Search Results

Search found 48973 results on 1959 pages for 'back end'.

Page 158/1959 | < Previous Page | 154 155 156 157 158 159 160 161 162 163 164 165  | Next Page >

  • F# Application Entry Point

    - by MarkPearl
    Up to now I have been looking at F# for modular solutions, but have never considered writing an end to end application. Today I was wondering how one would even start to write an end to end application and realized that I didn’t even know where the entry point is for an F# application. After browsing MSDN a bit I got a basic example of a F# application with an entry point [<EntryPoint>] let main args = printfn "Arguments passed to function : %A" args // Return 0. This indicates success. 0 Pretty simple stuff… but what happens when you have a few modules in a program – so I created a F# project with two modules and a main module as illustrated in the image below… When I try to compile my program I get a build error… A function labeled with the 'EntryPointAttribute' attribute must be the last declaration in the last file in the compilation sequence, and can only be used when compiling to a .exe… What does this mean? After some more reading I discovered that the Program.fs needs to be the last file in the F# application – the order of the files in a F# solution are important. How do I move a source file up or down? I tried dragging the Program.fs file below ModuleB.fs but it wouldn’t allow me to. Then I thought to right click on a source file and got the following menu.   Wala… to move the source file to the bottom of the solution you can select the “Move Up” or “Move Down” option. Now that I got this right I decided to put some code in ModuleA & ModuleB and I have the start of a basic application structure. ModuleA Code namespace MyApp module ModuleA = let PrintModuleA = printf "hello a \n" ()   ModuleB Code namespace MyApp module ModuleB = let PrintModuleB = printf "hello b \n" ()   Program Code // Learn more about F# at http://fsharp.net #light namespace MyApp module Main = open System [<EntryPoint>] let main args = ModuleA.PrintModuleA let endofapp = Console.ReadKey() 0

    Read the article

  • Do the benefits of Resin/Quercus outweigh the overhead?

    - by Craige
    Lately, I've been looking more and more into Resin + Quercus as a technology to develop an application of mine. The reason I started looking into it was that this application has high reporting needs, a lot of which cannot (or realistically, should not) be created in real-time. Java would offer a nice backend to queue and generate reports. Also, with Quercus I would be able to develop my data models in Hibernate, and use them "from PHP", thus effectively stretching these models across front and back-end. This same concept would also apply to any front/back-end common business logic, which could be developed in Java libraries. Now, the downside is that whichever front-end (PHP) MVC Framework I choose (my goal was Symfony 2), it is unlikely to work without some heavy modification, if it can work at all. Quercus is a pretty close implementation of PHP, and is supposed to be compatible with PHP5.3, so namespaces and closures SHOULDN'T be a problem, but when I tried to run an existing Symfony 1.4 app, I failed miserably. So, my question to you is, do you think the benefits of Resin + Quercus outweigh the overhead of using a not-so-perfect/stable implementation of PHP? If this were your application, and your goal was and end-product, rather than educational purposes, what would you decide?

    Read the article

  • Maintaining C/C++/Java skills as a web developer

    - by wwwuser
    When I was in college I learned how to program in C, C++, and Java. Currently, I'm a web developer using front end and back end technologies (HTML/CSS/JS, PHP, MYSQL). While the sorting algorithms and OOP concepts that I learned in college can be applied to web development, I'm looking for ways to keep up my knowledge of all languages. I enjoy programming in C-Style (C/C++/Java) languages and front-end/back-end technologies. Unfortunately, there aren't many options to use C-style languages to build websites. However, I would like to keep up my knowledge and skills in the languages I learned in college as I know they will continue to help me with my growth. What resources are available to keep challenging myself in C-style languages that are relevant to web development? Would contract work for C-style languages be beneficial? Are there sites that offer algorithm challenges? Any help is appreciated. I'm also interested in how others that have asked themselves this have solved this problem.

    Read the article

  • ASP.NET MVC Cookbook - public review

    - by asiemer
    I have recently started writing another book.  The topic of this book is ASP.NET MVC.  This book differs from my previous book in that rather than working towards building one project from end to end - this book will demonstrate specific topics from end to end.  It is a recipe book (hence the cookbook name) and will be part of the Packt Publishing cookbook series.  An example recipe in this book might be how to consume JSON, creating a master /details page, jquery modal popups, custom ActionResults, etc.  Basically anything recipe oriented around the topic of ASP.NET MVC might be acceptable.  If you are interested in helping out with the review process you can join the "ASP.NET MVC 2 Cookbook-review" group on Google here: http://groups.google.com/group/aspnet-mvc-2-cookbook-review Currently the suggested TOC for the project is listed.  Also, chapters 1, 2, and most of 8 are posted.  Chapter 5 should be available tonight or tomorrow. In addition to reporting any errors that you might find (much appreciated), I am very interested in hearing about recipes that you want included, expanded, or removed (as being redundant or overly simple).  Any input is appreciated!  Hearing user feedback after the book is complete is a little late in my opinion (unless it is positive feedback of course). Thank you!

    Read the article

  • Bad previous code. To fix or not to fix?

    - by Viniyo Shouta
    As a freelancer programmer I am often asked to edit part of an application source code in order to add functionalities, fix bugs etc. While I'm on my adventure journey to study the source to do what I'm asked correctly I run into code like: World::User* GetWorld() { map<DWORD,World*>::iterator it = mapWld.find( m_userWorldId ) if( it != mapWld.end() ) return &it->second; return NULL; } if( pUser->GetWorld()->GetId() == 250 ) If I investigate further I end up finding that the DWORD class member of User, userWorldId can be a value non-found in the map mapWld, which will lead to a casuality as also known as crash! The obviously valid way to do it is: World* pWorld = pUser->GetWorld(); if( pWorld && pWorld->GetId() == 250 )//... Sometimes when it's something just 'small' I end up sort of 'fixing' it. But sometimes when I'm on a 500 thousand line source code and this kind of code is everywhere there is no much can do. The question is if it's politically correct to fix some of these things. Think of it; You are not paid to fix it. Perhaps you think it's right, but it was necessarily done that way for some reason and you should not be messing with it. You do not have authorization, you do not own the source and none of the copyrights belong to you. You have authorization to edit issues accordingly to the owners but you're in a hurry, you have many other projects to do, it's the end of the month, you must pay the bills. Sincerely, I think of it as seeing an animal die from a disease in front of you, you have the cure in your hands but you do nothing. What is the best to do in this scenario?

    Read the article

  • What is an efficient algorithm for randomly assigning a pool of objects to a parent using specific rules

    - by maple_shaft
    I need some expert answers to help me determine the most efficient algorithm in this scenario. Consider the following data structures: type B { A parent; } type A { set<B> children; integer minimumChildrenAllowed; integer maximumChildrenAllowed; } I have a situation where I need to fetch all the orphan children (there could be hundreds of thousands of these) and assign them RANDOMLY to A type parents based on the following rules. At the end of the job, there should be no orphans left At the end of the job, no object A should have less children than its predesignated minimum. At the end of the job, no object A should have more children than its predesignated maximum. If we run out of A objects then we should create a new A with default values for minimum and maximum and assign remaining orphans to these objects. The distribution of children should be as evenly distributed as possible. There may already be some children assigned to A before the job starts. I was toying with how to do this but I am afraid that I would just end up looping across the parents sorted from smallest to largest, and then grab an orphan for each parent. I was wondering if there is a more efficient way to handle this?

    Read the article

  • Observing MVC, can/should the Model be instantiated in the ViewController? Or where?

    - by user19410
    I'm writing an experimental iPhone app to learn about the MVC paradigm. I instantiate my Model class in the ViewController class. Is this stupid? I'm asking because storing the id of the Model class, and using it works where it's initialized, but referring to it later (in response to an interface action) crashes. Seemingly, the pointer address of my Model class instance changes, but how can that be? The code in question: @interface Soundcheck_Tone_GeneratorViewController : UIViewController { IBOutlet UIPickerView * frequencyWheel; @public Sinewave_Generation * sineGenerator; } @property(nonatomic,retain) Sinewave_Generation * sineGenerator; @end @implementation Soundcheck_Tone_GeneratorViewController @synthesize sineGenerator; - (void)viewDidLoad { [super viewDidLoad]; [self setSineGenerator:[[Sinewave_Generation alloc] initWithFrequency:20.0]]; // using reference -> fine } // pickerView handling is omitted here... - (void)pickerView:(UIPickerView *)thePickerView didSelectRow:(NSInteger)row inComponent:(NSInteger)component { [[self sineGenerator] setFrequency:20.0]; // using reference -> crash } @end // the Sinewave_Generation class... only to be thorough. Works fine so far. @interface Sinewave_Generation : NSObject { AudioComponentInstance toneUnit; @public double frequency,theta; } @property double frequency; - (Sinewave_Generation *) initWithFrequency: (int) f; @end @implementation Sinewave_Generation @synthesize frequency; - (Sinewave_Generation *) initWithFrequency: (int) f { self = [super init]; if ( self ) { [self setFrequency: f]; } return self; } @end

    Read the article

  • Rails multiple select box issue for search

    - by Reido
    First off here is my model, controller, view: My model, this is where I have my search code:--------------------------- def self.find_by_lcc(params) where = [] where << "category = 'Land'" unless params[:mls].blank? where << "mls = :mls" end unless params[:county].blank? where << "county = :county" end unless params[:acreage_range].blank? where << "acreage_range = :acreage_range" end unless params[:landtype].blank? where << "landtype = :landtype" end unless params[:price_range].blank? where << "price_range = :price_range" end if where.empty? [] else find(:all, :conditions => [where.join(" AND "), params], :order => "county, price desc") end end My controller:---------------- def land @counties = ['Adams', 'Alcorn', 'Amite', 'Attala'] @title = "Browse" return if params[:commit].nil? @properties = Property.find_by_lcc(params) else 'No properties were found' render :action = 'land_table' end My View: ---------------------- <table width="900"> <tr> <td> <% form_tag({ :action => "land" }, :method => "get") do %> <fieldset> <legend>Search our Land Properties</legend> <div class="form_row"><p>&nbsp;</p></div> <div class="form_row"> <label for="mls">MLS Number:</label>&nbsp; <%= text_field_tag 'mls', params[:mls] %> </div> <div class="form_row"> <label for "county"><font color="#ff0000">*County:</font></label>&nbsp; <%= select_tag "county", options_for_select(@counties), :multiple => true, :size => 6 %> </div> <div class="form_row"> <label for "acreage_range">Acreage:</label>&nbsp; <%= select_tag "acreage_range", options_for_select([['All',''],['1-10','1-10'],['11-25','11-25'],['26-50','26-50'],['51-100','51-100']]) %> </div> <div class="form_row"> <label for "landtype">Type:</label>&nbsp; <%= select_tag "landtype", options_for_select([['All',''],['Waterfront','Waterfront'],['Wooded','Wooded'],['Pasture','Pasture'],['Woods/Pasture','Woods/Pasture'],['Lot','Lot']]) %> </div> <div class="form_row"> <label for="price_range"><font color="#ff0000">*Price:</font></label>&nbsp; <%= select_tag "price_range", options_for_select([['All',''],['0-1,000','0-1,000'],['1,001-10,000','1,001-10,000'],['10,001-50,000','10,001-50,000'],['50,001-100,000','50,001-100,000'],['100,001-150,000']])%> </div> <input type="text" style="display: none;" disabled="disabled" size="1" /> <%= submit_tag "Search", :class => "submit" %> </fieldset> <% end%> </td> </tr> </table> The search works fine until I add ", :multiple = true, :size = 6" to make the county field multiple select. Then I get the error: Processing PublicController#land (for 65.0.81.83 at 2010-04-01 13:11:30) [GET] Parameters: {"acreage_range"=>"", "commit"=>"Search", "county"=>["Adams", "Amite"], "landtype"=>"", "price_range"=>"", "mls"=>""} ActiveRecord::StatementInvalid (Mysql::Error: Operand should contain 1 column(s): SELECT * FROM `properties` WHERE (category = 'Land' AND county = 'Adams','Amite') ORDER BY county, price desc): app/models/property.rb:93:in `find_by_lcc' app/controllers/public_controller.rb:84:in `land' /usr/lib/ruby/1.8/thread.rb:135:in `synchronize' fcgi (0.8.7) lib/fcgi.rb:117:in `session' fcgi (0.8.7) lib/fcgi.rb:104:in `each_request' fcgi (0.8.7) lib/fcgi.rb:36:in `each' dispatch.fcgi:24 I've tried to make the county, acreage_range, and price_range fields into multiple select boxes numerous ways, but can not get any method to work correctly. Any help would be greatly appreciated. Thanks,

    Read the article

  • Matlab Image watermarking question , using both SVD and DWT

    - by Georgek
    Hello all . here is a code that i got over the net ,and it is supposed to embed a watermark of size(50*20) called _copyright.bmp in the Code below . the size of the cover object is (512*512), it is called _lena_std_bw.bmp.What we did here is we did DWT2 2 times for the image , when we reached our second dwt2 cA2 size is 128*128. You should notice that the blocksize and it equals 4, it is used to determine the max msg size based on cA2 according to the following code:max_message=RcA2*CcA2/(blocksize^2). in our current case max_message would equal 128*128/(4^2)=1024. i want to embed a bigger watermark in the 2nd dwt2 and lets say the size of that watermark is 400*10(i can change the dimension using MS PAINT), what i have to do is change the size of the blocksize to 2. so max_message=4096.Matlab gives me 3 errors and they are : ??? Error using == plus Matrix dimensions must agree. Error in == idwt2 at 93 x = upsconv2(a,{Lo_R,Lo_R},sx,dwtEXTM,shift)+ ... % Approximation. Error in == two_dwt_svd_low_low at 88 CAA1 = idwt2(cA22,cH2,cV2,cD2,'haar',[RcA1,CcA1]); The origional Code is (the origional code where blocksize =4): %This algorithm makes DWT for the whole image and after that make DWT for %cH1 and make SVD for cH2 and embed the watermark in every level after SVD %(1) -------------- Embed Watermark ------------------------------------ %Add the watermar W to original image I and give the watermarked image in J %-------------------------------------------------------------------------- % set the gain factor for embeding and threshold for evaluation clc; clear all; close all; % save start time start_time=cputime; % set the value of threshold and alpha thresh=.5; alpha =0.01; % read in the cover object file_name='_lena_std_bw.bmp'; cover_object=double(imread(file_name)); % determine size of watermarked image Mc=size(cover_object,1); %Height Nc=size(cover_object,2); %Width % read in the message image and reshape it into a vector file_name='_copyright.bmp'; message=double(imread(file_name)); T=message; Mm=size(message,1); %Height Nm=size(message,2); %Width % perform 1-level DWT for the whole cover image [cA1,cH1,cV1,cD1] = dwt2(cover_object,'haar'); % determine the size of cA1 [RcA1 CcA1]=size(cA1) % perform 2-level DWT for cA1 [cA2,cH2,cV2,cD2] = dwt2(cA1,'haar'); % determine the size of cA2 [RcA2 CcA2]=size(cA2) % set the value of blocksize blocksize=4 % reshape the watermark to a vector message_vector=round(reshape(message,Mm*Nm,1)./256); W=message_vector; % determine maximum message size based on cA2, and blocksize max_message=RcA2*CcA2/(blocksize^2) % check that the message isn't too large for cover if (length(message) max_message) error('Message too large to fit in Cover Object') end %----------------------- process the image in blocks ---------------------- x=1; y=1; for (kk = 1:length(message_vector)) [cA2u cA2s cA2v]=svd(cA2(y:y+blocksize-1,x:x+blocksize-1)); % if message bit contains zero, modify S of the original image if (message_vector(kk) == 0) cA2s = cA2s*(1 + alpha); % otherwise mask is filled with zeros else cA2s=cA2s; end cA22(y:y+blocksize-1,x:x+blocksize-1)=cA2u*cA2s*cA2v; % move to next block of mask along x; If at end of row, move to next row if (x+blocksize) >= CcA2 x=1; y=y+blocksize; else x=x+blocksize; end end % perform IDWT CAA1 = idwt2(cA22,cH2,cV2,cD2,'haar',[RcA1,CcA1]); watermarked_image= idwt2(CAA1,cH1,cV1,cD1,'haar',[Mc,Nc]); % convert back to uint8 watermarked_image_uint8=uint8(watermarked_image); % write watermarked Image to file imwrite(watermarked_image_uint8,'dwt_watermarked.bmp','bmp'); % display watermarked image figure(1) imshow(watermarked_image_uint8,[]) title('Watermarked Image') %(2) ---------------------------------------------------------------------- %---------- Extract Watermark from attacked watermarked image ------------- %-------------------------------------------------------------------------- % read in the watermarked object file_name='dwt_watermarked.bmp'; watermarked_image=double(imread(file_name)); % determine size of watermarked image Mw=size(watermarked_image,1); %Height Nw=size(watermarked_image,2); %Width % perform 1-level DWT for the whole watermarked image [ca1,ch1,cv1,cd1] = dwt2(watermarked_image,'haar'); % determine the size of ca1 [Rca1 Cca1]=size(ca1); % perform 2-level DWT for ca1 [ca2,ch2,cv2,cd2] = dwt2(ca1,'haar'); % determine the size of ca2 [Rca2 Cca2]=size(ca2); % process the image in blocks % for each block get a bit for message x=1; y=1; for (kk = 1:length(message_vector)) % sets correlation to 1 when patterns are identical to avoid /0 errors % otherwise calcluate difference between the cover image and the % watermarked image [cA2u cA2s cA2v]=svd(cA2(y:y+blocksize-1,x:x+blocksize-1)); [ca2u1 ca2s1 ca2v1]=svd(ca2(y:y+blocksize-1,x:x+blocksize-1)); correlation(kk)=diag(ca2s1-cA2s)'*diag(ca2s1-cA2s)/(alpha*alpha)/(diag(cA2s)*diag(cA2s)); % move on to next block. At and of row move to next row if (x+blocksize) >= Cca2 x=1; y=y+blocksize; else x=x+blocksize; end end % if correlation exceeds average correlation correlation(kk)=correlation(kk)+mean(correlation(1:Mm*Nm)); for kk = 1:length(correlation) if (correlation(kk) > thresh*alpha);%thresh*mean(correlation(1:Mo*No))) message_vector(kk)=0; end end % reshape the message vector and display recovered watermark. figure(2) message=reshape(message_vector(1:Mm*Nm),Mm,Nm); imshow(message,[]) title('Recovered Watermark') % display processing time elapsed_time=cputime-start_time, please do help,its my graduation project and i have been trying this code for along time but failed miserable. Thanks in advance

