80..63203.88 rows=294246 width=75) (actual time=812.376..984.958 rows=192075 loops=1)" " -> Sort (cost=59525.80..60261.42 rows=294246 width=75) (actual time=812.363..922.452 rows=192075 loops=1)" " Sort Key: t7.movie_id" " Sort Method: external merge Disk: 24880kB" " -> Seq Scan on aka_title t7 (cost=0.00..6646.46 rows=294246 width=75) (actual time=24.652..164.822 rows=294246 loops=1)" " -> Materialize (cost=11627.38..12884.43 rows=100564 width=16) (actual time=123.819..149.086 rows=41907 loops=1)" " -> Sort (cost=11627.38..11878.79 rows=100564 width=16) (actual time=123.807..138.530 rows=41907 loops=1)" " Sort Key: t8.movie_id" " Sort Method: external merge Disk: 3136kB" " -> Seq Scan on complete_cast t8 (cost=0.00..1549.64 rows=100564 width=16) (actual time=0.013..10.744 rows=100564 loops=1)" " -> Materialize (cost=1.08..1.15 rows=7 width=14) (actual time=0.016..0.029 rows=7 loops=1)" " -> Seq Scan on kind_type t9 (cost=0.00..1.07 rows=7 width=14) (actual time=0.011..0.013 rows=7 loops=1)" " -> Materialize (cost=412704.52..437969.09 rows=2021166 width=40) (actual time=3420.356..4278.545 rows=1028995 loops=1)" " -> Sort (cost=412704.52..417757.43 rows=2021166 width=40) (actual time=3420.349..3953.483 rows=1028995 loops=1)" " Sort Key: t10.movie_id" " Sort Method: external merge Disk: 90960kB" " -> Seq Scan on movie_companies t10 (cost=0.00..35214.66 rows=2021166 width=40) (actual time=13.271..566.893 rows=2021166 loops=1)" " -> Materialize (cost=3144407.19..3269057.42 rows=9972019 width=76) (actual time=65485.672..70083.219 rows=5039009 loops=1)" " -> Sort (cost=3144407.19..3169337.23 rows=9972019 width=76) (actual time=65485.667..68385.550 rows=5038999 loops=1)" " Sort Key: t11.movie_id" " Sort Method: external merge Disk: 735512kB" " -> Seq Scan on movie_info t11 (cost=0.00..212815.19 rows=9972019 width=76) (actual time=15.750..15715.608 rows=9972019 loops=1)" " -> Materialize (cost=207925.01..219867.92 rows=955433 width=50) (actual time=1483.989..1785.636 rows=429401 loops=1)" " -> Sort (cost=207925.01..210313.59 rows=955433 width=50) (actual time=1483.983..1654.165 rows=429401 loops=1)" " Sort Key: t19.movie_id" " Sort Method: external merge Disk: 31720kB" " -> Seq Scan on movie_info_idx t19 (cost=0.00..15047.33 rows=955433 width=50) (actual time=7.284..221.597 rows=955433 loops=1)" " -> Materialize (cost=501605.39..537645.64 rows=2883220 width=12) (actual time=5823.040..6868.242 rows=1597396 loops=1)" " -> Sort (cost=501605.39..508813.44 rows=2883220 width=12) (actual time=5823.026..6477.517 rows=1597396 loops=1)" " Sort Key: t12.movie_id" " Sort Method: external merge Disk: 78888kB" " -> Seq Scan on movie_keyword t12 (cost=0.00..44417.20 rows=2883220 width=12) (actual time=11.672..839.498 rows=2883220 loops=1)" " -> Materialize (cost=141143.93..152995.81 rows=948150 width=16) (actual time=1916.356..2253.004 rows=478358 loops=1)" " -> Sort (cost=141143.93..143514.31 rows=948150 width=16) (actual time=1916.344..2125.698 rows=478358 loops=1)" " Sort Key: t13.linked_movie_id" " Sort Method: external merge Disk: 29632kB" " -> Seq Scan on movie_link t13 (cost=0.00..14607.50 rows=948150 width=16) (actual time=27.610..297.962 rows=948150 loops=1)" " -> Hash (cost=1.18..1.18 rows=18 width=16) (actual time=0.020..0.020 rows=18 loops=1)" " -> Seq Scan on link_type t14 (cost=0.00..1.18 rows=18 width=16) (actual time=0.010..0.012 rows=18 loops=1)" " -> Hash (cost=1537.10..1537.10 rows=91010 width=24) (actual time=54.055..54.055 rows=91010 loops=1)" " -> Seq Scan on keyword t15 (cost=0.00..1537.10 rows=91010 width=24) (actual time=0.006..14.703 rows=91010 loops=1)" " -> Hash (cost=4585.61..4585.61 rows=245461 width=42) (actual time=445.269..445.269 rows=245461 loops=1)" " -> Seq Scan on company_name t16 (cost=0.00..4585.61 rows=245461 width=42) (actual time=12.037..309.961 rows=245461 loops=1)" " -> Hash (cost=1.04..1.04 rows=4 width=25) (actual time=0.013..0.013 rows=4 loops=1)" " -> Seq Scan on company_type t17 (cost=0.00..1.04 rows=4 width=25) (actual time=0.009..0.010 rows=4 loops=1)" " -> Hash (cost=1.04..1.04 rows=4 width=13) (actual time=0.006..0.006 rows=4 loops=1)" " -> Seq Scan on comp_cast_type t18 (cost=0.00..1.04 rows=4 width=13) (actual time=0.002..0.003 rows=4 loops=1)" "Total runtime: 147055.016 ms" Is there anyway to force the name.id = 2003 before it tries to join all the tables together? As you can see, the end result is 4 tuples but it seems like it should be a fast join by using the available index after it limited it down with the name clause, although very complex.

