Search Results

Search found 21061 results on 843 pages for 'bulid process'.

Page 159/843 | < Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >

  • Following the Thread in OSB

    - by Antony Reynolds
    Threading in OSB The Scenario I recently led an OSB POC where we needed to get high throughput from an OSB pipeline that had the following logic: 1. Receive Request 2. Send Request to External System 3. If Response has a particular value   3.1 Modify Request   3.2 Resend Request to External System 4. Send Response back to Requestor All looks very straightforward and no nasty wrinkles along the way.  The flow was implemented in OSB as follows (see diagram for more details): Proxy Service to Receive Request and Send Response Request Pipeline   Copies Original Request for use in step 3 Route Node   Sends Request to External System exposed as a Business Service Response Pipeline   Checks Response to Check If Request Needs to Be Resubmitted Modify Request Callout to External System (same Business Service as Route Node) The Proxy and the Business Service were each assigned their own Work Manager, effectively giving each of them their own thread pool. The Surprise Imagine our surprise when, on stressing the system we saw it lock up, with large numbers of blocked threads.  The reason for the lock up is due to some subtleties in the OSB thread model which is the topic of this post.   Basic Thread Model OSB goes to great lengths to avoid holding on to threads.  Lets start by looking at how how OSB deals with a simple request/response routing to a business service in a route node. Most Business Services are implemented by OSB in two parts.  The first part uses the request thread to send the request to the target.  In the diagram this is represented by the thread T1.  After sending the request to the target (the Business Service in our diagram) the request thread is released back to whatever pool it came from.  A multiplexor (muxer) is used to wait for the response.  When the response is received the muxer hands off the response to a new thread that is used to execute the response pipeline, this is represented in the diagram by T2. OSB allows you to assign different Work Managers and hence different thread pools to each Proxy Service and Business Service.  In out example we have the “Proxy Service Work Manager” assigned to the Proxy Service and the “Business Service Work Manager” assigned to the Business Service.  Note that the Business Service Work Manager is only used to assign the thread to process the response, it is never used to process the request. This architecture means that while waiting for a response from a business service there are no threads in use, which makes for better scalability in terms of thread usage. First Wrinkle Note that if the Proxy and the Business Service both use the same Work Manager then there is potential for starvation.  For example: Request Pipeline makes a blocking callout, say to perform a database read. Business Service response tries to allocate a thread from thread pool but all threads are blocked in the database read. New requests arrive and contend with responses arriving for the available threads. Similar problems can occur if the response pipeline blocks for some reason, maybe a database update for example. Solution The solution to this is to make sure that the Proxy and Business Service use different Work Managers so that they do not contend with each other for threads. Do Nothing Route Thread Model So what happens if there is no route node?  In this case OSB just echoes the Request message as a Response message, but what happens to the threads?  OSB still uses a separate thread for the response, but in this case the Work Manager used is the Default Work Manager. So this is really a special case of the Basic Thread Model discussed above, except that the response pipeline will always execute on the Default Work Manager.   Proxy Chaining Thread Model So what happens when the route node is actually calling a Proxy Service rather than a Business Service, does the second Proxy Service use its own Thread or does it re-use the thread of the original Request Pipeline? Well as you can see from the diagram when a route node calls another proxy service then the original Work Manager is used for both request pipelines.  Similarly the response pipeline uses the Work Manager associated with the ultimate Business Service invoked via a Route Node.  This actually fits in with the earlier description I gave about Business Services and by extension Route Nodes they “… uses the request thread to send the request to the target”. Call Out Threading Model So what happens when you make a Service Callout to a Business Service from within a pipeline.  The documentation says that “The pipeline processor will block the thread until the response arrives asynchronously” when using a Service Callout.  What this means is that the target Business Service is called using the pipeline thread but the response is also handled by the pipeline thread.  This implies that the pipeline thread blocks waiting for a response.  It is the handling of this response that behaves in an unexpected way. When a Business Service is called via a Service Callout, the calling thread is suspended after sending the request, but unlike the Route Node case the thread is not released, it waits for the response.  The muxer uses the Business Service Work Manager to allocate a thread to process the response, but in this case processing the response means getting the response and notifying the blocked pipeline thread that the response is available.  The original pipeline thread can then continue to process the response. Second Wrinkle This leads to an unfortunate wrinkle.  If the Business Service is using the same Work Manager as the Pipeline then it is possible for starvation or a deadlock to occur.  The scenario is as follows: Pipeline makes a Callout and the thread is suspended but still allocated Multiple Pipeline instances using the same Work Manager are in this state (common for a system under load) Response comes back but all Work Manager threads are allocated to blocked pipelines. Response cannot be processed and so pipeline threads never unblock – deadlock! Solution The solution to this is to make sure that any Business Services used by a Callout in a pipeline use a different Work Manager to the pipeline itself. The Solution to My Problem Looking back at my original workflow we see that the same Business Service is called twice, once in a Routing Node and once in a Response Pipeline Callout.  This was what was causing my problem because the response pipeline was using the Business Service Work Manager, but the Service Callout wanted to use the same Work Manager to handle the responses and so eventually my Response Pipeline hogged all the available threads so no responses could be processed. The solution was to create a second Business Service pointing to the same location as the original Business Service, the only difference was to assign a different Work Manager to this Business Service.  This ensured that when the Service Callout completed there were always threads available to process the response because the response processing from the Service Callout had its own dedicated Work Manager. Summary Request Pipeline Executes on Proxy Work Manager (WM) Thread so limited by setting of that WM.  If no WM specified then uses WLS default WM. Route Node Request sent using Proxy WM Thread Proxy WM Thread is released before getting response Muxer is used to handle response Muxer hands off response to Business Service (BS) WM Response Pipeline Executes on Routed Business Service WM Thread so limited by setting of that WM.  If no WM specified then uses WLS default WM. No Route Node (Echo functionality) Proxy WM thread released New thread from the default WM used for response pipeline Service Callout Request sent using proxy pipeline thread Proxy thread is suspended (not released) until the response comes back Notification of response handled by BS WM thread so limited by setting of that WM.  If no WM specified then uses WLS default WM. Note this is a very short lived use of the thread After notification by callout BS WM thread that thread is released and execution continues on the original pipeline thread. Route/Callout to Proxy Service Request Pipeline of callee executes on requestor thread Response Pipeline of caller executes on response thread of requested proxy Throttling Request message may be queued if limit reached. Requesting thread is released (route node) or suspended (callout) So what this means is that you may get deadlocks caused by thread starvation if you use the same thread pool for the business service in a route node and the business service in a callout from the response pipeline because the callout will need a notification thread from the same thread pool as the response pipeline.  This was the problem we were having. You get a similar problem if you use the same work manager for the proxy request pipeline and a business service callout from that request pipeline. It also means you may want to have different work managers for the proxy and business service in the route node. Basically you need to think carefully about how threading impacts your proxy services. References Thanks to Jay Kasi, Gerald Nunn and Deb Ayers for helping to explain this to me.  Any errors are my own and not theirs.  Also thanks to my colleagues Milind Pandit and Prasad Bopardikar who travelled this road with me. OSB Thread Model Great Blog Post on Thread Usage in OSB

    Read the article

  • Oracle Database 11gR2 11.2.0.3 Certified with E-Business Suite on HP-UX PA-RISC

    - by John Abraham
    As a follow up to our original announcement, Oracle Database 11g Release 2 (11.2.0.3) is now certified with Oracle E-Business Suite Release 11i and Release 12 on the following HP-UX platforms: Release 11i (11.5.10.2 + ATG PF.H RUP 6 and higher) : HP-UX PA-RISC (64-bit) (11.31) Release 12 (12.0.4 and higher, 12.1.1 and higher): HP-UX PA-RISC (64-bit) (11.31) This announcement for Oracle E-Business Suite 11i and R12 includes: Real Application Clusters (RAC) Oracle Database Vault Transparent Data Encryption (Column Encryption) TDE Tablespace Encryption Advanced Security Option (ASO)/Advanced Networking Option (ANO) Export/Import Process for Oracle E-Business Suite Release 11i and Release 12 Database Instances Transportable Database and Transportable Tablespaces Data Migration Processes for Oracle E-Business Suite Release 11i and Release 12 References MOS Document 881505.1 - Interoperability Notes - Oracle E-Business Suite Release 11i with Oracle Database 11g Release 2 (11.2.0) MOS Document 1058763.1 - Interoperability Notes - Oracle E-Business Suite Release 12 with Oracle Database 11g Release 2 (11.2.0) MOS Document 1091086.1 - Integrating Oracle E-Business Suite Release 11i with Oracle Database Vault 11gR2 MOS Document 1091083.1 - Integrating Oracle E-Business Suite Release 12 with Oracle Database Vault 11gR2 MOS Document 216205.1 - Database Initialization Parameters for Oracle E-Business Suite 11i MOS Document 396009.1 - Database Initialization Parameters for Oracle Applications Release 12 MOS Document 761570.1 - Database Preparation Guidelines for an Oracle E-Business Suite Release 12.1.1 Upgrade MOS Document 823586.1 - Using Oracle 11g Release 2 Real Application Clusters with Oracle E-Business Suite Release 11i MOS Document 823587.1 - Using Oracle 11g Release 2 Real Application Clusters with Oracle E-Business Suite Release 12 MOS Document 403294.1 - Using Transparent Data Encryption (TDE) Column Encryption with Oracle E-Business Suite Release 11i MOS Document 732764.1 - Using Transparent Data Encryption (TDE) Column Encryption with Oracle E-Business Suite Release 12 MOS Document 828223.1 - Using TDE Tablespace Encryption with Oracle E-Business Suite Release 11i MOS Document 828229.1 - Using TDE Tablespace Encryption with Oracle E-Business Suite Release 12 MOS Document 391248.1 - Encrypting Oracle E-Business Suite Release 11i Network Traffic using Advanced Security Option and Advanced Networking Option MOS Document 732764.1 - Using Transparent Data Encryption (TDE) Column Encryption with Oracle E-Business Suite Release 12 MOS Document 557738.1 - Export/Import Process for Oracle E-Business Suite Release 11i Database Instances Using Oracle Database 11g Release 1 or 11g Release 2 MOS Document 741818.1 - Export/Import Process for Oracle E-Business Suite Release 12 Database Instances Using Oracle Database 11g Release 1 or 11g Release 2 MOS Document 1366265.1 - Using Transportable Tablespaces to Migrate Oracle Applications 11i Using Oracle Database 11g Release 2 MOS Document 1311487.1 - Using Transportable Tablespaces to Migrate Oracle E-Business Suite Release 12 Using Oracle Database 11g Release 2 MOS Document 729309.1 - Using Transportable Database to Migrate Oracle E-Business Suite Release 11i Using Oracle Database 10g Release 2 or 11g MOS Document 734763.1 - Using Transportable Database to Migrate Oracle E-Business Suite Release 12 Using Oracle Database 10g Release 2 or 11g Please also review the platform-specific Oracle Database Installation Guides for operating system and other prerequisites.