    Read the article

  • VB.NET - using textfile as source for menus and textboxes

    - by Kenny Bones
    Hi, this is probably a bit tense and I'm not sure if this is possible at all. But basically, I'm trying to create a small application which contains alot of PowerShell-code which I want to run in an easy matter. I've managed to create everything myself and it does work. But all of the PowerShell code is manually hardcoded and this gives me a huge disadvantage. What I was thinking was creating some sort of dynamic structure where I can read a couple of text files (possible a numerous amount of text files) and use these as the source for both the comboboxes and the richtextbox which provovides as the string used to run in PowerShell. I was thinking something like this: Combobox - "Choose cmdlet" - Use "menucode.txt" as source Richtextbox - Use "code.txt" as source But, the thing is, Powershell snippets need a few arguments in order for them to work. So I've got a couple of comboboxes and a few textboxes which provides as input for these arguments. And this is done manually as it is right now. So rewriting this small application should also search the textfile for some keywords and have the comboboxes and textboxes to replace those keywords. And I'm not sure how to do this. So, would this requre a whole lot of textfiles? Or could I use one textfile and separate each PowerShell cmdlet snippets with something? Like some sort of a header? Right now, I've got this code at the eventhandler (ComboBox_SelectedIndexChanged) If ComboBoxFunksjon.Text = "Set attribute" Then TxtBoxUsername.Visible = True End If If chkBoxTextfile.Checked = True Then If txtboxBrowse.Text = "" Then MsgBox("You haven't choses a textfile as input for usernames") End If LabelAttribute.Visible = True LabelUsername.Visible = False ComboBoxAttribute.Visible = True TxtBoxUsername.Visible = False txtBoxCode.Text = "$users = Get-Content " & txtboxBrowse.Text & vbCrLf & "foreach ($a in $users)" & vbCrLf & "{" & vbCrLf & "Set-QADUser -Identity $a -ObjectAttributes @{" & ComboBoxAttribute.SelectedItem & "='" & TxtBoxValue.Text & "'}" & vbCrLf & "}" If ComboBoxAttribute.SelectedItem = "Outlook WebAccess" Then TxtBoxValue.Visible = False CheckBoxValue.Visible = True CheckBoxValue.Text = "OWA Enabled?" txtBoxCode.Text = "$users = Get-Content " & txtboxBrowse.Text & vbCrLf & "foreach ($a in $users)" & vbCrLf & "{" & vbCrLf & "Set-CASMailbox -Identity $a -OWAEnabled" & " " & "$" & CheckBoxValue.Checked & " '}" & vbCrLf & "}" End If If ComboBoxAttribute.SelectedItem = "MobileSync" Then TxtBoxValue.Visible = False CheckBoxValue.Visible = True CheckBoxValue.Text = "MobileSync Enabled?" Dim value If CheckBoxValue.Checked = True Then value = "0" Else value = "7" End If txtBoxCode.Text = "$users = Get-Content " & txtboxBrowse.Text & vbCrLf & "foreach ($a in $users)" & vbCrLf & "{" & vbCrLf & "Set-QADUser -Identity $a -ObjectAttributes @{msExchOmaAdminWirelessEnable='" & value & " '}" & vbCrLf & "}" End If Else LabelAttribute.Visible = True LabelUsername.Visible = True ComboBoxAttribute.Visible = True txtBoxCode.Text = "Set-QADUser -Identity " & TxtBoxUsername.Text & " -ObjectAttributes @{" & ComboBoxAttribute.SelectedItem & "='" & TxtBoxValue.Text & " '}" If ComboBoxAttribute.SelectedItem = "Outlook WebAccess" Then TxtBoxValue.Visible = False CheckBoxValue.Visible = True CheckBoxValue.Text = "OWA Enabled?" txtBoxCode.Text = "Set-CASMailbox " & TxtBoxUsername.Text & " -OWAEnabled " & "$" & CheckBoxValue.Checked End If If ComboBoxAttribute.SelectedItem = "MobileSync" Then TxtBoxValue.Visible = False CheckBoxValue.Visible = True CheckBoxValue.Text = "MobileSync Enabled?" Dim value If CheckBoxValue.Checked = True Then value = "0" Else value = "7" End If txtBoxCode.Text = "Set-QADUser " & TxtBoxUsername.Text & " -ObjectAttributes @{msExchOmaAdminWirelessEnable='" & value & "'}" End If End If Now, this snippet above lets me either use a text file as a source for each username used in the powershell snippet. Just so you know :) And I know, this is probably coded as stupidly as it gets. But it does work! :)

    Read the article

  • More elegant way to make a C++ member function change different member variables based on template p

    - by Eric Moyer
    Today, I wrote some code that needed to add elements to different container variables depending on the type of a template parameter. I solved it by writing a friend helper class specialized on its own template parameter which had a member variable of the original class. It saved me a few hundred lines of repeating myself without adding much complexity. However, it seemed kludgey. I would like to know if there is a better, more elegant way. The code below is a greatly simplified example illustrating the problem and my solution. It compiles in g++. #include <vector> #include <algorithm> #include <iostream> namespace myNS{ template<class Elt> struct Container{ std::vector<Elt> contents; template<class Iter> void set(Iter begin, Iter end){ contents.erase(contents.begin(), contents.end()); std::copy(begin, end, back_inserter(contents)); } }; struct User; namespace WkNS{ template<class Elt> struct Worker{ User& u; Worker(User& u):u(u){} template<class Iter> void set(Iter begin, Iter end); }; }; struct F{ int x; explicit F(int x):x(x){} }; struct G{ double x; explicit G(double x):x(x){} }; struct User{ Container<F> a; Container<G> b; template<class Elt> void doIt(Elt x, Elt y){ std::vector<Elt> v; v.push_back(x); v.push_back(y); Worker<Elt>(*this).set(v.begin(), v.end()); } }; namespace WkNS{ template<class Elt> template<class Iter> void Worker<Elt>::set(Iter begin, Iter end){ std::cout << "Set a." << std::endl; u.a.set(begin, end); } template<> template<class Iter> void Worker<G>::set(Iter begin, Iter end){ std::cout << "Set b." << std::endl; u.b.set(begin, end); } }; }; int main(){ using myNS::F; using myNS::G; myNS::User u; u.doIt(F(1),F(2)); u.doIt(G(3),G(4)); } User is the class I was writing. Worker is my helper class. I have it in its own namespace because I don't want it causing trouble outside myNS. Container is a container class whose definition I don't want to modify, but is used by User in its instance variables. doIt<F> should modify a. doIt<G> should modify b. F and G are open to limited modification if that would produce a more elegant solution. (As an example of one such modification, in the real application F's constructor takes a dummy parameter to make it look like G's constructor and save me from repeating myself.) In the real code, Worker is a friend of User and member variables are private. To make the example simpler to write, I made everything public. However, a solution that requires things to be public really doesn't answer my question. Given all these caveats, is there a better way to write User::doIt?

    Read the article

  • Search function fails because it refers to the wrong controller action?

    - by Christoffer
    My Sunspot search function (sunspot_rails gem) works just fine in my index view, but when I duplicate it to my show view my search breaks... views/supplierproducts/show.html.erb <%= form_tag supplierproducts_path, :method => :get, :id => "supplierproducts_search" do %> <p> <%= text_field_tag :search, params[:search], placeholder: "Search by SKU, product name & EAN number..." %> </p> <div id="supplierproducts"><%= render 'supplierproducts' %></div> <% end %> assets/javascripts/application.js $(function () { $('#supplierproducts th a').live('click', function () { $.getScript(this.href); return false; } ); $('#supplierproducts_search input').keyup(function () { $.get($("#supplierproducts_search").attr("action"), $("#supplierproducts_search").serialize(), null, 'script'); return false; }); }); views/supplierproducts/show.js.erb $('#supplierproducts').html('<%= escape_javascript(render("supplierproducts")) %>'); views/supplierproducts/_supplierproducts.hmtl.erb <%= hidden_field_tag :direction, params[:direction] %> <%= hidden_field_tag :sort, params[:sort] %> <table class="table table-bordered"> <thead> <tr> <th><%= sortable "sku", "SKU" %></th> <th><%= sortable "name", "Product name" %></th> <th><%= sortable "stock", "Stock" %></th> <th><%= sortable "price", "Price" %></th> <th><%= sortable "ean", "EAN number" %></th> </tr> </thead> <% for supplierproduct in @supplier.supplierproducts %> <tbody> <tr> <td><%= supplierproduct.sku %></td> <td><%= supplierproduct.name %></td> <td><%= supplierproduct.stock %></td> <td><%= supplierproduct.price %></td> <td><%= supplierproduct.ean %></td> </tr> </tbody> <% end %> </table> controllers/supplierproducts_controller.rb class SupplierproductsController < ApplicationController helper_method :sort_column, :sort_direction def show @supplier = Supplier.find(params[:id]) @search = @supplier.supplierproducts.search do fulltext params[:search] end @supplierproducts = @search.results end end private def sort_column Supplierproduct.column_names.include?(params[:sort]) ? params[:sort] : "name" end def sort_direction %w[asc desc].include?(params[:direction]) ? params[:direction] : "asc" end models/supplierproduct.rb class Supplierproduct < ActiveRecord::Base attr_accessible :ean, :name, :price, :sku, :stock, :supplier_id belongs_to :supplier validates :supplier_id, presence: true searchable do text :ean, :name, :sku end end Visiting show.html.erb works just fine. Log shows: Started GET "/supplierproducts/2" for 127.0.0.1 at 2012-06-24 13:44:52 +0200 Processing by SupplierproductsController#show as HTML Parameters: {"id"=>"2"} Supplier Load (0.1ms) SELECT "suppliers".* FROM "suppliers" WHERE "suppliers"."id" = ? LIMIT 1 [["id", "2"]] SOLR Request (252.9ms) [ path=#<RSolr::Client:0x007fa5880b8e68> parameters={data: fq=type%3ASupplierproduct&start=0&rows=30&q=%2A%3A%2A, method: post, params: {:wt=>:ruby}, query: wt=ruby, headers: {"Content-Type"=>"application/x-www-form-urlencoded; charset=UTF-8"}, path: select, uri: http://localhost:8982/solr/select?wt=ruby, open_timeout: , read_timeout: } ] Supplierproduct Load (0.2ms) SELECT "supplierproducts".* FROM "supplierproducts" WHERE "supplierproducts"."id" IN (1) Supplierproduct Load (0.1ms) SELECT "supplierproducts".* FROM "supplierproducts" WHERE "supplierproducts"."supplier_id" = 2 Rendered supplierproducts/_supplierproducts.html.erb (2.2ms) Rendered supplierproducts/show.html.erb within layouts/application (3.3ms) Rendered layouts/_shim.html.erb (0.0ms) User Load (0.1ms) SELECT "users".* FROM "users" WHERE "users"."remember_token" = 'zMrtTbDun2MjMHRApSthCQ' LIMIT 1 Rendered layouts/_header.html.erb (2.1ms) Rendered layouts/_footer.html.erb (0.2ms) Completed 200 OK in 278ms (Views: 20.6ms | ActiveRecord: 0.6ms | Solr: 252.9ms) But it breaks when I type in a search. Log shows: Started GET "/supplierproducts?utf8=%E2%9C%93&search=a&direction=&sort=&_=1340538830635" for 127.0.0.1 at 2012-06-24 13:53:50 +0200 Processing by SupplierproductsController#index as JS Parameters: {"utf8"=>"?", "search"=>"a", "direction"=>"", "sort"=>"", "_"=>"1340538830635"} Rendered supplierproducts/_supplierproducts.html.erb (2.4ms) Rendered supplierproducts/index.js.erb (2.9ms) Completed 500 Internal Server Error in 6ms ActionView::Template::Error (undefined method `supplierproducts' for nil:NilClass): 10: <th><%= sortable "ean", "EAN number" %></th> 11: </tr> 12: </thead> 13: <% for supplierproduct in @supplier.supplierproducts %> 14: <tbody> 15: <tr> 16: <td><%= supplierproduct.sku %></td> app/views/supplierproducts/_supplierproducts.html.erb:13:in `_app_views_supplierproducts__supplierproducts_html_erb___2251600857885474606_70174444831200' app/views/supplierproducts/index.js.erb:1:in `_app_views_supplierproducts_index_js_erb___1613906916161905600_70174464073480' Rendered /Users/Computer/.rvm/gems/ruby-1.9.3-p194@myapp/gems/actionpack-3.2.3/lib/action_dispatch/middleware/templates/rescues/_trace.erb (33.3ms) Rendered /Users/Computer/.rvm/gems/ruby-1.9.3-p194@myapp/gems/actionpack-3.2.3/lib/action_dispatch/middleware/templates/rescues/_request_and_response.erb (0.9ms) Rendered /Users/Computer/.rvm/gems/ruby-1.9.3-p194@myapp/gems/actionpack-3.2.3/lib/action_dispatch/middleware/templates/rescues/template_error.erb within rescues/layout (39.7ms)

    Read the article

  • Rails - session information being cleared?