    Read the article

  • How to Make a Game like Space Invaders - Ray Wenderlich (why do my space invaders scroll off screen)

    - by Erv Noel
    I'm following this tutorial(http://www.raywenderlich.com/51068/how-to-make-a-game-like-space-invaders-with-sprite-kit-tutorial-part-1) and I've run into a problem right after the part where I add [self determineInvaderMovementDirection]; to my GameScene.m file (specifically to my moveInvadersForUpdate method) The tutorial states that the space invaders should be moving accordingly after adding this piece of code but when I run they move to the left and they do not come back. I'm not sure what I am doing wrong as I have followed this tutorial very carefully. Any help or clarification would be greatly appreciated. Thanks in advance ! Here is the full GameScene.m #import "GameScene.h" #import <CoreMotion/CoreMotion.h> #pragma mark - Custom Type Definitions /* The type definition and constant definitions 1,2,3 take care of the following tasks: 1.Define the possible types of invader enemies. This can be used in switch statements later when things like displaying different sprites images for each enemy type. The typedef makes InvaderType a formal Obj-C type that is type checked for method arguments and variables.This is so that the wrong method argument is not used or assigned to the wrong variable. 2. Define the size of the invaders and that they'll be laid out in a grid of rows and columns on the screen. 3. Define a name that will be used to identify invaders when searching for them. */ //1 typedef enum InvaderType { InvaderTypeA, InvaderTypeB, InvaderTypeC } InvaderType; /* Invaders move in a fixed pattern: right, right, down, left, down, right right. InvaderMovementDirection tracks the invaders' progress through this pattern */ typedef enum InvaderMovementDirection { InvaderMovementDirectionRight, InvaderMovementDirectionLeft, InvaderMovementDirectionDownThenRight, InvaderMovementDirectionDownThenLeft, InvaderMovementDirectionNone } InvaderMovementDirection; //2 #define kInvaderSize CGSizeMake(24,16) #define kInvaderGridSpacing CGSizeMake(12,12) #define kInvaderRowCount 6 #define kInvaderColCount 6 //3 #define kInvaderName @"invader" #define kShipSize CGSizeMake(30, 16) //stores the size of the ship #define kShipName @"ship" // stores the name of the ship stored on the sprite node #define kScoreHudName @"scoreHud" #define kHealthHudName @"healthHud" /* this class extension allows you to add “private” properties to GameScene class, without revealing the properties to other classes or code. You still get the benefit of using Objective-C properties, but your GameScene state is stored internally and can’t be modified by other external classes. As well, it doesn’t clutter the namespace of datatypes that your other classes see. This class extension is used in the method didMoveToView */ #pragma mark - Private GameScene Properties @interface GameScene () @property BOOL contentCreated; @property InvaderMovementDirection invaderMovementDirection; @property NSTimeInterval timeOfLastMove; @property NSTimeInterval timePerMove; @end @implementation GameScene #pragma mark Object Lifecycle Management #pragma mark - Scene Setup and Content Creation /*This method simply invokes createContent using the BOOL property contentCreated to make sure you don’t create your scene’s content more than once. This property is defined in an Objective-C Class Extension found near the top of the file()*/ - (void)didMoveToView:(SKView *)view { if (!self.contentCreated) { [self createContent]; self.contentCreated = YES; } } - (void)createContent { //1 - Invaders begin by moving to the right self.invaderMovementDirection = InvaderMovementDirectionRight; //2 - Invaders take 1 sec for each move. Each step left, right or down // takes 1 second. self.timePerMove = 1.0; //3 - Invaders haven't moved yet, so set the time to zero self.timeOfLastMove = 0.0; [self setupInvaders]; [self setupShip]; [self setupHud]; } /* Creates an invade sprite of a given type 1. Use the invadeType parameterr to determine color of the invader 2. Call spriteNodeWithColor:size: of SKSpriteNode to alloc and init a sprite that renders as a rect of the given color invaderColor with size kInvaderSize */ -(SKNode*)makeInvaderOfType:(InvaderType)invaderType { //1 SKColor* invaderColor; switch (invaderType) { case InvaderTypeA: invaderColor = [SKColor redColor]; break; case InvaderTypeB: invaderColor = [SKColor greenColor]; break; case InvaderTypeC: invaderColor = [SKColor blueColor]; break; } //2 SKSpriteNode* invader = [SKSpriteNode spriteNodeWithColor:invaderColor size:kInvaderSize]; invader.name = kInvaderName; return invader; } -(void)setupInvaders { //1 - loop over the rows CGPoint baseOrigin = CGPointMake(kInvaderSize.width / 2, 180); for (NSUInteger row = 0; row < kInvaderRowCount; ++row) { //2 - Choose a single InvaderType for all invaders // in this row based on the row number InvaderType invaderType; if (row % 3 == 0) invaderType = InvaderTypeA; else if (row % 3 == 1) invaderType = InvaderTypeB; else invaderType = InvaderTypeC; //3 - Does some math to figure out where the first invader // in the row should be positioned CGPoint invaderPosition = CGPointMake(baseOrigin.x, row * (kInvaderGridSpacing.height + kInvaderSize.height) + baseOrigin.y); //4 - Loop over the columns for (NSUInteger col = 0; col < kInvaderColCount; ++col) { //5 - Create an invader for the current row and column and add it // to the scene SKNode* invader = [self makeInvaderOfType:invaderType]; invader.position = invaderPosition; [self addChild:invader]; //6 - update the invaderPosition so that it's correct for the //next invader invaderPosition.x += kInvaderSize.width + kInvaderGridSpacing.width; } } } -(void)setupShip { //1 - creates ship using makeShip. makeShip can easily be used later // to create another ship (ex. to set up more lives) SKNode* ship = [self makeShip]; //2 - Places the ship on the screen. In SpriteKit the origin is at the lower //left corner of the screen. The anchorPoint is based on a unit square with (0, 0) at the lower left of the sprite's area and (1, 1) at its top right. Since SKSpriteNode has a default anchorPoint of (0.5, 0.5), i.e., its center, the ship's position is the position of its center. Positioning the ship at kShipSize.height/2.0f means that half of the ship's height will protrude below its position and half above. If you check the math, you'll see that the ship's bottom aligns exactly with the bottom of the scene. ship.position = CGPointMake(self.size.width / 2.0f, kShipSize.height/2.0f); [self addChild:ship]; } -(SKNode*)makeShip { SKNode* ship = [SKSpriteNode spriteNodeWithColor:[SKColor greenColor] size:kShipSize]; ship.name = kShipName; return ship; } -(void)setupHud { //Sets the score label font to Courier SKLabelNode* scoreLabel = [SKLabelNode labelNodeWithFontNamed:@"Courier"]; //1 - Give the score label a name so it becomes easy to find later when // the score needs to be updated. scoreLabel.name = kScoreHudName; scoreLabel.fontSize = 15; //2 - Color the score label green scoreLabel.fontColor = [SKColor greenColor]; scoreLabel.text = [NSString stringWithFormat:@"Score: %04u", 0]; //3 - Positions the score label near the top left corner of the screen scoreLabel.position = CGPointMake(20 + scoreLabel.frame.size.width/2, self.size.height - (20 + scoreLabel.frame.size.height/2)); [self addChild:scoreLabel]; //Applies the font of the health label SKLabelNode* healthLabel = [SKLabelNode labelNodeWithFontNamed:@"Courier"]; //4 - Give the health label a name so it can be referenced later when it needs // to be updated to display the health healthLabel.name = kHealthHudName; healthLabel.fontSize = 15; //5 - Colors the health label red healthLabel.fontColor = [SKColor redColor]; healthLabel.text = [NSString stringWithFormat:@"Health: %.1f%%", 100.0f]; //6 - Positions the health Label on the upper right hand side of the screen healthLabel.position = CGPointMake(self.size.width - healthLabel.frame.size.width/2 - 20, self.size.height - (20 + healthLabel.frame.size.height/2)); [self addChild:healthLabel]; } #pragma mark - Scene Update - (void)update:(NSTimeInterval)currentTime { //Makes the invaders move [self moveInvadersForUpdate:currentTime]; } #pragma mark - Scene Update Helpers //This method will get invoked by update -(void)moveInvadersForUpdate:(NSTimeInterval)currentTime { //1 - if it's not yet time to move, exit the method. moveInvadersForUpdate: // is invoked 