    Read the article

  • The Missing Post

    - by Joe Mayo
    It’s somewhat of a mystery how the writing process can conjure up results that weren’t initially intended. Case in point is the fact that another post was planned to be in place of this one, but it never made the light of day.  This particular post started off as an introduction to a technology I had just learned, used, and wanted to share the experience with others.  The beginning was fun and demonstrated how easy it was to get started.  One of the things I’ve been pondering over time is that the Web is filled with introductions to new technologies and quick first looks, so I set out to add more depth, share lessons learned, and generally help you avoid the problems I encountered along the way; problems being a key theme of why you aren’t reading that post at this very minute.  Problems that curiously came from nowhere to thwart my good intentions. Success was sweet when using the tool for the prototypical demo scenario. The thing is, I intended the tool to accomplish a real task.  Having embarked on the path toward getting the job done, glitches began creeping into the process.  Realizing that this was all a bit new, I had patience and found a suitable work-around, but this was to be short lived. As in marching ants to a freshly laid out picnic, the problems kept coming until I had to get up and walk away.  Not to be outdone, sheer will and brute force manual intervention led to mission accomplishment.  Though I kept a positive outlook and was pleased at the final result, the process of using the tool had somewhat soured. Regardless of a less than stellar experience with the tool, I have a great deal of respect for the company that produced it and the people who built it. Perhaps I empathize for what they might feel after reading a post that details such deficiencies in their product.  Sure, if you’re in this business, you’ve got to have a thick skin; brush it off, fix the problem, and move on to greatness. But, today I feel like they’re people and are probably already aware of any issues I would seemingly reveal.  Anyone who builds a product or provides a service takes a lot of pride in what they do.  Sometimes they screw up and if their worth a dime, they make it up. I think that will happen in this case and there’s no reason why I should post information that has the potential to sound more negative than helpful.  While no one would ever notice or care either way, I’m posting something that won’t harm. Joe

    Read the article

  • ANTS CLR and Memory Profiler In Depth Review (Part 1 of 2 &ndash; CLR Profiler)

    - by ToStringTheory
    One of the things that people might not know about me, is my obsession to make my code as efficient as possible.  Many people might not realize how much of a task or undertaking that this might be, but it is surely a task as monumental as climbing Mount Everest, except this time it is a challenge for the mind…  In trying to make code efficient, there are many different factors that play a part – size of project or solution, tiers, language used, experience and training of the programmer, technologies used, maintainability of the code – the list can go on for quite some time. I spend quite a bit of time when developing trying to determine what is the best way to implement a feature to accomplish the efficiency that I look to achieve.  One program that I have recently come to learn about – Red Gate ANTS Performance (CLR) and Memory profiler gives me tools to accomplish that job more efficiently as well.  In this review, I am going to cover some of the features of the ANTS profiler set by compiling some hideous example code to test against. Notice As a member of the Geeks With Blogs Influencers program, one of the perks is the ability to review products, in exchange for a free license to the program.  I have not let this affect my opinions of the product in any way, and Red Gate nor Geeks With Blogs has tried to influence my opinion regarding this product in any way. Introduction The ANTS Profiler pack provided by Red Gate was something that I had not heard of before receiving an email regarding an offer to review it for a license.  Since I look to make my code efficient, it was a no brainer for me to try it out!  One thing that I have to say took me by surprise is that upon downloading the program and installing it you fill out a form for your usual contact information.  Sure enough within 2 hours, I received an email from a sales representative at Red Gate asking if she could help me to achieve the most out of my trial time so it wouldn’t go to waste.  After replying to her and explaining that I was looking to review its feature set, she put me in contact with someone that setup a demo session to give me a quick rundown of its features via an online meeting.  After having dealt with a massive ordeal with one of my utility companies and their complete lack of customer service, Red Gates friendly and helpful representatives were a breath of fresh air, and something I was thankful for. ANTS CLR Profiler The ANTS CLR profiler is the thing I want to focus on the most in this post, so I am going to dive right in now. Install was simple and took no time at all.  It installed both the profiler for the CLR and Memory, but also visual studio extensions to facilitate the usage of the profilers (click any images for full size images): The Visual Studio menu options (under ANTS menu) Starting the CLR Performance Profiler from the start menu yields this window If you follow the instructions after launching the program from the start menu (Click File > New Profiling Session to start a new project), you are given a dialog with plenty of options for profiling: The New Session dialog.  Lots of options.  One thing I noticed is that the buttons in the lower right were half-covered by the panel of the application.  If I had to guess, I would imagine that this is caused by my DPI settings being set to 125%.  This is a problem I have seen in other applications as well that don’t scale well to different dpi scales. The profiler options give you the ability to profile: .NET Executable ASP.NET web application (hosted in IIS) ASP.NET web application (hosted in IIS express) ASP.NET web application (hosted in Cassini Web Development Server) SharePoint web application (hosted in IIS) Silverlight 4+ application Windows Service COM+ server XBAP (local XAML browser application) Attach to an already running .NET 4 process Choosing each option provides a varying set of other variables/options that one can set including options such as application arguments, operating path, record I/O performance performance counters to record (43 counters in all!), etc…  All in all, they give you the ability to profile many different .Net project types, and make it simple to do so.  In most cases of my using this application, I would be using the built in Visual Studio extensions, as they automatically start a new profiling project in ANTS with the options setup, and start your program, however RedGate has made it easy enough to profile outside of Visual Studio as well. On the flip side of this, as someone who lives most of their work life in Visual Studio, one thing I do wish is that instead of opening an entirely separate application/gui to perform profiling after launching, that instead they would provide a Visual Studio panel with the information, and integrate more of the profiling project information into Visual Studio.  So, now that we have an idea of what options that the profiler gives us, its time to test its abilities and features. Horrendous Example Code – Prime Number Generator One of my interests besides development, is Physics and Math – what I went to college for.  I have especially always been interested in prime numbers, as they are something of a mystery…  So, I decided that I would go ahead and to test the abilities of the profiler, I would write a small program, website, and library to generate prime numbers in the quantity that you ask for.  I am going to start off with some terrible code, and show how I would see the profiler being used as a development tool. First off, the IPrimes interface (all code is downloadable at the end of the post): interface IPrimes { IEnumerable<int> GetPrimes(int retrieve); } Simple enough, right?  Anything that implements the interface will (hopefully) provide an IEnumerable of int, with the quantity specified in the parameter argument.  Next, I am going to implement this interface in the most basic way: public class DumbPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _analyzing = 4; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; //start dividing at 2 //divide until number is reached, or determined not prime for (int i = 2; i < _analyzing && isPrime; i++) { //if (i) goes into _analyzing without a remainder, //_analyzing is NOT prime if (_analyzing % i == 0) isPrime = false; } //if it is prime, add to found list if (isPrime) _foundPrimes.Add(_analyzing); //increment number to analyze next _analyzing++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } This is the simplest way to get primes in my opinion.  Checking each number by the straight definition of a prime – is it divisible by anything besides 1 and itself. I have included this code in a base class library for my solution, as I am going to use it to demonstrate a couple of features of ANTS.  This class library is consumed by a simple non-MVVM WPF application, and a simple MVC4 website.  I will not post the WPF code here inline, as it is simply an ObservableCollection<int>, a label, two textbox’s, and a button. Starting a new Profiling Session So, in Visual Studio, I have just completed my first stint developing the GUI and DumbPrimes IPrimes class, so now I want to check my codes efficiency by profiling it.  All I have to do is build the solution (surprised initiating a profiling session doesn’t do this, but I suppose I can understand it), and then click the ANTS menu, followed by Profile Performance.  I am then greeted by the profiler starting up and already monitoring my program live: You are provided with a realtime graph at the top, and a pane at the bottom giving you information on how to proceed.  I am going to start by asking my program to show me the first 15000 primes: After the program finally began responding again (I did all the work on the main UI thread – how bad!), I stopped the profiler, which did kill the process of my program too.  One important thing to note, is that the profiler by default wants to give you a lot of detail about the operation – line hit counts, time per line, percent time per line, etc…  The important thing to remember is that this itself takes a lot of time.  When running my program without the profiler attached, it can generate the 15000 primes in 5.18 seconds, compared to 74.5 seconds – almost a 1500 percent increase.  While this may seem like a lot, remember that there is a trade off.  It may be WAY more inefficient, however, I am able to drill down and make improvements to specific problem areas, and then decrease execution time all around. Analyzing the Profiling Session After clicking ‘Stop Profiling’, the process running my application stopped, and the entire execution time was automatically selected by ANTS, and the results shown below: Now there are a number of interesting things going on here, I am going to cover each in a section of its own: Real Time Performance Counter Bar (top of screen) At the top of the screen, is the real time performance bar.  As your application is running, this will constantly update with the currently selected performance counters status.  A couple of cool things to note are the fact that you can drag a selection around specific time periods to drill down the detail views in the lower 2 panels to information pertaining to only that period. After selecting a time period, you can bookmark a section and name it, so that it is easy to find later, or after reloaded at a later time.  You can also zoom in, out, or fit the graph to the space provided – useful for drilling down. It may be hard to see, but at the top of the processor time graph below the time ticks, but above the red usage graph, there is a green bar. This bar shows at what times a method that is selected in the ‘Call tree’ panel is called. Very cool to be able to click on a method and see at what times it made an impact. As I said before, ANTS provides 43 different performance counters you can hook into.  Click the arrow next to the Performance tab at the top will allow you to change between different counters if you have them selected: Method Call Tree, ADO.Net Database Calls, File IO – Detail Panel Red Gate really hit the mark here I think. When you select a section of the run with the graph, the call tree populates to fill a hierarchical tree of method calls, with information regarding each of the methods.   By default, methods are hidden where the source is not provided (framework type code), however, Red Gate has integrated Reflector into ANTS, so even if you don’t have source for something, you can select a method and get the source if you want.  Methods are also hidden where the impact is seen as insignificant – methods that are only executed for 1% of the time of the overall calling methods time; in other words, working on making them better is not where your efforts should be focused. – Smart! Source Panel – Detail Panel The source panel is where you can see line level information on your code, showing the code for the currently selected method from the Method Call Tree.  If the code is not available, Reflector takes care of it and shows the code anyways! As you can notice, there does seem to be a problem with how ANTS determines what line is the actual line that a call is completed on.  I have suspicions that this may be due to some of the inline code optimizations that the CLR applies upon compilation of the assembly.  In a method with comments, the problem is much more severe: As you can see here, apparently the most offending code in my base library was a comment – *gasp*!  Removing the comments does help quite a bit, however I hope that Red Gate works on their counter algorithm soon to improve the logic on positioning for statistics: I did a small test just to demonstrate the lines are correct without comments. For me, it isn’t a deal breaker, as I can usually determine the correct placements by looking at the application code in the region and determining what makes sense, but it is something that would probably build up some irritation with time. Feature – Suggest Method for Optimization A neat feature to really help those in need of a pointer, is the menu option under tools to automatically suggest methods to optimize/improve: Nice feature – clicking it filters the call tree and stars methods that it thinks are good candidates for optimization.  I do wish that they would have made it more visible for those of use who aren’t great on sight: Process Integration I do think that this could have a place in my process.  After experimenting with the profiler, I do think it would be a great benefit to do some development, testing, and then after all the bugs are worked out, use the profiler to check on things to make sure nothing seems like it is hogging more than its fair share.  For example, with this program, I would have developed it, ran it, tested it – it works, but slowly. After looking at the profiler, and seeing the massive amount of time spent in 1 method, I might go ahead and try to re-implement IPrimes (I actually would probably rewrite the offending code, but so that I can distribute both sets of code easily, I’m just going to make another implementation of IPrimes).  Using two pieces of knowledge about prime numbers can make this method MUCH more efficient – prime numbers fall into two buckets 6k+/-1 , and a number is prime if it is not divisible by any other primes before it: public class SmartPrimes : IPrimes { public IEnumerable<int> GetPrimes(int retrieve) { //store a list of primes already found var _foundPrimes = new List<int>() { 2, 3 }; //if i ask for 1 or two primes, return what asked for if (retrieve <= _foundPrimes.Count()) return _foundPrimes.Take(retrieve); //the next number to look at int _k = 1; //since I already determined I don't have enough //execute at least once, and until quantity is sufficed do { //assume prime until otherwise determined bool isPrime = true; int potentialPrime; //analyze 6k-1 //assign the value to potential potentialPrime = 6 * _k - 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); if (_foundPrimes.Count() == retrieve) break; //analyze 6k+1 //assign the value to potential potentialPrime = 6 * _k + 1; //if there are any primes that divise this, it is NOT a prime number //using PLINQ for quick boost isPrime = !_foundPrimes.AsParallel() .Any(prime => potentialPrime % prime == 0); //if it is prime, add to found list if (isPrime) _foundPrimes.Add(potentialPrime); //increment k to analyze next _k++; } while (_foundPrimes.Count() < retrieve); return _foundPrimes; } } Now there are definitely more things I can do to help make this more efficient, but for the scope of this example, I think this is fine (but still hideous)! Profiling this now yields a happy surprise 27 seconds to generate the 15000 primes with the profiler attached, and only 1.43 seconds without.  One important thing I wanted to call out though was the performance graph now: Notice anything odd?  The %Processor time is above 100%.  This is because there is now more than 1 core in the operation.  A better label for the chart in my mind would have been %Core time, but to each their own. Another odd thing I noticed was that the profiler seemed to be spot on this time in my DumbPrimes class with line details in source, even with comments..  Odd. Profiling Web Applications The last thing that I wanted to cover, that means a lot to me as a web developer, is the great amount of work that Red Gate put into the profiler when profiling web applications.  In my solution, I have a simple MVC4 application setup with 1 page, a single input form, that will output prime values as my WPF app did.  Launching the profiler from Visual Studio as before, nothing is really different in the profiler window, however I did receive a UAC prompt for a Red Gate helper app to integrate with the web server without notification. After requesting 500, 1000, 2000, and 5000 primes, and looking at the profiler session, things are slightly different from before: As you can see, there are 4 spikes of activity in the processor time graph, but there is also something new in the call tree: That’s right – ANTS will actually group method calls by get/post operations, so it is easier to find out what action/page is giving the largest problems…  Pretty cool in my mind! Overview Overall, I think that Red Gate ANTS CLR Profiler has a lot to offer, however I think it also has a long ways to go.  3 Biggest Pros: Ability to easily drill down from time graph, to method calls, to source code Wide variety of counters to choose from when profiling your application Excellent integration/grouping of methods being called from web applications by request – BRILLIANT! 3 Biggest Cons: Issue regarding line details in source view Nit pick – Processor time vs. Core time Nit pick – Lack of full integration with Visual Studio Ratings Ease of Use (7/10) – I marked down here because of the problems with the line level details and the extra work that that entails, and the lack of better integration with Visual Studio. Effectiveness (10/10) – I believe that the profiler does EXACTLY what it purports to do.  Especially with its large variety of performance counters, a definite plus! Features (9/10) – Besides the real time performance monitoring, and the drill downs that I’ve shown here, ANTS also has great integration with ADO.Net, with the ability to show database queries run by your application in the profiler.  This, with the line level details, the web request grouping, reflector integration, and various options to customize your profiling session I think create a great set of features! Customer Service (10/10) – My entire experience with Red Gate personnel has been nothing but good.  their people are friendly, helpful, and happy! UI / UX (8/10) – The interface is very easy to get around, and all of the options are easy to find.  With a little bit of poking around, you’ll be optimizing Hello World in no time flat! Overall (8/10) – Overall, I am happy with the Performance Profiler and its features, as well as with the service I received when working with the Red Gate personnel.  I WOULD recommend you trying the application and seeing if it would fit into your process, BUT, remember there are still some kinks in it to hopefully be worked out. My next post will definitely be shorter (hopefully), but thank you for reading up to here, or skipping ahead!  Please, if you do try the product, drop me a message and let me know what you think!  I would love to hear any opinions you may have on the product. Code Feel free to download the code I used above – download via DropBox