    - by Jty.tan
    Hi! I'm having a weird issue that I can't track down... For context, I have resources of Users, Registries, and Giftlines. Each User has many Registries. Each Registry has many Giftlines. It's a belongs to association for them in a reverse manner. What is basically happening, is that when I am creating a giftline, the giftline itself is created properly, and linked to its associated Registry properly, but then in the process of being redirected back to the Registry show page, the session[:user_id] variable is cleared and I'm logged out. As far as I can tell, where it goes wrong is here in the registries_controller: def show @registry = Registry.find(params[:id]) @user = User.find(@registry.user_id) if (params[:user_id] && (@user.login != params[:user_id]) ) flash[:notice] = "User #{params[:user_id]} does not have such a registry." redirect_to user_registries_path(session[:user_id]) end end Now, to be clear, I can do a show of the registry normally, and nothing weird happens. It's only when I've added a giftline does the session[:user_id] variable get cleared. I used the debugger and this is what seems to be happening. (rdb:19) list [20, 29] in /Users/kriston/Dropbox/ruby_apps/bee_registered/app/controllers/registries_controller.rb 20 render :action => 'new' 21 end 22 end 23 24 def show => 25 @registry = Registry.find(params[:id]) 26 @user = User.find(@registry.user_id) 27 if (params[:user_id] && (@user.login != params[:user_id]) ) 28 flash[:notice] = "User #{params[:user_id]} does not have such a registry." 29 redirect_to user_registries_path(session[:user_id]) (rdb:19) session[:user_id] "tester" (rdb:19) So from there we can see that the code has gotten back to the show command after the item had been added, and that the session[:user_id] variable is still set. (rdb:19) list [22, 31] in /Users/kriston/Dropbox/ruby_apps/bee_registered/app/controllers/registries_controller.rb 22 end 23 24 def show 25 @registry = Registry.find(params[:id]) 26 @user = User.find(@registry.user_id) => 27 if (params[:user_id] && (@user.login != params[:user_id]) ) 28 flash[:notice] = "User #{params[:user_id]} does not have such a registry." 29 redirect_to user_registries_path(session[:user_id]) 30 end 31 end (rdb:19) session[:user_id] "tester" (rdb:19) Stepping on, we get to this point. And the session[:user_id] is still set. At this point, the URL is of the format localhost:3000/registries/:id, so params[:user_id] fails, and the if condition doesn't occur. (Unless I am completely wrong .<) So then the next bit occurs, which is (rdb:19) list [1327, 1336] in /Library/Ruby/Gems/1.8/gems/actionpack-2.3.5/lib/action_controller/base.rb 1327 end 1328 1329 def perform_action 1330 if action_methods.include?(action_name) 1331 send(action_name) => 1332 default_render unless performed? 1333 elsif respond_to? :method_missing 1334 method_missing action_name 1335 default_render unless performed? 1336 else (rdb:19) session[:user_id] "tester" And then when I hit next... (rdb:19) next 2: session[:user_id] = /Library/Ruby/Gems/1.8/gems/actionpack-2.3.5/lib/action_controller/filters.rb:618 return index if nesting != 0 || aborted (rdb:19) list [613, 622] in /Library/Ruby/Gems/1.8/gems/actionpack-2.3.5/lib/action_controller/filters.rb 613 private 614 def call_filters(chain, index, nesting) 615 index = run_before_filters(chain, index, nesting) 616 aborted = @before_filter_chain_aborted 617 perform_action_without_filters unless performed? || aborted => 618 return index if nesting != 0 || aborted 619 run_after_filters(chain, index) 620 end 621 622 def run_before_filters(chain, index, nesting) (rdb:19) session {:user_id=>nil, :session_id=>"49992cdf2ddc708b441807f998af7ddc", :return_to=>"/registries", "flash"=>{}, :_csrf_token=>"xMDI0oDaOgbzhQhDG7EqOlGlxwIhHlB6c71fWgOIKcs="} The session[:user_id] is cleared, and when the page renders, I'm logged out. .< Sooo.... Any idea why this is occurring? It just occurred to me that I'm not sure if I'm meant to be pasting large chunks of debug output in here... Somebody point out to me if I'm not meant to be doing this. . And yes, this only occurs when I have added a giftitem, and it is sending me back to the registry page. When I'm viewing it, the same code occurs, but the session[:user_id] variable isn't cleared. It's driving me mildly insane. Thanks!

    Read the article

  • Login or Register (Ruby on rails)

    - by DanielZ
    Hello stackoverflow, I'm working on an Ruby on Rails application (2.3.x) and i want to make a form that lets the user login or register. I want to do this in the same form. I have a JS function that replaces the form elements like this: Login form: <% form_for @user do |f| %> <div id="form"> <%= f.label :email, "E-mail" %> <%= f.text_field :email %> <%= f.label :password, "Password" %> <%= f.password_field :password %> <%= link_to "I don't have an account, "#", :id => "changeForm"%> <%= f.submit "Login" %> </div> <% end %> The id "changeForm" triggers a JS function that changes the form elements. So if you press the url the html looks like this: <% form_for @user do |f| %> <div id="form"> <%= f.label :name, "Name" %> <%= f.text_field :name %> <%= f.label :email, "E-mail" %> <%= f.text_field :email %> <%= f.label :password, "Password" %> <%= f.password_field :password %> <%= f.label :password_confirmation, "Password confirmation" %> <%= f.password_field :password_confirmation %> <%= link_to "I do have an account, "#", :id => "changeForm"%> <%= f.submit "Register" %> </div> <% end %> I added the neccesary validations to my user model: class User < ActiveRecord::Base attr_reader :password validates_presence_of :name, :email, :password validates_format_of :email, :with => /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i validates_confirmation_of :password But what happens when you fill in the email / password you get the errors that the name is missing and that the password fields aren't confirmed. So i could do some nasty programming in my user model like this: #if password_conf or the name are present the user has tried to register... if params[:user][:password_confirmation].present? || params[:user][:name].present? #so we'll try to save the user if @user.save #if the user is saved authenticate the user current_session.user = User.authenticate(params[:user]) #if the user is logged in? if current_session.user.present? flash[:notice] = "succesvully logged redirect_to some_routes_path else #not logged in... flash[:notice] = "Not logged in" render :action => "new" end else #user not saved render :action => "new" end else #So if the params[:user][:password_confirmation] or [:user][:name] weren't present we geuss the user wants to login... current_session.user = User.authenticate(params[:user]) #are we logged_in? if current_session.user.present? flash[:notice] = "Succesvully logged in" redirect_to some_routes_path else #errors toevoegen @user.errors.add(:email, "The combination of email/password isn't valid") @user.errors.add(:password," ") render :action => "new" end end end Without validations this (imho dirty code and should not be in the controller) works. But i want to use the validates_presence_of methods and i don't want to slap the "conventions over configurations" in the face. So another thing i have tried is adding a hidden field to the form: #login form <%= f.hidden_field :login, :value => true %> # and ofcourse set it to false if we want to register. And then i wanted to use the method: before_validation before_validation_on_create do |user| if params[:user].login == true #throws an error i know... validates_presence_of :email, :password validates_format_of :email, :with => /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i else validates_presence_of :name, :email, :password validates_format_of :email, :with => /\A([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})\Z/i validates_confirmation_of :password end end But this doesn't work because i can't access the params. And login isn't a attribute for the user object. But i thought that in this way i could validate the email and password params if the user wants to login. And all the other attrs if the user want to register. So all i could think of doesn't work how i want it to work. So my main goal is this: 1 form for login/register with the use of the validation methods in the user model. So if we want to login but don't fill in any information = give validation errors. And if the user wants to login but the email/password combination doens't match give the "@user.errors.add(:email, "the combination wasn't found in the db...")". And the same goes for user register... Thanks in advance!

    Read the article

  • Good SQL error handling in Strored Procedure

    - by developerit
    When writing SQL procedures, it is really important to handle errors cautiously. Having that in mind will probably save your efforts, time and money. I have been working with MS-SQL 2000 and MS-SQL 2005 (I have not got the opportunity to work with MS-SQL 2008 yet) for many years now and I want to share with you how I handle errors in T-SQL Stored Procedure. This code has been working for many years now without a hitch. N.B.: As antoher "best pratice", I suggest using only ONE level of TRY … CATCH and only ONE level of TRANSACTION encapsulation, as doing otherwise may not be 100% sure. BEGIN TRANSACTION; BEGIN TRY -- Code in transaction go here COMMIT TRANSACTION; END TRY BEGIN CATCH -- Rollback on error ROLLBACK TRANSACTION; -- Raise the error with the appropriate message and error severity DECLARE @ErrMsg nvarchar(4000), @ErrSeverity int; SELECT @ErrMsg = ERROR_MESSAGE(), @ErrSeverity = ERROR_SEVERITY(); RAISERROR(@ErrMsg, @ErrSeverity, 1); END CATCH; In conclusion, I will just mention that I have been using this code with .NET 2.0 and .NET 3.5 and it works like a charm. The .NET TDS parser throws back a SQLException which is ideal to work with.

    Read the article

  • 8 Backup Tools Explained for Windows 7 and 8

    - by Chris Hoffman
    Backups on Windows can be confusing. Whether you’re using Windows 7 or 8, you have quite a few integrated backup tools to think about. Windows 8 made quite a few changes, too. You can also use third-party backup software, whether you want to back up to an external drive or back up your files to online storage. We won’t cover third-party tools here — just the ones built into Windows. Backup and Restore on Windows 7 Windows 7 has its own Backup and Restore feature that lets you create backups manually or on a schedule. You’ll find it under Backup and Restore in the Control Panel. The original version of Windows 8 still contained this tool, and named it Windows 7 File Recovery. This allowed former Windows 7 users to restore files from those old Windows 7 backups or keep using the familiar backup tool for a little while. Windows 7 File Recovery was removed in Windows 8.1. System Restore System Restore on both Windows 7 and 8 functions as a sort of automatic system backup feature. It creates backup copies of important system and program files on a schedule or when you perform certain tasks, such as installing a hardware driver. If system files become corrupted or your computer’s software becomes unstable, you can use System Restore to restore your system and program files from a System Restore point. This isn’t a way to back up your personal files. It’s more of a troubleshooting feature that uses backups to restore your system to its previous working state. Previous Versions on Windows 7 Windows 7′s Previous Versions feature allows you to restore older versions of files — or deleted files. These files can come from backups created with Windows 7′s Backup and Restore feature, but they can also come from System Restore points. When Windows 7 creates a System Restore point, it will sometimes contain your personal files. Previous Versions allows you to extract these personal files from restore points. This only applies to Windows 7. On Windows 8, System Restore won’t create backup copies of your personal files. The Previous Versions feature was removed on Windows 8. File History Windows 8 replaced Windows 7′s backup tools with File History, although this feature isn’t enabled by default. File History is designed to be a simple, easy way to create backups of your data files on an external drive or network location. File History replaces both Windows 7′s Backup and Previous Versions features. Windows System Restore won’t create copies of personal files on Windows 8. This means you can’t actually recover older versions of files until you enable File History yourself — it isn’t enabled by default. System Image Backups Windows also allows you to create system image backups. These are backup images of your entire operating system, including your system files, installed programs, and personal files. This feature was included in both Windows 7 and Windows 8, but it was hidden in the preview versions of Windows 8.1. After many user complaints, it was restored and is still available in the final version of Windows 8.1 — click System Image Backup on the File History Control Panel. Storage Space Mirroring Windows 8′s Storage Spaces feature allows you to set up RAID-like features in software. For example, you can use Storage Space to set up two hard disks of the same size in a mirroring configuration. They’ll appear as a single drive in Windows. When you write to this virtual drive, the files will be saved to both physical drives. If one drive fails, your files will still be available on the other drive. This isn’t a good long-term backup solution, but it is a way of ensuring you won’t lose important files if a single drive fails. Microsoft Account Settings Backup Windows 8 and 8.1 allow you to back up a variety of system settings — including personalization, desktop, and input settings. If you’re signing in with a Microsoft account, OneDrive settings backup is enabled automatically. This feature can be controlled under OneDrive > Sync settings in the PC settings app. This feature only backs up a few settings. It’s really more of a way to sync settings between devices. OneDrive Cloud Storage Microsoft hasn’t been talking much about File History since Windows 8 was released. That’s because they want people to use OneDrive instead. OneDrive — formerly known as SkyDrive — was added to the Windows desktop in Windows 8.1. Save your files here and they’ll be stored online tied to your Microsoft account. You can then sign in on any other computer, smartphone, tablet, or even via the web and access your files. Microsoft wants typical PC users “backing up” their files with OneDrive so they’ll be available on any device. You don’t have to worry about all these features. Just choose a backup strategy to ensure your files are safe if your computer’s hard disk fails you. Whether it’s an integrated backup tool or a third-party backup application, be sure to back up your files.

    Read the article

  • Backup options in SharePoint 2007

    - by sreejukg
    It is very important to make sure the server farm backup is taking properly, making sure that in case of any disaster, the administrator has the latest backup that can be used to restore. This articles addresses some of the options available for backup/restore in SharePoint 2007 Backup There are two options that can be utilized to take backup of SharePoint sites. Using SharePoint Central Administration website Using SharePoint central administration website, you can do backup/restore from user interface. Using central administration website you can back up the following · Server farm · Web application · Content databases Follow these steps to take backup of the server farm using central administration 1. Open Central administration website 2. Navigate to Operations -> Backup and Restore -> Perform a backup 3. Here you will have options to choose the item to back up. Select Farm (the top most item in the list) 4. Once you select the items to backup, click on “Continue to backup options” 5. Select “Full” as type of backup. 6. In the backup file location, enter the path where you need to store the backup. The path should be according to the UNC, for e.g. for c drive you may use \\server\c$\mybackupFolder 7. Click ok 8. Now you will be redirected to Backup and Restore Status page. This page shows the progress for the backup operation. You can use the refresh button to update the status of backup(this page will automatically refresh in every 30 seconds). Once completed you can find the files in the specified folder. Using STSADM website SharePoint comes with a STSADM command line tool. STSADM provides lot of administrative operations that can be performed on SharePoint 2007 sites. You can find STSADM command from the following location C:\Program Files\Common Files\Microsoft shared\web server extensions\12\bin (You may change the drive letter according to your installation) STSADM provides a method for performing the Office SharePoint Server 2007 administration tasks at the command line or by using batch files or scripts. STSADM provides access to operations not available by using the Central Administration site The general syntax for STSADM is as follows STSADM -operation Operation Name –parameter1 value1 –parameter2 value2 ……….. Using STSADM you can back up the following · Server farm · Web application · Content databases To perform any STSADM, operation you need to be a member of administrators group. Follow these steps to take backup of SharePoint server farm using STSADM tool. Note: make sure you are logged in to the computer where central administration website is installed. 1. Open the Command prompt (You should run command prompt with administrator privileges) 2. Change the working directory to C:\Program Files\Common Files\Microsoft shared\web server extensions\12\bin 3. Enter the command, then press enter Stsadm –o backup -directory <UNC path> -backupmethod full 4. You will get success / failure message once the command finishes. How to schedule the backup There is no option to schedule a backup using central administration site. Also there is no operation provided by STSADM to automate the backup. The farm administrators need to take backup in regular intervals. To achieve this, you can write a batch file that includes STSADM command to take full backup of the server. This batch file can be scheduled using windows task scheduler to execute in certain intervals. Sample of the batch file 1. Open notepad(or any other text editor) 2. Enter the following commands @echo off echo =============================================================== echo Back up the farm to <C:\backup> echo =============================================================== cd %COMMONPROGRAMFILES%\Microsoft Shared\web server extensions\12\BIN @echo off stsadm.exe -o backup -directory "<\backup>" -backupmethod full echo completed 3. Save the file with .bat extension You can schedule this batch file as you require. Other Options Using STSADM tool, you will be able to take backup for individual site collection. The syntax for this is stsadm -o backup -url <URL name for site collection> -filename <file name> [-overwrite] The explanations for the parameters are as follows. -url The url of the site collection you need to backup -filename The name of the backup file. E.g. c:\backup.bak -overwrite optional. Indicates if the filename specified exists, whether to overwrite or not. If you are creating the batch file for scheduling the backup for a site collection, you may need to specify the backup filename automatically created. It is an option that you can generate the filename with date so that you can keep backup for each day. e.g. The following commands can be utilized create a site collection backup. @echo off echo =============================================================== echo Back up the farm to <C:\backup> echo =============================================================== echo =============================================================== echo getting todays date to a variable echo =============================================================== @For /F "tokens=1,2,3 delims=/ " %%A in (‘Date /t’) do @( Set Day=%%A Set Month=%%B Set Year=%%C Set todayDate=%%C%%B%%A ) cd %COMMONPROGRAMFILES%\Microsoft Shared\web server extensions\12\BIN @echo off stsadm -o backup -url <sitecollection url> -filename \\ServerName\ShareName\Backup_%todayDate%.bak -overwrite echo completed To read more about backup STSADM operation, read this http://technet.microsoft.com/en-us/library/cc263441.aspx