60 times per second, but you don't want the invaders to move // that often since the movement would be too fast to see if (currentTime - self.timeOfLastMove < self.timePerMove) return; //2 - Recall that the scene holds all the invaders as child nodes; which were // added to the scene using addChild: in setupInvaders identifying each invader // by its name property. Invoking enumerateChildNodesWithName:usingBlock only loops over the invaders because they're named kInvaderType; which makes the loop skip the ship and the HUD. The guts og the block moves the invaders 10 pixels either right, left or down depending on the value of invaderMovementDirection [self enumerateChildNodesWithName:kInvaderName usingBlock:^(SKNode *node, BOOL *stop) { switch (self.invaderMovementDirection) { case InvaderMovementDirectionRight: node.position = CGPointMake(node.position.x - 10, node.position.y); break; case InvaderMovementDirectionLeft: node.position = CGPointMake(node.position.x - 10, node.position.y); break; case InvaderMovementDirectionDownThenLeft: case InvaderMovementDirectionDownThenRight: node.position = CGPointMake(node.position.x, node.position.y - 10); break; InvaderMovementDirectionNone: default: break; } }]; //3 - Record that you just moved the invaders, so that the next time this method is invoked (1/60th of a second from when it starts), the invaders won't move again until the set time period of one second has elapsed. self.timeOfLastMove = currentTime; //Makes it so that the invader movement direction changes only when the invaders are actually moving. Invaders only move when the check on self.timeOfLastMove passes (when conditional expression is true) [self determineInvaderMovementDirection]; } #pragma mark - Invader Movement Helpers -(void)determineInvaderMovementDirection { //1 - Since local vars accessed by block are default const(means they cannot be changed), this snippet of code qualifies proposedMovementDirection with __block so that you can modify it in //2 __block InvaderMovementDirection proposedMovementDirection = self.invaderMovementDirection; //2 - Loops over the invaders in the scene and refers to the block with the invader as an argument [self enumerateChildNodesWithName:kInvaderName usingBlock:^(SKNode *node, BOOL *stop) { switch (self.invaderMovementDirection) { case InvaderMovementDirectionRight: //3 - If the invader's right edge is within 1pt of the right edge of the scene, it's about to move offscreen. Sets proposedMovementDirection so that the invaders move down then left. You compare the invader's frame(the frame that contains its content in the scene's coordinate system) with the scene width. Since the scene has an anchorPoint of (0,0) by default and is scaled to fill it's parent view, this comparison ensures you're testing against the view's edges. if (CGRectGetMaxX(node.frame) >= node.scene.size.width - 1.0f) { proposedMovementDirection = InvaderMovementDirectionDownThenLeft; *stop = YES; } break; case InvaderMovementDirectionLeft: //4 - If the invader's left edge is within 1 pt of the left edge of the scene, it's about to move offscreen. Sets the proposedMovementDirection so invaders move down then right if (CGRectGetMinX(node.frame) <= 1.0f) { proposedMovementDirection = InvaderMovementDirectionDownThenRight; *stop = YES; } break; case InvaderMovementDirectionDownThenLeft: //5 - If invaders are moving down then left, they already moved down at this point, so they should now move left. proposedMovementDirection = InvaderMovementDirectionLeft; *stop = YES; break; case InvaderMovementDirectionDownThenRight: //6 - if the invaders are moving down then right, they already moved down so they should now move right. proposedMovementDirection = InvaderMovementDirectionRight; *stop = YES; break; default: break; } }]; //7 - if the proposed invader movement direction is different than the current invader movement direction, update the current direction to the proposed direction if (proposedMovementDirection != self.invaderMovementDirection) { self.invaderMovementDirection = proposedMovementDirection; } } #pragma mark - Bullet Helpers #pragma mark - User Tap Helpers #pragma mark - HUD Helpers #pragma mark - Physics Contact Helpers #pragma mark - Game End Helpers @end