    Read the article

  • Professional Scrum Developer (.NET) Training in London

    - by Martin Hinshelwood
    On the 26th - 30th July in Microsoft’s offices in London Adam Cogan from SSW will be presenting the first Professional Scrum Developer course in the UK. I will be teaching this course along side Adam and it is a fantastic experience. You are split into teams and go head-to-head to deliver units of potentially shippable work in four two hour sprints. The Professional Scrum Developer course is the only course endorsed by both Microsoft and Ken Schwaber and they have worked together very effectively in brining this course to fruition. This course is the brain child of Richard Hundhausen, a Microsoft Regional Director, and both Adam and I attending the Trainer Prep in Sydney when he was there earlier this year. He is a fantastic trainer and no matter where you do this course you can be safe in the knowledge that he has trained and vetted all of the teachers. A tools version of Ken if you will Find a course and register Download this syllabus Download the Scrum Guide What is the Professional Scrum Developer course all about? Professional Scrum Developer course is a unique and intensive five-day experience for software developers. The course guides teams on how to turn product requirements into potentially shippable increments of software using the Scrum framework, Visual Studio 2010, and modern software engineering practices. Attendees will work in self-organizing, self-managing teams using a common instance of Team Foundation Server 2010. Who should attend this course? This course is suitable for any member of a software development team – architect, programmer, database developer, tester, etc. Entire teams are encouraged to attend and experience the course together, but individuals are welcome too. Attendees will self-organize to form cross-functional Scrum teams. These teams require an aggregate of skills specific to the selected case study. Please see the last page of this document for specific details. Product Owners, ScrumMasters, and other stakeholders are welcome too, but keep in mind that everyone who attends will be expected to commit to work and pull their weight on a Scrum team. What should you know by the end of the course? Scrum will be experienced through a combination of lecture, demonstration, discussion, and hands-on exercises. Attendees will learn how to do Scrum correctly while being coached and critiqued by the instructor, in the following topic areas: Form effective teams Explore and understand legacy “Brownfield” architecture Define quality attributes, acceptance criteria, and “done” Create automated builds How to handle software hotfixes Verify that bugs are identified and eliminated Plan releases and sprints Estimate product backlog items Create and manage a sprint backlog Hold an effective sprint review Improve your process by using retrospectives Use emergent architecture to avoid technical debt Use Test Driven Development as a design tool Setup and leverage continuous integration Use Test Impact Analysis to decrease testing times Manage SQL Server development in an Agile way Use .NET and T-SQL refactoring effectively Build, deploy, and test SQL Server databases Create and manage test plans and cases Create, run, record, and play back manual tests Setup a branching strategy and branch code Write more maintainable code Identify and eliminate people and process dysfunctions Inspect and improve your team’s software development process What does the week look like? This course is a mix of lecture, demonstration, group discussion, simulation, and hands-on software development. The bulk of the course will be spent working as a team on a case study application delivering increments of new functionality in mini-sprints. Here is the week at a glance: Monday morning and most of the day Friday will be spent with the computers powered off, so you can focus on sharpening your game of Scrum and avoiding the common pitfalls when implementing it. The Sprints Timeboxing is a critical concept in Scrum as well as in this course. We expect each team and student to understand and obey all of the timeboxes. The timebox duration will always be clearly displayed during each activity. Expect the instructor to enforce it. Each of the ½ day sprints will roughly follow this schedule: Component Description Minutes Instruction Presentation and demonstration of new and relevant tools & practices 60 Sprint planning meeting Product owner presents backlog; each team commits to delivering functionality 10 Sprint planning meeting Each team determines how to build the functionality 10 The Sprint The team self-organizes and self-manages to complete their tasks 120 Sprint Review meeting Each team will present their increment of functionality to the other teams = 30 Sprint Retrospective A group retrospective meeting will be held to inspect and adapt 10 Each team is expected to self-organize and manage their own work during the sprint. Pairing is highly encouraged. The instructor/product owner will be available if there are questions or impediments, but will be hands-off by default. You should be prepared to communicate and work with your team members in order to achieve your sprint goal. If you have development-related questions or get stuck, your partner or team should be your first level of support. Module 1: INTRODUCTION This module provides a chance for the attendees to get to know the instructors as well as each other. The Professional Scrum Developer program, as well as the day by day agenda, will be explained. Finally, the Scrum team will be selected and assembled so that the forming, storming, norming, and performing can begin. Trainer and student introductions Professional Scrum Developer program Agenda Logistics Team formation Retrospective Module 2: SCRUMDAMENTALS This module provides a level-setting understanding of the Scrum framework including the roles, timeboxes, and artifacts. The team will then experience Scrum firsthand by simulating a multi-day sprint of product development, including planning, review, and retrospective meetings. Scrum overview Scrum roles Scrum timeboxes (ceremonies) Scrum artifacts Simulation Retrospective It’s required that you read Ken Schwaber’s Scrum Guide in preparation for this module and course. MODULE 3: IMPLEMENTING SCRUM IN VISUAL STUDIO 2010 This module demonstrates how to implement Scrum in Visual Studio 2010 using a Scrum process template*. The team will learn the mapping between the Scrum concepts and how they are implemented in the tool. After connecting to the shared Team Foundation Server, the team members will then return to the simulation – this time using Visual Studio to manage their product development. Mapping Scrum to Visual Studio 2010 User Story work items Task work items Bug work items Demonstration Simulation Retrospective Module 4: THE CASE STUDY In this module the team is introduced to their problem domain for the week. A kickoff meeting by the Product Owner (the instructor) will set the stage for the why and what that will take during the upcoming sprints. The team will then define the quality attributes of the project and their definition of “done.” The legacy application code will be downloaded, built, and explored, so that any bugs can be discovered and reported. Introduction to the case study Download the source code, build, and explore the application Define the quality attributes for the project Define “done” How to file effective bugs in Visual Studio 2010 Retrospective Module 5: HOTFIX This module drops the team directly into a Brownfield (legacy) experience by forcing them to analyze the existing application’s architecture and code in order to locate and fix the Product Owner’s high-priority bug(s). The team will learn best practices around finding, testing, fixing, validating, and closing a bug. How to use Architecture Explorer to visualize and explore Create a unit test to validate the existence of a bug Find and fix the bug Validate and close the bug Retrospective Module 6: PLANNING This short module introduces the team to release and sprint planning within Visual Studio 2010. The team will define and capture their goals as well as other important planning information. Release vs. Sprint planning Release planning and the Product Backlog Product Backlog prioritization Acceptance criteria and tests Sprint planning and the Sprint Backlog Creating and linking Sprint tasks Retrospective At this point the team will have the knowledge of Scrum, Visual Studio 2010, and the case study application to begin developing increments of potentially shippable functionality that meet their definition of done. Module 7: EMERGENT ARCHITECTURE This module introduces the architectural practices and tools a team can use to develop a valid design on which to develop new functionality. The teams will learn how Scrum supports good architecture and design practices. After the discussion, the teams will be presented with the product owner’s prioritized backlog so that they may select and commit to the functionality they can deliver in this sprint. Architecture and Scrum Emergent architecture Principles, patterns, and practices Visual Studio 2010 modeling tools UML and layer diagrams SPRINT 1 Retrospective Module 8: TEST DRIVEN DEVELOPMENT This module introduces Test Driven Development as a design tool and how to implement it using Visual Studio 2010. To maximize productivity and quality, a Scrum team should setup Continuous Integration to regularly build every team member’s code changes and run regression tests. Refactoring will also be defined and demonstrated in combination with Visual Studio’s Test Impact Analysis to efficiently re-run just those tests which were impacted by refactoring. Continuous integration Team Foundation Build Test Driven Development (TDD) Refactoring Test Impact Analysis SPRINT 2 Retrospective Module 9: AGILE DATABASE DEVELOPMENT This module lets the SQL Server database developers in on a little secret – they can be agile too. By using the database projects in Visual Studio 2010, the database developers can join the rest of the team. The students will see how to apply Agile database techniques within Visual Studio to support the SQL Server 2005/2008/2008R2 development lifecycle. Agile database development Visual Studio database projects Importing schema and scripts Building and deploying Generating data Unit testing SPRINT 3 Retrospective Module 10: SHIP IT Teams need to know that just because they like the functionality doesn’t mean the Product Owner will. This module revisits acceptance criteria as it pertains to acceptance testing. By refining acceptance criteria into manual test steps, team members can execute the tests, recording the results and reporting bugs in a number of ways. Manual tests will be defined and executed using the Microsoft Test Manager tool. As the Sprint completes and an increment of functionality is delivered, the team will also learn why and when they should create a branch of the codeline. Acceptance criteria Testing in Visual Studio 2010 Microsoft Test Manager Writing and running manual tests Branching SPRINT 4 Retrospective Module 11: OVERCOMING DYSFUNCTION This module introduces the many types of people, process, and tool dysfunctions that teams face in the real world. Many dysfunctions and scenarios will be identified, along with ideas and discussion for how a team might mitigate them. This module will enable you and your team to move toward independence and improve your game of Scrum when you depart class. Scrum-butts and flaccid Scrum Best practices working as a team Team challenges ScrumMaster challenges Product Owner challenges Stakeholder challenges Course Retrospective What will be expected of you and you team? This is a unique course in that it’s technically-focused, team-based, and employs timeboxes. It demands that the members of the teams self-organize and self-manage their own work to collaboratively develop increments of software. All attendees must commit to: Pay attention to all lectures and demonstrations Participate in team and group discussions Work collaboratively with other team members Obey the timebox for each activity Commit to work and do your best to deliver All teams should have these skills: Understanding of Scrum Familiarity with Visual Studio 201 C#, .NET 4.0 & ASP.NET 4.0 experience*  SQL Server 2008 development experience Software testing experience * Check with the instructor ahead of time for the exact technologies Self-organising teams Another unique attribute of this course is that it’s a technical training class being delivered to teams of developers, not pairs, and not individuals. Ideally, your actual software development team will attend the training to ensure that all necessary skills are covered. However, if you wish to attend an open enrolment course alone or with just a couple of colleagues, realize that you may be placed on a team with other attendees. The instructor will do his or her best to ensure that each team is cross-functional to tackle the case study, but there are no guarantees. You may be required to try a new role, learn a new skill, or pair with somebody unfamiliar to you. This is just good Scrum! Who should NOT take this course? Because of the nature of this course, as explained above, certain types of people should probably not attend this course: Students requiring command and control style instruction – there are no prescriptive/step-by-step (think traditional Microsoft Learning) labs in this course Students who are unwilling to work within a timebox Students who are unwilling to work collaboratively on a team Students who don’t have any skill in any of the software development disciplines Students who are unable to commit fully to their team – not only will this diminish the student’s learning experience, but it will also impact their team’s learning experience Find a course and register Download this syllabus Download the Scrum Guide Technorati Tags: Scrum,SSW,Pro Scrum Dev