    Read the article

  • How John Got 15x Improvement Without Really Trying

    - by rchrd
    The following article was published on a Sun Microsystems website a number of years ago by John Feo. It is still useful and worth preserving. So I'm republishing it here.  How I Got 15x Improvement Without Really Trying John Feo, Sun Microsystems Taking ten "personal" program codes used in scientific and engineering research, the author was able to get from 2 to 15 times performance improvement easily by applying some simple general optimization techniques. Introduction Scientific research based on computer simulation depends on the simulation for advancement. The research can advance only as fast as the computational codes can execute. The codes' efficiency determines both the rate and quality of results. In the same amount of time, a faster program can generate more results and can carry out a more detailed simulation of physical phenomena than a slower program. Highly optimized programs help science advance quickly and insure that monies supporting scientific research are used as effectively as possible. Scientific computer codes divide into three broad categories: ISV, community, and personal. ISV codes are large, mature production codes developed and sold commercially. The codes improve slowly over time both in methods and capabilities, and they are well tuned for most vendor platforms. Since the codes are mature and complex, there are few opportunities to improve their performance solely through code optimization. Improvements of 10% to 15% are typical. Examples of ISV codes are DYNA3D, Gaussian, and Nastran. Community codes are non-commercial production codes used by a particular research field. Generally, they are developed and distributed by a single academic or research institution with assistance from the community. Most users just run the codes, but some develop new methods and extensions that feed back into the general release. The codes are available on most vendor platforms. Since these codes are younger than ISV codes, there are more opportunities to optimize the source code. Improvements of 50% are not unusual. Examples of community codes are AMBER, CHARM, BLAST, and FASTA. Personal codes are those written by single users or small research groups for their own use. These codes are not distributed, but may be passed from professor-to-student or student-to-student over several years. They form the primordial ocean of applications from which community and ISV codes emerge. Government research grants pay for the development of most personal codes. This paper reports on the nature and performance of this class of codes. Over the last year, I have looked at over two dozen personal codes from more than a dozen research institutions. The codes cover a variety of scientific fields, including astronomy, atmospheric sciences, bioinformatics, biology, chemistry, geology, and physics. The sources range from a few hundred lines to more than ten thousand lines, and are written in Fortran, Fortran 90, C, and C++. For the most part, the codes are modular, documented, and written in a clear, straightforward manner. They do not use complex language features, advanced data structures, programming tricks, or libraries. I had little trouble understanding what the codes did or how data structures were used. Most came with a makefile. Surprisingly, only one of the applications is parallel. All developers have access to parallel machines, so availability is not an issue. Several tried to parallelize their applications, but stopped after encountering difficulties. Lack of education and a perception that parallelism is difficult prevented most from trying. I parallelized several of the codes using OpenMP, and did not judge any of the codes as difficult to parallelize. Even more surprising than the lack of parallelism is the inefficiency of the codes. I was able to get large improvements in performance in a matter of a few days applying simple optimization techniques. Table 1 lists ten representative codes [names and affiliation are omitted to preserve anonymity]. Improvements on one processor range from 2x to 15.5x with a simple average of 4.75x. I did not use sophisticated performance tools or drill deep into the program's execution character as one would do when tuning ISV or community codes. Using only a profiler and source line timers, I identified inefficient sections of code and improved their performance by inspection. The changes were at a high level. I am sure there is another factor of 2 or 3 in each code, and more if the codes are parallelized. The study’s results show that personal scientific codes are running many times slower than they should and that the problem is pervasive. Computational scientists are not sloppy programmers; however, few are trained in the art of computer programming or code optimization. I found that most have a working knowledge of some programming language and standard software engineering practices; but they do not know, or think about, how to make their programs run faster. They simply do not know the standard techniques used to make codes run faster. In fact, they do not even perceive that such techniques exist. The case studies described in this paper show that applying simple, well known techniques can significantly increase the performance of personal codes. It is important that the scientific community and the Government agencies that support scientific research find ways to better educate academic scientific programmers. The inefficiency of their codes is so bad that it is retarding both the quality and progress of scientific research. # cacheperformance redundantoperations loopstructures performanceimprovement 1 x x 15.5 2 x 2.8 3 x x 2.5 4 x 2.1 5 x x 2.0 6 x 5.0 7 x 5.8 8 x 6.3 9 2.2 10 x x 3.3 Table 1 — Area of improvement and performance gains of 10 codes The remainder of the paper is organized as follows: sections 2, 3, and 4 discuss the three most common sources of inefficiencies in the codes studied. These are cache performance, redundant operations, and loop structures. Each section includes several examples. The last section summaries the work and suggests a possible solution to the issues raised. Optimizing cache performance Commodity microprocessor systems use caches to increase memory bandwidth and reduce memory latencies. Typical latencies from processor to L1, L2, local, and remote memory are 3, 10, 50, and 200 cycles, respectively. Moreover, bandwidth falls off dramatically as memory distances increase. Programs that do not use cache effectively run many times slower than programs that do. When optimizing for cache, the biggest performance gains are achieved by accessing data in cache order and reusing data to amortize the overhead of cache misses. Secondary considerations are prefetching, associativity, and replacement; however, the understanding and analysis required to optimize for the latter are probably beyond the capabilities of the non-expert. Much can be gained simply by accessing data in the correct order and maximizing data reuse. 6 out of the 10 codes studied here benefited from such high level optimizations. Array Accesses The most important cache optimization is the most basic: accessing Fortran array elements in column order and C array elements in row order. Four of the ten codes—1, 2, 4, and 10—got it wrong. Compilers will restructure nested loops to optimize cache performance, but may not do so if the loop structure is too complex, or the loop body includes conditionals, complex addressing, or function calls. In code 1, the compiler failed to invert a key loop because of complex addressing do I = 0, 1010, delta_x IM = I - delta_x IP = I + delta_x do J = 5, 995, delta_x JM = J - delta_x JP = J + delta_x T1 = CA1(IP, J) + CA1(I, JP) T2 = CA1(IM, J) + CA1(I, JM) S1 = T1 + T2 - 4 * CA1(I, J) CA(I, J) = CA1(I, J) + D * S1 end do end do In code 2, the culprit is conditionals do I = 1, N do J = 1, N If (IFLAG(I,J) .EQ. 0) then T1 = Value(I, J-1) T2 = Value(I-1, J) T3 = Value(I, J) T4 = Value(I+1, J) T5 = Value(I, J+1) Value(I,J) = 0.25 * (T1 + T2 + T5 + T4) Delta = ABS(T3 - Value(I,J)) If (Delta .GT. MaxDelta) MaxDelta = Delta endif enddo enddo I fixed both programs by inverting the loops by hand. Code 10 has three-dimensional arrays and triply nested loops. The structure of the most computationally intensive loops is too complex to invert automatically or by hand. The only practical solution is to transpose the arrays so that the dimension accessed by the innermost loop is in cache order. The arrays can be transposed at construction or prior to entering a computationally intensive section of code. The former requires all array references to be modified, while the latter is cost effective only if the cost of the transpose is amortized over many accesses. I used the second approach to optimize code 10. Code 5 has four-dimensional arrays and loops are nested four deep. For all of the reasons cited above the compiler is not able to restructure three key loops. Assume C arrays and let the four dimensions of the arrays be i, j, k, and l. In the original code, the index structure of the three loops is L1: for i L2: for i L3: for i for l for l for j for k for j for k for j for k for l So only L3 accesses array elements in cache order. L1 is a very complex loop—much too complex to invert. I brought the loop into cache alignment by transposing the second and fourth dimensions of the arrays. Since the code uses a macro to compute all array indexes, I effected the transpose at construction and changed the macro appropriately. The dimensions of the new arrays are now: i, l, k, and j. L3 is a simple loop and easily inverted. L2 has a loop-carried scalar dependence in k. By promoting the scalar name that carries the dependence to an array, I was able to invert the third and fourth subloops aligning the loop with cache. Code 5 is by far the most difficult of the four codes to optimize for array accesses; but the knowledge required to fix the problems is no more than that required for the other codes. I would judge this code at the limits of, but not beyond, the capabilities of appropriately trained computational scientists. Array Strides When a cache miss occurs, a line (64 bytes) rather than just one word is loaded into the cache. If data is accessed stride 1, than the cost of the miss is amortized over 8 words. Any stride other than one reduces the cost savings. Two of the ten codes studied suffered from non-unit strides. The codes represent two important classes of "strided" codes. Code 1 employs a multi-grid algorithm to reduce time to convergence. The grids are every tenth, fifth, second, and unit element. Since time to convergence is inversely proportional to the distance between elements, coarse grids converge quickly providing good starting values for finer grids. The better starting values further reduce the time to convergence. The downside is that grids of every nth element, n > 1, introduce non-unit strides into the computation. In the original code, much of the savings of the multi-grid algorithm were lost due to this problem. I eliminated the problem by compressing (copying) coarse grids into continuous memory, and rewriting the computation as a function of the compressed grid. On convergence, I copied the final values of the compressed grid back to the original grid. The savings gained from unit stride access of the compressed grid more than paid for the cost of copying. Using compressed grids, the loop from code 1 included in the previous section becomes do j = 1, GZ do i = 1, GZ T1 = CA(i+0, j-1) + CA(i-1, j+0) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) S1 = T1 + T4 - 4 * CA1(i+0, j+0) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 enddo enddo where CA and CA1 are compressed arrays of size GZ. Code 7 traverses a list of objects selecting objects for later processing. The labels of the selected objects are stored in an array. The selection step has unit stride, but the processing steps have irregular stride. A fix is to save the parameters of the selected objects in temporary arrays as they are selected, and pass the temporary arrays to the processing functions. The fix is practical if the same parameters are used in selection as in processing, or if processing comprises a series of distinct steps which use overlapping subsets of the parameters. Both conditions are true for code 7, so I achieved significant improvement by copying parameters to temporary arrays during selection. Data reuse In the previous sections, we optimized for spatial locality. It is also important to optimize for temporal locality. Once read, a datum should be used as much as possible before it is forced from cache. Loop fusion and loop unrolling are two techniques that increase temporal locality. Unfortunately, both techniques increase register pressure—as loop bodies become larger, the number of registers required to hold temporary values grows. Once register spilling occurs, any gains evaporate quickly. For multiprocessors with small register sets or small caches, the sweet spot can be very small. In the ten codes presented here, I found no opportunities for loop fusion and only two opportunities for loop unrolling (codes 1 and 3). In code 1, unrolling the outer and inner loop one iteration increases the number of result values computed by the loop body from 1 to 4, do J = 1, GZ-2, 2 do I = 1, GZ-2, 2 T1 = CA1(i+0, j-1) + CA1(i-1, j+0) T2 = CA1(i+1, j-1) + CA1(i+0, j+0) T3 = CA1(i+0, j+0) + CA1(i-1, j+1) T4 = CA1(i+1, j+0) + CA1(i+0, j+1) T5 = CA1(i+2, j+0) + CA1(i+1, j+1) T6 = CA1(i+1, j+1) + CA1(i+0, j+2) T7 = CA1(i+2, j+1) + CA1(i+1, j+2) S1 = T1 + T4 - 4 * CA1(i+0, j+0) S2 = T2 + T5 - 4 * CA1(i+1, j+0) S3 = T3 + T6 - 4 * CA1(i+0, j+1) S4 = T4 + T7 - 4 * CA1(i+1, j+1) CA(i+0, j+0) = CA1(i+0, j+0) + DD * S1 CA(i+1, j+0) = CA1(i+1, j+0) + DD * S2 CA(i+0, j+1) = CA1(i+0, j+1) + DD * S3 CA(i+1, j+1) = CA1(i+1, j+1) + DD * S4 enddo enddo The loop body executes 12 reads, whereas as the rolled loop shown in the previous section executes 20 reads to compute the same four values. In code 3, two loops are unrolled 8 times and one loop is unrolled 4 times. Here is the before for (k = 0; k < NK[u]; k++) { sum = 0.0; for (y = 0; y < NY; y++) { sum += W[y][u][k] * delta[y]; } backprop[i++]=sum; } and after code for (k = 0; k < KK - 8; k+=8) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (y = 0; y < NY; y++) { sum0 += W[y][0][k+0] * delta[y]; sum1 += W[y][0][k+1] * delta[y]; sum2 += W[y][0][k+2] * delta[y]; sum3 += W[y][0][k+3] * delta[y]; sum4 += W[y][0][k+4] * delta[y]; sum5 += W[y][0][k+5] * delta[y]; sum6 += W[y][0][k+6] * delta[y]; sum7 += W[y][0][k+7] * delta[y]; } backprop[k+0] = sum0; backprop[k+1] = sum1; backprop[k+2] = sum2; backprop[k+3] = sum3; backprop[k+4] = sum4; backprop[k+5] = sum5; backprop[k+6] = sum6; backprop[k+7] = sum7; } for one of the loops unrolled 8 times. Optimizing for temporal locality is the most difficult optimization considered in this paper. The concepts are not difficult, but the sweet spot is small. Identifying where the program can benefit from loop unrolling or loop fusion is not trivial. Moreover, it takes some effort to get it right. Still, educating scientific programmers about temporal locality and teaching them how to optimize for it will pay dividends. Reducing instruction count Execution time is a function of instruction count. Reduce the count and you usually reduce the time. The best solution is to use a more efficient algorithm; that is, an algorithm whose order of complexity is smaller, that converges quicker, or is more accurate. Optimizing source code without changing the algorithm yields