    Read the article

  • Sharepoint Search crawl not working

    - by Satish
    Search Crawling is error out on my MOSS 2007 installation. I get the following error for all the web apps I have following error in Crawl logs. http://mysites.devserver URL could not be resolved. The host may be unavailable, or the proxy settings are not configured correctly on the index server. The Application Event log also has the following corresponding error The start address http://mysites.devserver cannot be crawled. Context: Application 'SSPMain', Catalog 'Portal_Content' Details: The URL of the item could not be resolved. The repository might be unavailable, or the crawler proxy settings are not configured. To configure the crawler proxy settings, use the Proxy and Timeout page in search administration. (0x80041221) I'm using Windows 2008 server. I tried accessing the site using the above mentioned url and its available. I did the registry setting for loop back issue found here http://support.microsoft.com/kb/896861 still not luck. Any Ideas?

    Read the article

  • Sharepoint Search crawl not working

    - by Satish
    Search Crawling is error out on my MOSS 2007 installation. I get the following error for all the web apps I have following error in Crawl logs. http://mysites.devserver URL could not be resolved. The host may be unavailable, or the proxy settings are not configured correctly on the index server. The Application Event log also has the following corresponding error The start address http://mysites.devserver cannot be crawled. Context: Application 'SSPMain', Catalog 'Portal_Content' Details: The URL of the item could not be resolved. The repository might be unavailable, or the crawler proxy settings are not configured. To configure the crawler proxy settings, use the Proxy and Timeout page in search administration. (0x80041221) I'm using Windows 2008 server. I tried accessing the site using the above mentioned url and its available. I did the registry setting for loop back issue found here http://support.microsoft.com/kb/896861 still not luck. Any Ideas?