    Read the article

  • Beginner Geek: How To Change the Boot Order in Your Computer’s BIOS

    - by Chris Hoffman
    The boot order in your computer’s BIOS controls which device it loads the operating system from. Modify your boot order to force your computer to boot from a USB drive, CD or DVD drive, or another hard drive. You may need to change this setting when booting from another device, whether you’re running an operating system from a live USB drive or installing a new operating system from a disc. Note: This process will look different on each computer. The instructions here will guide you through the process, but the screenshots won’t look exactly the same. How To Use USB Drives With the Nexus 7 and Other Android Devices Why Does 64-Bit Windows Need a Separate “Program Files (x86)” Folder? Why Your Android Phone Isn’t Getting Operating System Updates and What You Can Do About It

    Read the article

  • Book Review - Programming Windows Azure by Siriram Krishnan

    - by BuckWoody
    As part of my professional development, I’ve created a list of books to read throughout the year, starting in June of 2011. This a review of the first one, called Programming Windows Azure by Siriram Krishnan. You can find my entire list of books I’m reading for my career here: http://blogs.msdn.com/b/buckwoody/archive/2011/06/07/head-in-the-clouds-eyes-on-the-books.aspx  Why I Chose This Book: As part of my learning style, I try to read multiple books about a single subject. I’ve found that at least 3 books are necessary to get the right amount of information to me. This is a “technical” work, meaning that it deals with technology and not business, writing or other facets of my career. I’ll have a mix of all of those as I read along. I chose this work in addition to others I’ve read since it covers everything from an introduction to more advanced topics in a single book. It also has some practical examples of actually working with the product, particularly on storage. Although it’s dated, many examples normally translate. I also saw that it had pretty good reviews. What I learned: I learned a great deal about storage, and many useful code snippets. I do think that there could have been more of a focus on the application fabric - but of course that wasn’t as mature a feature when this book was written. I learned some great architecture examples, and in one section I learned more about encryption. In that example, however, I would rather have seen the examples go the other way - the book focused on moving data from on-premise to Azure storage in an encrypted fashion. Using the Application Fabric I would rather see sensitive data left in a hybrid fashion on premise, and connect to for the Azure application. Even so, the examples were very useful. If you’re looking for a good “starter” Azure book, this is a good choice. I also recommend the last chapter as a quick read for a DBA, or Database Administrator. It’s not very long, but useful. Note that the limits described are incorrect - which is one of the dangers of reading a book about any cloud offering. The services offered are updated so quickly that the information is in constant danger of being “stale”. Even so, I found this a useful book, which I believe will help me work with Azure better. Raw Notes: I take notes as I read, calling that process “reading with a pencil”. I find that when I do that I pay attention better, and record some things that I need to know later. I’ll take these notes, categorize them into a OneNote notebook that I synchronize in my Live.com account, and that way I can search them from anywhere. I can even read them on the web, since the Live.com has a OneNote program built in. Note that these are the raw notes, so they might not make a lot of sense out of context - I include them here so you can watch my though process. Programming Windows Azure by Siriram Krishnan: Learning about how to select applications suitable for Distributed Technology. Application Fabric gets the least attention; probably because it was newer at the time. Very clear (Chapter One) Good foundation Background and history, but not too much I normally arrange my descriptions differently, starting with the use-cases and moving to physicality, but this difference helps me. Interesting that I am reading this using Safari Books Online, which uses many of these concepts. Taught me some new aspects of a Hypervisor – very low-level information about the Azure Fabric (not to be confused with the Application Fabric feature) (Chapter Two) Good detail of what is included in the SDK. Even more is available now. CS = Cloud Service (Chapter 3) Place Storage info in the configuration file, since it can be streamed in-line with a running app. Ditto for logging, and keep separated configs for staging and testing. Easy-switch in and switch out.  (Chapter 4) There are two Runtime API’s, one of external and one for internal. Realizing how powerful this paradigm really is. Some places seem light, and to drop off but perhaps that’s best. Managing API is not charged, which is nice. I don’t often think about the price, until it comes to an actual deployment (Chapter 5) Csmanage is something I want to dig into deeper. API requires package moves to Blob storage first, so it needs a URL. Csmanage equivalent can be written in Unix scripting using openssl. Upgrades are possible, and you use the upgradeDomainCount attribute in the Service-Definition.csdef file  Always use a low-privileged account to test on the dev fabric, since Windows Azure runs in partial trust. Full trust is available, but can be dangerous and must be well-thought out. (Chapter 6) Learned how to run full CMD commands in a web window – not that you would ever do that, but it was an interesting view into those links. This leads to a discussion on hosting other runtimes (such as Java or PHP) in Windows Azure. I got an expanded view on this process, although this is where the book shows its age a little. Books can be a problem for Cloud Computing for this reason – things just change too quickly. Windows Azure storage is not eventually consistent – it is instantly consistent with multi-phase commit. Plumbing for this is internal, not required to code that. (Chapter 7) REST API makes the service interoperable, hybrid, and consistent across code architectures. Nicely done. Use affinity groups to keep data and code together. Side note: e-book readers need a common “notes” feature. There’s a decent quick description of REST in this chapter. Learned about CloudDrive code – PowerShell sample that mounts Blob storage as a local provider. Works against Dev fabric by default, can be switched to Account. Good treatment in the storage chapters on the differences between using Dev storage and Azure storage. These can be mitigated. No, blobs are not of any size or number. Not a good statement (Chapter 8) Blob storage is probably Azure’s closest play to Infrastructure as a Service (Iaas). Blob change operations must be authenticated, even when public. Chapters on storage are pretty in-depth. Queue Messages are base-64 encoded (Chapter 9) The visibility timeout ensures processing of message in a disconnected system. Order is not guaranteed for a message, so if you need that set an increasing number in the queue mechanism. While Queues are accessible via REST, they are not public and are secured by default. Interesting – the header for a queue request includes an estimated count. This can be useful to create more worker roles in a dynamic system. Each Entity (row) in the Azure Table service is atomic – all or nothing. (Chapter 10) An entity can have up to 255 Properties  Use “ID” for the class to indicate the key value, or use the [DataServiceKey] Attribute.  LINQ makes working with the Azure Table Service much easier, although Interop is certainly possible. Good description on the process of selecting the Partition and Row Key.  When checking for continuation tokens for pagination, include logic that falls out of the check in case you are at the last page.  On deleting a storage object, it is instantly unavailable, however a background process is dispatched to perform the physical deletion. So if you want to re-create a storage object with the same name, add retry logic into the code. Interesting approach to deleting an index entity without having to read it first – create a local entity with the same keys and apply it to the Azure system regardless of change-state.  Although the “Indexes” description is a little vague, it’s interesting to see a Folding and Stemming discussion a-la the Porter Stemming Algorithm. (Chapter 11)  Presents a better discussion of indexes (at least inverted indexes) later in the chapter. Great treatment for DBA’s in Chapter 11. We need to work on getting secondary indexes in Table storage. There is a limited form of transactions called “Entity Group Transactions” that, although they have conditions, makes a transactional system more possible. Concurrency also becomes an issue, but is handled well if you’re using Data Services in .NET. It watches the Etag and allows you to take action appropriately. I do not recommend using Azure as a location for secure backups. In fact, I would rather have seen the examples in (Chapter 12) go the other way, showing how data could be brought back to a local store as a DR or HA strategy. Good information on cryptography and so on even so. Chapter seems out of place, and should be combined with the Blob chapter.  (Chapter 13) on SQL Azure is dated, although the base concepts are OK.  Nice example of simple ADO.NET access to a SQL Azure (or any SQL Server Really) database.  

    Read the article

  • How Aluminum Anodizing Works [Video]

    - by Jason Fitzpatrick
    Whether we’re talking about a pricey iPod or a cheap carabiner to hold your keys, anodized metals are all around us. Check out this video to see how the process actually works. Courtesy of Bill Hammack, the Engineer Guy, another great video detailing the processes behind products we take for granted. In this installment we learn more about the process of anodizing metals. [via Make] HTG Explains: Why Linux Doesn’t Need Defragmenting How to Convert News Feeds to Ebooks with Calibre How To Customize Your Wallpaper with Google Image Searches, RSS Feeds, and More

    Read the article

  • The 2010 Life Insurance Conference - Washington, DC

    - by [email protected]
    How ironic to be in Washington, DC on April 15 - TAX DAY! Fortunately, I avoided IRS offices and attended the much more enjoyable 2010 Life Insurance Conference, presented by LIMRA, LOMA SOA and ACLI. This year's conference offered a variety of tracks focused on the Life Industry including Distribution/Marketing Marketing, Administration, Actuarial/Product Development, Regulatory, Reinsurance and Strategic Management. President and CEO of the ACLI, Frank Keating, opened the event by moderating a session titled "Executive Viewpoint on new Opportunities." Guest speakers included Ted Mathas, President and CEO of NY Life, and John Walters, President and CEO of Hartford Life. Both speakers were insightful as they shared the challenges and opportunities each company faces and the key role life insurance companies play in our society and the global economy. There were several key themes that were reiterated in multiple sessions throughout the conference - the economy is on the rebound, optimism is growing, consumer spending is up and an uptick in employment is likely to follow. The threat of a double dip recession has seemed to passed. Good news for our industry, and welcomed by all in attendance. Of special interest to me, given my background, was some research shared by both The Nolan Group and Novarica in separate sessions. Both firms indicate that policy administration upgrades/replacement projects remain a top priority in 2010. Carriers continue to invest in modern technology. Modern ultra-configurable systems enable carriers to switch from a waterfall to an agile project methodology, which often entails a "culture change" within an organization. Other themes heard throughout the two-day event: Virtually all sessions focused on People, Process and Technology! Product innovation, agility and speed to market are as important as ever. Social Networks and Twitter are becoming more popular ways of communicating with both field and dispersed staff. Several sessions focused on the application, new business and underwriting process. Companies continue looking for ways to increase market agility, accelerate speed to market, address cost issues and improve service levels across the process. They recognize the need to ease the way to do business with both producers and consumers. Author and economic futurist Jeff Thredgold presented an entertaining, informative and humorous general session on Wednesday afternoon that focused on the US and global economies, financial markets and retirement outlook. Thredgold did not disappoint anyone with his message! The Thursday morning general session was keynoted by Therese Vaughan (CEO - NAIC) and Thomas Crawford (President of C2 Group). Both speakers gave a poignant view of the recent financial crisis and discussed "Putting the Pieces Back Together." Therese spoke of the recent financial turmoil and likely changes to regulations to the financial services sector. Tom's topics focused on economic recovery and the political environment in Washington, and how that impacts our industry. Next year's event will be April 11-13, 2011 in Las Vegas. Roger A.Soppe, CLU, LUTCF, is the Senior Director of Insurance Strategy, Oracle Insurance.