smaller, but still significant, gains. This paper considers only the latter because the intent is to study how much better codes can run if written by programmers schooled in basic code optimization techniques. The ten codes studied benefited from three types of "instruction reducing" optimizations. The two most prevalent were hoisting invariant memory and data operations out of inner loops. The third was eliminating unnecessary data copying. The nature of these inefficiencies is language dependent. Memory operations The semantics of C make it difficult for the compiler to determine all the invariant memory operations in a loop. The problem is particularly acute for loops in functions since the compiler may not know the values of the function's parameters at every call site when compiling the function. Most compilers support pragmas to help resolve ambiguities; however, these pragmas are not comprehensive and there is no standard syntax. To guarantee that invariant memory operations are not executed repetitively, the user has little choice but to hoist the operations by hand. The problem is not as severe in Fortran programs because in the absence of equivalence statements, it is a violation of the language's semantics for two names to share memory. Codes 3 and 5 are C programs. In both cases, the compiler did not hoist all invariant memory operations from inner loops. Consider the following loop from code 3 for (y = 0; y < NY; y++) { i = 0; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += delta[y] * I1[i++]; } } } Since dW[y][u] can point to the same memory space as delta for one or more values of y and u, assignment to dW[y][u][k] may change the value of delta[y]. In reality, dW and delta do not overlap in memory, so I rewrote the loop as for (y = 0; y < NY; y++) { i = 0; Dy = delta[y]; for (u = 0; u < NU; u++) { for (k = 0; k < NK[u]; k++) { dW[y][u][k] += Dy * I1[i++]; } } } Failure to hoist invariant memory operations may be due to complex address calculations. If the compiler can not determine that the address calculation is invariant, then it can hoist neither the calculation nor the associated memory operations. As noted above, code 5 uses a macro to address four-dimensional arrays #define MAT4D(a,q,i,j,k) (double *)((a)->data + (q)*(a)->strides[0] + (i)*(a)->strides[3] + (j)*(a)->strides[2] + (k)*(a)->strides[1]) The macro is too complex for the compiler to understand and so, it does not identify any subexpressions as loop invariant. The simplest way to eliminate the address calculation from the innermost loop (over i) is to define a0 = MAT4D(a,q,0,j,k) before the loop and then replace all instances of *MAT4D(a,q,i,j,k) in the loop with a0[i] A similar problem appears in code 6, a Fortran program. The key loop in this program is do n1 = 1, nh nx1 = (n1 - 1) / nz + 1 nz1 = n1 - nz * (nx1 - 1) do n2 = 1, nh nx2 = (n2 - 1) / nz + 1 nz2 = n2 - nz * (nx2 - 1) ndx = nx2 - nx1 ndy = nz2 - nz1 gxx = grn(1,ndx,ndy) gyy = grn(2,ndx,ndy) gxy = grn(3,ndx,ndy) balance(n1,1) = balance(n1,1) + (force(n2,1) * gxx + force(n2,2) * gxy) * h1 balance(n1,2) = balance(n1,2) + (force(n2,1) * gxy + force(n2,2) * gyy)*h1 end do end do The programmer has written this loop well—there are no loop invariant operations with respect to n1 and n2. However, the loop resides within an iterative loop over time and the index calculations are independent with respect to time. Trading space for time, I precomputed the index values prior to the entering the time loop and stored the values in two arrays. I then replaced the index calculations with reads of the arrays. Data operations Ways to reduce data operations can appear in many forms. Implementing a more efficient algorithm produces the biggest gains. The closest I came to an algorithm change was in code 4. This code computes the inner product of K-vectors A(i) and B(j), 0 = i < N, 0 = j < M, for most values of i and j. Since the program computes most of the NM possible inner products, it is more efficient to compute all the inner products in one triply-nested loop rather than one at a time when needed. The savings accrue from reading A(i) once for all B(j) vectors and from loop unrolling. for (i = 0; i < N; i+=8) { for (j = 0; j < M; j++) { sum0 = 0.0; sum1 = 0.0; sum2 = 0.0; sum3 = 0.0; sum4 = 0.0; sum5 = 0.0; sum6 = 0.0; sum7 = 0.0; for (k = 0; k < K; k++) { sum0 += A[i+0][k] * B[j][k]; sum1 += A[i+1][k] * B[j][k]; sum2 += A[i+2][k] * B[j][k]; sum3 += A[i+3][k] * B[j][k]; sum4 += A[i+4][k] * B[j][k]; sum5 += A[i+5][k] * B[j][k]; sum6 += A[i+6][k] * B[j][k]; sum7 += A[i+7][k] * B[j][k]; } C[i+0][j] = sum0; C[i+1][j] = sum1; C[i+2][j] = sum2; C[i+3][j] = sum3; C[i+4][j] = sum4; C[i+5][j] = sum5; C[i+6][j] = sum6; C[i+7][j] = sum7; }} This change requires knowledge of a typical run; i.e., that most inner products are computed. The reasons for the change, however, derive from basic optimization concepts. It is the type of change easily made at development time by a knowledgeable programmer. In code 5, we have the data version of the index optimization in code 6. Here a very expensive computation is a function of the loop indices and so cannot be hoisted out of the loop; however, the computation is invariant with respect to an outer iterative loop over time. We can compute its value for each iteration of the computation loop prior to entering the time loop and save the values in an array. The increase in memory required to store the values is small in comparison to the large savings in time. The main loop in Code 8 is doubly nested. The inner loop includes a series of guarded computations; some are a function of the inner loop index but not the outer loop index while others are a function of the outer loop index but not the inner loop index for (j = 0; j < N; j++) { for (i = 0; i < M; i++) { r = i * hrmax; R = A[j]; temp = (PRM[3] == 0.0) ? 1.0 : pow(r, PRM[3]); high = temp * kcoeff * B[j] * PRM[2] * PRM[4]; low = high * PRM[6] * PRM[6] / (1.0 + pow(PRM[4] * PRM[6], 2.0)); kap = (R > PRM[6]) ? high * R * R / (1.0 + pow(PRM[4]*r, 2.0) : low * pow(R/PRM[6], PRM[5]); < rest of loop omitted > }} Note that the value of temp is invariant to j. Thus, we can hoist the computation for temp out of the loop and save its values in an array. for (i = 0; i < M; i++) { r = i * hrmax; TEMP[i] = pow(r, PRM[3]); } [N.B. – the case for PRM[3] = 0 is omitted and will be reintroduced later.] We now hoist out of the inner loop the computations invariant to i. Since the conditional guarding the value of kap is invariant to i, it behooves us to hoist the computation out of the inner loop, thereby executing the guard once rather than M times. The final version of the code is for (j = 0; j < N; j++) { R = rig[j] / 1000.; tmp1 = kcoeff * par[2] * beta[j] * par[4]; tmp2 = 1.0 + (par[4] * par[4] * par[6] * par[6]); tmp3 = 1.0 + (par[4] * par[4] * R * R); tmp4 = par[6] * par[6] / tmp2; tmp5 = R * R / tmp3; tmp6 = pow(R / par[6], par[5]); if ((par[3] == 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp5; } else if ((par[3] == 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * tmp4 * tmp6; } else if ((par[3] != 0.0) && (R > par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp5; } else if ((par[3] != 0.0) && (R <= par[6])) { for (i = 1; i <= imax1; i++) KAP[i] = tmp1 * TEMP[i] * tmp4 * tmp6; } for (i = 0; i < M; i++) { kap = KAP[i]; r = i * hrmax; < rest of loop omitted > } } Maybe not the prettiest piece of code, but certainly much more efficient than the original loop, Copy operations Several programs unnecessarily copy data from one data structure to another. This problem occurs in both Fortran and C programs, although it manifests itself differently in the two languages. Code 1 declares two arrays—one for old values and one for new values. At the end of each iteration, the array of new values is copied to the array of old values to reset the data structures for the next iteration. This problem occurs in Fortran programs not included in this study and in both Fortran 77 and Fortran 90 code. Introducing pointers to the arrays and swapping pointer values is an obvious way to eliminate the copying; but pointers is not a feature that many Fortran programmers know well or are comfortable using. An easy solution not involving pointers is to extend the dimension of the value array by 1 and use the last dimension to differentiate between arrays at different times. For example, if the data space is N x N, declare the array (N, N, 2). Then store the problem’s initial values in (_, _, 2) and define the scalar names new = 2 and old = 1. At the start of each iteration, swap old and new to reset the arrays. The old–new copy problem did not appear in any C program. In programs that had new and old values, the code swapped pointers to reset data structures. Where unnecessary coping did occur is in structure assignment and parameter passing. Structures in C are handled much like scalars. Assignment causes the data space of the right-hand name to be copied to the data space of the left-hand name. Similarly, when a structure is passed to a function, the data space of the actual parameter is copied to the data space of the formal parameter. If the structure is large and the assignment or function call is in an inner loop, then copying costs can grow quite large. While none of the ten programs considered here manifested this problem, it did occur in programs not included in the study. A simple fix is always to refer to structures via pointers. Optimizing loop structures Since scientific programs spend almost all their time in loops, efficient loops are the key to good performance. Conditionals, function calls, little instruction level parallelism, and large numbers of temporary values make it difficult for the compiler to generate tightly packed, highly efficient code. Conditionals and function calls introduce jumps that disrupt code flow. Users should eliminate or isolate conditionls to their own loops as much as possible. Often logical expressions can be substituted for if-then-else statements. For example, code 2 includes the following snippet MaxDelta = 0.0 do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) if (Delta > MaxDelta) MaxDelta = Delta enddo enddo if (MaxDelta .gt. 0.001) goto 200 Since the only use of MaxDelta is to control the jump to 200 and all that matters is whether or not it is greater than 0.001, I made MaxDelta a boolean and rewrote the snippet as MaxDelta = .false. do J = 1, N do I = 1, M < code omitted > Delta = abs(OldValue ? NewValue) MaxDelta = MaxDelta .or. (Delta .gt. 0.001) enddo enddo if (MaxDelta) goto 200 thereby, eliminating the conditional expression from the inner loop. A microprocessor can execute many instructions per instruction cycle. Typically, it can execute one or more memory, floating point, integer, and jump operations. To be executed simultaneously, the operations must be independent. Thick loops tend to have more instruction level parallelism than thin loops. Moreover, they reduce memory traffice by maximizing data reuse. Loop unrolling and loop fusion are two techniques to increase the size of loop bodies. Several of the codes studied benefitted from loop unrolling, but none benefitted from loop fusion. This observation is not too surpising since it is the general tendency of programmers to write thick loops. As loops become thicker, the number of temporary values grows, increasing register pressure. If registers spill, then memory traffic increases and code flow is disrupted. A thick loop with many temporary values may execute slower than an equivalent series of thin loops. The biggest gain will be achieved if the thick loop can be split into a series of independent loops eliminating the need to write and read temporary arrays. I found such an occasion in code 10 where I split the loop do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do into two disjoint loops do i = 1, n do j = 1, m A24(j,i)= S24(j,i) * T24(j,i) + S25(j,i) * U25(j,i) B24(j,i)= S24(j,i) * T25(j,i) + S25(j,i) * U24(j,i) A25(j,i)= S24(j,i) * C24(j,i) + S25(j,i) * V24(j,i) B25(j,i)= S24(j,i) * U25(j,i) + S25(j,i) * V25(j,i) end do end do do i = 1, n do j = 1, m C24(j,i)= S26(j,i) * T26(j,i) + S27(j,i) * U26(j,i) D24(j,i)= S26(j,i) * T27(j,i) + S27(j,i) * V26(j,i) C25(j,i)= S27(j,i) * S28(j,i) + S26(j,i) * U28(j,i) D25(j,i)= S27(j,i) * T28(j,i) + S26(j,i) * V28(j,i) end do end do Conclusions Over the course of the last year, I have had the opportunity to work with over two dozen academic scientific programmers at leading research universities. Their research interests span a broad range of scientific fields. Except for two programs that relied almost exclusively on library routines (matrix multiply and fast Fourier transform), I was able to improve significantly the single processor performance of all codes. Improvements range from 2x to 15.5x with a simple average of 4.75x. Changes to the source code were at a very high level. I did not use sophisticated techniques or programming tools to discover inefficiencies or effect the changes. Only one code was parallel despite the availability of parallel systems to all developers. Clearly, we have a problem—personal scientific research codes are highly inefficient and not running parallel. The developers are unaware of simple optimization techniques to make programs run faster. They lack education in the art of code optimization and parallel programming. I do not believe we can fix the problem by publishing additional books or training manuals. To date, the developers in questions have not studied the books or manual available, and are unlikely to do so in the future. Short courses are a possible solution, but I believe they are too concentrated to be much use. The general concepts can be taught in a three or four day course, but that is not enough time for students to practice what they learn and acquire the experience to apply and extend the concepts to their codes. Practice is the key to becoming proficient at optimization. I recommend that graduate students be required to take a semester length course in optimization and parallel programming. We would never give someone access to state-of-the-art scientific equipment costing hundreds of thousands of dollars without first requiring them to demonstrate that they know how to use the equipment. Yet the criterion for time on state-of-the-art supercomputers is at most an interesting project. Requestors are never asked to demonstrate that they know how to use the system, or can use the system effectively. A semester course would teach them the required skills. Government agencies that fund academic scientific research pay for most of the computer systems supporting scientific research as well as the development of most personal scientific codes. These agencies should require graduate schools to offer a course in optimization and parallel programming as a requirement for funding. About the Author John Feo received his Ph.D. in Computer Science from The University of Texas at Austin in 1986. After graduate school, Dr. Feo worked at Lawrence Livermore National Laboratory where he was the Group Leader of the Computer Research Group and principal investigator of the Sisal Language Project. In 1997, Dr. Feo joined Tera Computer Company where he was project manager for the MTA, and oversaw the programming and evaluation of the MTA at the San Diego Supercomputer Center. In 2000, Dr. Feo joined Sun Microsystems as an HPC application specialist. He works with university research groups to optimize and parallelize scientific codes. Dr. Feo has published over two dozen research articles in the areas of parallel parallel programming, parallel programming languages, and application performance.