    Read the article

  • JMeter Stress testing

    - by mcondiff
    MAMP server hosting a Joomla instance. I'd like to hear the community's thoughts on the best way to stress test the server and find it's breaking point on concurrent users etc. Currently I have setup a test plan which I have going to the home page, grabbing the index.php, css, js and all images and have run tests on 1 to 100 users and a varying number of loops. What I'd like to know is how do I determine at what number of concurrent requests or looping requests is a good way to gauge if my server can handle the proposed increase in traffic? What is a good KB/sec, Throughput, Average, Max, Min via the Aggregate Report and at what number of threads/loops etc? I have googled and have not found immediate answers to these questions and thought to come here. More or less I have just used this http://jakarta.apache.org/jmeter/usermanual/jmeter_proxy_step_by_step.pdf to guide me and then I have been winging it in terms of Thread and Loop numbers. Any light shed on these subject would be much appreciated.

    Read the article

  • Writing an SVN hook that updates copy of committed code

    - by Jordan Reiter
    I have a SVN repository with a lot of sub-projects stored in it. Right now in my post-commit I just loop through all possible folders on the machine and run svn update on each: REPOS="$1" REV="$2" DIRS=("/path/to/local/copy/firstproject" "/path/to/local/copy/anotherproject" ... "/path/to/local/copy/spam") LOGNAME=`/usr/bin/whoami` for DIR in ${DIRS[@]} do cd $DIR sudo /usr/bin/svn update --accept=postpone 2>&1 | logger logger "$LOGNAME Updated $DIR to revision $REV (from $REPOS) " done The problem is that this is slow and redundant when I'm just committing the subfolder of one of the projects. I'm wondering if there's a better way of identifying which of the DIRS I should use and only update that one. Is there some way to do this? As far as I can tell there's no way to determine which part of a repo was committed and thus which directory needs to be updated. Is the only alternative to create a separate repository for each project? (Probably should have done that from the start, if so...)

    Read the article

  • How do I mount a HFS+ dd image in OSX?

    - by Paul McMillan
    I had an HFS+ formatted drive that was going bad and wouldn't mount at all on OSX. I created an image using ddrescue on linux, and was able to save most of it. I can mount the drive and see the data just fine in linux using this: mount -o loop -t hfsplus dd_image mountpoint This doesn't work on my OSX system since hfsplus isn't a valid filesystem type. If I try: mount -t hfs image mountpoint It complains that it needs a block device. What's the fix here?

    Read the article

  • Disable ProxyPass rules within a virtual host on apache 2

    - by chinto
    I have a global proxypass rule in httpd.conf rules at global level ProxyPass /test/css http://myserver:7788/test/css ProxyPassReverse /test/css http://myserver:7788/test/css and I have a virtual host Listen localhost:7788 NameVirtualHost localhost:7788 <VirtualHost localhost:7788> Alias /test/css/ "C:/jboss/server/default/deploy/test.ear/test-web-app.war/css/" </VirtualHost> I would like to disable all global proxypass rules applying in this virtual host? NoProxy doesn't seem to work. (The reason I would like to do this is I have below global rules which create a 502 proxy loop if applied within this virtual host #pass all requests to application server ProxyPass /test http://localhost:8080/test ProxyPassReverse /test http://localhost:8080/test ) What I'm trying to do is, serve all static content (like css) using apache, while still proxying all the rest of requests to the application server.

    Read the article

  • Crontab script on Mac OS X Lion does not work anymore

    - by Nopster
    I have a problem with cron tasks. Previously this script worked fine on Mac OS X 10.6 server, but when I initialize it on Lion (client), this script stopped working. Basically, this .bat file calls a jar file (that invokes a loop of mysqldump commands) to backup several databases on several servers, and runs perfectly if launched by the shell. cd /Users/nameoftheuser/Desktop/backupper /usr/bin/java -cp .:Backupper.jar:lib/mail.jar backupper.Main "/Users/nameoftheuser/Desktop/backupper/listasiti.txt" "/Users/nameofthe/Desktop/backupper/config.properties But if the cron launches the same .bat file, the generated database backups are 0 bytes. The cron entry is: 0 0 sh /Users/path/to/file.bat I believe that the problem is that cron doesn't run as root. Or what else?

    Read the article

< Previous Page | 153 154 155 156 157 158 159 160 161 162 163 164  | Next Page >