    Read the article

  • Integrating Code Metrics in TFS 2010 Build

    - by Jakob Ehn
    The build process template and custom activity described in this post is available here: http://cid-ee034c9f620cd58d.office.live.com/self.aspx/BlogSamples/CodeMetricsSample.zip Running code metrics has been available since VS 2008, but only from inside the IDE. Yesterday Microsoft finally releases a Visual Studio Code Metrics Power Tool 10.0, a command line tool that lets you run code metrics on your applications.  This means that it is now possible to perform code metrics analysis on the build server as part of your nightly/QA builds (for example). In this post I will show how you can run the metrics command line tool, and also a custom activity that reads the output and appends the results to the build log, and also fails he build if the metric values exceeds certain (configurable) treshold values. The code metrics tool analyzes all the methods in the assemblies, measuring cyclomatic complexity, class coupling, depth of inheritance and lines of code. Then it calculates a Maintainability Index from these values that is a measure f how maintanable this method is, between 0 (worst) and 100 (best). For information on hwo this value is calculated, see http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx. After this it aggregates the information and present it at the class, namespace and module level as well. Running Metrics.exe in a build definition Running the actual tool is easy, just use a InvokeProcess activity last in the Compile the Project sequence, reference the metrics.exe file and pass the correct arguments and you will end up with a result XML file in the drop directory. Here is how it is done in the attached build process template: In the above sequence I first assign the path to the code metrics result file ([BinariesDirectory]\result.xml) to a variable called MetricsResultFile, which is then sent to the InvokeProcess activity in the Arguments property. Here are the arguments for the InvokeProcess activity: Note that we tell metrics.exe to analyze all assemblies located in the Binaries folder. You might want to do some more intelligent filtering here, you probably don’t want to analyze all 3rd party assemblies for example. Note also the path to the metrics.exe, this is the default location when you install the Code Metrics power tool. You must of course install the power tool on all build servers. Using the standard output logging (in the Handle Standard Output/Handle Error Output sections), we get the following output when running the build: Integrating Code Metrics into the build Having the results available next to the build result is nice, but we want to have results integrated in the build result itself, and also to affect the outcome of the build. The point of having QA builds that measure, for example, code metrics is to make it very clear how the code being built measures up to the standards of the project/company. Just having a XML file available in the drop location will not cause the developers to improve their code, but a (partially) failing build will! To do this, we need to write a custom activity that parses the metrics result file, logs it to the build log and fails the build if the values frfom the metrics is below/above some predefined treshold values. The custom activity performs the following steps Parses the XML. I’m using Linq 2 XSD for this, since the XML schema for the result file is available, it is vey easy to generate code that lets you query the structure using standard Linq operators. Runs through the metric result hierarchy and logs the metrics for each level and also verifies maintainability index and the cyclomatic complexity with the treshold values. The treshold values are defined in the build process template are are sent in as arguments to the custom activity If the treshold values are exceeded, the activity either fails or partially fails the current build. For more information about the structure of the code metrics result file, read Cameron Skinner's post about it. It is very simpe and easy to understand. I won’t go through the code of the custom activity here, since there is nothing special about it and it is available for download so you can look at it and play with it yourself. The treshold values for Maintainability Index and Cyclomatic Complexity is defined in the build process template, and can be modified per build definition: I have taken the default value for these settings from my colleague Terje Sandström post on Code Metrics - suggestions for approriate limits. You’ll notice that this is quite an improvement compared to using code metrics inside the IDE, where Red/Yellow/Green limits are fixed (and the default values are somewaht strange, see Terjes post for a discussion on this) This is the first version of the code metrics integration with TFS 2010 Build, I will proabably enhance the functionality and the logging (the “tree view” structure in the log becomes quite hard to read) soon. I will also consider adding it to the Community TFS Build Extensions site when it becomes a bit more mature. Another obvious improvement is to extend the data warehouse of TFS and push the metric results back to the warehouse and make it visible in the reports.

    Read the article

  • ERP in a Flash! Latest News on JD Edwards and Oracle VM Templates

    - by Kem Butller-Oracle
    Oracle Announces the Availability of Oracle VM Templates for JD Edwards EnterpriseOne 9.1 Update 2 and Tools 9.1 Update 4.4 Continuing the commitment to rapid and predictable deployments of JD Edwards EnterpriseOne, Oracle announces the general availability of Oracle VM templates for JD Edwards EnterpriseOne Application release 9.1 Update 2 and Tools release 9.1 Update 4.4. These templates can be used with Oracle VM for x86, on the Oracle Exalogic Elastic Cloud, and on the Oracle Database Machine. Oracle VM Templates for JD Edwards EnterpriseOne accelerate the process of setting up a working environment compared to the traditional installation process. The templates can be a key component to a well-managed cloud infrastructure, allowing system administrators to quickly provision fully functional JD Edwards EnterpriseOne environments for evaluation, development, or production use. The templates contain preconfigured images of the major JD Edwards EnterpriseOne server components, including: • Enterprise server • HTML server • Database server • BI Publisher (for use with One View Reporting) • Business Services Server and ADF Runtime (for use with Mobile Smartphone Applications) • Application Interface Services (new with this release, for use with Mobile Enterprise Applications) • Server Manager (new with this release) The virtual server images are built on a complete Oracle technology stack, including Oracle VM for x86, Oracle Linux, Oracle WebLogic Server, Oracle Database, and Oracle Business Intelligence Publisher. The templates can be installed into an Oracle VM for x86 system running on standard x86 servers, the Oracle Exalogic Elastic Cloud, and the Oracle Database Appliance as a composite “all-in-one” system. The database can be deployed as a fully preconfigured VM template, or it can be deployed to a preexisting database server, for example, the Oracle Exadata Database Machine or the Oracle Database Appliance. This latest set of templates includes the following applications and technology components: • JD Edwards EnterpriseOne Applications Release 9.1 Update 2 with ESUs as of April 8, 2014 • JD Edwards EnterpriseOne Tools 9.1 Update 4, maintenance pack 4 (9.1.4.4) • Oracle Database 12c (12.1.0.1) • Oracle WebLogic Server 12c (12.1.2) • Oracle Linux 5 Update 8, 64-bit • Oracle Business Intelligence Publisher 11.1.1.7.1, for use with JD Edwards EnterpriseOne One View Reporting • JD Edwards EnterpriseOne Business Services Server and Oracle Application Development Framework (ADF) 11.1.1.5, for use with the JD Edwards EnterpriseOne Mobile Applications. The delivery also includes a JD Edwards EnterpriseOne deployment server preconfigured to match the content of the templates. This edition of the templates also includes enhanced configuration utilities that greatly simplify the process of configuring the templates for deployment into a running system. The templates are immediately available for download from the Oracle Software Delivery Cloud. For more information see: • My Oracle Support article 884592.1 • Oracle Technology Network