    Read the article

  • Oracle Solaris: Zones on Shared Storage

    - by Jeff Victor
    Oracle Solaris 11.1 has several new features. At oracle.com you can find a detailed list. One of the significant new features, and the most significant new feature releated to Oracle Solaris Zones, is casually called "Zones on Shared Storage" or simply ZOSS (rhymes with "moss"). ZOSS offers much more flexibility because you can store Solaris Zones on shared storage (surprise!) so that you can perform quick and easy migration of a zone from one system to another. This blog entry describes and demonstrates the use of ZOSS. ZOSS provides complete support for a Solaris Zone that is stored on "shared storage." In this case, "shared storage" refers to fiber channel (FC) or iSCSI devices, although there is one lone exception that I will demonstrate soon. The primary intent is to enable you to store a zone on FC or iSCSI storage so that it can be migrated from one host computer to another much more easily and safely than in the past. With this blog entry, I wanted to make it easy for you to try this yourself. I couldn't assume that you have a SAN available - which is a good thing, because neither do I! What could I use, instead? [There he goes, foreshadowing again... -Ed.] Developing this entry reinforced the lesson that the solution to every lab problem is VirtualBox. Oracle VM VirtualBox (its formal name) helps here in a couple of important ways. It offers the ability to easily install multiple copies of Solaris as guests on top of any popular system (Microsoft Windows, MacOS, Solaris, Oracle Linux (and other Linuxes) etc.). It also offers the ability to create a separate virtual disk drive (VDI) that appears as a local hard disk to a guest. This virtual disk can be moved very easily from one guest to another. In other words, you can follow the steps below on a laptop or larger x86 system. Please note that the ability to use ZOSS to store a zone on a local disk is very useful for a lab environment, but not so useful for production. I do not suggest regularly moving disk drives among computers. In the method I describe below, that virtual hard disk will contain the zone that will be migrated among the (virtual) hosts. In production, you would use FC or iSCSI LUNs instead. The zonecfg(1M) man page details the syntax for each of the three types of devices. Why Migrate? Why is the migration of virtual servers important? Some of the most common reasons are: Moving a workload to a different computer so that the original computer can be turned off for extensive maintenance. Moving a workload to a larger system because the workload has outgrown its original system. If the workload runs in an environment (such as a Solaris Zone) that is stored on shared storage, you can restore the service of the workload on an alternate computer if the original computer has failed and will not reboot. You can simplify lifecycle management of a workload by developing it on a laptop, migrating it to a test platform when it's ready, and finally moving it to a production system. Concepts For ZOSS, the important new concept is named "rootzpool". You can read about it in the zonecfg(1M) man page, but here's the short version: it's the backing store (hard disk(s), or LUN(s)) that will be used to make a ZFS zpool - the zpool that will hold the zone. This zpool: contains the zone's Solaris content, i.e. the root file system does not contain any content not related to the zone can only be mounted by one Solaris instance at a time Method Overview Here is a brief list of the steps to create a zone on shared storage and migrate it. The next section shows the commands and output. You will need a host system with an x86 CPU (hopefully at least a couple of CPU cores), at least 2GB of RAM, and at least 25GB of free disk space. (The steps below will not actually use 25GB of disk space, but I don't want to lead you down a path that ends in a big sign that says "Your HDD is full. Good luck!") Configure the zone on both systems, specifying the rootzpool that both will use. The best way is to configure it on one system and then copy the output of "zonecfg export" to the other system to be used as input to zonecfg. This method reduces the chances of pilot error. (It is not necessary to configure the zone on both systems before creating it. You can configure this zone in multiple places, whenever you want, and migrate it to one of those places at any time - as long as those systems all have access to the shared storage.) Install the zone on one system, onto shared storage. Boot the zone. Provide system configuration information to the zone. (In the Real World(tm) you will usually automate this step.) Shutdown the zone. Detach the zone from the original system. Attach the zone to its new "home" system. Boot the zone. The zone can be used normally, and even migrated back, or to a different system. Details The rest of this shows the commands and output. The two hostnames are "sysA" and "sysB". Note that each Solaris guest might use a different device name for the VDI that they share. I used the device names shown below, but you must discover the device name(s) after booting each guest. In a production environment you would also discover the device name first and then configure the zone with that name. Fortunately, you can use the command "zpool import" or "format" to discover the device on the "new" host for the zone. The first steps create the VirtualBox guests and the shared disk drive. I describe the steps here without demonstrating them. Download VirtualBox and install it using a method normal for your host OS. You can read the complete instructions. Create two VirtualBox guests, each to run Solaris 11.1. Each will use its own VDI as its root disk. Install Solaris 11.1 in each guest.Install Solaris 11.1 in each guest. To install a Solaris 11.1 guest, you can either download a pre-built VirtualBox guest, and import it, or install Solaris 11.1 from the "text install" media. If you use the latter method, after booting you will not see a windowing system. To install the GUI and other important things, login and run "pkg install solaris-desktop" and take a break while it installs those important things. Life is usually easier if you install the VirtualBox Guest Additions because then you can copy and paste between the host and guests, etc. You can find the guest additions in the folder matching the version of VirtualBox you are using. You can also read the instructions for installing the guest additions. To create the zone's shared VDI in VirtualBox, you can open the storage configuration for one of the two guests, select the SATA controller, and click on the "Add Hard Disk" icon nearby. Choose "Create New Disk" and specify an appropriate path name for the file that will contain the VDI. The shared VDI must be at least 1.5 GB. Note that the guest must be stopped to do this. Add that VDI to the other guest - using its Storage configuration - so that each can access it while running. The steps start out the same, except that you choose "Choose Existing Disk" instead of "Create New Disk." Because the disk is configured on both of them, VirtualBox prevents you from running both guests at the same time. Identify device names of that VDI, in each of the guests. Solaris chooses the name based on existing devices. The names may be the same, or may be different from each other. This step is shown below as "Step 1." Assumptions In the example shown below, I make these assumptions. The guest that will own the zone at the beginning is named sysA. The guest that will own the zone after the first migration is named sysB. On sysA, the shared disk is named /dev/dsk/c7t2d0 On sysB, the shared disk is named /dev/dsk/c7t3d0 (Finally!) The Steps Step 1) Determine the name of the disk that will move back and forth between the systems. root@sysA:~# format Searching for disks...done AVAILABLE DISK SELECTIONS: 0. c7t0d0 /pci@0,0/pci8086,2829@d/disk@0,0 1. c7t2d0 /pci@0,0/pci8086,2829@d/disk@2,0 Specify disk (enter its number): ^D Step 2) The first thing to do is partition and label the disk. The magic needed to write an EFI label is not overly complicated. root@sysA:~# format -e c7t2d0 selecting c7t2d0 [disk formatted] FORMAT MENU: ... format fdisk No fdisk table exists. The default partition for the disk is: a 100% "SOLARIS System" partition Type "y" to accept the default partition, otherwise type "n" to edit the partition table. n SELECT ONE OF THE FOLLOWING: ... Enter Selection: 1 ... G=EFI_SYS 0=Exit? f SELECT ONE... ... 6 format label ... Specify Label type[1]: 1 Ready to label disk, continue? y format quit root@sysA:~# ls /dev/dsk/c7t2d0 /dev/dsk/c7t2d0 Step 3) Configure zone1 on sysA. root@sysA:~# zonecfg -z zone1 Use 'create' to begin configuring a new zone. zonecfg:zone1 create create: Using system default template 'SYSdefault' zonecfg:zone1 set zonename=zone1 zonecfg:zone1 set zonepath=/zones/zone1 zonecfg:zone1 add rootzpool zonecfg:zone1:rootzpool add storage dev:dsk/c7t2d0 zonecfg:zone1:rootzpool end zonecfg:zone1 exit root@sysA:~# oot@sysA:~# zonecfg -z zone1 info zonename: zone1 zonepath: /zones/zone1 brand: solaris autoboot: false bootargs: file-mac-profile: pool: limitpriv: scheduling-class: ip-type: exclusive hostid: fs-allowed: anet: ... rootzpool: storage: dev:dsk/c7t2d0 Step 4) Install the zone. This step takes the most time, but you can wander off for a snack or a few laps around the gym - or both! (Just not at the same time...) root@sysA:~# zoneadm -z zone1 install Created zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T163634Z.zone1.install Image: Preparing at /zones/zone1/root. AI Manifest: /tmp/manifest.xml.RXaycg SC Profile: /usr/share/auto_install/sc_profiles/enable_sci.xml Zonename: zone1 Installation: Starting ... Creating IPS image Startup linked: 1/1 done Installing packages from: solaris origin: http://pkg.us.oracle.com/support/ DOWNLOAD PKGS FILES XFER (MB) SPEED Completed 183/183 33556/33556 222.2/222.2 2.8M/s PHASE ITEMS Installing new actions 46825/46825 Updating package state database Done Updating image state Done Creating fast lookup database Done Installation: Succeeded Note: Man pages can be obtained by installing pkg:/system/manual done. Done: Installation completed in 1696.847 seconds. Next Steps: Boot the zone, then log into the zone console (zlogin -C) to complete the configuration process. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T163634Z.zone1.install Step 5) Boot the Zone. root@sysA:~# zoneadm -z zone1 boot Step 6) Login to zone's console to complete the specification of system information. root@sysA:~# zlogin -C zone1 Answer the usual questions and wait for a login prompt. Then you can end the console session with the usual "~." incantation. Step 7) Shutdown the zone so it can be "moved." root@sysA:~# zoneadm -z zone1 shutdown Step 8) Detach the zone so that the original global zone can't use it. root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 installed /zones/zone1 solaris excl root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - zone1_rpool 1.98G 484M 1.51G 23% 1.00x ONLINE - root@sysA:~# zoneadm -z zone1 detach Exported zone zpool: zone1_rpool Step 9) Review the result and shutdown sysA so that sysB can use the shared disk. root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysA:~# init 0 Step 10) Now boot sysB and configure a zone with the parameters shown above in Step 1. (Again, the safest method is to use "zonecfg ... export" on sysA as described in section "Method Overview" above.) The one difference is the name of the rootzpool storage device, which was shown in the list of assumptions, and which you must determine by booting sysB and using the "format" or "zpool import" command. When that is done, you should see the output shown next. (I used the same zonename - "zone1" - in this example, but you can choose any valid zonename you want.) root@sysB:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysB:~# zonecfg -z zone1 info zonename: zone1 zonepath: /zones/zone1 brand: solaris autoboot: false bootargs: file-mac-profile: pool: limitpriv: scheduling-class: ip-type: exclusive hostid: fs-allowed: anet: linkname: net0 ... rootzpool: storage: dev:dsk/c7t3d0 Step 11) Attaching the zone automatically imports the zpool. root@sysB:~# zoneadm -z zone1 attach Imported zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T184034Z.zone1.attach Installing: Using existing zone boot environment Zone BE root dataset: zone1_rpool/rpool/ROOT/solaris Cache: Using /var/pkg/publisher. Updating non-global zone: Linking to image /. Processing linked: 1/1 done Updating non-global zone: Auditing packages. No updates necessary for this image. Updating non-global zone: Zone updated. Result: Attach Succeeded. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T184034Z.zone1.attach root@sysB:~# zoneadm -z zone1 boot root@sysB:~# zlogin zone1 [Connected to zone 'zone1' pts/2] Oracle Corporation SunOS 5.11 11.1 September 2012 Step 12) Now let's migrate the zone back to sysA. Create a file in zone1 so we can verify it exists after we migrate the zone back, then begin migrating it back. root@zone1:~# ls /opt root@zone1:~# touch /opt/fileA root@zone1:~# ls -l /opt/fileA -rw-r--r-- 1 root root 0 Oct 22 14:47 /opt/fileA root@zone1:~# exit logout [Connection to zone 'zone1' pts/2 closed] root@sysB:~# zoneadm -z zone1 shutdown root@sysB:~# zoneadm -z zone1 detach Exported zone zpool: zone1_rpool root@sysB:~# init 0 Step 13) Back on sysA, check the status. Oracle Corporation SunOS 5.11 11.1 September 2012 root@sysA:~# zoneadm list -cv ID NAME STATUS PATH BRAND IP 0 global running / solaris shared - zone1 configured /zones/zone1 solaris excl root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - Step 14) Re-attach the zone back to sysA. root@sysA:~# zoneadm -z zone1 attach Imported zone zpool: zone1_rpool Progress being logged to /var/log/zones/zoneadm.20121022T190441Z.zone1.attach Installing: Using existing zone boot environment Zone BE root dataset: zone1_rpool/rpool/ROOT/solaris Cache: Using /var/pkg/publisher. Updating non-global zone: Linking to image /. Processing linked: 1/1 done Updating non-global zone: Auditing packages. No updates necessary for this image. Updating non-global zone: Zone updated. Result: Attach Succeeded. Log saved in non-global zone as /zones/zone1/root/var/log/zones/zoneadm.20121022T190441Z.zone1.attach root@sysA:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 17.6G 11.2G 6.47G 63% 1.00x ONLINE - zone1_rpool 1.98G 491M 1.51G 24% 1.00x ONLINE - root@sysA:~# zoneadm -z zone1 boot root@sysA:~# zlogin zone1 [Connected to zone 'zone1' pts/2] Oracle Corporation SunOS 5.11 11.1 September 2012 root@zone1:~# zpool list NAME SIZE ALLOC FREE CAP DEDUP HEALTH ALTROOT rpool 1.98G 538M 1.46G 26% 1.00x ONLINE - Step 15) Check for the file created on sysB, earlier. root@zone1:~# ls -l /opt total 1 -rw-r--r-- 1 root root 0 Oct 22 14:47 fileA Next Steps Here is a brief list of some of the fun things you can try next. Add space to the zone by adding a second storage device to the rootzpool. Make sure that you add it to the configurations of both zones! Create a new zone, specifying two disks in the rootzpool when you first configure the zone. When you install that zone, or clone it from another zone, zoneadm uses those two disks to create a mirrored pool. (Three disks will result in a three-way mirror, etc.) Conclusion Hopefully you have seen the ease with which you can now move Solaris Zones from one system to another.

    Read the article

  • Why is my external USB hard drive sometimes completely inaccessible?

    - by Eliah Kagan
    I have an external USB hard drive, consisting of an 1 TB SATA drive in a Rosewill RX35-AT-SU SLV Aluminum 3.5" Silver USB 2.0 External Enclosure, plugged into my SONY VAIO VGN-NS310F laptop. It is plugged directly into the computer (not through a hub). The drive inside the enclosure is a 7200 rpm Western Digital, but I don't remember the exact model. I can remove the drive from the enclosure (again), if people think it's necessary to know that detail. The drive is formatted ext4. I mount it dynamically with udisks on my Lubuntu 11.10 system, usually automatically via PCManFM. (I have had Lubuntu 12.04 on this machine, and experienced all this same behavior with that too.) Every once in a while--once or twice a day--it becomes inaccessible, and difficult to unmount. Attempting to unmount it with sudo umount ... gives an error message saying the drive is in use and suggesting fuser and lsof to find out what is using it. Killing processes found to be using the drive with fuser and lsof is sometimes sufficient to let me unmount it, but usually isn't. Once the drive is unmounted or the machine is rebooted, the drive will not mount. Plugging in the drive and turning it on registers nothing on the computer. dmesg is unchanged. The drive's access light usually blinks vigorously, as though the drive is being accessed constantly. Then eventually, after I keep the drive off for a while (half an hour), I am able to mount it again. While the drive doesn't work on this machine for a while, it will work immediately on another machine running the same version of Ubuntu. Sometimes bringing it back over from the other machine seems to "fix" it. Sometimes it doesn't. The drive doesn't always stop being accessible while mounted, before becoming unmountable. Sometimes it works fine, I turn off the computer, I turn the computer back on, and I cannot mount the drive. Currently this is the only drive with which I have this problem, but I've had problems that I think are the same as this, with different drives, on different Ubuntu machines. This laptop has another external USB drive plugged into it regularly, which doesn't have this problem. Unplugging that drive before plugging in the "problem" drive doesn't fix the problem. I've opened the drive up and made sure the connections were tight in the past, and that didn't seem to help (any more than waiting the same amount of time that it took to open and close the drive, before attempting to remount it). Does anyone have any ideas about what could be causing this, what troubleshooting steps I should perform, and/or how I could fix this problem altogether? Update: I tried replacing the USB data cable (from the enclosure to the laptop), as Merlin suggested. I should've tried that long ago, since it fits the symptoms perfectly (the drive works on another machine, which would make sense because the cable would be bent at a different angle, possibly completing a circuit of frayed wires). Unfortunately, though, this did not help--I have the same problem with the new cable. I'll try to provide additional detailed information about the drive inside the enclosure, next time I'm able to get the drive working. (At the moment I don't have another machine available to attach it.) Major Update (28 June 2012) The drive seems to have deteriorated considerably. I think this is so, because I've attached it to another machine and gotten lots of errors about invalid characters, when copying files from it. I am less interested in recovering data from the drive than I am in figuring out what is wrong with it. I specifically want to figure out if the problem is the drive or the enclosure. Now, when I plug the drive into the original machine where I was having the problems, it still doesn't appear (including with sudo fdisk -l), but it is recognized by the kernel and messages are added to dmesg. Most of the message consist of errors like this, repeated many times: [ 7.707593] sd 5:0:0:0: [sdc] Unhandled sense code [ 7.707599] sd 5:0:0:0: [sdc] Result: hostbyte=invalid driverbyte=DRIVER_SENSE [ 7.707606] sd 5:0:0:0: [sdc] Sense Key : Medium Error [current] [ 7.707614] sd 5:0:0:0: [sdc] Add. Sense: Unrecovered read error [ 7.707621] sd 5:0:0:0: [sdc] CDB: Read(10): 28 00 00 00 00 00 00 00 08 00 [ 7.707636] end_request: critical target error, dev sdc, sector 0 [ 7.707641] Buffer I/O error on device sdc, logical block 0 Here are all the lines from dmesg starting with when the drive is recognized. Please note that: I'm back to running Lubuntu 12.04 on this machine (and perhaps that's a factor in better error messages). Now that the drive has been plugged into another machine and back into this one, and also now that this machine is back to running 12.04, the drive's access light doesn't blink as I had described. Looking at the drive, it would appear as though it is working normally, with low or no access. This behavior (the errors) occurs when rebooting the machine with the drive plugged in, and also when manually plugging in the drive. A few of the messages are about /dev/sdb. That drive is working fine. The bad drive is /dev/sdc. I just didn't want to edit anything out from the middle.

    Read the article

  • Camera doesnt move on opengl qt

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but i couldnt make it move,Thanks in advance. #define PI_OVER_180 0.0174532925f define GL_CLAMP_TO_EDGE 0x812F include "metinalifeyyaz.h" include include include include include include include metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Office 2010: It&rsquo;s not just DOC(X) and XLS(X)