    Read the article

  • Understanding G1 GC Logs

    - by poonam
    The purpose of this post is to explain the meaning of GC logs generated with some tracing and diagnostic options for G1 GC. We will take a look at the output generated with PrintGCDetails which is a product flag and provides the most detailed level of information. Along with that, we will also look at the output of two diagnostic flags that get enabled with -XX:+UnlockDiagnosticVMOptions option - G1PrintRegionLivenessInfo that prints the occupancy and the amount of space used by live objects in each region at the end of the marking cycle and G1PrintHeapRegions that provides detailed information on the heap regions being allocated and reclaimed. We will be looking at the logs generated with JDK 1.7.0_04 using these options. Option -XX:+PrintGCDetails Here's a sample log of G1 collection generated with PrintGCDetails. 0.522: [GC pause (young), 0.15877971 secs] [Parallel Time: 157.1 ms] [GC Worker Start (ms): 522.1 522.2 522.2 522.2 Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] [Processed Buffers : 2 2 3 2 Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] [GC Worker Other (ms): 0.3 0.3 0.3 0.3 Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] [Clear CT: 0.1 ms] [Other: 1.5 ms] [Choose CSet: 0.0 ms] [Ref Proc: 0.3 ms] [Ref Enq: 0.0 ms] [Free CSet: 0.3 ms] [Eden: 12M(12M)->0B(10M) Survivors: 0B->2048K Heap: 13M(64M)->9739K(64M)] [Times: user=0.59 sys=0.02, real=0.16 secs] This is the typical log of an Evacuation Pause (G1 collection) in which live objects are copied from one set of regions (young OR young+old) to another set. It is a stop-the-world activity and all the application threads are stopped at a safepoint during this time. This pause is made up of several sub-tasks indicated by the indentation in the log entries. Here's is the top most line that gets printed for the Evacuation Pause. 0.522: [GC pause (young), 0.15877971 secs] This is the highest level information telling us that it is an Evacuation Pause that started at 0.522 secs from the start of the process, in which all the regions being evacuated are Young i.e. Eden and Survivor regions. This collection took 0.15877971 secs to finish. Evacuation Pauses can be mixed as well. In which case the set of regions selected include all of the young regions as well as some old regions. 1.730: [GC pause (mixed), 0.32714353 secs] Let's take a look at all the sub-tasks performed in this Evacuation Pause. [Parallel Time: 157.1 ms] Parallel Time is the total elapsed time spent by all the parallel GC worker threads. The following lines correspond to the parallel tasks performed by these worker threads in this total parallel time, which in this case is 157.1 ms. [GC Worker Start (ms): 522.1 522.2 522.2 522.2Avg: 522.2, Min: 522.1, Max: 522.2, Diff: 0.1] The first line tells us the start time of each of the worker thread in milliseconds. The start times are ordered with respect to the worker thread ids – thread 0 started at 522.1ms and thread 1 started at 522.2ms from the start of the process. The second line tells the Avg, Min, Max and Diff of the start times of all of the worker threads. [Ext Root Scanning (ms): 1.6 1.5 1.6 1.9 Avg: 1.7, Min: 1.5, Max: 1.9, Diff: 0.4] This gives us the time spent by each worker thread scanning the roots (globals, registers, thread stacks and VM data structures). Here, thread 0 took 1.6ms to perform the root scanning task and thread 1 took 1.5 ms. The second line clearly shows the Avg, Min, Max and Diff of the times spent by all the worker threads. [Update RS (ms): 38.7 38.8 50.6 37.3 Avg: 41.3, Min: 37.3, Max: 50.6, Diff: 13.3] Update RS gives us the time each thread spent in updating the Remembered Sets. Remembered Sets are the data structures that keep track of the references that point into a heap region. Mutator threads keep changing the object graph and thus the references that point into a particular region. We keep track of these changes in buffers called Update Buffers. The Update RS sub-task processes the update buffers that were not able to be processed concurrently, and updates the corresponding remembered sets of all regions. [Processed Buffers : 2 2 3 2Sum: 9, Avg: 2, Min: 2, Max: 3, Diff: 1] This tells us the number of Update Buffers (mentioned above) processed by each worker thread. [Scan RS (ms): 9.9 9.7 0.0 9.7 Avg: 7.3, Min: 0.0, Max: 9.9, Diff: 9.9] These are the times each worker thread had spent in scanning the Remembered Sets. Remembered Set of a region contains cards that correspond to the references pointing into that region. This phase scans those cards looking for the references pointing into all the regions of the collection set. [Object Copy (ms): 106.7 106.8 104.6 107.9 Avg: 106.5, Min: 104.6, Max: 107.9, Diff: 3.3] These are the times spent by each worker thread copying live objects from the regions in the Collection Set to the other regions. [Termination (ms): 0.0 0.0 0.0 0.0 Avg: 0.0, Min: 0.0, Max: 0.0, Diff: 0.0] Termination time is the time spent by the worker thread offering to terminate. But before terminating, it checks the work queues of other threads and if there are still object references in other work queues, it tries to steal object references, and if it succeeds in stealing a reference, it processes that and offers to terminate again. [Termination Attempts : 1 4 4 6 Sum: 15, Avg: 3, Min: 1, Max: 6, Diff: 5] This gives the number of times each thread has offered to terminate. [GC Worker End (ms): 679.1 679.1 679.1 679.1 Avg: 679.1, Min: 679.1, Max: 679.1, Diff: 0.1] These are the times in milliseconds at which each worker thread stopped. [GC Worker (ms): 156.9 157.0 156.9 156.9 Avg: 156.9, Min: 156.9, Max: 157.0, Diff: 0.1] These are the total lifetimes of each worker thread. [GC Worker Other (ms): 0.3 0.3 0.3 0.3Avg: 0.3, Min: 0.3, Max: 0.3, Diff: 0.0] These are the times that each worker thread spent in performing some other tasks that we have not accounted above for the total Parallel Time. [Clear CT: 0.1 ms] This is the time spent in clearing the Card Table. This task is performed in serial mode. [Other: 1.5 ms] Time spent in the some other tasks listed below. The following sub-tasks (which individually may be parallelized) are performed serially. [Choose CSet: 0.0 ms] Time spent in selecting the regions for the Collection Set. [Ref Proc: 0.3 ms] Total time spent in processing Reference objects. [Ref Enq: 0.0 ms] Time spent in enqueuing references to the ReferenceQueues. [Free CSet: 0.3 ms] Time spent in freeing the collection set data structure. [Eden: 12M(12M)->0B(13M) Survivors: 0B->2048K Heap: 14M(64M)->9739K(64M)] This line gives the details on the heap size changes with the Evacuation Pause. This shows that Eden had the occupancy of 12M and its capacity was also 12M before the collection. After the collection, its occupancy got reduced to 0 since everything is evacuated/promoted from Eden during a collection, and its target size grew to 13M. The new Eden capacity of 13M is not reserved at this point. This value is the target size of the Eden. Regions are added to Eden as the demand is made and when the added regions reach to the target size, we start the next collection. Similarly, Survivors had the occupancy of 0 bytes and it grew to 2048K after the collection. The total heap occupancy and capacity was 14M and 64M receptively before the collection and it became 9739K and 64M after the collection. Apart from the evacuation pauses, G1 also performs concurrent-marking to build the live data information of regions. 1.416: [GC pause (young) (initial-mark), 0.62417980 secs] ….... 2.042: [GC concurrent-root-region-scan-start] 2.067: [GC concurrent-root-region-scan-end, 0.0251507] 2.068: [GC concurrent-mark-start] 3.198: [GC concurrent-mark-reset-for-overflow] 4.053: [GC concurrent-mark-end, 1.9849672 sec] 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] [Times: user=0.00 sys=0.00, real=0.00 secs] 4.090: [GC concurrent-cleanup-start] 4.091: [GC concurrent-cleanup-end, 0.0002721] The first phase of a marking cycle is Initial Marking where all the objects directly reachable from the roots are marked and this phase is piggy-backed on a fully young Evacuation Pause. 2.042: [GC concurrent-root-region-scan-start] This marks the start of a concurrent phase that scans the set of root-regions which are directly reachable from the survivors of the initial marking phase. 2.067: [GC concurrent-root-region-scan-end, 0.0251507] End of the concurrent root region scan phase and it lasted for 0.0251507 seconds. 2.068: [GC concurrent-mark-start] Start of the concurrent marking at 2.068 secs from the start of the process. 3.198: [GC concurrent-mark-reset-for-overflow] This indicates that the global marking stack had became full and there was an overflow of the stack. Concurrent marking detected this overflow and had to reset the data structures to start the marking again. 4.053: [GC concurrent-mark-end, 1.9849672 sec] End of the concurrent marking phase and it lasted for 1.9849672 seconds. 4.055: [GC remark 4.055: [GC ref-proc, 0.0000254 secs], 0.0030184 secs] This corresponds to the remark phase which is a stop-the-world phase. It completes the left over marking work (SATB buffers processing) from the previous phase. In this case, this phase took 0.0030184 secs and out of which 0.0000254 secs were spent on Reference processing. 4.088: [GC cleanup 117M->106M(138M), 0.0015198 secs] Cleanup phase which is again a stop-the-world phase. It goes through the marking information of all the regions, computes the live data information of each region, resets the marking data structures and sorts the regions according to their gc-efficiency. In this example, the total heap size is 138M and after the live data counting it was found that the total live data size dropped down from 117M to 106M. 4.090: [GC concurrent-cleanup-start] This concurrent cleanup phase frees up the regions that were found to be empty (didn't contain any live data) during the previous stop-the-world phase. 4.091: [GC concurrent-cleanup-end, 0.0002721] Concurrent cleanup phase took 0.0002721 secs to free up the empty regions. Option -XX:G1PrintRegionLivenessInfo Now, let's look at the output generated with the flag G1PrintRegionLivenessInfo. This is a diagnostic option and gets enabled with -XX:+UnlockDiagnosticVMOptions. G1PrintRegionLivenessInfo prints the live data information of each region during the Cleanup phase of the concurrent-marking cycle. 26.896: [GC cleanup ### PHASE Post-Marking @ 26.896### HEAP committed: 0x02e00000-0x0fe00000 reserved: 0x02e00000-0x12e00000 region-size: 1048576 Cleanup phase of the concurrent-marking cycle started at 26.896 secs from the start of the process and this live data information is being printed after the marking phase. Committed G1 heap ranges from 0x02e00000 to 0x0fe00000 and the total G1 heap reserved by JVM is from 0x02e00000 to 0x12e00000. Each region in the G1 heap is of size 1048576 bytes. ### type address-range used prev-live next-live gc-eff### (bytes) (bytes) (bytes) (bytes/ms) This is the header of the output that tells us about the type of the region, address-range of the region, used space in the region, live bytes in the region with respect to the previous marking cycle, live bytes in the region with respect to the current marking cycle and the GC efficiency of that region. ### FREE 0x02e00000-0x02f00000 0 0 0 0.0 This is a Free region. ### OLD 0x02f00000-0x03000000 1048576 1038592 1038592 0.0 Old region with address-range from 0x02f00000 to 0x03000000. Total used space in the region is 1048576 bytes, live bytes as per the previous marking cycle are 1038592 and live bytes with respect to the current marking cycle are also 1038592. The GC efficiency has been computed as 0. ### EDEN 0x03400000-0x03500000 20992 20992 20992 0.0 This is an Eden region. ### HUMS 0x0ae00000-0x0af00000 1048576 1048576 1048576 0.0### HUMC 0x0af00000-0x0b000000 1048576 1048576 1048576 0.0### HUMC 0x0b000000-0x0b100000 1048576 1048576 1048576 0.0### HUMC 0x0b100000-0x0b200000 1048576 1048576 1048576 0.0### HUMC 0x0b200000-0x0b300000 1048576 1048576 1048576 0.0### HUMC 0x0b300000-0x0b400000 1048576 1048576 1048576 0.0### HUMC 0x0b400000-0x0b500000 1001480 1001480 1001480 0.0 These are the continuous set of regions called Humongous regions for storing a large object. HUMS (Humongous starts) marks the start of the set of humongous regions and HUMC (Humongous continues) tags the subsequent regions of the humongous regions set. ### SURV 0x09300000-0x09400000 16384 16384 16384 0.0 This is a Survivor region. ### SUMMARY capacity: 208.00 MB used: 150.16 MB / 72.19 % prev-live: 149.78 MB / 72.01 % next-live: 142.82 MB / 68.66 % At the end, a summary is printed listing the capacity, the used space and the change in the liveness after the completion of concurrent marking. In this case, G1 heap capacity is 208MB, total used space is 150.16MB which is 72.19% of the total heap size, live data in the previous marking was 149.78MB which was 72.01% of the total heap size and the live data as per the current marking is 142.82MB which is 68.66% of the total heap size. Option -XX:+G1PrintHeapRegions G1PrintHeapRegions option logs the regions related events when regions are committed, allocated into or are reclaimed. COMMIT/UNCOMMIT events G1HR COMMIT [0x6e900000,0x6ea00000]G1HR COMMIT [0x6ea00000,0x6eb00000] Here, the heap is being initialized or expanded and the region (with bottom: 0x6eb00000 and end: 0x6ec00000) is being freshly committed. COMMIT events are always generated in order i.e. the next COMMIT event will always be for the uncommitted region with the lowest address. G1HR UNCOMMIT [0x72700000,0x72800000]G1HR UNCOMMIT [0x72600000,0x72700000] Opposite to COMMIT. The heap got shrunk at the end of a Full GC and the regions are being uncommitted. Like COMMIT, UNCOMMIT events are also generated in order i.e. the next UNCOMMIT event will always be for the committed region with the highest address. GC Cycle events G1HR #StartGC 7G1HR CSET 0x6e900000G1HR REUSE 0x70500000G1HR ALLOC(Old) 0x6f800000G1HR RETIRE 0x6f800000 0x6f821b20G1HR #EndGC 7 This shows start and end of an Evacuation pause. This event is followed by a GC counter tracking both evacuation pauses and Full GCs. Here, this is the 7th GC since the start of the process. G1HR #StartFullGC 17G1HR UNCOMMIT [0x6ed00000,0x6ee00000]G1HR POST-COMPACTION(Old) 0x6e800000 0x6e854f58G1HR #EndFullGC 17 Shows start and end of a Full GC. This event is also followed by the same GC counter as above. This is the 17th GC since the start of the process. ALLOC events G1HR ALLOC(Eden) 0x6e800000 The region with bottom 0x6e800000 just started being used for allocation. In this case it is an Eden region and allocated into by a mutator thread. G1HR ALLOC(StartsH) 0x6ec00000 0x6ed00000G1HR ALLOC(ContinuesH) 0x6ed00000 0x6e000000 Regions being used for the allocation of Humongous object. The object spans over two regions. G1HR ALLOC(SingleH) 0x6f900000 0x6f9eb010 Single region being used for the allocation of Humongous object. G1HR COMMIT [0x6ee00000,0x6ef00000]G1HR COMMIT [0x6ef00000,0x6f000000]G1HR COMMIT [0x6f000000,0x6f100000]G1HR COMMIT [0x6f100000,0x6f200000]G1HR ALLOC(StartsH) 0x6ee00000 0x6ef00000G1HR ALLOC(ContinuesH) 0x6ef00000 0x6f000000G1HR ALLOC(ContinuesH) 0x6f000000 0x6f100000G1HR ALLOC(ContinuesH) 0x6f100000 0x6f102010 Here, Humongous object allocation request could not be satisfied by the free committed regions that existed in the heap, so the heap needed to be expanded. Thus new regions are committed and then allocated into for the Humongous object. G1HR ALLOC(Old) 0x6f800000 Old region started being used for allocation during GC. G1HR ALLOC(Survivor) 0x6fa00000 Region being used for copying old objects into during a GC. Note that Eden and Humongous ALLOC events are generated outside the GC boundaries and Old and Survivor ALLOC events are generated inside the GC boundaries. Other Events G1HR RETIRE 0x6e800000 0x6e87bd98 Retire and stop using the region having bottom 0x6e800000 and top 0x6e87bd98 for allocation. Note that most regions are full when they are retired and we omit those events to reduce the output volume. A region is retired when another region of the same type is allocated or we reach the start or end of a GC(depending on the region). So for Eden regions: For example: 1. ALLOC(Eden) Foo2. ALLOC(Eden) Bar3. StartGC At point 2, Foo has just been retired and it was full. At point 3, Bar was retired and it was full. If they were not full when they were retired, we will have a RETIRE event: 1. ALLOC(Eden) Foo2. RETIRE Foo top3. ALLOC(Eden) Bar4. StartGC G1HR CSET 0x6e900000 Region (bottom: 0x6e900000) is selected for the Collection Set. The region might have been selected for the collection set earlier (i.e. when it was allocated). However, we generate the CSET events for all regions in the CSet at the start of a GC to make sure there's no confusion about which regions are part of the CSet. G1HR POST-COMPACTION(Old) 0x6e800000 0x6e839858 POST-COMPACTION event is generated for each non-empty region in the heap after a full compaction. A full compaction moves objects around, so we don't know what the resulting shape of the heap is (which regions were written to, which were emptied, etc.). To deal with this, we generate a POST-COMPACTION event for each non-empty region with its type (old/humongous) and the heap boundaries. At this point we should only have Old and Humongous regions, as we have collapsed the young generation, so we should not have eden and survivors. POST-COMPACTION events are generated within the Full GC boundary. G1HR CLEANUP 0x6f400000G1HR CLEANUP 0x6f300000G1HR CLEANUP 0x6f200000 These regions were found empty after remark phase of Concurrent Marking and are reclaimed shortly afterwards. G1HR #StartGC 5G1HR CSET 0x6f400000G1HR CSET 0x6e900000G1HR REUSE 0x6f800000 At the end of a GC we retire the old region we are allocating into. Given that its not full, we will carry on allocating into it during the next GC. This is what REUSE means. In the above case 0x6f800000 should have been the last region with an ALLOC(Old) event during the previous GC and should have been retired before the end of the previous GC. G1HR ALLOC-FORCE(Eden) 0x6f800000 A specialization of ALLOC which indicates that we have reached the max desired number of the particular region type (in this case: Eden), but we decided to allocate one more. Currently it's only used for Eden regions when we extend the young generation because we cannot do a GC as the GC-Locker is active. G1HR EVAC-FAILURE 0x6f800000 During a GC, we have failed to evacuate an object from the given region as the heap is full and there is no space left to copy the object. This event is generated within GC boundaries and exactly once for each region from which we failed to evacuate objects. When Heap Regions are reclaimed ? It is also worth mentioning when the heap regions in the G1 heap are reclaimed. All regions that are in the CSet (the ones that appear in CSET events) are reclaimed at the end of a GC. The exception to that are regions with EVAC-FAILURE events. All regions with CLEANUP events are reclaimed. After a Full GC some regions get reclaimed (the ones from which we moved the objects out). But that is not shown explicitly, instead the non-empty regions that are left in the heap are printed out with the POST-COMPACTION events.