    - by andrewbrust
    Office 2010 has released to manufacturing.  The bits have left the (product team’s) building.  Will you upgrade? This version of Office is officially numbered 14, a designation that correlates with the various releases, through the years, of Microsoft Word.  There were six major versions of Word for DOS, during whose release cycles came three 16-bit Windows versions.  Then, starting with Word 95 and counting through Word 2007, there have been six more versions – all for the 32-bit Windows platform.  Skip version 13 to ward off folksy bad luck (and, perhaps, the bugs that could come with it) and that brings us to version 14, which includes implementations for both 32- and 64-bit Windows platforms.  We’ve come a long way baby.  Or have we? As it does every three years or so, debate will now start to rage on over whether we need a “14th” version the PC platform’s standard word processor, or a “13th” version of the spreadsheet.  If you accept the premise of that question, then you may be on a slippery slope toward answering it in the negative.  Thing is, that premise is valid for certain customers and not others. The Microsoft Office product has morphed from one that offered core word processing, spreadsheet, presentation and email functionality to a suite of applications that provides unique, new value-added features, and even whole applications, in the context of those core services.  The core apps thus grow in mission: Excel is a BI tool.  Word is a collaborative editorial system for the production of publications.  PowerPoint is a media production platform for for live presentations and, increasingly, for delivering more effective presentations online.  Outlook is a time and task management system.  Access is a rich client front-end for data-driven self-service SharePoint applications.  OneNote helps you capture ideas, corral random thoughts in a semi-structured way, and then tie them back to other, more rigidly structured, Office documents. Google Docs and other cloud productivity platforms like Zoho don’t really do these things.  And there is a growing chorus of voices who say that they shouldn’t, because those ancillary capabilities are over-engineered, over-produced and “under-necessary.”  They might say Microsoft is layering on superfluous capabilities to avoid admitting that Office’s core capabilities, the ones people really need, have become commoditized. It’s hard to take sides in that argument, because different people, and the different companies that employ them, have different needs.  For my own needs, it all comes down to three basic questions: will the new version of Office save me time, will it make the mundane parts of my job easier, and will it augment my services to customers?  I need my time back.  I need to spend more of it with my family, and more of it focusing on my own core capabilities rather than the administrative tasks around them.  And I also need my customers to be able to get more value out of the services I provide. Help me triage my inbox, help me get proposals done more quickly and make them easier to read.  Let me get my presentations done faster, make them more effective and make it easier for me to reuse materials from other presentations.  And, since I’m in the BI and data business, help me and my customers manage data and analytics more easily, both on the desktop and online. Those are my criteria.  And, with those in mind, Office 2010 is looking like a worthwhile upgrade.  Perhaps it’s not earth-shattering, but it offers a combination of incremental improvements and a few new major capabilities that I think are quite compelling.  I provide a brief roundup of them here.  It’s admittedly arbitrary and not comprehensive, but I think it tells the Office 2010 story effectively. Across the Suite More than any other, this release of Office aims to give collaboration a real workout.  In certain apps, for the first time, documents can be opened simultaneously by multiple users, with colleagues’ changes appearing in near real-time.  Web-browser-based versions of Word, Excel, PowerPoint and OneNote will be available to extend collaboration to contributors who are off the corporate network. The ribbon user interface is now more pervasive (for example, it appears in OneNote and in Outlook’s main window).  It’s also customizable, allowing users to add, easily, buttons and options of their choosing, into new tabs, or into new groups within existing tabs. Microsoft has also taken the File menu (which was the “Office Button” menu in the 2007 release) and made it into a full-screen “Backstage” view where document-wide operations, like saving, printing and online publishing are performed. And because, more and more, heavily formatted content is cut and pasted between documents and applications, Office 2010 makes it easier to manage the retention or jettisoning of that formatting right as the paste operation is performed.  That’s much nicer than stripping it off, or adding it back, afterwards. And, speaking of pasting, a number of Office apps now make it especially easy to insert screenshots within their documents.  I know that’s useful to me, because I often document or critique applications and need to show them in action.  For the vast majority of users, I expect that this feature will be more useful for capturing snapshots of Web pages, but we’ll have to see whether this feature becomes popular.   Excel At first glance, Excel 2010 looks and acts nearly identically to the 2007 version.  But additional glances are necessary.  It’s important to understand that lots of people in the working world use Excel as more of a database, analytics and mathematical modeling tool than merely as a spreadsheet.  And it’s also important to understand that Excel wasn’t designed to handle such workloads past a certain scale.  That all changes with this release. The first reason things change is that Excel has been tuned for performance.  It’s been optimized for multi-threaded operation; previously lengthy processes have been shortened, especially for large data sets; more rows and columns are allowed and, for the first time, Excel (and the rest of Office) is available in a 64-bit version.  For Excel, this means users can take advantage of more than the 2GB of memory that the 32-bit version is limited to. On the analysis side, Excel 2010 adds Sparklines (tiny charts that fit into a single cell and can therefore be presented down an entire column or across a row) and Slicers (a more user-friendly filter mechanism for PivotTables and charts, which visually indicates what the filtered state of a given data member is).  But most important, Excel 2010 supports the new PowerPIvot add-in which brings true self-service BI to Office.  PowerPivot allows users to import data from almost anywhere, model it, and then analyze it.  Rather than forcing users to build “spreadmarts” or use corporate-built data warehouses, PowerPivot models function as true columnar, in-memory OLAP cubes that can accommodate millions of rows of data and deliver fast drill-down performance. And speaking of OLAP, Excel 2010 now supports an important Analysis Services OLAP feature called write-back.  Write-back is especially useful in financial forecasting scenarios for which Excel is the natural home.  Support for write-back is long overdue, but I’m still glad it’s there, because I had almost given up on it.   PowerPoint This version of PowerPoint marks its progression from a presentation tool to a video and photo editing and production tool.  Whether or not it’s successful in this pursuit, and if offering this is even a sensible goal, is another question. Regardless, the new capabilities are kind of interesting.  A greatly enhanced set of slide transitions with 3D effects; in-product photo and video editing; accommodation of embedded videos from services such as YouTube; and the ability to save a presentation as a video each lay testimony to PowerPoint’s transformation into a media tool and away from a pure presentation tool. These capabilities also recognize the importance of the Web as both a source for materials and a channel for disseminating PowerPoint output. Congruent with that is PowerPoint’s new ability to broadcast a slide presentation, using a quickly-generated public URL, without involving the hassle or expense of a Web meeting service like GoToMeeting or Microsoft’s own LiveMeeting.  Slides presented through this broadcast feature retain full color fidelity and transitions and animations are preserved as well.   Outlook Microsoft’s ubiquitous email/calendar/contact/task management tool gains long overdue speed improvements, especially against POP3 email accounts.  Outlook 2010 also supports multiple Exchange accounts, rather than just one; tighter integration with OneNote; and a new Social Connector providing integration with, and presence information from, online social network services like LinkedIn and Facebook (not to mention Windows Live).  A revamped conversation view now includes messages that are part of a given thread regardless of which folder they may be stored in. I don’t know yet how well the Social Connector will work or whether it will keep Outlook relevant to those who live on Facebook and LinkedIn.  But among the other features, there’s very little not to like.   OneNote To me, OneNote is the part of Office that just keeps getting better.  There is one major caveat to this, which I’ll cover in a moment, but let’s first catalog what new stuff OneNote 2010 brings.  The best part of OneNote, is the way each of its versions have managed hierarchy: Notebooks have sections, sections have pages, pages have sub pages, multiple notes can be contained in either, and each note supports infinite levels of indentation.  None of that is new to 2010, but the new version does make creation of pages and subpages easier and also makes simple work out of promoting and demoting pages from sub page to full page status.  And relationships between pages are quite easy to create now: much like a Wiki, simply typing a page’s name in double-square-brackets (“[[…]]”) creates a link to it. OneNote is also great at integrating content outside of its notebooks.  With a new Dock to Desktop feature, OneNote becomes aware of what window is displayed in the rest of the screen and, if it’s an Office document or a Web page, links the notes you’re typing, at the time, to it.  A single click from your notes later on will bring that same document or Web page back on-screen.  Embedding content from Web pages and elsewhere is also easier.  Using OneNote’s Windows Key+S combination to grab part of the screen now allows you to specify the destination of that bitmap instead of automatically creating a new note in the Unfiled Notes area.  Using the Send to OneNote buttons in Internet Explorer and Outlook result in the same choice. Collaboration gets better too.  Real-time multi-author editing is better accommodated and determining author lineage of particular changes is easily carried out. My one pet peeve with OneNote is the difficulty using it when I’m not one a Windows PC.  OneNote’s main competitor, Evernote, while I believe inferior in terms of features, has client versions for PC, Mac, Windows Mobile, Android, iPhone, iPad and Web browsers.  Since I have an Android phone and an iPad, I am practically forced to use it.  However, the OneNote Web app should help here, as should a forthcoming version of OneNote for Windows Phone 7.  In the mean time, it turns out that using OneNote’s Email Page ribbon button lets you move a OneNote page easily into EverNote (since every EverNote account gets a unique email address for adding notes) and that Evernote’s Email function combined with Outlook’s Send to OneNote button (in the Move group of the ribbon’s Home tab) can achieve the reverse.   Access To me, the big change in Access 2007 was its tight integration with SharePoint lists.  Access 2010 and SharePoint 2010 continue this integration with the introduction of SharePoint’s Access Services.  Much as Excel Services provides a SharePoint-hosted experience for viewing (and now editing) Excel spreadsheet, PivotTable and chart content, Access Services allows for SharePoint browser-hosted editing of Access data within the forms that are built in the Access client itself. To me this makes all kinds of sense.  Although it does beg the question of where to draw the line between Access, InfoPath, SharePoint list maintenance and SharePoint 2010’s new Business Connectivity Services.  Each of these tools provide overlapping data entry and data maintenance functionality. But if you do prefer Access, then you’ll like  things like templates and application parts that make it easier to get off the blank page.  These features help you quickly get tables, forms and reports built out.  To make things look nice, Access even gets its own version of Excel’s Conditional Formatting feature, letting you add data bars and data-driven text formatting.   Word As I said at the beginning of this post, upgrades to Office are about much more than enhancing the suite’s flagship word processing application. So are there any enhancements in Word worth mentioning?  I think so.  The most important one has to be the collaboration features.  Essentially, when a user opens a Word document that is in a SharePoint document library (or Windows Live SkyDrive folder), rather than the whole document being locked, Word has the ability to observe more granular locks on the individual paragraphs being edited.  Word also shows you who’s editing what and its Save function morphs into a sync feature that both saves your changes and loads those made by anyone editing the document concurrently. There’s also a new navigation pane that lets you manage sections in your document in much the same way as you manage slides in a PowerPoint deck.  Using the navigation pane, you can reorder sections, insert new ones, or promote and demote sections in the outline hierarchy.  Not earth shattering, but nice.   Other Apps and Summarized Findings What about InfoPath, Publisher, Visio and Project?  I haven’t looked at them yet.  And for this post, I think that’s fine.  While those apps (and, arguably, Access) cater to specific tasks, I think the apps we’ve looked at in this post service the general purpose needs of most users.  And the theme in those 2010 apps is clear: collaboration is key, the Web and productivity are indivisible, and making data and analytics into a self-service amenity is the way to go.  But perhaps most of all, features are still important, as long as they get you through your day faster, rather than adding complexity for its own sake.  I would argue that this is true for just about every product Microsoft makes: users want utility, not complexity.

    Read the article

  • Poor Customer Service Example

    - by MightyZot
    Lately I have been frustrated by examples of poor customer service. At least one is worth writing about because I don’t think companies realize the effects of their service policies on loyal customers. Bad Customer Service Example #1 Recently, I received an offer in the mail from my cable company, suddenLink. The offer was for an updated TiVo for $12/mo. Normally I ignore offers like this one because I already have the service they’re offering and many times advertisers are offering alternatives to what is already an excellent product offering. I tend to exhibit a high level of loyalty to the products and brands that I use. In this case, we were looking to upgrade our TiVo and this deal is attractive for several reasons: I don’t want to pay a huge amount up-front for the device, so paying a monthly amount for the device is attractive to me. My entertainment is almost all on a single invoice. I’m no longer going to be billed by suddenLink and TiVo. TiVo is still involved, so I am still loyal to the brand I love. I have resisted moving to other DVRs and services for over a decade. I called suddenLink to order the new TiVo and was rewarded with great customer service. In fact, I can’t remember ever getting poor customer service from suddenLink. They are always there to answer my technical support questions and they are very responsive to outages. Then I called TiVo. First of all, I chose the option on the phone system to change or cancel my service, which was consequently met by an inordinate hold time. (I’m calling this time inordinate because I get through very quickly if I want to purchase something.) This is a trend that I’ve noticed with companies – if you want me to be loyal to you, it should be just as easy to cancel your service as it is to purchase it. Because, I should never be cancelling because I am unhappy. And, if you ever want my business again, or more importantly a reference, then you’d better make the exit door open just as easy as the enter door. After quite some time on hold, I talked to “Victor” who was very courteous. Victor canceled my service and then told me that I could keep my current TiVo and transfer recorded programs to it from the new TiVo.  Cool I said, but what about the cost?  He said there was no extra cost.  This was also attractive to me because I paid for my TiVo and it would be good to use it for something at least.  That was four months ago. This month I noticed that TiVo was still charging me for my original service. I was a little upset, but I decided to give them the benefit of the doubt. After all, I am a loyal TiVo customer and I have resisted moving to other solutions for over a decade. I’m sure they will do whatever it takes to keep my business, through TiVo or through suddenLink. After quite some time on hold, I was able to talk to a customer service representative, “Les”. I explained that I am a loyal TiVo customer, but I purchased this deal through my cable provider. I’m still with TiVo, I just wanted a single bill and to take advantage of the pay-over-time option. “Les” told me that he was very sorry to hear that I’m leaving TiVo, to which I responded again that I wasn’t leaving TiVo, I just want one invoice, and to take advantage of the pay-over-time. So, after explaining that I requested a termination of the non-suddenLink account (TiVo can see both of course), I was put on hold again for quite some time while my refund was “approved”.  “Les” said that he could see my cancellation request back in July. Note that it is now November, so they have billed me inappropriately four times. After quite some time, he came back on the line and told me that he was able to “get me most of my money back.” He got approval to refund 90 days. Even though I requested cancellation of one of my accounts, TiVo has that cancellation request on file and they admit overbilling me, I am going to get “most” of my money back. To top this experience off, when we were ready to hang up, “Les” told me that he was sorry to see me go and that he hoped I would come back to TiVo again. Again, I explained to “Les” that I have not left TiVo. I am just paying them through suddenLink. At that point, he went into a small dissertation about how this is a special arrangement they have with suddenLink and very few others. He made me feel like I was doing something wrong. Why should I feel that way? TiVo made the deal with suddenLink, not me, and the deal seemed like a good compromise for me to be able to get what I need. Here is what TiVo Customer Service accomplished on those two calls – I no longer feel like I need to be loyal to the TiVo brand or service. If I had been treated better on these two calls, I would still be recommending TiVo to my friends. They would still be getting revenue from a loyal customer, who paid the same rate for over a decade, and this article wouldn’t be here for you to read. Interesting… In my opinion, if you want brand loyalty, be loyal to your customers!