    Read the article

  • 2012 Oracle Fusion Innovation Awards - Part 2

    - by Michelle Kimihira
    Author: Moazzam Chaudry Continuing from Friday's blog on 2012 Oracle Fusion Innovation Awards, this blog (Part 2) will provide more details around the customers. It was a tremendous honor to be in single room of winners. We only wish we could have had more time to share stories from all the winners.  We received great insight from all the innovative solutions that our customers deploy and would like to share them broadly, so that others can benefit from best practices. There was a customer panel session joined by Ingersoll Rand, Nike and Motability and here is what was discussed: Barry Bonar, Enterprise Architect from Ingersoll Rand shared details around their solution, comprised of Oracle Exalogic, Oracle WebLogic Server and Oracle SOA Suite. This combined solutoin enabled their business transformation to increase decision-making, speed and efficiency, resulting in 40% reduced IT spend, 41X Faster response time and huge cost savings. Ashok Balakrishnan, Architect from Nike shared how they leveraged Oracle Coherence to analyze their digital "footprint" of activities. This helps them compete, collaborate and compare athletic data over time. Lastly, Ashley Doodly, Head of IT from Motability shared details around their solution compromised of Oracle SOA Suite, Service Bus, ADF, Coherence, BO and E-Business Suite. This solution helped Motability achieve 100% ROI within the first few months, performance in seconds vs. 10's of minutes and tremendous improvement in throughput that increased up to 50%.  This year's winners by category are: Oracle Exalogic Customer Results using Fusion Middleware Netshoes ATG on Exalogic: 6X Reduced H/W foot print, 6.2X increased throughput and 3 weeks time to market Claro Part of America Movil, running mission critical Java Application on Exalogic with 35X Faster Java response time, 5X Throughput Underwriters Laboratories Exalogic as an Apps Consolidation platform to power tremendous growth Ingersoll Rand EBS on Exalogic: Up to 40% Reduction in overall IT budget, 3x reduced foot print Oracle Cloud Application Foundation Customer Results using Fusion Middleware  Mazda Motor Corporation Tuxedo ART Batch runtime environment to migrate their batch apps on new open environment and reduce main frame cost. HOTELBEDS Technology Open Source to WebLogic transformation Globalia Corporation Introduced Oracle Coherence to fully reengineer DTH system and provide multiple business and technical benefits Nike Nike+, digital sports platform, has 8M users and is expecting an 5X increase in users, many of who will carry multiple devices that frequently sync data with the Digital Sport platform Comcast Corporation The solution is expected to increase availability, continuity, performance, and simplify and make the code at the application layer more flexible. Oracle SOA and Oracle BPM Customer Results using Fusion Middleware NTT Docomo Network traffic solution based on Oracle event processing and coherence - massive in scale: 12M users (50M in future) - 800,000 events/sec. Schneider National, Inc. SOA/B2B/ADF/Data Integration to orchestrate key order processes across Siebel, OTM & EBS.  Platform runs 60M trans/day and  50 million composite SOA instances per day across 10G and 11G Amadeus Oracle BPM solution: Business Rules and processes vary across local (80), regional (~10) and corporate approval process. Up to 10 levels of approval. Plans to deploy across 20+ markets Navitar SOA solution integrates a fully non-Oracle legacy application/ERP environment using Oracle’s SOA Suite and Oracle AIA Foundation Pack. Motability Uses SOA Suite to synchronize data across the systems and to manage the vehicle remarketing process Oracle WebCenter Customer Results using Fusion Middleware  News Limited Single platform running websites for 50% of Australia's newspapers University of Louisville “Facebook for Medicine”: Oracle Webcenter platform and Oracle BIEE to analyze patient test data and uncover potential health issues. Expecting annualized ROI of 277% China Mobile Jiangsu Company portal (25k users) to drive collaboration & productivity Life Technologies Portal for remotely monitoring & repairing biotech instruments LA Dept. of Water & Power Oracle WebCenter Portal to power ladwp.com on desktop and mobile for 1.6million users Oracle Identity Management Customer Results using Fusion Middleware Education Testing Service Identity Management platform for provisioning & SSO of 6 million GRE, GMAT, TOEFL customers Avea Oracle Identity Manager allowing call center personnel to quickly change Identity Profile to handle varying call loads based on a user self service interface. Decreased Admin Cost by 30% Oracle Data Integration Customer Results using Fusion Middleware Raymond James Near real-time integration for improved systems (throughput & performance) and enhanced operational flexibility in a 24 X 7 environment Wm Morrison Supermarkets Electronic Point of Sale integration handling over 80 million transactions a day in near real time (15 min intervals) Oracle Application Development Framework and Oracle Fusion Development Customer Results using Fusion Middleware Qualcomm Incorporated Solution providing  immediate business value enabling a self-service model necessary for growing the new customer base, an increase in customer satisfaction, reduced “time-to-deliver” Micros Systems, Inc. ADF, SOA Suite, WebCenter  enables services that include managing distribution of hotel rooms availability and rates to channels such as Hotel Web-site, Expedia, etc. Marfin Egnatia Bank A new web 2.0 UI provides a much richer experience through the ADF solution with the end result being one of boosting end-user productivity    Business Analytics (Oracle BI, Oracle EPM, Oracle Exalytics) Customer Results using Fusion Middleware INC Research Self-service customer portal delivering 5–10% of the overall revenue - expected to grow fast with the BI solution Experian Reduction in Time to Complete the Financial Close Process Hologic Inc Solution, saving months of decision-making uncertainty! We look forward to seeing many more innovative nominations. The nominatation process for 2013 begins in April 2013.    Additional Information: Blog: Oracle WebCenter Award Winners Blog: Oracle Identity Management Winners Blog: Oracle Exalogic Winners Blog: SOA, BPM and Data Integration will be will feature award winners in its respective areas this week Subscribe to our regular Fusion Middleware Newsletter Follow us on Twitter and Facebook

    Read the article

  • The curious case of SOA Human tasks' automatic completion

    - by Kavitha Srinivasan
    A large south-Asian insurance industry customer using Oracle BPM and SOA ran into this. I have survived this ordeal previously myself but didnt think to blog it then. However, it seems like a good idea to share this knowledge with this reader community and so here goes.. Symptom: A human task (in a SOA/BPEL/BPM process) completes automatically while it should have been assigned to a proper user.There are no stack traces, no related exceptions in the logs. Why: The product is designed to treat human tasks that don't have assignees as one that is eligible for completion. And hence no warning/error messages are recorded in the logs. Usecase variant: A variant of this usecase, where an assignee doesnt exist in the repository is treated as a recoverable error. One can find this in the 'pending recovery' instances in EM and reactivate the task by changing the assignees in the bpm workspace as a process owner /administrator. But back to the usecase when tasks get completed automatically... When: This happens when the users/groups assigned to a task are 'empty' or null. This has been seen only on tasks whose assignees are derived from an assignment expression - ie at runtime an XPath is used to determine who to assign the task to. (This should not happen if task assignees are populated via swim-lane roles.) How to detect this in EM For instances that are auto-completed thus, one will notice in the Audit Trail of such instances, that the 'outcome' of the task is empty. The 'acquired by' element will also show as empty/null. Enabling the oracle.soa.services.workflow.* logger in em should print more verbose messages about this. How to fix this The application code needs two fixes: input to HT: The XSLT/XPath used  to set the task 'assignee' and the process itself should be enhanced to handle nulls better. For eg: if no-data-found, set assignees to alternate value, force default assignees etc. output from HT: Additionally, in the application code, check that the 'outcome' of the HT is not-null. If null, route the task to be performed again after setting the assignee correctly. Beginning PS4FP, one should be able to use 'grab' to route back to the task to fire again. Hope this helps. 

    Read the article

  • Does programming knowledge have a half-life?

    - by Gary Rowe
    In answering this question, I asserted that programming knowledge has a half-life of about 18 months. In physics, we have radioactive decay which is the process by which a radioactive element transforms into something less energetic. The half-life is the measure of how long it takes for this process to result in only half of the material to remain. A parallel concept might be that over time our programming knowledge ceases to be the current idiom and eventually becomes irrelevant. Noting that a half-life is asymptotic (so some knowledge will always be relevant), what are your thoughts on this? Is 18 months a good estimate? Is it even the case? Does it apply to design patterns, but over a longer period? What are the inherent advantages/disadvantages of this half-life? Update Just found this question which covers the material fairly well: "Half of everything you know will be obsolete in 18-24 months" = ( True, or False? )

    Read the article

  • The Work Order Printing Challenge

    - by celine.beck
    One of the biggest concerns we've heard from maintenance practitioners is the ability to print and batch print work order details along with its accompanying attachments. Indeed, maintenance workers traditionally rely on work order packets to complete their job. A standard work order packet can include a variety of information like equipment documentation, operating instructions, checklists, end-of-task feedback forms and the likes. Now, the problem is that most Asset Lifecycle Management applications do not provide a simple and efficient solution for process printing with document attachments. Work order forms can be easily printed but attachments are usually left out of the printing process. This sounds like a minor problem, but when you are processing high volume of work orders on a regular basis, this inconvenience can result in important inefficiencies. In order to print work order and its related attachments, maintenance personnel need to print the work order details and then go back to the work order and open each individual attachment using the proper authoring application to view and print each document. The printed output is collated into a work order packet. The AutoVue Document Print Service products that were just released in April 2010 aim at helping organizations address the work order printing challenge. Customers and partners can leverage the AutoVue Document Print Services to build a complete printing solution that complements their existing print server solution with AutoVue's document- and platform-agnostic document print services. The idea is to leverage AutoVue's printing services to invoke printing either programmatically or manually directly from within the work order management application, and efficiently process the printing of complete work order packets, including all types of attachments, from office files to more advanced engineering documents like 2D CAD drawings. Oracle partners like MIPRO Consulting, specialists in PeopleSoft implementations, have already expressed interest in the AutoVue Document Print Service products for their ability to offer print services to the PeopleSoft ALM suite, so that customers are able to print packages of documents for maintenance personnel. For more information on the subject, please consult MIPRO Consulting's article entitled Unsung Value: Primavera and AutoVue Integration into PeopleSoft posted on their blog. The blog post entitled Introducing AutoVue Document Print Service provides additional information on how the solution works. We would also love to hear what your thoughts are on the topic, so please do not hesitate to post your comments/feedback on our blog. Related Articles: Introducing AutoVue Document Print Service Print Any Document Type with AutoVue Document Print Services

    Read the article

  • World Record Performance on PeopleSoft Enterprise Financials Benchmark on SPARC T4-2

    - by Brian
    Oracle's SPARC T4-2 server achieved World Record performance on Oracle's PeopleSoft Enterprise Financials 9.1 executing 20 Million Journals lines in 8.92 minutes on Oracle Database 11g Release 2 running on Oracle Solaris 11. This is the first result published on this version of the benchmark. The SPARC T4-2 server was able to process 20 million general ledger journal edit and post batch jobs in 8.92 minutes on this benchmark that reflects a large customer environment that utilizes a back-end database of nearly 500 GB. This benchmark demonstrates that the SPARC T4-2 server with PeopleSoft Financials 9.1 can easily process 100 million journal lines in less than 1 hour. The SPARC T4-2 server delivered more than 146 MB/sec of IO throughput with Oracle Database 11g running on Oracle Solaris 11. Performance Landscape Results are presented for PeopleSoft Financials Benchmark 9.1. Results obtained with PeopleSoft Financials Benchmark 9.1 are not comparable to the the previous version of the benchmark, PeopleSoft Financials Benchmark 9.0, due to significant change in data model and supports only batch. PeopleSoft Financials Benchmark, Version 9.1 Solution Under Test Batch (min) SPARC T4-2 (2 x SPARC T4, 2.85 GHz) 8.92 Results from PeopleSoft Financials Benchmark 9.0. PeopleSoft Financials Benchmark, Version 9.0 Solution Under Test Batch (min) Batch with Online (min) SPARC Enterprise M4000 (Web/App) SPARC Enterprise M5000 (DB) 33.09 34.72 SPARC T3-1 (Web/App) SPARC Enterprise M5000 (DB) 35.82 37.01 Configuration Summary Hardware Configuration: 1 x SPARC T4-2 server 2 x SPARC T4 processors, 2.85 GHz 128 GB memory Storage Configuration: 1 x Sun Storage F5100 Flash Array (for database and redo logs) 2 x Sun Storage 2540-M2 arrays and 2 x Sun Storage 2501-M2 arrays (for backup) Software Configuration: Oracle Solaris 11 11/11 SRU 7.5 Oracle Database 11g Release 2 (11.2.0.3) PeopleSoft Financials 9.1 Feature Pack 2 PeopleSoft Supply Chain Management 9.1 Feature Pack 2 PeopleSoft PeopleTools 8.52 latest patch - 8.52.03 Oracle WebLogic Server 10.3.5 Java Platform, Standard Edition Development Kit 6 Update 32 Benchmark Description The PeopleSoft Enterprise Financials 9.1 benchmark emulates a large enterprise that processes and validates a large number of financial journal transactions before posting the journal entry to the ledger. The validation process certifies that the journal entries are accurate, ensuring that ChartFields values are valid, debits and credits equal out, and inter/intra-units are balanced. Once validated, the entries are processed, ensuring that each journal line posts to the correct target ledger, and then changes the journal status to posted. In this benchmark, the Journal Edit & Post is set up to edit and post both Inter-Unit and Regular multi-currency journals. The benchmark processes 20 million journal lines using AppEngine for edits and Cobol for post processes. See Also Oracle PeopleSoft Benchmark White Papers oracle.com SPARC T4-2 Server oracle.com OTN PeopleSoft Financial Management oracle.com OTN Oracle Solaris oracle.com OTN Oracle Database 11g Release 2 Enterprise Edition oracle.com OTN Disclosure Statement Copyright 2012, Oracle and/or its affiliates. All rights reserved. Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners. Results as of 1 October 2012.

    Read the article

  • Loading dynamic content and rewrite URL on Hashchange event with Jquery Mobile

    - by user3611500
    I'm building a mobile version for my website using Jquery Mobile API. The framework provides automate AJAX navigation processing. But as far as i know it require "real" pages for loading purpose. What i want to do is override the automate navigation process of it and process the hashchange on my own. But i can't not rewrite the url using window.hashChange, which is running well on my non-mobile website version : $(function () { $(window).off().hashchange(function () { if (location.hash.length > 1) { PageSelect(); } }); $(window).hashchange(); }); I just only want to take advantage on jquery mobile interfaces, i don't want anything with its automate ajax navigation stuff ! I tried to disable it using ajaxEnabled() but got no luck.

    Read the article

  • Free Book from Microsoft - Testing for Continuous Delivery with Visual Studio 2012

    - by TATWORTH
    Originally posted on: http://geekswithblogs.net/TATWORTH/archive/2013/10/16/free-book-from-microsoft---testing-for-continuous-delivery-with.aspxAt  http://msdn.microsoft.com/en-us/library/jj159345.aspx, Microsoft have made available a free e-book - Testing for Continuous Delivery with Visual Studio 2012 "As more software projects adopt a continuous delivery cycle, testing threatens to be the bottleneck in the process. Agile development frequently revisits each part of the source code, but every change requires a re-test of the product. While the skills of the manual tester are vital, purely manual testing can't keep up. Visual Studio 2012 provides many features that remove roadblocks in the testing and debugging process and also help speed up and automate re-testing."

    Read the article

  • OWB 11gR2: Migration and Upgrade Paths from Previous Versions

    - by antonio romero
    Over the next several months, we expect widespread adoption of OWB 11gR2, both for its new features and because it is the only release of Warehouse Builder certified for use with database 11gR2. Customers seeking to move existing environments to OWB 11gR2 should review the new whitepaper, OWB 11.2: Upgrade and Migration Paths. This whitepaper covers the following topics: The difference between upgrade and migration, and how to choose between them An outline of how to perform each process When and where intermediate upgrade steps are required Tips for upgrading an existing environment to 11gR2 without having to regenerate and redeploy code to your production environment. Moving up from 10gR2 and 11gR1 is generally straightforward. For customers still using OWB 9 or 10.1, it is generally possible to move an entire environment forward complete with design and runtime audit metadata, but the upgrade process can be complex and may require intermediate processing using OWB 10.2 or OWB 11.1. Moving a design by itself is much simpler, though it requires regeneration and redeployment. Relevant details are provided in the whitepaper, so if you are planning an upgrade at some point soon, definitely start there.

    Read the article

  • Improving Plant Reliability and Uptime with Oracle Asset Lifecycle

    Successful factories around the world leverage information to drive their production and supply chains. New tools are available today to further catapult the data collection, analysis, contextualization and collaboration to the various stakeholders involved in the manufacturing process. Oracle Manufacturing Operations Center (MOC) addresses the factory's need for accurate and timely information about product and process quality, insight into shop floor operations, and performance of production assets. It solves the complex problem of connecting fragmented disconnected shop floor data to the business context of your ERP and provides the solid foundation for running Continuous Improvement (CI) programs such as Lean and Six Sigma.

    Read the article

  • Oracle Linux 6 Implementation Essentials Certification Exam Now Available

    - by Antoinette O'Sullivan
    Get proof of your linux system administration skills by taking the Oracle Linux 6 Implementation Essentials Certification exam. This certification is available to all candidates. Oracle Partner Members earning this certification will be recognized as OPN Certified Specialists. This certification takes under 3 hours, asking you between 120-150 questions on areas including: Introduction to Oracle Linux Installing Oracle Linux 6 Linux Boot Process Oracle Linux System Configuration and Process Management Oracle Linux Package Management Ksplice Zero Downtime Updates Automate Tasks and System Logging User and Group Administration Oracle Linux File Sytems and Storage Administration Network Administration Oracle Linux System Monitoring and Troubleshooting Oracle Certifications are among the most sought after badges of credibility for expertise in the Information Technology marketplace. See Benefits of Oracle Certification for more information. To prepare for this exam, you can take the Oracle Linux System Administration training.

    Read the article

  • 8 Reasons Why Even Microsoft Agrees the Windows Desktop is a Nightmare

    - by Chris Hoffman
    Let’s be honest: The Windows desktop is a mess. Sure, it’s extremely powerful and has a huge software library, but it’s not a good experience for average people. It’s not even a good experience for geeks, although we tolerate it. Even Microsoft agrees about this. Microsoft’s Surface tablets with Windows RT don’t support any third-party desktop apps. They consider this a feature — users can’t install malware and other desktop junk, so the system will always be speedy and secure. Malware is Still Common Malware may not affect geeks, but it certainly continues to affect average people. Securing Windows, keeping it secure, and avoiding unsafe programs is a complex process. There are over 50 different file extensions that can contain harmful code to keep track of. It’s easy to have theoretical discussions about how malware could infect Mac computers, Android devices, and other systems. But Mac malware is extremely rare, and has  generally been caused by problem with the terrible Java plug-in. Macs are configured to only run executables from identified developers by default, whereas Windows will run everything. Android malware is talked about a lot, but Android malware is rare in the real world and is generally confined to users who disable security protections and install pirated apps. Google has also taken action, rolling out built-in antivirus-like app checking to all Android devices, even old ones running Android 2.3, via Play Services. Whatever the reason, Windows malware is still common while malware for other systems isn’t. We all know it — anyone who does tech support for average users has dealt with infected Windows computers. Even users who can avoid malware are stuck dealing with complex and nagging antivirus programs, especially since it’s now so difficult to trust Microsoft’s antivirus products. Manufacturer-Installed Bloatware is Terrible Sit down with a new Mac, Chromebook, iPad, Android tablet, Linux laptop, or even a Surface running Windows RT and you can enjoy using your new device. The system is a clean slate for you to start exploring and installing your new software. Sit down with a new Windows PC and the system is a mess. Rather than be delighted, you’re stuck reinstalling Windows and then installing the necessary drivers or you’re forced to start uninstalling useless bloatware programs one-by-one, trying to figure out which ones are actually useful. After uninstalling the useless programs, you may end up with a system tray full of icons for ten different hardware utilities anyway. The first experience of using a new Windows PC is frustration, not delight. Yes, bloatware is still a problem on Windows 8 PCs. Manufacturers can customize the Refresh image, preventing bloatware rom easily being removed. Finding a Desktop Program is Dangerous Want to install a Windows desktop program? Well, you’ll have to head to your web browser and start searching. It’s up to you, the user, to know which programs are safe and which are dangerous. Even if you find a website for a reputable program, the advertisements on that page will often try to trick you into downloading fake installers full of adware. While it’s great to have the ability to leave the app store and get software that the platform’s owner hasn’t approved — as on Android — this is no excuse for not providing a good, secure software installation experience for typical users installing typical programs. Even Reputable Desktop Programs Try to Install Junk Even if you do find an entirely reputable program, you’ll have to keep your eyes open while installing it. It will likely try to install adware, add browse toolbars, change your default search engine, or change your web browser’s home page. Even Microsoft’s own programs do this — when you install Skype for Windows desktop, it will attempt to modify your browser settings t ouse Bing, even if you’re specially chosen another search engine and home page. With Microsoft setting such an example, it’s no surprise so many other software developers have followed suit. Geeks know how to avoid this stuff, but there’s a reason program installers continue to do this. It works and tricks many users, who end up with junk installed and settings changed. The Update Process is Confusing On iOS, Android, and Windows RT, software updates come from a single place — the app store. On Linux, software updates come from the package manager. On Mac OS X, typical users’ software updates likely come from the Mac App Store. On the Windows desktop, software updates come from… well, every program has to create its own update mechanism. Users have to keep track of all these updaters and make sure their software is up-to-date. Most programs now have their act together and automatically update by default, but users who have old versions of Flash and Adobe Reader installed are vulnerable until they realize their software isn’t automatically updating. Even if every program updates properly, the sheer mess of updaters is clunky, slow, and confusing in comparison to a centralized update process. Browser Plugins Open Security Holes It’s no surprise that other modern platforms like iOS, Android, Chrome OS, Windows RT, and Windows Phone don’t allow traditional browser plugins, or only allow Flash and build it into the system. Browser plugins provide a wealth of different ways for malicious web pages to exploit the browser and open the system to attack. Browser plugins are one of the most popular attack vectors because of how many users have out-of-date plugins and how many plugins, especially Java, seem to be designed without taking security seriously. Oracle’s Java plugin even tries to install the terrible Ask toolbar when installing security updates. That’s right — the security update process is also used to cram additional adware into users’ machines so unscrupulous companies like Oracle can make a quick buck. It’s no wonder that most Windows PCs have an out-of-date, vulnerable version of Java installed. Battery Life is Terrible Windows PCs have bad battery life compared to Macs, IOS devices, and Android tablets, all of which Windows now competes with. Even Microsoft’s own Surface Pro 2 has bad battery life. Apple’s 11-inch MacBook Air, which has very similar hardware to the Surface Pro 2, offers double its battery life when web browsing. Microsoft has been fond of blaming third-party hardware manufacturers for their poorly optimized drivers in the past, but there’s no longer any room to hide. The problem is clearly Windows. Why is this? No one really knows for sure. Perhaps Microsoft has kept on piling Windows component on top of Windows component and many older Windows components were never properly optimized. Windows Users Become Stuck on Old Windows Versions Apple’s new OS X 10.9 Mavericks upgrade is completely free to all Mac users and supports Macs going back to 2007. Apple has also announced their intention that all new releases of Mac OS X will be free. In 2007, Microsoft had just shipped Windows Vista. Macs from the Windows Vista era are being upgraded to the latest version of the Mac operating system for free, while Windows PCs from the same era are probably still using Windows Vista. There’s no easy upgrade path for these people. They’re stuck using Windows Vista and maybe even the outdated Internet Explorer 9 if they haven’t installed a third-party web browser. Microsoft’s upgrade path is for these people to pay $120 for a full copy of Windows 8.1 and go through a complicated process that’s actaully a clean install. Even users of Windows 8 devices will probably have to pay money to upgrade to Windows 9, while updates for other operating systems are completely free. If you’re a PC geek, a PC gamer, or someone who just requires specialized software that only runs on Windows, you probably use the Windows desktop and don’t want to switch. That’s fine, but it doesn’t mean the Windows desktop is actually a good experience. Much of the burden falls on average users, who have to struggle with malware, bloatware, adware bundled in installers, complex software installation processes, and out-of-date software. In return, all they get is the ability to use a web browser and some basic Office apps that they could use on almost any other platform without all the hassle. Microsoft would agree with this, touting Windows RT and their new “Windows 8-style” app platform as the solution. Why else would Microsoft, a “devices and services” company, position the Surface — a device without traditional Windows desktop programs — as their mass-market device recommended for average people? This isn’t necessarily an endorsement of Windows RT. If you’re tech support for your family members and it comes time for them to upgrade, you may want to get them off the Windows desktop and tell them to get a Mac or something else that’s simple. Better yet, if they get a Mac, you can tell them to visit the Apple Store for help instead of calling you. That’s another thing Windows PCs don’t offer — good manufacturer support. Image Credit: Blanca Stella Mejia on Flickr, Collin Andserson on Flickr, Luca Conti on Flickr     

    Read the article

< Previous Page | 155 156 157 158 159 160 161 162 163 164 165 166  | Next Page >