    Read the article

  • Camera doesn't move

    - by hugo
    Here is my code, as my subject indicates i have implemented a camera but I couldn't make it move. #define PI_OVER_180 0.0174532925f #define GL_CLAMP_TO_EDGE 0x812F #include "metinalifeyyaz.h" #include <GL/glu.h> #include <GL/glut.h> #include <QTimer> #include <cmath> #include <QKeyEvent> #include <QWidget> #include <QDebug> metinalifeyyaz::metinalifeyyaz(QWidget *parent) : QGLWidget(parent) { this->setFocusPolicy(Qt:: StrongFocus); time = QTime::currentTime(); timer = new QTimer(this); timer->setSingleShot(true); connect(timer, SIGNAL(timeout()), this, SLOT(updateGL())); xpos = yrot = zpos = 0; walkbias = walkbiasangle = lookupdown = 0.0f; keyUp = keyDown = keyLeft = keyRight = keyPageUp = keyPageDown = false; } void metinalifeyyaz::drawBall() { //glTranslatef(6,0,4); glutSolidSphere(0.10005,300,30); } metinalifeyyaz:: ~metinalifeyyaz(){ glDeleteTextures(1,texture); } void metinalifeyyaz::initializeGL(){ glShadeModel(GL_SMOOTH); glClearColor(1.0,1.0,1.0,0.5); glClearDepth(1.0f); glEnable(GL_DEPTH_TEST); glEnable(GL_TEXTURE_2D); glDepthFunc(GL_LEQUAL); glClearColor(1.0,1.0,1.0,1.0); glShadeModel(GL_SMOOTH); GLfloat mat_specular[]={1.0,1.0,1.0,1.0}; GLfloat mat_shininess []={30.0}; GLfloat light_position[]={1.0,1.0,1.0}; glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular); glMaterialfv(GL_FRONT,GL_SHININESS,mat_shininess); glLightfv(GL_LIGHT0, GL_POSITION, light_position); glEnable(GL_LIGHT0); glEnable(GL_LIGHTING); QImage img1 = convertToGLFormat(QImage(":/new/prefix1/halisaha2.bmp")); QImage img2 = convertToGLFormat(QImage(":/new/prefix1/white.bmp")); glGenTextures(2,texture); glBindTexture(GL_TEXTURE_2D, texture[0]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img1.width(), img1.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img1.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glBindTexture(GL_TEXTURE_2D, texture[1]); glTexImage2D(GL_TEXTURE_2D, 0, GL_RGB, img2.width(), img2.height(), 0, GL_RGBA, GL_UNSIGNED_BYTE, img2.bits()); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MIN_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_MAG_FILTER, GL_LINEAR); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE); glTexParameteri(GL_TEXTURE_2D,GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE); glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST); // Really nice perspective calculations } void metinalifeyyaz::resizeGL(int w, int h){ if(h==0) h=1; glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(45.0f, static_cast<GLfloat>(w)/h,0.1f,100.0f); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void metinalifeyyaz::paintGL(){ movePlayer(); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glLoadIdentity(); GLfloat xtrans = -xpos; GLfloat ytrans = -walkbias - 0.50f; GLfloat ztrans = -zpos; GLfloat sceneroty = 360.0f - yrot; glLoadIdentity(); glRotatef(lookupdown, 1.0f, 0.0f, 0.0f); glRotatef(sceneroty, 0.0f, 1.0f, 0.0f); glTranslatef(xtrans, ytrans+50, ztrans-130); glLoadIdentity(); glTranslatef(1.0f,0.0f,-18.0f); glRotatef(45,1,0,0); drawScene(); int delay = time.msecsTo(QTime::currentTime()); if (delay == 0) delay = 1; time = QTime::currentTime(); timer->start(qMax(0,10 - delay)); } void metinalifeyyaz::movePlayer() { if (keyUp) { xpos -= sin(yrot * PI_OVER_180) * 0.5f; zpos -= cos(yrot * PI_OVER_180) * 0.5f; if (walkbiasangle >= 360.0f) walkbiasangle = 0.0f; else walkbiasangle += 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } else if (keyDown) { xpos += sin(yrot * PI_OVER_180)*0.5f; zpos += cos(yrot * PI_OVER_180)*0.5f ; if (walkbiasangle <= 7.0f) walkbiasangle = 360.0f; else walkbiasangle -= 7.0f; walkbias = sin(walkbiasangle * PI_OVER_180) / 10.0f; } if (keyLeft) yrot += 0.5f; else if (keyRight) yrot -= 0.5f; if (keyPageUp) lookupdown -= 0.5; else if (keyPageDown) lookupdown += 0.5; } void metinalifeyyaz::keyPressEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_Escape: close(); break; case Qt::Key_F1: setWindowState(windowState() ^ Qt::WindowFullScreen); break; default: QGLWidget::keyPressEvent(event); case Qt::Key_PageUp: keyPageUp = true; break; case Qt::Key_PageDown: keyPageDown = true; break; case Qt::Key_Left: keyLeft = true; break; case Qt::Key_Right: keyRight = true; break; case Qt::Key_Up: keyUp = true; break; case Qt::Key_Down: keyDown = true; break; } } void metinalifeyyaz::changeEvent(QEvent *event) { switch (event->type()) { case QEvent::WindowStateChange: if (windowState() == Qt::WindowFullScreen) setCursor(Qt::BlankCursor); else unsetCursor(); break; default: break; } } void metinalifeyyaz::keyReleaseEvent(QKeyEvent *event) { switch (event->key()) { case Qt::Key_PageUp: keyPageUp = false; break; case Qt::Key_PageDown: keyPageDown = false; break; case Qt::Key_Left: keyLeft = false; break; case Qt::Key_Right: keyRight = false; break; case Qt::Key_Up: keyUp = false; break; case Qt::Key_Down: keyDown = false; break; default: QGLWidget::keyReleaseEvent(event); } } void metinalifeyyaz::drawScene(){ glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,1.0f); // glColor3f(0,0,1); //back glVertex3f(-6,0,-4); glVertex3f(-6,-0.5,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,0.0f,-1.0f); //front glVertex3f(6,0,4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,0,4); glEnd(); glBegin(GL_QUADS); glNormal3f(-1.0f,0.0f,0.0f); // glColor3f(0,0,1); //left glVertex3f(-6,0,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); // glColor3f(0,0,1); //right glVertex3f(6,0,-4); glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(6,0,4); glEnd(); glBindTexture(GL_TEXTURE_2D, texture[0]); glBegin(GL_QUADS); glNormal3f(0.0f,1.0f,0.0f);//top glTexCoord2f(1.0f,0.0f); glVertex3f(6,0,-4); glTexCoord2f(1.0f,1.0f); glVertex3f(6,0,4); glTexCoord2f(0.0f,1.0f); glVertex3f(-6,0,4); glTexCoord2f(0.0f,0.0f); glVertex3f(-6,0,-4); glEnd(); glBegin(GL_QUADS); glNormal3f(0.0f,-1.0f,0.0f); //glColor3f(0,0,1); //bottom glVertex3f(6,-0.5,-4); glVertex3f(6,-0.5,4); glVertex3f(-6,-0.5,4); glVertex3f(-6,-0.5,-4); glEnd(); // glPushMatrix(); glBindTexture(GL_TEXTURE_2D, texture[1]); glBegin(GL_QUADS); glNormal3f(1.0f,0.0f,0.0f); glTexCoord2f(1.0f,0.0f); //right far goal post front face glVertex3f(5,0.5,-0.95); glTexCoord2f(1.0f,1.0f); glVertex3f(5,0,-0.95); glTexCoord2f(0.0f,1.0f); glVertex3f(5,0,-1); glTexCoord2f(0.0f,0.0f); glVertex3f(5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(5,0.5,-1); glVertex3f(5,0,-1); glVertex3f(5.05,0,-1); glVertex3f(5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(5.05,0.5,-0.95); glVertex3f(5.05,0,-0.95); glVertex3f(5,0,-0.95); glVertex3f(5, 0.5, -0.95); glColor3f(1,1,1); //right near goal post front face glVertex3f(5,0.5,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0,1); glVertex3f(5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(5,0.5,1); glVertex3f(5,0,1); glVertex3f(5.05,0,1); glVertex3f(5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(5.05,0.5,0.95); glVertex3f(5.05,0,0.95); glVertex3f(5,0,0.95); glVertex3f(5,0.5, 0.95); glColor3f(1,1,1); //right crossbar front face glVertex3f(5,0.55,-1); glVertex3f(5,0.55,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5.05,0.5,1); glVertex3f(5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(5.05,0.5,-1); glVertex3f(5.05,0.5,1); glVertex3f(5,0.5,1); glVertex3f(5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(5.05,0.55,-1); glVertex3f(5.05,0.55,1); glVertex3f(5,0.55,1); glVertex3f(5,0.55,-1); glColor3f(1,1,1); //left far goal post front face glVertex3f(-5,0.5,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5,0,-1); glVertex3f(-5, 0.5, -1); glColor3f(1,1,1); //right far goal post back face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post left face glVertex3f(-5,0.5,-1); glVertex3f(-5,0,-1); glVertex3f(-5.05,0,-1); glVertex3f(-5.05, 0.5, -1); glColor3f(1,1,1); //right far goal post right face glVertex3f(-5.05,0.5,-0.95); glVertex3f(-5.05,0,-0.95); glVertex3f(-5,0,-0.95); glVertex3f(-5, 0.5, -0.95); glColor3f(1,1,1); //left near goal post front face glVertex3f(-5,0.5,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0,1); glVertex3f(-5,0.5, 1); glColor3f(1,1,1); //right near goal post back face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post left face glVertex3f(-5,0.5,1); glVertex3f(-5,0,1); glVertex3f(-5.05,0,1); glVertex3f(-5.05,0.5, 1); glColor3f(1,1,1); //right near goal post right face glVertex3f(-5.05,0.5,0.95); glVertex3f(-5.05,0,0.95); glVertex3f(-5,0,0.95); glVertex3f(-5,0.5, 0.95); glColor3f(1,1,1); //left crossbar front face glVertex3f(-5,0.55,-1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar back face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5.05,0.5,1); glVertex3f(-5.05,0.5,-1); glColor3f(1,1,1); //right crossbar bottom face glVertex3f(-5.05,0.5,-1); glVertex3f(-5.05,0.5,1); glVertex3f(-5,0.5,1); glVertex3f(-5,0.5,-1); glColor3f(1,1,1); //right crossbar top face glVertex3f(-5.05,0.55,-1); glVertex3f(-5.05,0.55,1); glVertex3f(-5,0.55,1); glVertex3f(-5,0.55,-1); glEnd(); // glPopMatrix(); // glPushMatrix(); // glTranslatef(0,0,0); // glutSolidSphere(0.10005,500,30); // glPopMatrix(); }

    Read the article

  • Mysql - help me optimize this query

    - by sandeepan-nath
    About the system: -The system has a total of 8 tables - Users - Tutor_Details (Tutors are a type of User,Tutor_Details table is linked to Users) - learning_packs, (stores packs created by tutors) - learning_packs_tag_relations, (holds tag relations meant for search) - tutors_tag_relations and tags and orders (containing purchase details of tutor's packs), order_details linked to orders and tutor_details. For a more clear idea about the tables involved please check the The tables section in the end. -A tags based search approach is being followed.Tag relations are created when new tutors register and when tutors create packs (this makes tutors and packs searcheable). For details please check the section How tags work in this system? below. Following is a simpler representation (not the actual) of the more complex query which I am trying to optimize:- I have used statements like explanation of parts in the query select SUM(DISTINCT( t.tag LIKE "%Dictatorship%" )) as key_1_total_matches, SUM(DISTINCT( t.tag LIKE "%democracy%" )) as key_2_total_matches, td., u., count(distinct(od.id_od)), if (lp.id_lp > 0) then some conditional logic on lp fields else 0 as tutor_popularity from Tutor_Details AS td JOIN Users as u on u.id_user = td.id_user LEFT JOIN Learning_Packs_Tag_Relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN Learning_Packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN `some other tables on lp.id_lp - let's call learning pack tables set (including Learning_Packs table)` LEFT JOIN Order_Details as od on td.id_tutor = od.id_author LEFT JOIN Orders as o on od.id_order = o.id_order LEFT JOIN Tutors_Tag_Relations as ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN Tags as t on (t.id_tag = ttagrels.id_tag) OR (t.id_tag = lptagrels.id_tag) where some condition on Users table's fields AND CASE WHEN ((t.id_tag = lptagrels.id_tag) AND (lp.id_lp 0)) THEN `some conditions on learning pack tables set` ELSE 1 END AND CASE WHEN ((t.id_tag = wtagrels.id_tag) AND (wc.id_wc 0)) THEN `some conditions on webclasses tables set` ELSE 1 END AND CASE WHEN (od.id_od0) THEN od.id_author = td.id_tutor and some conditions on Orders table's fields ELSE 1 END AND ( t.tag LIKE "%Dictatorship%" OR t.tag LIKE "%democracy%") group by td.id_tutor HAVING key_1_total_matches = 1 AND key_2_total_matches = 1 order by tutor_popularity desc, u.surname asc, u.name asc limit 0,20 ===================================================================== What does the above query do? Does AND logic search on the search keywords (2 in this example - "Democracy" and "Dictatorship"). Returns only those tutors for which both the keywords are present in the union of the two sets - tutors details and details of all the packs created by a tutor. To make things clear - Suppose a Tutor name "Sandeepan Nath" has created a pack "My first pack", then:- Searching "Sandeepan Nath" returns Sandeepan Nath. Searching "Sandeepan first" returns Sandeepan Nath. Searching "Sandeepan second" does not return Sandeepan Nath. ====================================================================================== The problem The results returned by the above query are correct (AND logic working as per expectation), but the time taken by the query on heavily loaded databases is like 25 seconds as against normal query timings of the order of 0.005 - 0.0002 seconds, which makes it totally unusable. It is possible that some of the delay is being caused because all the possible fields have not yet been indexed, but I would appreciate a better query as a solution, optimized as much as possible, displaying the same results ========================================================================================== How tags work in this system? When a tutor registers, tags are entered and tag relations are created with respect to tutor's details like name, surname etc. When a Tutors create packs, again tags are entered and tag relations are created with respect to pack's details like pack name, description etc. tag relations for tutors stored in tutors_tag_relations and those for packs stored in learning_packs_tag_relations. All individual tags are stored in tags table. ==================================================================== The tables Most of the following tables contain many other fields which I have omitted here. CREATE TABLE IF NOT EXISTS users ( id_user int(10) unsigned NOT NULL AUTO_INCREMENT, name varchar(100) NOT NULL DEFAULT '', surname varchar(155) NOT NULL DEFAULT '', PRIMARY KEY (id_user) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=636 ; CREATE TABLE IF NOT EXISTS tutor_details ( id_tutor int(10) NOT NULL AUTO_INCREMENT, id_user int(10) NOT NULL DEFAULT '0', PRIMARY KEY (id_tutor), KEY Users_FKIndex1 (id_user) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=51 ; CREATE TABLE IF NOT EXISTS orders ( id_order int(10) unsigned NOT NULL AUTO_INCREMENT, PRIMARY KEY (id_order), KEY Orders_FKIndex1 (id_user), ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=275 ; ALTER TABLE orders ADD CONSTRAINT Orders_ibfk_1 FOREIGN KEY (id_user) REFERENCES users (id_user) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS order_details ( id_od int(10) unsigned NOT NULL AUTO_INCREMENT, id_order int(10) unsigned NOT NULL DEFAULT '0', id_author int(10) NOT NULL DEFAULT '0', PRIMARY KEY (id_od), KEY Order_Details_FKIndex1 (id_order) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=284 ; ALTER TABLE order_details ADD CONSTRAINT Order_Details_ibfk_1 FOREIGN KEY (id_order) REFERENCES orders (id_order) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS learning_packs ( id_lp int(10) unsigned NOT NULL AUTO_INCREMENT, id_author int(10) unsigned NOT NULL DEFAULT '0', PRIMARY KEY (id_lp), KEY Learning_Packs_FKIndex2 (id_author), KEY id_lp (id_lp) ) ENGINE=InnoDB DEFAULT CHARSET=utf8 AUTO_INCREMENT=23 ; CREATE TABLE IF NOT EXISTS tags ( id_tag int(10) unsigned NOT NULL AUTO_INCREMENT, tag varchar(255) DEFAULT NULL, PRIMARY KEY (id_tag), UNIQUE KEY tag (tag), KEY id_tag (id_tag), KEY tag_2 (tag), KEY tag_3 (tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1 AUTO_INCREMENT=3419 ; CREATE TABLE IF NOT EXISTS tutors_tag_relations ( id_tag int(10) unsigned NOT NULL DEFAULT '0', id_tutor int(10) DEFAULT NULL, KEY Tutors_Tag_Relations (id_tag), KEY id_tutor (id_tutor), KEY id_tag (id_tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; ALTER TABLE tutors_tag_relations ADD CONSTRAINT Tutors_Tag_Relations_ibfk_1 FOREIGN KEY (id_tag) REFERENCES tags (id_tag) ON DELETE NO ACTION ON UPDATE NO ACTION; CREATE TABLE IF NOT EXISTS learning_packs_tag_relations ( id_tag int(10) unsigned NOT NULL DEFAULT '0', id_tutor int(10) DEFAULT NULL, id_lp int(10) unsigned DEFAULT NULL, KEY Learning_Packs_Tag_Relations_FKIndex1 (id_tag), KEY id_lp (id_lp), KEY id_tag (id_tag) ) ENGINE=InnoDB DEFAULT CHARSET=latin1; ALTER TABLE learning_packs_tag_relations ADD CONSTRAINT Learning_Packs_Tag_Relations_ibfk_1 FOREIGN KEY (id_tag) REFERENCES tags (id_tag) ON DELETE NO ACTION ON UPDATE NO ACTION; =================================================================================== Following is the exact query (this includes classes also - tutors can create classes and search terms are matched with classes created by tutors):- select count(distinct(od.id_od)) as tutor_popularity, CASE WHEN (IF((wc.id_wc 0), ( wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND (wccp.country_code='IE' or wccp.country_code IN ('INT'))), 0)) THEN 1 ELSE 0 END as 'classes_published', CASE WHEN (IF((lp.id_lp 0), (lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND (lpcp.country_code='IE' or lpcp.country_code IN ('INT'))),0)) THEN 1 ELSE 0 END as 'packs_published', td . * , u . * from Tutor_Details AS td JOIN Users as u on u.id_user = td.id_user LEFT JOIN Learning_Packs_Tag_Relations AS lptagrels ON td.id_tutor = lptagrels.id_tutor LEFT JOIN Learning_Packs AS lp ON lptagrels.id_lp = lp.id_lp LEFT JOIN Learning_Packs_Categories AS lpc ON lpc.id_lp_cat = lp.id_lp_cat LEFT JOIN Learning_Packs_Categories AS lpcp ON lpcp.id_lp_cat = lpc.id_parent LEFT JOIN Learning_Pack_Content as lpct on (lp.id_lp = lpct.id_lp) LEFT JOIN Webclasses_Tag_Relations AS wtagrels ON td.id_tutor = wtagrels.id_tutor LEFT JOIN WebClasses AS wc ON wtagrels.id_wc = wc.id_wc LEFT JOIN Learning_Packs_Categories AS wcc ON wcc.id_lp_cat = wc.id_wp_cat LEFT JOIN Learning_Packs_Categories AS wccp ON wccp.id_lp_cat = wcc.id_parent LEFT JOIN Order_Details as od on td.id_tutor = od.id_author LEFT JOIN Orders as o on od.id_order = o.id_order LEFT JOIN Tutors_Tag_Relations as ttagrels ON td.id_tutor = ttagrels.id_tutor JOIN Tags as t on (t.id_tag = ttagrels.id_tag) OR (t.id_tag = lptagrels.id_tag) OR (t.id_tag = wtagrels.id_tag) where (u.country='IE' or u.country IN ('INT')) AND CASE WHEN ((t.id_tag = lptagrels.id_tag) AND (lp.id_lp 0)) THEN lp.id_status = 1 AND lp.published = 1 AND lpcp.status = 1 AND (lpcp.country_code='IE' or lpcp.country_code IN ('INT')) ELSE 1 END AND CASE WHEN ((t.id_tag = wtagrels.id_tag) AND (wc.id_wc 0)) THEN wc.wc_api_status = 1 AND wc.wc_type = 0 AND wc.class_date '2010-06-01 22:00:56' AND wccp.status = 1 AND (wccp.country_code='IE' or wccp.country_code IN ('INT')) ELSE 1 END AND CASE WHEN (od.id_od0) THEN od.id_author = td.id_tutor and o.order_status = 'paid' and CASE WHEN (od.id_wc 0) THEN od.can_attend_class=1 ELSE 1 END ELSE 1 END AND 1 group by td.id_tutor order by tutor_popularity desc, u.surname asc, u.name asc limit 0,20 Please note - The provided database structure does not show all the fields and tables as in this query

    Read the article

< Previous Page | 154 155 156 157 158 159 160 161 162 163 164 165  | Next Page >